freebsd-nq/sys/dev/jme/if_jme.c
2011-03-23 13:10:15 +00:00

3461 lines
96 KiB
C

/*-
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/jme/if_jmereg.h>
#include <dev/jme/if_jmevar.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/* Define the following to disable printing Rx errors. */
#undef JME_SHOW_ERRORS
#define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
MODULE_DEPEND(jme, pci, 1, 1, 1);
MODULE_DEPEND(jme, ether, 1, 1, 1);
MODULE_DEPEND(jme, miibus, 1, 1, 1);
/* Tunables. */
static int msi_disable = 0;
static int msix_disable = 0;
TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
/*
* Devices supported by this driver.
*/
static struct jme_dev {
uint16_t jme_vendorid;
uint16_t jme_deviceid;
const char *jme_name;
} jme_devs[] = {
{ VENDORID_JMICRON, DEVICEID_JMC250,
"JMicron Inc, JMC25x Gigabit Ethernet" },
{ VENDORID_JMICRON, DEVICEID_JMC260,
"JMicron Inc, JMC26x Fast Ethernet" },
};
static int jme_miibus_readreg(device_t, int, int);
static int jme_miibus_writereg(device_t, int, int, int);
static void jme_miibus_statchg(device_t);
static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
static int jme_mediachange(struct ifnet *);
static int jme_probe(device_t);
static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
static int jme_eeprom_macaddr(struct jme_softc *);
static int jme_efuse_macaddr(struct jme_softc *);
static void jme_reg_macaddr(struct jme_softc *);
static void jme_set_macaddr(struct jme_softc *, uint8_t *);
static void jme_map_intr_vector(struct jme_softc *);
static int jme_attach(device_t);
static int jme_detach(device_t);
static void jme_sysctl_node(struct jme_softc *);
static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int jme_dma_alloc(struct jme_softc *);
static void jme_dma_free(struct jme_softc *);
static int jme_shutdown(device_t);
static void jme_setlinkspeed(struct jme_softc *);
static void jme_setwol(struct jme_softc *);
static int jme_suspend(device_t);
static int jme_resume(device_t);
static int jme_encap(struct jme_softc *, struct mbuf **);
static void jme_start(struct ifnet *);
static void jme_start_locked(struct ifnet *);
static void jme_watchdog(struct jme_softc *);
static int jme_ioctl(struct ifnet *, u_long, caddr_t);
static void jme_mac_config(struct jme_softc *);
static void jme_link_task(void *, int);
static int jme_intr(void *);
static void jme_int_task(void *, int);
static void jme_txeof(struct jme_softc *);
static __inline void jme_discard_rxbuf(struct jme_softc *, int);
static void jme_rxeof(struct jme_softc *);
static int jme_rxintr(struct jme_softc *, int);
static void jme_tick(void *);
static void jme_reset(struct jme_softc *);
static void jme_init(void *);
static void jme_init_locked(struct jme_softc *);
static void jme_stop(struct jme_softc *);
static void jme_stop_tx(struct jme_softc *);
static void jme_stop_rx(struct jme_softc *);
static int jme_init_rx_ring(struct jme_softc *);
static void jme_init_tx_ring(struct jme_softc *);
static void jme_init_ssb(struct jme_softc *);
static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
static void jme_set_vlan(struct jme_softc *);
static void jme_set_filter(struct jme_softc *);
static void jme_stats_clear(struct jme_softc *);
static void jme_stats_save(struct jme_softc *);
static void jme_stats_update(struct jme_softc *);
static void jme_phy_down(struct jme_softc *);
static void jme_phy_up(struct jme_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
static device_method_t jme_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, jme_probe),
DEVMETHOD(device_attach, jme_attach),
DEVMETHOD(device_detach, jme_detach),
DEVMETHOD(device_shutdown, jme_shutdown),
DEVMETHOD(device_suspend, jme_suspend),
DEVMETHOD(device_resume, jme_resume),
/* MII interface. */
DEVMETHOD(miibus_readreg, jme_miibus_readreg),
DEVMETHOD(miibus_writereg, jme_miibus_writereg),
DEVMETHOD(miibus_statchg, jme_miibus_statchg),
{ NULL, NULL }
};
static driver_t jme_driver = {
"jme",
jme_methods,
sizeof(struct jme_softc)
};
static devclass_t jme_devclass;
DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec jme_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec jme_irq_spec_legacy[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec jme_irq_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
/*
* Read a PHY register on the MII of the JMC250.
*/
static int
jme_miibus_readreg(device_t dev, int phy, int reg)
{
struct jme_softc *sc;
uint32_t val;
int i;
sc = device_get_softc(dev);
/* For FPGA version, PHY address 0 should be ignored. */
if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
return (0);
CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
for (i = JME_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
break;
}
if (i == 0) {
device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
return (0);
}
return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
}
/*
* Write a PHY register on the MII of the JMC250.
*/
static int
jme_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct jme_softc *sc;
int i;
sc = device_get_softc(dev);
/* For FPGA version, PHY address 0 should be ignored. */
if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
return (0);
CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
for (i = JME_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
break;
}
if (i == 0)
device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
return (0);
}
/*
* Callback from MII layer when media changes.
*/
static void
jme_miibus_statchg(device_t dev)
{
struct jme_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
}
/*
* Get the current interface media status.
*/
static void
jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct jme_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
JME_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
JME_UNLOCK(sc);
return;
}
mii = device_get_softc(sc->jme_miibus);
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
JME_UNLOCK(sc);
}
/*
* Set hardware to newly-selected media.
*/
static int
jme_mediachange(struct ifnet *ifp)
{
struct jme_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
JME_LOCK(sc);
mii = device_get_softc(sc->jme_miibus);
if (mii->mii_instance != 0) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
JME_UNLOCK(sc);
return (error);
}
static int
jme_probe(device_t dev)
{
struct jme_dev *sp;
int i;
uint16_t vendor, devid;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
sp = jme_devs;
for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]);
i++, sp++) {
if (vendor == sp->jme_vendorid &&
devid == sp->jme_deviceid) {
device_set_desc(dev, sp->jme_name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
{
uint32_t reg;
int i;
*val = 0;
for (i = JME_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, JME_SMBCSR);
if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
break;
DELAY(1);
}
if (i == 0) {
device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
return (ETIMEDOUT);
}
reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
for (i = JME_TIMEOUT; i > 0; i--) {
DELAY(1);
reg = CSR_READ_4(sc, JME_SMBINTF);
if ((reg & SMBINTF_CMD_TRIGGER) == 0)
break;
}
if (i == 0) {
device_printf(sc->jme_dev, "EEPROM read timeout!\n");
return (ETIMEDOUT);
}
reg = CSR_READ_4(sc, JME_SMBINTF);
*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
return (0);
}
static int
jme_eeprom_macaddr(struct jme_softc *sc)
{
uint8_t eaddr[ETHER_ADDR_LEN];
uint8_t fup, reg, val;
uint32_t offset;
int match;
offset = 0;
if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
fup != JME_EEPROM_SIG0)
return (ENOENT);
if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
fup != JME_EEPROM_SIG1)
return (ENOENT);
match = 0;
do {
if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
break;
if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
(fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
break;
if (reg >= JME_PAR0 &&
reg < JME_PAR0 + ETHER_ADDR_LEN) {
if (jme_eeprom_read_byte(sc, offset + 2,
&val) != 0)
break;
eaddr[reg - JME_PAR0] = val;
match++;
}
}
/* Check for the end of EEPROM descriptor. */
if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
break;
/* Try next eeprom descriptor. */
offset += JME_EEPROM_DESC_BYTES;
} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
if (match == ETHER_ADDR_LEN) {
bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
return (0);
}
return (ENOENT);
}
static int
jme_efuse_macaddr(struct jme_softc *sc)
{
uint32_t reg;
int i;
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
EFUSE_CTL1_AUTOLAOD_DONE)
return (ENOENT);
/* Reset eFuse controller. */
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
reg |= EFUSE_CTL2_RESET;
pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
reg &= ~EFUSE_CTL2_RESET;
pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
/* Have eFuse reload station address to MAC controller. */
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
reg &= ~EFUSE_CTL1_CMD_MASK;
reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
/*
* Verify completion of eFuse autload command. It should be
* completed within 108us.
