freebsd-nq/sys/dev/an/if_an.c
John Baldwin 35e0e5b311 Catch up to moving headers:
- machine/ipl.h -> sys/ipl.h
- machine/mutex.h -> sys/mutex.h
2000-10-20 07:58:15 +00:00

1524 lines
36 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Aironet 4500/4800 series cards some in PCMCIA, ISA and PCI form.
* This driver supports all three device types (PCI devices are supported
* through an extra PCI shim: /sys/pci/if_an_p.c). ISA devices can be
* supported either using hard-coded IO port/IRQ settings or via Plug
* and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
* The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
*
* Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
* PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
* device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
* a couple of important differences though:
*
* - Lucent doesn't currently offer a PCI card, however Aironet does
* - Lucent ISA card looks to the host like a PCMCIA controller with
* a PCMCIA WaveLAN card inserted. This means that even desktop
* machines need to be configured with PCMCIA support in order to
* use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
* actually look like normal ISA and PCI devices to the host, so
* no PCMCIA controller support is needed
*
* The latter point results in a small gotcha. The Aironet PCMCIA
* cards can be configured for one of two operating modes depending
* on how the Vpp1 and Vpp2 programming voltages are set when the
* card is activated. In order to put the card in proper PCMCIA
* operation (where the CIS table is visible and the interface is
* programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
* set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
* which leaves the card in ISA/PCI mode, which prevents it from
* being activated as an PCMCIA device. Consequently, /sys/pccard/pccard.c
* has to be patched slightly in order to enable the Vpp voltages in
* order to make the Aironet PCMCIA cards work.
*
* Note that some PCMCIA controller software packages for Windows NT
* fail to set the voltages as well.
*
* The Aironet devices can operate in both station mode and access point
* mode. Typically, when programmed for station mode, the card can be set
* to automatically perform encapsulation/decapsulation of Ethernet II
* and 802.3 frames within 802.11 frames so that the host doesn't have
* to do it itself. This driver doesn't program the card that way: the
* driver handles all of the encapsulation/decapsulation itself.
*/
#include "opt_inet.h"
#ifdef INET
#define ANCACHE /* enable signal strength cache */
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/ucred.h>
#include <sys/socket.h>
#ifdef ANCACHE
#include <sys/syslog.h>
#include <sys/sysctl.h>
#endif
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/mutex.h>
#include <machine/resource.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <machine/md_var.h>
#include <dev/an/if_aironet_ieee.h>
#include <dev/an/if_anreg.h>
#if !defined(lint)
static const char rcsid[] =
"$FreeBSD$";
#endif
/* These are global because we need them in sys/pci/if_an_p.c. */
static void an_reset __P((struct an_softc *));
static int an_ioctl __P((struct ifnet *, u_long, caddr_t));
static void an_init __P((void *));
static int an_init_tx_ring __P((struct an_softc *));
static void an_start __P((struct ifnet *));
static void an_watchdog __P((struct ifnet *));
static void an_rxeof __P((struct an_softc *));
static void an_txeof __P((struct an_softc *, int));
static void an_promisc __P((struct an_softc *, int));
static int an_cmd __P((struct an_softc *, int, int));
static int an_read_record __P((struct an_softc *, struct an_ltv_gen *));
static int an_write_record __P((struct an_softc *, struct an_ltv_gen *));
static int an_read_data __P((struct an_softc *, int,
int, caddr_t, int));
static int an_write_data __P((struct an_softc *, int,
int, caddr_t, int));
static int an_seek __P((struct an_softc *, int, int, int));
static int an_alloc_nicmem __P((struct an_softc *, int, int *));
static void an_stats_update __P((void *));
static void an_setdef __P((struct an_softc *, struct an_req *));
#ifdef ANCACHE
static void an_cache_store __P((struct an_softc *, struct ether_header *,
struct mbuf *, unsigned short));
#endif
/*
* We probe for an Aironet 4500/4800 card by attempting to
* read the default SSID list. On reset, the first entry in
* the SSID list will contain the name "tsunami." If we don't
* find this, then there's no card present.