*/
DELAY(110);
for (i = 10; i > 0; i--) {
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
DELAY(20);
continue;
}
if ((reg & EFUSE_CTL1_EXECUTE) == 0)
break;
/* Station address loading is still in progress. */
DELAY(20);
}
if (i == 0) {
device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
return (ETIMEDOUT);
}
return (0);
}
static void
jme_reg_macaddr(struct jme_softc *sc)
{
uint32_t par0, par1;
/* Read station address. */
par0 = CSR_READ_4(sc, JME_PAR0);
par1 = CSR_READ_4(sc, JME_PAR1);
par1 &= 0xFFFF;
if ((par0 == 0 && par1 == 0) ||
(par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
device_printf(sc->jme_dev,
"Failed to retrieve Ethernet address.\n");
} else {
/*
* For controllers that use eFuse, the station address
* could also be extracted from JME_PCI_PAR0 and
* JME_PCI_PAR1 registers in PCI configuration space.
* Each register holds exactly half of station address(24bits)
* so use JME_PAR0, JME_PAR1 registers instead.
*/
sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
}
}
static void
jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
{
uint32_t val;
int i;
if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
/*
* Avoid reprogramming station address if the address
* is the same as previous one. Note, reprogrammed
* station address is permanent as if it was written
* to EEPROM. So if station address was changed by
* admistrator it's possible to lose factory configured
* address when driver fails to restore its address.
* (e.g. reboot or system crash)
*/
if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
for (i = 0; i < ETHER_ADDR_LEN; i++) {
val = JME_EFUSE_EEPROM_FUNC0 <<
JME_EFUSE_EEPROM_FUNC_SHIFT;
val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
JME_EFUSE_EEPROM_PAGE_SHIFT;
val |= (JME_PAR0 + i) <<
JME_EFUSE_EEPROM_ADDR_SHIFT;
val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
val | JME_EFUSE_EEPROM_WRITE, 4);
}
}
} else {
CSR_WRITE_4(sc, JME_PAR0,
eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
}
}
static void
jme_map_intr_vector(struct jme_softc *sc)
{
uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
bzero(map, sizeof(map));
/* Map Tx interrupts source to MSI/MSIX vector 2. */
map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
/* Map Rx interrupts source to MSI/MSIX vector 1. */
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
/* Map all other interrupts source to MSI/MSIX vector 0. */
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
}
static int
jme_attach(device_t dev)
{
struct jme_softc *sc;
struct ifnet *ifp;
struct mii_softc *miisc;
struct mii_data *mii;
uint32_t reg;
uint16_t burst;
int error, i, mii_flags, msic, msixc, pmc;
error = 0;
sc = device_get_softc(dev);
sc->jme_dev = dev;
mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
/*
* Map the device. JMC250 supports both memory mapped and I/O
* register space access. Because I/O register access should
* use different BARs to access registers it's waste of time
* to use I/O register spce access. JMC250 uses 16K to map
* entire memory space.
*/
pci_enable_busmaster(dev);
sc->jme_res_spec = jme_res_spec_mem;
sc->jme_irq_spec = jme_irq_spec_legacy;
error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
if (error != 0) {
device_printf(dev, "cannot allocate memory resources.\n");
goto fail;
}
/* Allocate IRQ resources. */
msixc = pci_msix_count(dev);
msic = pci_msi_count(dev);
if (bootverbose) {
device_printf(dev, "MSIX count : %d\n", msixc);
device_printf(dev, "MSI count : %d\n", msic);
}
/* Use 1 MSI/MSI-X. */
if (msixc > 1)
msixc = 1;
if (msic > 1)
msic = 1;
/* Prefer MSIX over MSI. */
if (msix_disable == 0 || msi_disable == 0) {
if (msix_disable == 0 && msixc > 0 &&
pci_alloc_msix(dev, &msixc) == 0) {
if (msixc == 1) {
device_printf(dev, "Using %d MSIX messages.\n",
msixc);
sc->jme_flags |= JME_FLAG_MSIX;
sc->jme_irq_spec = jme_irq_spec_msi;
} else
pci_release_msi(dev);
}
if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
if (msic == 1) {
device_printf(dev, "Using %d MSI messages.\n",
msic);
sc->jme_flags |= JME_FLAG_MSI;
sc->jme_irq_spec = jme_irq_spec_msi;
} else
pci_release_msi(dev);
}
/* Map interrupt vector 0, 1 and 2. */
if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
(sc->jme_flags & JME_FLAG_MSIX) != 0)
jme_map_intr_vector(sc);
}
error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
if (error != 0) {
device_printf(dev, "cannot allocate IRQ resources.\n");
goto fail;
}
sc->jme_rev = pci_get_device(dev);
if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
sc->jme_flags |= JME_FLAG_FASTETH;
sc->jme_flags |= JME_FLAG_NOJUMBO;
}
reg = CSR_READ_4(sc, JME_CHIPMODE);
sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
CHIPMODE_NOT_FPGA)
sc->jme_flags |= JME_FLAG_FPGA;
if (bootverbose) {
device_printf(dev, "PCI device revision : 0x%04x\n",
sc->jme_rev);
device_printf(dev, "Chip revision : 0x%02x\n",
sc->jme_chip_rev);
if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
device_printf(dev, "FPGA revision : 0x%04x\n",
(reg & CHIPMODE_FPGA_REV_MASK) >>
CHIPMODE_FPGA_REV_SHIFT);
}
if (sc->jme_chip_rev == 0xFF) {
device_printf(dev, "Unknown chip revision : 0x%02x\n",
sc->jme_rev);
error = ENXIO;
goto fail;
}
/* Identify controller features and bugs. */
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
sc->jme_flags |= JME_FLAG_DMA32BIT;
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
sc->jme_flags |= JME_FLAG_HWMIB;
}
/* Reset the ethernet controller. */
jme_reset(sc);
/* Get station address. */
if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
error = jme_efuse_macaddr(sc);
if (error == 0)
jme_reg_macaddr(sc);
} else {
error = ENOENT;
reg = CSR_READ_4(sc, JME_SMBCSR);
if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
error = jme_eeprom_macaddr(sc);
if (error != 0 && bootverbose)
device_printf(sc->jme_dev,
"ethernet hardware address not found in EEPROM.\n");
if (error != 0)
jme_reg_macaddr(sc);
}
/*
* Save PHY address.
* Integrated JR0211 has fixed PHY address whereas FPGA version
* requires PHY probing to get correct PHY address.
*/
if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
GPREG0_PHY_ADDR_MASK;
if (bootverbose)
device_printf(dev, "PHY is at address %d.\n",
sc->jme_phyaddr);
} else
sc->jme_phyaddr = 0;
/* Set max allowable DMA size. */
if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
sc->jme_flags |= JME_FLAG_PCIE;
burst = pci_read_config(dev, i + PCIR_EXPRESS_DEVICE_CTL, 2);
if (bootverbose) {
device_printf(dev, "Read request size : %d bytes.\n",
128 << ((burst >> 12) & 0x07));
device_printf(dev, "TLP payload size : %d bytes.\n",
128 << ((burst >> 5) & 0x07));
}
switch ((burst >> 12) & 0x07) {
case 0:
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
break;
case 1:
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
break;
default:
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
break;
}
sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
} else {
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
}
/* Create coalescing sysctl node. */
jme_sysctl_node(sc);
if ((error = jme_dma_alloc(sc) != 0))
goto fail;
ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure.\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = jme_ioctl;
ifp->if_start = jme_start;
ifp->if_init = jme_init;
ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
sc->jme_flags |= JME_FLAG_PMCAP;
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
}
ifp->if_capenable = ifp->if_capabilities;
/* Wakeup PHY. */
jme_phy_up(sc);
mii_flags = MIIF_DOPAUSE;
/* Ask PHY calibration to PHY driver. */
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
mii_flags |= MIIF_MACPRIV0;
/* Set up MII bus. */
error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
jme_mediastatus, BMSR_DEFCAPMASK,
sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
MII_OFFSET_ANY, mii_flags);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Force PHY to FPGA mode.
*/
if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
mii = device_get_softc(sc->jme_miibus);
if (mii->mii_instance != 0) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
if (miisc->mii_phy != 0) {
sc->jme_phyaddr = miisc->mii_phy;
break;
}
}
if (sc->jme_phyaddr != 0) {
device_printf(sc->jme_dev,
"FPGA PHY is at %d\n", sc->jme_phyaddr);
/* vendor magic. */
jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
0x0004);
}
}
}
ether_ifattach(ifp, sc->jme_eaddr);
/* VLAN capability setup */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
ifp->if_capenable = ifp->if_capabilities;
/* Tell the upper layer(s) we support long frames. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/* Create local taskq. */
sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->jme_tq);
if (sc->jme_tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->jme_dev));
for (i = 0; i < 1; i++) {
error = bus_setup_intr(dev, sc->jme_irq[i],
INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
&sc->jme_intrhand[i]);
if (error != 0)
break;
}
if (error != 0) {
device_printf(dev, "could not set up interrupt handler.\n");
taskqueue_free(sc->jme_tq);
sc->jme_tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error != 0)
jme_detach(dev);
return (error);
}
static int
jme_detach(device_t dev)
{
struct jme_softc *sc;
struct ifnet *ifp;
int i;
sc = device_get_softc(dev);
ifp = sc->jme_ifp;
if (device_is_attached(dev)) {
JME_LOCK(sc);
sc->jme_flags |= JME_FLAG_DETACH;
jme_stop(sc);
JME_UNLOCK(sc);
callout_drain(&sc->jme_tick_ch);
taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
/* Restore possibly modified station address. */
if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
jme_set_macaddr(sc, sc->jme_eaddr);
ether_ifdetach(ifp);
}
if (sc->jme_tq != NULL) {
taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
taskqueue_free(sc->jme_tq);
sc->jme_tq = NULL;
}
if (sc->jme_miibus != NULL) {
device_delete_child(dev, sc->jme_miibus);
sc->jme_miibus = NULL;
}
bus_generic_detach(dev);
jme_dma_free(sc);
if (ifp != NULL) {
if_free(ifp);
sc->jme_ifp = NULL;
}
for (i = 0; i < 1; i++) {
if (sc->jme_intrhand[i] != NULL) {
bus_teardown_intr(dev, sc->jme_irq[i],
sc->jme_intrhand[i]);
sc->jme_intrhand[i] = NULL;
}
}
if (sc->jme_irq[0] != NULL)
bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
pci_release_msi(dev);
if (sc->jme_res[0] != NULL)
bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
mtx_destroy(&sc->jme_mtx);
return (0);
}
#define JME_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
static void
jme_sysctl_node(struct jme_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct jme_hw_stats *stats;
int error;
stats = &sc->jme_stats;
ctx = device_get_sysctl_ctx(sc->jme_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
sysctl_hw_jme_proc_limit, "I",
"max number of Rx events to process");
/* Pull in device tunables. */
sc->jme_process_limit = JME_PROC_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "process_limit",
&sc->jme_process_limit);
if (error == 0) {
if (sc->jme_process_limit < JME_PROC_MIN ||
sc->jme_process_limit > JME_PROC_MAX) {
device_printf(sc->jme_dev,
"process_limit value out of range; "
"using default: %d\n", JME_PROC_DEFAULT);
sc->jme_process_limit = JME_PROC_DEFAULT;
}
}
sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
if (error == 0) {
if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
device_printf(sc->jme_dev,
"tx_coal_to value out of range; "
"using default: %d\n", PCCTX_COAL_TO_DEFAULT);
sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
}
}
sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
if (error == 0) {
if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
device_printf(sc->jme_dev,
"tx_coal_pkt value out of range; "
"using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
}
}
sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
if (error == 0) {
if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
device_printf(sc->jme_dev,
"rx_coal_to value out of range; "
"using default: %d\n", PCCRX_COAL_TO_DEFAULT);
sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
}
}
sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
if (error == 0) {
if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
device_printf(sc->jme_dev,
"tx_coal_pkt value out of range; "
"using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
}
}
if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
return;
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "JME statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->rx_good_frames, "Good frames");
JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
&stats->rx_crc_errs, "CRC errors");
JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
&stats->rx_mii_errs, "MII errors");
JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
&stats->rx_fifo_oflows, "FIFO overflows");
JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
&stats->rx_desc_empty, "Descriptor empty");
JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
&stats->rx_bad_frames, "Bad frames");
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->tx_good_frames, "Good frames");
JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
&stats->tx_bad_frames, "Bad frames");
}
#undef JME_SYSCTL_STAT_ADD32
struct jme_dmamap_arg {
bus_addr_t jme_busaddr;
};
static void
jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct jme_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct jme_dmamap_arg *)arg;
ctx->jme_busaddr = segs[0].ds_addr;
}
static int
jme_dma_alloc(struct jme_softc *sc)
{
struct jme_dmamap_arg ctx;
struct jme_txdesc *txd;
struct jme_rxdesc *rxd;
bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
int error, i;
lowaddr = BUS_SPACE_MAXADDR;
if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