*/
int an_probe(dev)
device_t dev;
{
struct an_softc *sc = device_get_softc(dev);
struct an_ltv_ssidlist ssid;
int error;
bzero((char *)&ssid, sizeof(ssid));
error = an_alloc_port(dev, 0, AN_IOSIZ);
if (error)
return (0);
/* can't do autoprobing */
if (rman_get_start(sc->port_res) == -1)
return(0);
/*
* We need to fake up a softc structure long enough
* to be able to issue commands and call some of the
* other routines.
*/
sc->an_bhandle = rman_get_bushandle(sc->port_res);
sc->an_btag = rman_get_bustag(sc->port_res);
sc->an_unit = device_get_unit(dev);
ssid.an_len = sizeof(ssid);
ssid.an_type = AN_RID_SSIDLIST;
/* Make sure interrupts are disabled. */
CSR_WRITE_2(sc, AN_INT_EN, 0);
CSR_WRITE_2(sc, AN_EVENT_ACK, 0xFFFF);
an_reset(sc);
if (an_cmd(sc, AN_CMD_READCFG, 0))
return(0);
if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
return(0);
/* See if the ssid matches what we expect. */
if (strcmp(ssid.an_ssid1, AN_DEF_SSID))
return(0);
return(AN_IOSIZ);
}
/*
* Allocate a port resource with the given resource id.
*/
int
an_alloc_port(dev, rid, size)
device_t dev;
int rid;
int size;
{
struct an_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
0ul, ~0ul, size, RF_ACTIVE);
if (res) {
sc->port_rid = rid;
sc->port_res = res;
return (0);
} else {
return (ENOENT);
}
}
/*
* Allocate an irq resource with the given resource id.
*/
int
an_alloc_irq(dev, rid, flags)
device_t dev;
int rid;
int flags;
{
struct an_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
0ul, ~0ul, 1, (RF_ACTIVE | flags));
if (res) {
sc->irq_rid = rid;
sc->irq_res = res;
return (0);
} else {
return (ENOENT);
}
}
/*
* Release all resources
*/
void
an_release_resources(dev)
device_t dev;
{
struct an_softc *sc = device_get_softc(dev);
if (sc->port_res) {
bus_release_resource(dev, SYS_RES_IOPORT,
sc->port_rid, sc->port_res);
sc->port_res = 0;
}
if (sc->irq_res) {
bus_release_resource(dev, SYS_RES_IRQ,
sc->irq_rid, sc->irq_res);
sc->irq_res = 0;
}
}
int an_attach(sc, unit, flags)
struct an_softc *sc;
int unit;
int flags;
{
struct ifnet *ifp = &sc->arpcom.ac_if;
mtx_init(&sc->an_mtx, device_get_nameunit(sc->an_dev), MTX_DEF);
AN_LOCK(sc);
sc->an_gone = 0;
sc->an_associated = 0;
/* Reset the NIC. */
an_reset(sc);
/* Load factory config */
if (an_cmd(sc, AN_CMD_READCFG, 0)) {
printf("an%d: failed to load config data\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
/* Read the current configuration */
sc->an_config.an_type = AN_RID_GENCONFIG;
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
printf("an%d: read record failed\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
/* Read the card capabilities */
sc->an_caps.an_type = AN_RID_CAPABILITIES;
sc->an_caps.an_len = sizeof(struct an_ltv_caps);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
printf("an%d: read record failed\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
/* Read ssid list */
sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
printf("an%d: read record failed\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
/* Read AP list */
sc->an_aplist.an_type = AN_RID_APLIST;
sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
printf("an%d: read record failed\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
bcopy((char *)&sc->an_caps.an_oemaddr,
(char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
printf("an%d: Ethernet address: %6D\n", sc->an_unit,
sc->arpcom.ac_enaddr, ":");
ifp->if_softc = sc;
ifp->if_unit = sc->an_unit = unit;
ifp->if_name = "an";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = an_ioctl;
ifp->if_output = ether_output;
ifp->if_start = an_start;
ifp->if_watchdog = an_watchdog;
ifp->if_init = an_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
sizeof(AN_DEFAULT_NODENAME) - 1);
bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1));
bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_ssid1,
sizeof(AN_DEFAULT_NETNAME) - 1);
sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME);
sc->an_config.an_opmode =
AN_OPMODE_IBSS_ADHOC;
sc->an_tx_rate = 0;
bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
callout_handle_init(&sc->an_stat_ch);
AN_UNLOCK(sc);
return(0);
}
static void an_rxeof(sc)
struct an_softc *sc;
{
struct ifnet *ifp;
struct ether_header *eh;
#ifdef ANCACHE
struct an_rxframe rx_frame;
#endif
struct an_rxframe_802_3 rx_frame_802_3;
struct mbuf *m;
int id, error = 0;
ifp = &sc->arpcom.ac_if;
id = CSR_READ_2(sc, AN_RX_FID);
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.rcvif = ifp;
eh = mtod(m, struct ether_header *);
#ifdef ANCACHE
/* Read NIC frame header */
if (an_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
ifp->if_ierrors++;
return;
}
#endif
/* Read in the 802_3 frame header */
if (an_read_data(sc, id, 0x34, (caddr_t)&rx_frame_802_3,
sizeof(rx_frame_802_3))) {
ifp->if_ierrors++;
return;
}
if (rx_frame_802_3.an_rx_802_3_status != 0) {
ifp->if_ierrors++;
return;
}
/* Check for insane frame length */
if (rx_frame_802_3.an_rx_802_3_payload_len > MCLBYTES) {
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
rx_frame_802_3.an_rx_802_3_payload_len + 12;
bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
/* in mbuf header type is just before payload */
error = an_read_data(sc, id, 0x44, (caddr_t)&(eh->ether_type),
rx_frame_802_3.an_rx_802_3_payload_len);
if (error) {
m_freem(m);
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
/* Receive packet. */
m_adj(m, sizeof(struct ether_header));
#ifdef ANCACHE
an_cache_store(sc, eh, m, rx_frame.an_rx_signal_strength);
#endif
ether_input(ifp, eh, m);
}
static void an_txeof(sc, status)
struct an_softc *sc;
int status;
{
struct ifnet *ifp;
int id;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
id = CSR_READ_2(sc, AN_TX_CMP_FID);
if (status & AN_EV_TX_EXC) {
ifp->if_oerrors++;
} else
ifp->if_opackets++;
if (id != sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons])
printf("an%d: id mismatch: expected %x, got %x\n",
sc->an_unit,
sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons], id);
sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons] = 0;
AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
return;
}
/*
* We abuse the stats updater to check the current NIC status. This
* is important because we don't want to allow transmissions until
* the NIC has synchronized to the current cell (either as the master
* in an ad-hoc group, or as a station connected to an access point).
*/
void an_stats_update(xsc)
void *xsc;
{
struct an_softc *sc;
struct ifnet *ifp;
sc = xsc;
AN_LOCK(sc);
ifp = &sc->arpcom.ac_if;
sc->an_status.an_type = AN_RID_STATUS;
sc->an_status.an_len = sizeof(struct an_ltv_status);
an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
sc->an_associated = 1;
else
sc->an_associated = 0;
/* Don't do this while we're transmitting */
if (ifp->if_flags & IFF_OACTIVE) {
sc->an_stat_ch = timeout(an_stats_update, sc, hz);
AN_UNLOCK(sc);
return;
}
sc->an_stats.an_len = sizeof(struct an_ltv_stats);
sc->an_stats.an_type = AN_RID_32BITS_CUM;
an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
sc->an_stat_ch = timeout(an_stats_update, sc, hz);
AN_UNLOCK(sc);
return;
}
void an_intr(xsc)
void *xsc;
{