lowaddr = BUS_SPACE_MAXADDR_32BIT;
again:
/* Create parent ring tag. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1, 0, /* algnmnt, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_ring_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create parent ring DMA tag.\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
JME_TX_RING_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
JME_TX_RING_SIZE, /* maxsize */
1, /* nsegments */
JME_TX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_tx_ring_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not allocate Tx ring DMA tag.\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
JME_RX_RING_ALIGN, 0, /* algnmnt, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
JME_RX_RING_SIZE, /* maxsize */
1, /* nsegments */
JME_RX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_rx_ring_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not allocate Rx ring DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
(void **)&sc->jme_rdata.jme_tx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->jme_cdata.jme_tx_ring_map);
if (error != 0) {
device_printf(sc->jme_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
ctx.jme_busaddr = 0;
error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.jme_busaddr == 0) {
device_printf(sc->jme_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
(void **)&sc->jme_rdata.jme_rx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->jme_cdata.jme_rx_ring_map);
if (error != 0) {
device_printf(sc->jme_dev,
"could not allocate DMA'able memory for Rx ring.\n");
goto fail;
}
ctx.jme_busaddr = 0;
error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.jme_busaddr == 0) {
device_printf(sc->jme_dev,
"could not load DMA'able memory for Rx ring.\n");
goto fail;
}
sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
/* Tx/Rx descriptor queue should reside within 4GB boundary. */
tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
JME_TX_RING_SIZE;
rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
JME_RX_RING_SIZE;
if ((JME_ADDR_HI(tx_ring_end) !=
JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
(JME_ADDR_HI(rx_ring_end) !=
JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
device_printf(sc->jme_dev, "4GB boundary crossed, "
"switching to 32bit DMA address mode.\n");
jme_dma_free(sc);
/* Limit DMA address space to 32bit and try again. */
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
}
lowaddr = BUS_SPACE_MAXADDR;
if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
lowaddr = BUS_SPACE_MAXADDR_32BIT;
/* Create parent buffer tag. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1, 0, /* algnmnt, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_buffer_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create parent buffer DMA tag.\n");
goto fail;
}
/* Create shadow status block tag. */
error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
JME_SSB_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
JME_SSB_SIZE, /* maxsize */
1, /* nsegments */
JME_SSB_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_ssb_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create shared status block DMA tag.\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
JME_TSO_MAXSIZE, /* maxsize */
JME_MAXTXSEGS, /* nsegments */
JME_TSO_MAXSEGSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_tx_tag);
if (error != 0) {
device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_rx_tag);
if (error != 0) {
device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/*
* Allocate DMA'able memory and load the DMA map for shared
* status block.
*/
error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
(void **)&sc->jme_rdata.jme_ssb_block,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->jme_cdata.jme_ssb_map);
if (error != 0) {
device_printf(sc->jme_dev, "could not allocate DMA'able "
"memory for shared status block.\n");
goto fail;
}
ctx.jme_busaddr = 0;
error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.jme_busaddr == 0) {
device_printf(sc->jme_dev, "could not load DMA'able memory "
"for shared status block.\n");
goto fail;
}
sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
&sc->jme_cdata.jme_rx_sparemap)) != 0) {
device_printf(sc->jme_dev,
"could not create spare Rx dmamap.\n");
goto fail;
}
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create Rx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
jme_dma_free(struct jme_softc *sc)
{
struct jme_txdesc *txd;
struct jme_rxdesc *rxd;
int i;
/* Tx ring */
if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
if (sc->jme_cdata.jme_tx_ring_map)
bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map);
if (sc->jme_cdata.jme_tx_ring_map &&
sc->jme_rdata.jme_tx_ring)
bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_rdata.jme_tx_ring,
sc->jme_cdata.jme_tx_ring_map);
sc->jme_rdata.jme_tx_ring = NULL;
sc->jme_cdata.jme_tx_ring_map = NULL;
bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
sc->jme_cdata.jme_tx_ring_tag = NULL;
}
/* Rx ring */
if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
if (sc->jme_cdata.jme_rx_ring_map)
bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map);
if (sc->jme_cdata.jme_rx_ring_map &&
sc->jme_rdata.jme_rx_ring)
bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_rdata.jme_rx_ring,
sc->jme_cdata.jme_rx_ring_map);
sc->jme_rdata.jme_rx_ring = NULL;
sc->jme_cdata.jme_rx_ring_map = NULL;
bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
sc->jme_cdata.jme_rx_ring_tag = NULL;
}
/* Tx buffers */
if (sc->jme_cdata.jme_tx_tag != NULL) {
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
sc->jme_cdata.jme_tx_tag = NULL;
}
/* Rx buffers */
if (sc->jme_cdata.jme_rx_tag != NULL) {
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->jme_cdata.jme_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
sc->jme_cdata.jme_rx_sparemap);
sc->jme_cdata.jme_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
sc->jme_cdata.jme_rx_tag = NULL;
}
/* Shared status block. */
if (sc->jme_cdata.jme_ssb_tag != NULL) {
if (sc->jme_cdata.jme_ssb_map)
bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
sc->jme_cdata.jme_ssb_map);
if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block)
bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
sc->jme_rdata.jme_ssb_block,
sc->jme_cdata.jme_ssb_map);
sc->jme_rdata.jme_ssb_block = NULL;
sc->jme_cdata.jme_ssb_map = NULL;
bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
sc->jme_cdata.jme_ssb_tag = NULL;
}
if (sc->jme_cdata.jme_buffer_tag != NULL) {
bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
sc->jme_cdata.jme_buffer_tag = NULL;
}
if (sc->jme_cdata.jme_ring_tag != NULL) {
bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
sc->jme_cdata.jme_ring_tag = NULL;
}
}
/*
* Make sure the interface is stopped at reboot time.
*/
static int
jme_shutdown(device_t dev)
{
return (jme_suspend(dev));
}
/*
* Unlike other ethernet controllers, JMC250 requires
* explicit resetting link speed to 10/100Mbps as gigabit
* link will cunsume more power than 375mA.
* Note, we reset the link speed to 10/100Mbps with
* auto-negotiation but we don't know whether that operation
* would succeed or not as we have no control after powering
* off. If the renegotiation fail WOL may not work. Running
* at 1Gbps draws more power than 375mA at 3.3V which is
* specified in PCI specification and that would result in
* complete shutdowning power to ethernet controller.
*
* TODO
* Save current negotiated media speed/duplex/flow-control
* to softc and restore the same link again after resuming.
* PHY handling such as power down/resetting to 100Mbps
* may be better handled in suspend method in phy driver.