struct an_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = (struct an_softc*)xsc;
AN_LOCK(sc);
if (sc->an_gone) {
AN_UNLOCK(sc);
return;
}
ifp = &sc->arpcom.ac_if;
if (!(ifp->if_flags & IFF_UP)) {
CSR_WRITE_2(sc, AN_EVENT_ACK, 0xFFFF);
CSR_WRITE_2(sc, AN_INT_EN, 0);
AN_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, AN_INT_EN, 0);
status = CSR_READ_2(sc, AN_EVENT_STAT);
CSR_WRITE_2(sc, AN_EVENT_ACK, ~AN_INTRS);
if (status & AN_EV_AWAKE) {
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_AWAKE);
}
if (status & AN_EV_LINKSTAT) {
if (CSR_READ_2(sc, AN_LINKSTAT) == AN_LINKSTAT_ASSOCIATED)
sc->an_associated = 1;
else
sc->an_associated = 0;
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT);
}
if (status & AN_EV_RX) {
an_rxeof(sc);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
}
if (status & AN_EV_TX) {
an_txeof(sc, status);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX);
}
if (status & AN_EV_TX_EXC) {
an_txeof(sc, status);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX_EXC);
}
if (status & AN_EV_ALLOC)
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
/* Re-enable interrupts. */
CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
if (ifp->if_snd.ifq_head != NULL)
an_start(ifp);
AN_UNLOCK(sc);
return;
}
static int an_cmd(sc, cmd, val)
struct an_softc *sc;
int cmd;
int val;
{
int i, s = 0;
CSR_WRITE_2(sc, AN_PARAM0, val);
CSR_WRITE_2(sc, AN_PARAM1, 0);
CSR_WRITE_2(sc, AN_PARAM2, 0);
CSR_WRITE_2(sc, AN_COMMAND, cmd);
for (i = 0; i < AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
break;
else {
if (CSR_READ_2(sc, AN_COMMAND) == cmd)
CSR_WRITE_2(sc, AN_COMMAND, cmd);
}
}
for (i = 0; i < AN_TIMEOUT; i++) {
CSR_READ_2(sc, AN_RESP0);
CSR_READ_2(sc, AN_RESP1);
CSR_READ_2(sc, AN_RESP2);
s = CSR_READ_2(sc, AN_STATUS);
if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
break;
}
/* Ack the command */
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY)
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
return(0);
}
/*
* This reset sequence may look a little strange, but this is the
* most reliable method I've found to really kick the NIC in the
* head and force it to reboot correctly.
*/
static void an_reset(sc)
struct an_softc *sc;
{
if (sc->an_gone)
return;
an_cmd(sc, AN_CMD_ENABLE, 0);
an_cmd(sc, AN_CMD_FW_RESTART, 0);
an_cmd(sc, AN_CMD_NOOP2, 0);
if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
printf("an%d: reset failed\n", sc->an_unit);
an_cmd(sc, AN_CMD_DISABLE, 0);
return;
}
/*
* Read an LTV record from the NIC.
*/
static int an_read_record(sc, ltv)
struct an_softc *sc;
struct an_ltv_gen *ltv;
{
u_int16_t *ptr;
int i, len;
if (ltv->an_len == 0 || ltv->an_type == 0)
return(EINVAL);
/* Tell the NIC to enter record read mode. */
if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
printf("an%d: RID access failed\n", sc->an_unit);
return(EIO);
}
/* Seek to the record. */
if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
printf("an%d: seek to record failed\n", sc->an_unit);
return(EIO);
}
/*
* Read the length and record type and make sure they
* match what we expect (this verifies that we have enough
* room to hold all of the returned data).
*/
len = CSR_READ_2(sc, AN_DATA1);
if (len > ltv->an_len) {
printf("an%d: record length mismatch -- expected %d, "
"got %d\n", sc->an_unit, ltv->an_len, len);
return(ENOSPC);
}
ltv->an_len = len;
/* Now read the data. */
ptr = &ltv->an_val;
for (i = 0; i < (ltv->an_len - 1) >> 1; i++)
ptr[i] = CSR_READ_2(sc, AN_DATA1);
return(0);
}
/*
* Same as read, except we inject data instead of reading it.
*/
static int an_write_record(sc, ltv)
struct an_softc *sc;
struct an_ltv_gen *ltv;
{
u_int16_t *ptr;
int i;
if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
return(EIO);
if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
return(EIO);
CSR_WRITE_2(sc, AN_DATA1, ltv->an_len);
ptr = &ltv->an_val;
for (i = 0; i < (ltv->an_len - 1) >> 1; i++)
CSR_WRITE_2(sc, AN_DATA1, ptr[i]);
if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
return(EIO);
return(0);
}
static int an_seek(sc, id, off, chan)
struct an_softc *sc;
int id, off, chan;
{
int i;
int selreg, offreg;
switch (chan) {
case AN_BAP0:
selreg = AN_SEL0;
offreg = AN_OFF0;
break;
case AN_BAP1:
selreg = AN_SEL1;
offreg = AN_OFF1;
break;
default:
printf("an%d: invalid data path: %x\n", sc->an_unit, chan);
return(EIO);
}
CSR_WRITE_2(sc, selreg, id);
CSR_WRITE_2(sc, offreg, off);
for (i = 0; i < AN_TIMEOUT; i++) {
if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
break;
}
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
return(0);
}
static int an_read_data(sc, id, off, buf, len)
struct an_softc *sc;
int id, off;
caddr_t buf;
int len;
{
int i;
u_int16_t *ptr;
u_int8_t *ptr2;
if (off != -1) {
if (an_seek(sc, id, off, AN_BAP1))
return(EIO);
}
ptr = (u_int16_t *)buf;
for (i = 0; i < len / 2; i++)
ptr[i] = CSR_READ_2(sc, AN_DATA1);
i*=2;
if (i<len){
ptr2 = (u_int8_t *)buf;
ptr2[i] = CSR_READ_1(sc, AN_DATA1);
}
return(0);
}
static int an_write_data(sc, id, off, buf, len)
struct an_softc *sc;
int id, off;
caddr_t buf;
int len;
{
int i;
u_int16_t *ptr;
u_int8_t *ptr2;
if (off != -1) {
if (an_seek(sc, id, off, AN_BAP0))
return(EIO);
}
ptr = (u_int16_t *)buf;
for (i = 0; i < (len / 2); i++)
CSR_WRITE_2(sc, AN_DATA0, ptr[i]);
i*=2;
if (i<len){
ptr2 = (u_int8_t *)buf;
CSR_WRITE_1(sc, AN_DATA0, ptr2[i]);
}
return(0);
}
/*
* Allocate a region of memory inside the NIC and zero
* it out.
*/
static int an_alloc_nicmem(sc, len, id)
struct an_softc *sc;
int len;
int *id;
{
int i;
if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
printf("an%d: failed to allocate %d bytes on NIC\n",
sc->an_unit, len);
return(ENOMEM);
}
for (i = 0; i < AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC)
break;
}
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
*id = CSR_READ_2(sc, AN_ALLOC_FID);
if (an_seek(sc, *id, 0, AN_BAP0))
return(EIO);
for (i = 0; i < len / 2; i++)
CSR_WRITE_2(sc, AN_DATA0, 0);
return(0);
}
static void an_setdef(sc, areq)
struct an_softc *sc;
struct an_req *areq;
{
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
struct ifnet *ifp;
struct an_ltv_genconfig *cfg;
struct an_ltv_ssidlist *ssid;
struct an_ltv_aplist *ap;
struct an_ltv_gen *sp;
ifp = &sc->arpcom.ac_if;
switch (areq->an_type) {
case AN_RID_GENCONFIG:
cfg = (struct an_ltv_genconfig *)areq;
ifa = ifnet_addrs[ifp->if_index - 1];
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN);
bcopy((char *)&cfg->an_macaddr, LLADDR(sdl), ETHER_ADDR_LEN);
bcopy((char *)cfg, (char *)&sc->an_config,
sizeof(struct an_ltv_genconfig));
break;
case AN_RID_SSIDLIST:
ssid = (struct an_ltv_ssidlist *)areq;
bcopy((char *)ssid, (char *)&sc->an_ssidlist,
sizeof(struct an_ltv_ssidlist));
break;
case AN_RID_APLIST:
ap = (struct an_ltv_aplist *)areq;
bcopy((char *)ap, (char *)&sc->an_aplist,
sizeof(struct an_ltv_aplist));
break;
case AN_RID_TX_SPEED:
sp = (struct an_ltv_gen *)areq;
sc->an_tx_rate = sp->an_val;
break;
default:
printf("an%d: unknown RID: %x\n", sc->an_unit, areq->an_type);
return;
break;
}
/* Reinitialize the card. */
if (ifp->if_flags & IFF_UP)
an_init(sc);
return;
}
/*
* We can't change the NIC configuration while the MAC is enabled,
* so in order to turn on RX monitor mode, we have to turn the MAC
* off first.