*/
static void
jme_setlinkspeed(struct jme_softc *sc)
{
struct mii_data *mii;
int aneg, i;
JME_LOCK_ASSERT(sc);
mii = device_get_softc(sc->jme_miibus);
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
return;
case IFM_1000_T:
aneg++;
default:
break;
}
}
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/* Poll link state until jme(4) get a 10/100 link. */
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
jme_mac_config(sc);
return;
default:
break;
}
}
JME_UNLOCK(sc);
pause("jmelnk", hz);
JME_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
device_printf(sc->jme_dev, "establishing link failed, "
"WOL may not work!");
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* This is the last resort and may/may not work.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
jme_mac_config(sc);
}
static void
jme_setwol(struct jme_softc *sc)
{
struct ifnet *ifp;
uint32_t gpr, pmcs;
uint16_t pmstat;
int pmc;
JME_LOCK_ASSERT(sc);
if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
/* Remove Tx MAC/offload clock to save more power. */
if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
CSR_WRITE_4(sc, JME_GPREG1,
CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
/* No PME capability, PHY power down. */
jme_phy_down(sc);
return;
}
ifp = sc->jme_ifp;
gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
pmcs = CSR_READ_4(sc, JME_PMCS);
pmcs &= ~PMCS_WOL_ENB_MASK;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
/* Enable PME message. */
gpr |= GPREG0_PME_ENB;
/* For gigabit controllers, reset link speed to 10/100. */
if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
jme_setlinkspeed(sc);
}
CSR_WRITE_4(sc, JME_PMCS, pmcs);
CSR_WRITE_4(sc, JME_GPREG0, gpr);
/* Remove Tx MAC/offload clock to save more power. */
if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
/* Request PME. */
pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
/* No WOL, PHY power down. */
jme_phy_down(sc);
}
}
static int
jme_suspend(device_t dev)
{
struct jme_softc *sc;
sc = device_get_softc(dev);
JME_LOCK(sc);
jme_stop(sc);
jme_setwol(sc);
JME_UNLOCK(sc);
return (0);
}
static int
jme_resume(device_t dev)
{
struct jme_softc *sc;
struct ifnet *ifp;
uint16_t pmstat;
int pmc;
sc = device_get_softc(dev);
JME_LOCK(sc);
if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
pmstat = pci_read_config(sc->jme_dev,
pmc + PCIR_POWER_STATUS, 2);
/* Disable PME clear PME status. */
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->jme_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
/* Wakeup PHY. */
jme_phy_up(sc);
ifp = sc->jme_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
jme_init_locked(sc);
}
JME_UNLOCK(sc);
return (0);
}
static int
jme_encap(struct jme_softc *sc, struct mbuf **m_head)
{
struct jme_txdesc *txd;
struct jme_desc *desc;
struct mbuf *m;
bus_dma_segment_t txsegs[JME_MAXTXSEGS];
int error, i, nsegs, prod;
uint32_t cflags, tso_segsz;
JME_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/*
* Due to the adherence to NDIS specification JMC250
* assumes upper stack computed TCP pseudo checksum
* without including payload length. This breaks
* checksum offload for TSO case so recompute TCP
* pseudo checksum for JMC250. Hopefully this wouldn't
* be much burden on modern CPUs.
*/
struct ether_header *eh;
struct ip *ip;
struct tcphdr *tcp;
uint32_t ip_off, poff;
if (M_WRITABLE(*m_head) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_DONTWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(*m_head, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/* Check the existence of VLAN tag. */
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
/*
* Reset IP checksum and recompute TCP pseudo
* checksum that NDIS specification requires.
*/
ip = (struct ip *)(mtod(m, char *) + ip_off);
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
ip->ip_sum = 0;
if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htons((tcp->th_off << 2) + IPPROTO_TCP));
/* No need to TSO, force IP checksum offload. */
(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
} else
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
*m_head = m;
}
prod = sc->jme_cdata.jme_tx_prod;
txd = &sc->jme_cdata.jme_txdesc[prod];
error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/*
* Check descriptor overrun. Leave one free descriptor.
* Since we always use 64bit address mode for transmitting,
* each Tx request requires one more dummy descriptor.
*/
if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
m = *m_head;
cflags = 0;
tso_segsz = 0;
/* Configure checksum offload and TSO. */
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
JME_TD_MSS_SHIFT;
cflags |= JME_TD_TSO;
} else {
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
cflags |= JME_TD_IPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
cflags |= JME_TD_TCPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
cflags |= JME_TD_UDPCSUM;
}
/* Configure VLAN. */
if ((m->m_flags & M_VLANTAG) != 0) {
cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
cflags |= JME_TD_VLAN_TAG;
}
desc = &sc->jme_rdata.jme_tx_ring[prod];
desc->flags = htole32(cflags);
desc->buflen = htole32(tso_segsz);
desc->addr_hi = htole32(m->m_pkthdr.len);
desc->addr_lo = 0;
sc->jme_cdata.jme_tx_cnt++;
JME_DESC_INC(prod, JME_TX_RING_CNT);
for (i = 0; i < nsegs; i++) {
desc = &sc->jme_rdata.jme_tx_ring[prod];
desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
desc->buflen = htole32(txsegs[i].ds_len);
desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
sc->jme_cdata.jme_tx_cnt++;
JME_DESC_INC(prod, JME_TX_RING_CNT);
}
/* Update producer index. */
sc->jme_cdata.jme_tx_prod = prod;
/*
* Finally request interrupt and give the first descriptor
* owenership to hardware.
*/
desc = txd->tx_desc;
desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
txd->tx_m = m;
txd->tx_ndesc = nsegs + 1;
/* Sync descriptors. */
bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
jme_start(struct ifnet *ifp)
{
struct jme_softc *sc;
sc = ifp->if_softc;
JME_LOCK(sc);
jme_start_locked(ifp);
JME_UNLOCK(sc);
}
static void
jme_start_locked(struct ifnet *ifp)
{
struct jme_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
JME_LOCK_ASSERT(sc);
if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
jme_txeof(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (jme_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/*
* Reading TXCSR takes very long time under heavy load
* so cache TXCSR value and writes the ORed value with
* the kick command to the TXCSR. This saves one register
* access cycle.
*/
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
TXCSR_TXQ_N_START(TXCSR_TXQ0));
/* Set a timeout in case the chip goes out to lunch. */
sc->jme_watchdog_timer = JME_TX_TIMEOUT;
}
}
static void
jme_watchdog(struct jme_softc *sc)
{
struct ifnet *ifp;
JME_LOCK_ASSERT(sc);
if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
return;
ifp = sc->jme_ifp;
if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
jme_init_locked(sc);
return;
}
jme_txeof(sc);
if (sc->jme_cdata.jme_tx_cnt == 0) {
if_printf(sc->jme_ifp,
"watchdog timeout (missed Tx interrupts) -- recovering\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
jme_start_locked(ifp);
return;
}
if_printf(sc->jme_ifp, "watchdog timeout\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
jme_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
jme_start_locked(ifp);
}
static int
jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct jme_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
uint32_t reg;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
ifr->ifr_mtu > JME_MAX_MTU)) {
error = EINVAL;
break;
}
if (ifp->if_mtu != ifr->ifr_mtu) {
/*
* No special configuration is required when interface
* MTU is changed but availability of TSO/Tx checksum
* offload should be chcked against new MTU size as
* FIFO size is just 2K.