*/
static void an_promisc(sc, promisc)
struct an_softc *sc;
int promisc;
{
/* Disable the MAC. */
an_cmd(sc, AN_CMD_DISABLE, 0);
/* Set RX mode. */
if (promisc &&
!(sc->an_config.an_rxmode & AN_RXMODE_LAN_MONITOR_CURBSS)
) {
sc->an_rxmode = sc->an_config.an_rxmode;
sc->an_config.an_rxmode |=
AN_RXMODE_LAN_MONITOR_CURBSS;
} else {
sc->an_config.an_rxmode = sc->an_rxmode;
}
/* Transfer the configuration to the NIC */
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
sc->an_config.an_type = AN_RID_GENCONFIG;
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
printf("an%d: failed to set configuration\n", sc->an_unit);
return;
}
/* Turn the MAC back on. */
an_cmd(sc, AN_CMD_ENABLE, 0);
return;
}
static int an_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
int error = 0;
struct an_softc *sc;
struct an_req areq;
struct ifreq *ifr;
struct proc *p = curproc;
sc = ifp->if_softc;
AN_LOCK(sc);
ifr = (struct ifreq *)data;
if (sc->an_gone) {
error = ENODEV;
goto out;
}
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->an_if_flags & IFF_PROMISC)) {
an_promisc(sc, 1);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->an_if_flags & IFF_PROMISC) {
an_promisc(sc, 0);
} else
an_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
an_stop(sc);
}
sc->an_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* The Aironet has no multicast filter. */
error = 0;
break;
case SIOCGAIRONET:
error = copyin(ifr->ifr_data, &areq, sizeof(areq));
if (error)
break;
#ifdef ANCACHE
if (areq.an_type == AN_RID_ZERO_CACHE) {
sc->an_sigitems = sc->an_nextitem = 0;
break;
} else if (areq.an_type == AN_RID_READ_CACHE) {
char *pt = (char *)&areq.an_val;
bcopy((char *)&sc->an_sigitems, (char *)pt,
sizeof(int));
pt += sizeof(int);
areq.an_len = sizeof(int) / 2;
bcopy((char *)&sc->an_sigcache, (char *)pt,
sizeof(struct an_sigcache) * sc->an_sigitems);
areq.an_len += ((sizeof(struct an_sigcache) *
sc->an_sigitems) / 2) + 1;
} else
#endif
if (an_read_record(sc, (struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
error = copyout(&areq, ifr->ifr_data, sizeof(areq));
break;
case SIOCSAIRONET:
if ((error = suser(p)))
goto out;
error = copyin(ifr->ifr_data, &areq, sizeof(areq));
if (error)
break;
an_setdef(sc, &areq);
break;
default:
error = EINVAL;
break;
}
out:
AN_UNLOCK(sc);
return(error);
}
static int an_init_tx_ring(sc)
struct an_softc *sc;
{
int i;
int id;
if (sc->an_gone)
return (0);
for (i = 0; i < AN_TX_RING_CNT; i++) {
if (an_alloc_nicmem(sc, 1518 +
0x44, &id))
return(ENOMEM);
sc->an_rdata.an_tx_fids[i] = id;
sc->an_rdata.an_tx_ring[i] = 0;
}
sc->an_rdata.an_tx_prod = 0;
sc->an_rdata.an_tx_cons = 0;
return(0);
}
static void an_init(xsc)
void *xsc;
{
struct an_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
AN_LOCK(sc);
if (sc->an_gone) {
AN_UNLOCK(sc);
return;
}
if (ifp->if_flags & IFF_RUNNING)
an_stop(sc);
sc->an_associated = 0;
/* Allocate the TX buffers */
if (an_init_tx_ring(sc)) {
an_reset(sc);
if (an_init_tx_ring(sc)) {
printf("an%d: tx buffer allocation "
"failed\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
}
/* Set our MAC address. */
bcopy((char *)&sc->arpcom.ac_enaddr,
(char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
if (ifp->if_flags & IFF_BROADCAST)
sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
else
sc->an_config.an_rxmode = AN_RXMODE_ADDR;
if (ifp->if_flags & IFF_MULTICAST)
sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
/* Initialize promisc mode. */
if (ifp->if_flags & IFF_PROMISC)
sc->an_config.an_rxmode |= AN_RXMODE_LAN_MONITOR_CURBSS;
sc->an_rxmode = sc->an_config.an_rxmode;
/* Set the ssid list */
sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
printf("an%d: failed to set ssid list\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
/* Set the AP list */
sc->an_aplist.an_type = AN_RID_APLIST;
sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
printf("an%d: failed to set AP list\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
/* Set the configuration in the NIC */
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
sc->an_config.an_type = AN_RID_GENCONFIG;
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
printf("an%d: failed to set configuration\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
/* Enable the MAC */
if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
printf("an%d: failed to enable MAC\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
/* enable interrupts */
CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->an_stat_ch = timeout(an_stats_update, sc, hz);
AN_UNLOCK(sc);
return;
}
static void an_start(ifp)
struct ifnet *ifp;
{
struct an_softc *sc;
struct mbuf *m0 = NULL;
struct an_txframe_802_3 tx_frame_802_3;
struct ether_header *eh;
int id;
int idx;
unsigned char txcontrol;
sc = ifp->if_softc;
if (sc->an_gone)
return;
if (ifp->if_flags & IFF_OACTIVE)
return;
if (!sc->an_associated)
return;
idx = sc->an_rdata.an_tx_prod;
bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
while(sc->an_rdata.an_tx_ring[idx] == 0) {
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
id = sc->an_rdata.an_tx_fids[idx];
eh = mtod(m0, struct ether_header *);
bcopy((char *)&eh->ether_dhost,
(char *)&tx_frame_802_3.an_tx_dst_addr, ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_shost,
(char *)&tx_frame_802_3.an_tx_src_addr, ETHER_ADDR_LEN);
tx_frame_802_3.an_tx_802_3_payload_len =
m0->m_pkthdr.len - 12; /* minus src/dest mac & type */
m_copydata(m0, sizeof(struct ether_header) - 2 ,
tx_frame_802_3.an_tx_802_3_payload_len,
(caddr_t)&sc->an_txbuf);
txcontrol=AN_TXCTL_8023;
/* write the txcontrol only */
an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
sizeof(txcontrol));
/* 802_3 header */
an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
sizeof(struct an_txframe_802_3));
/* in mbuf header type is just before payload */
an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
tx_frame_802_3.an_tx_802_3_payload_len);
/*
* If there's a BPF listner, bounce a copy of
* this frame to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m0);
m_freem(m0);
m0 = NULL;
sc->an_rdata.an_tx_ring[idx] = id;
if (an_cmd(sc, AN_CMD_TX, id))
printf("an%d: xmit failed\n", sc->an_unit);
AN_INC(idx, AN_TX_RING_CNT);
}
if (m0 != NULL)
ifp->if_flags |= IFF_OACTIVE;
sc->an_rdata.an_tx_prod = idx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
void an_stop(sc)
struct an_softc *sc;
{
struct ifnet *ifp;
int i;
AN_LOCK(sc);
if (sc->an_gone) {
AN_UNLOCK(sc);
return;
}
ifp = &sc->arpcom.ac_if;
an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
CSR_WRITE_2(sc, AN_INT_EN, 0);
an_cmd(sc, AN_CMD_DISABLE, 0);
for (i = 0; i < AN_TX_RING_CNT; i++)
an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
untimeout(an_stats_update, sc, sc->an_stat_ch);
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
AN_UNLOCK(sc);
return;
}
static void an_watchdog(ifp)
struct ifnet *ifp;
{
struct an_softc *sc;
sc = ifp->if_softc;
AN_LOCK(sc);
if (sc->an_gone) {
AN_UNLOCK(sc);
return;
}
printf("an%d: device timeout\n", sc->an_unit);
an_reset(sc);
an_init(sc);
ifp->if_oerrors++;
AN_UNLOCK(sc);
return;
}
void an_shutdown(dev)
device_t dev;
{
struct an_softc *sc;
sc = device_get_softc(dev);
an_stop(sc);
return;
}
#ifdef ANCACHE
/* Aironet signal strength cache code.
* store signal/noise/quality on per MAC src basis in
* a small fixed cache. The cache wraps if > MAX slots
* used. The cache may be zeroed out to start over.
* Two simple filters exist to reduce computation:
* 1. ip only (literally 0x800) which may be used
* to ignore some packets. It defaults to ip only.