*/
JME_LOCK(sc);
if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
ifp->if_capenable &=
~(IFCAP_TXCSUM | IFCAP_TSO4);
ifp->if_hwassist &=
~(JME_CSUM_FEATURES | CSUM_TSO);
VLAN_CAPABILITIES(ifp);
}
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
jme_init_locked(sc);
}
JME_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
JME_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->jme_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
jme_set_filter(sc);
} else {
if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
jme_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
jme_stop(sc);
}
sc->jme_if_flags = ifp->if_flags;
JME_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
JME_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
jme_set_filter(sc);
JME_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->jme_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
JME_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
ifp->if_mtu < JME_TX_FIFO_SIZE) {
if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
ifp->if_hwassist |= JME_CSUM_FEATURES;
else
ifp->if_hwassist &= ~JME_CSUM_FEATURES;
}
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
reg = CSR_READ_4(sc, JME_RXMAC);
reg &= ~RXMAC_CSUM_ENB;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
reg |= RXMAC_CSUM_ENB;
CSR_WRITE_4(sc, JME_RXMAC, reg);
}
if ((mask & IFCAP_TSO4) != 0 &&
ifp->if_mtu < JME_TX_FIFO_SIZE) {
if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
}
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
jme_set_vlan(sc);
}
JME_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
jme_mac_config(struct jme_softc *sc)
{
struct mii_data *mii;
uint32_t ghc, gpreg, rxmac, txmac, txpause;
uint32_t txclk;
JME_LOCK_ASSERT(sc);
mii = device_get_softc(sc->jme_miibus);
CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
DELAY(10);
CSR_WRITE_4(sc, JME_GHC, 0);
ghc = 0;
txclk = 0;
rxmac = CSR_READ_4(sc, JME_RXMAC);
rxmac &= ~RXMAC_FC_ENB;
txmac = CSR_READ_4(sc, JME_TXMAC);
txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
txpause = CSR_READ_4(sc, JME_TXPFC);
txpause &= ~TXPFC_PAUSE_ENB;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
ghc |= GHC_FULL_DUPLEX;
rxmac &= ~RXMAC_COLL_DET_ENB;
txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
TXMAC_FRAME_BURST);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
txpause |= TXPFC_PAUSE_ENB;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
rxmac |= RXMAC_FC_ENB;
/* Disable retry transmit timer/retry limit. */
CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
} else {
rxmac |= RXMAC_COLL_DET_ENB;
txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
/* Enable retry transmit timer/retry limit. */
CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
}
/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
ghc |= GHC_SPEED_10;
txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
break;
case IFM_100_TX:
ghc |= GHC_SPEED_100;
txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
break;
case IFM_1000_T:
if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
break;
ghc |= GHC_SPEED_1000;
txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
break;
default:
break;
}
if (sc->jme_rev == DEVICEID_JMC250 &&
sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
/*
* Workaround occasional packet loss issue of JMC250 A2
* when it runs on half-duplex media.
*/
gpreg = CSR_READ_4(sc, JME_GPREG1);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
gpreg &= ~GPREG1_HDPX_FIX;
else
gpreg |= GPREG1_HDPX_FIX;
CSR_WRITE_4(sc, JME_GPREG1, gpreg);
/* Workaround CRC errors at 100Mbps on JMC250 A2. */
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
/* Extend interface FIFO depth. */
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
0x1B, 0x0000);
} else {
/* Select default interface FIFO depth. */
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
0x1B, 0x0004);
}
}
if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
ghc |= txclk;
CSR_WRITE_4(sc, JME_GHC, ghc);
CSR_WRITE_4(sc, JME_RXMAC, rxmac);
CSR_WRITE_4(sc, JME_TXMAC, txmac);
CSR_WRITE_4(sc, JME_TXPFC, txpause);
}
static void
jme_link_task(void *arg, int pending)
{
struct jme_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
struct jme_txdesc *txd;
bus_addr_t paddr;
int i;
sc = (struct jme_softc *)arg;
JME_LOCK(sc);
mii = device_get_softc(sc->jme_miibus);
ifp = sc->jme_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
JME_UNLOCK(sc);
return;
}
sc->jme_flags &= ~JME_FLAG_LINK;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->jme_flags |= JME_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
break;
sc->jme_flags |= JME_FLAG_LINK;
break;
default:
break;
}
}
/*
* Disabling Rx/Tx MACs have a side-effect of resetting
* JME_TXNDA/JME_RXNDA register to the first address of
* Tx/Rx descriptor address. So driver should reset its
* internal procucer/consumer pointer and reclaim any
* allocated resources. Note, just saving the value of
* JME_TXNDA and JME_RXNDA registers before stopping MAC
* and restoring JME_TXNDA/JME_RXNDA register is not
* sufficient to make sure correct MAC state because
* stopping MAC operation can take a while and hardware
* might have updated JME_TXNDA/JME_RXNDA registers
* during the stop operation.
*/
/* Block execution of task. */
taskqueue_block(sc->jme_tq);
/* Disable interrupts and stop driver. */
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->jme_tick_ch);
sc->jme_watchdog_timer = 0;
/* Stop receiver/transmitter. */
jme_stop_rx(sc);
jme_stop_tx(sc);
/* XXX Drain all queued tasks. */
JME_UNLOCK(sc);
taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
JME_LOCK(sc);
if (sc->jme_cdata.jme_rxhead != NULL)
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
jme_txeof(sc);
if (sc->jme_cdata.jme_tx_cnt != 0) {
/* Remove queued packets for transmit. */
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(
sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(
sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_ndesc = 0;
ifp->if_oerrors++;
}
}
}
/*
* Reuse configured Rx descriptors and reset
* producer/consumer index.
*/
sc->jme_cdata.jme_rx_cons = 0;
sc->jme_morework = 0;
jme_init_tx_ring(sc);
/* Initialize shadow status block. */
jme_init_ssb(sc);
/* Program MAC with resolved speed/duplex/flow-control. */
if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
jme_mac_config(sc);
jme_stats_clear(sc);
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
/* Set Tx ring address to the hardware. */
paddr = JME_TX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
/* Set Rx ring address to the hardware. */
paddr = JME_RX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
/* Restart receiver/transmitter. */
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
RXCSR_RXQ_START);
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
/* Lastly enable TX/RX clock. */
if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
CSR_WRITE_4(sc, JME_GHC,
CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
CSR_WRITE_4(sc, JME_GPREG1,
CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
}
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
/* Unblock execution of task. */
taskqueue_unblock(sc->jme_tq);
/* Reenable interrupts. */
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
JME_UNLOCK(sc);
}
static int
jme_intr(void *arg)
{
struct jme_softc *sc;
uint32_t status;
sc = (struct jme_softc *)arg;
status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
if (status == 0 || status == 0xFFFFFFFF)
return (FILTER_STRAY);
/* Disable interrupts. */
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
return (FILTER_HANDLED);
}
static void
jme_int_task(void *arg, int pending)
{
struct jme_softc *sc;
struct ifnet *ifp;
uint32_t status;
int more;
sc = (struct jme_softc *)arg;
ifp = sc->jme_ifp;
JME_LOCK(sc);
status = CSR_READ_4(sc, JME_INTR_STATUS);
if (sc->jme_morework != 0) {
sc->jme_morework = 0;
status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
}
if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
goto done;
/* Reset PCC counter/timer and Ack interrupts. */
status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
CSR_WRITE_4(sc, JME_INTR_STATUS, status);
more = 0;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
more = jme_rxintr(sc, sc->jme_process_limit);
if (more != 0)
sc->jme_morework = 1;
}
if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
/*
* Notify hardware availability of new Rx
* buffers.
* Reading RXCSR takes very long time under
* heavy load so cache RXCSR value and writes
* the ORed value with the kick command to
* the RXCSR. This saves one register access
* cycle.
*/
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
RXCSR_RX_ENB | RXCSR_RXQ_START);
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
jme_start_locked(ifp);
}
if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
JME_UNLOCK(sc);
return;
}
done:
JME_UNLOCK(sc);
/* Reenable interrupts. */
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
}
static void
jme_txeof(struct jme_softc *sc)
{
struct ifnet *ifp;
struct jme_txdesc *txd;
uint32_t status;
int cons, nsegs;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
cons = sc->jme_cdata.jme_tx_cons;
if (cons == sc->jme_cdata.jme_tx_prod)
return;
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (; cons != sc->jme_cdata.jme_tx_prod;) {
txd = &sc->jme_cdata.jme_txdesc[cons];
status = le32toh(txd->tx_desc->flags);
if ((status & JME_TD_OWN) == JME_TD_OWN)
break;
if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
ifp->if_oerrors++;
else {
ifp->if_opackets++;
if ((status & JME_TD_COLLISION) != 0)
ifp->if_collisions +=
le32toh(txd->tx_desc->buflen) &
JME_TD_BUF_LEN_MASK;
}
/*
* Only the first descriptor of multi-descriptor
* transmission is updated so driver have to skip entire
* chained buffers for the transmiited frame. In other
* words, JME_TD_OWN bit is valid only at the first
* descriptor of a multi-descriptor transmission.
*/
for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
sc->jme_rdata.jme_tx_ring[cons].flags = 0;
JME_DESC_INC(cons, JME_TX_RING_CNT);
}
/* Reclaim transferred mbufs. */
bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
KASSERT(txd->tx_m != NULL,
("%s: freeing NULL mbuf!\n", __func__));
m_freem(txd->tx_m);
txd->tx_m = NULL;
sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
("%s: Active Tx desc counter was garbled\n", __func__));
txd->tx_ndesc = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
sc->jme_cdata.jme_tx_cons = cons;
/* Unarm watchog timer when there is no pending descriptors in queue. */
if (sc->jme_cdata.jme_tx_cnt == 0)
sc->jme_watchdog_timer = 0;
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static __inline void
jme_discard_rxbuf(struct jme_softc *sc, int cons)
{
struct jme_desc *desc;
desc = &sc->jme_rdata.jme_rx_ring[cons];
desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
desc->buflen = htole32(MCLBYTES);
}
/* Receive a frame. */
static void
jme_rxeof(struct jme_softc *sc)
{
struct ifnet *ifp;
struct jme_desc *desc;
struct jme_rxdesc *rxd;
struct mbuf *mp, *m;
uint32_t flags, status;
int cons, count, nsegs;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
cons = sc->jme_cdata.jme_rx_cons;
desc = &sc->jme_rdata.jme_rx_ring[cons];
flags = le32toh(desc->flags);
status = le32toh(desc->buflen);
nsegs = JME_RX_NSEGS(status);
sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
if ((status & JME_RX_ERR_STAT) != 0) {
ifp->if_ierrors++;
jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
#ifdef JME_SHOW_ERRORS
device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
__func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
#endif
sc->jme_cdata.jme_rx_cons += nsegs;
sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
return;
}
for (count = 0; count < nsegs; count++,
JME_DESC_INC(cons, JME_RX_RING_CNT)) {
rxd = &sc->jme_cdata.jme_rxdesc[cons];
mp = rxd->rx_m;
/* Add a new receive buffer to the ring. */
if (jme_newbuf(sc, rxd) != 0) {
ifp->if_iqdrops++;
/* Reuse buffer. */
for (; count < nsegs; count++) {
jme_discard_rxbuf(sc, cons);
JME_DESC_INC(cons, JME_RX_RING_CNT);
}
if (sc->jme_cdata.jme_rxhead != NULL) {
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
}
break;
}
/*
* Assume we've received a full sized frame.
* Actual size is fixed when we encounter the end of
* multi-segmented frame.
*/
mp->m_len = MCLBYTES;
/* Chain received mbufs. */
if (sc->jme_cdata.jme_rxhead == NULL) {
sc->jme_cdata.jme_rxhead = mp;
sc->jme_cdata.jme_rxtail = mp;
} else {
/*
* Receive processor can receive a maximum frame
* size of 65535 bytes.
*/
mp->m_flags &= ~M_PKTHDR;
sc->jme_cdata.jme_rxtail->m_next = mp;
sc->jme_cdata.jme_rxtail = mp;
}
if (count == nsegs - 1) {
/* Last desc. for this frame. */
m = sc->jme_cdata.jme_rxhead;
m->m_flags |= M_PKTHDR;
m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
if (nsegs > 1) {
/* Set first mbuf size. */
m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
/* Set last mbuf size. */
mp->m_len = sc->jme_cdata.jme_rxlen -
((MCLBYTES - JME_RX_PAD_BYTES) +
(MCLBYTES * (nsegs - 2)));
} else
m->m_len = sc->jme_cdata.jme_rxlen;
m->m_pkthdr.rcvif = ifp;
/*
* Account for 10bytes auto padding which is used
* to align IP header on 32bit boundary. Also note,
* CRC bytes is automatically removed by the
* hardware.
*/
m->m_data += JME_RX_PAD_BYTES;
/* Set checksum information. */
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
(flags & JME_RD_IPV4) != 0) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((flags & JME_RD_IPCSUM) != 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if (((flags & JME_RD_MORE_FRAG) == 0) &&
((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
(JME_RD_TCP | JME_RD_TCPCSUM) ||
(flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
(JME_RD_UDP | JME_RD_UDPCSUM))) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/* Check for VLAN tagged packets. */
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(flags & JME_RD_VLAN_TAG) != 0) {
m->m_pkthdr.ether_vtag =
flags & JME_RD_VLAN_MASK;
m->m_flags |= M_VLANTAG;
}
ifp->if_ipackets++;
/* Pass it on. */
JME_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
JME_LOCK(sc);
/* Reset mbuf chains. */
JME_RXCHAIN_RESET(sc);
}
}
sc->jme_cdata.jme_rx_cons += nsegs;
sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
}
static int
jme_rxintr(struct jme_softc *sc, int count)
{
struct jme_desc *desc;
int nsegs, prog, pktlen;
bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; count > 0; prog++) {
desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
break;
if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
break;
nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
/*
* Check number of segments against received bytes.