* it could be used to focus on broadcast, non-IP 802.11 beacons.
* 2. multicast/broadcast only. This may be used to
* ignore unicast packets and only cache signal strength
* for multicast/broadcast packets (beacons); e.g., Mobile-IP
* beacons and not unicast traffic.
*
* The cache stores (MAC src(index), IP src (major clue), signal,
* quality, noise)
*
* No apologies for storing IP src here. It's easy and saves much
* trouble elsewhere. The cache is assumed to be INET dependent,
* although it need not be.
*
* Note: the Aironet only has a single byte of signal strength value
* in the rx frame header, and it's not scaled to anything sensible.
* This is kind of lame, but it's all we've got.
*/
#ifdef documentation
int an_sigitems; /* number of cached entries */
struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */
int an_nextitem; /* index/# of entries */
#endif
/* control variables for cache filtering. Basic idea is
* to reduce cost (e.g., to only Mobile-IP agent beacons
* which are broadcast or multicast). Still you might
* want to measure signal strength anth unicast ping packets
* on a pt. to pt. ant. setup.
*/
/* set true if you want to limit cache items to broadcast/mcast
* only packets (not unicast). Useful for mobile-ip beacons which
* are broadcast/multicast at network layer. Default is all packets
* so ping/unicast anll work say anth pt. to pt. antennae setup.
*/
static int an_cache_mcastonly = 0;
SYSCTL_INT(_machdep, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
&an_cache_mcastonly, 0, "");
/* set true if you want to limit cache items to IP packets only
*/
static int an_cache_iponly = 1;
SYSCTL_INT(_machdep, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
&an_cache_iponly, 0, "");
/*
* an_cache_store, per rx packet store signal
* strength in MAC (src) indexed cache.
*/
static
void an_cache_store (sc, eh, m, rx_quality)
struct an_softc *sc;
struct ether_header *eh;
struct mbuf *m;
unsigned short rx_quality;
{
struct ip *ip = 0;
int i;
static int cache_slot = 0; /* use this cache entry */
static int wrapindex = 0; /* next "free" cache entry */
int saanp=0;
/* filters:
* 1. ip only
* 2. configurable filter to throw out unicast packets,
* keep multicast only.
*/
if ((ntohs(eh->ether_type) == 0x800)) {
saanp = 1;
}
/* filter for ip packets only
*/
if ( an_cache_iponly && !saanp) {
return;
}
/* filter for broadcast/multicast only
*/
if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
return;
}
#ifdef SIGDEBUG
printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n",
rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
#endif
/* find the ip header. we want to store the ip_src
* address.
*/
if (saanp) {
ip = mtod(m, struct ip *);
}
/* do a linear search for a matching MAC address
* in the cache table
* . MAC address is 6 bytes,
* . var w_nextitem holds total number of entries already cached
*/
for(i = 0; i < sc->an_nextitem; i++) {
if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) {
/* Match!,
* so we already have this entry,
* update the data
*/
break;
}
}
/* did we find a matching mac address?
* if yes, then overwrite a previously existing cache entry
*/
if (i < sc->an_nextitem ) {
cache_slot = i;
}
/* else, have a new address entry,so
* add this new entry,
* if table full, then we need to replace LRU entry
*/
else {
/* check for space in cache table
* note: an_nextitem also holds number of entries
* added in the cache table
*/
if ( sc->an_nextitem < MAXANCACHE ) {
cache_slot = sc->an_nextitem;
sc->an_nextitem++;
sc->an_sigitems = sc->an_nextitem;
}
/* no space found, so simply wrap anth wrap index
* and "zap" the next entry
*/
else {
if (wrapindex == MAXANCACHE) {
wrapindex = 0;
}
cache_slot = wrapindex++;
}
}
/* invariant: cache_slot now points at some slot
* in cache.
*/
if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
log(LOG_ERR, "an_cache_store, bad index: %d of "
"[0..%d], gross cache error\n",
cache_slot, MAXANCACHE);
return;
}
/* store items in cache
* .ip source address
* .mac src
* .signal, etc.
*/
if (saanp) {
sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
}
bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6);
sc->an_sigcache[cache_slot].signal = rx_quality;
return;
}
#endif