* Non-matching value would indicate that hardware
* is still trying to update Rx descriptors. I'm not
* sure whether this check is needed.
*/
pktlen = JME_RX_BYTES(le32toh(desc->buflen));
if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES))
break;
prog++;
/* Received a frame. */
jme_rxeof(sc);
count -= nsegs;
}
if (prog > 0)
bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (count > 0 ? 0 : EAGAIN);
}
static void
jme_tick(void *arg)
{
struct jme_softc *sc;
struct mii_data *mii;
sc = (struct jme_softc *)arg;
JME_LOCK_ASSERT(sc);
mii = device_get_softc(sc->jme_miibus);
mii_tick(mii);
/*
* Reclaim Tx buffers that have been completed. It's not
* needed here but it would release allocated mbuf chains
* faster and limit the maximum delay to a hz.
*/
jme_txeof(sc);
jme_stats_update(sc);
jme_watchdog(sc);
callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
}
static void
jme_reset(struct jme_softc *sc)
{
uint32_t ghc, gpreg;
/* Stop receiver, transmitter. */
jme_stop_rx(sc);
jme_stop_tx(sc);
/* Reset controller. */
CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
CSR_READ_4(sc, JME_GHC);
DELAY(10);
/*
* Workaround Rx FIFO overruns seen under certain conditions.
* Explicitly synchorize TX/RX clock. TX/RX clock should be
* enabled only after enabling TX/RX MACs.
*/
if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
/* Disable TX clock. */
CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
/* Disable RX clock. */
gpreg = CSR_READ_4(sc, JME_GPREG1);
CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
gpreg = CSR_READ_4(sc, JME_GPREG1);
/* De-assert RESET but still disable TX clock. */
CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
ghc = CSR_READ_4(sc, JME_GHC);
/* Enable TX clock. */
CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
/* Enable RX clock. */
CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
CSR_READ_4(sc, JME_GPREG1);
/* Disable TX/RX clock again. */
CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
} else
CSR_WRITE_4(sc, JME_GHC, 0);
CSR_READ_4(sc, JME_GHC);
DELAY(10);
}
static void
jme_init(void *xsc)
{
struct jme_softc *sc;
sc = (struct jme_softc *)xsc;
JME_LOCK(sc);
jme_init_locked(sc);
JME_UNLOCK(sc);
}
static void
jme_init_locked(struct jme_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
bus_addr_t paddr;
uint32_t reg;
int error;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
mii = device_get_softc(sc->jme_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel any pending I/O.
*/
jme_stop(sc);
/*
* Reset the chip to a known state.
*/
jme_reset(sc);
/* Init descriptors. */
error = jme_init_rx_ring(sc);
if (error != 0) {
device_printf(sc->jme_dev,
"%s: initialization failed: no memory for Rx buffers.\n",
__func__);
jme_stop(sc);
return;
}
jme_init_tx_ring(sc);
/* Initialize shadow status block. */
jme_init_ssb(sc);
/* Reprogram the station address. */
jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
/*
* Configure Tx queue.
* Tx priority queue weight value : 0
* Tx FIFO threshold for processing next packet : 16QW
* Maximum Tx DMA length : 512
* Allow Tx DMA burst.
*/
sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
sc->jme_txcsr |= sc->jme_tx_dma_size;
sc->jme_txcsr |= TXCSR_DMA_BURST;
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
/* Set Tx descriptor counter. */
CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
/* Set Tx ring address to the hardware. */
paddr = JME_TX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
/* Configure TxMAC parameters. */
reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
reg |= TXMAC_THRESH_1_PKT;
reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
CSR_WRITE_4(sc, JME_TXMAC, reg);
/*
* Configure Rx queue.
* FIFO full threshold for transmitting Tx pause packet : 128T
* FIFO threshold for processing next packet : 128QW
* Rx queue 0 select
* Max Rx DMA length : 128
* Rx descriptor retry : 32
* Rx descriptor retry time gap : 256ns
* Don't receive runt/bad frame.
*/
sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
/*
* Since Rx FIFO size is 4K bytes, receiving frames larger
* than 4K bytes will suffer from Rx FIFO overruns. So
* decrease FIFO threshold to reduce the FIFO overruns for
* frames larger than 4000 bytes.
* For best performance of standard MTU sized frames use
* maximum allowable FIFO threshold, 128QW. Note these do
* not hold on chip full mask verion >=2. For these
* controllers 64QW and 128QW are not valid value.
*/
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
else {
if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
else
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
}
sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
/* Set Rx descriptor counter. */
CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
/* Set Rx ring address to the hardware. */
paddr = JME_RX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
/* Clear receive filter. */
CSR_WRITE_4(sc, JME_RXMAC, 0);
/* Set up the receive filter. */
jme_set_filter(sc);
jme_set_vlan(sc);
/*
* Disable all WOL bits as WOL can interfere normal Rx
* operation. Also clear WOL detection status bits.
*/
reg = CSR_READ_4(sc, JME_PMCS);
reg &= ~PMCS_WOL_ENB_MASK;
CSR_WRITE_4(sc, JME_PMCS, reg);
reg = CSR_READ_4(sc, JME_RXMAC);
/*
* Pad 10bytes right before received frame. This will greatly
* help Rx performance on strict-alignment architectures as
* it does not need to copy the frame to align the payload.
*/
reg |= RXMAC_PAD_10BYTES;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
reg |= RXMAC_CSUM_ENB;
CSR_WRITE_4(sc, JME_RXMAC, reg);
/* Configure general purpose reg0 */
reg = CSR_READ_4(sc, JME_GPREG0);
reg &= ~GPREG0_PCC_UNIT_MASK;
/* Set PCC timer resolution to micro-seconds unit. */
reg |= GPREG0_PCC_UNIT_US;
/*
* Disable all shadow register posting as we have to read
* JME_INTR_STATUS register in jme_int_task. Also it seems
* that it's hard to synchronize interrupt status between
* hardware and software with shadow posting due to
* requirements of bus_dmamap_sync(9).
*/
reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
/* Disable posting of DW0. */
reg &= ~GPREG0_POST_DW0_ENB;
/* Clear PME message. */
reg &= ~GPREG0_PME_ENB;
/* Set PHY address. */
reg &= ~GPREG0_PHY_ADDR_MASK;
reg |= sc->jme_phyaddr;
CSR_WRITE_4(sc, JME_GPREG0, reg);
/* Configure Tx queue 0 packet completion coalescing. */
reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
PCCTX_COAL_TO_MASK;
reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
PCCTX_COAL_PKT_MASK;
reg |= PCCTX_COAL_TXQ0;
CSR_WRITE_4(sc, JME_PCCTX, reg);
/* Configure Rx queue 0 packet completion coalescing. */
reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
PCCRX_COAL_TO_MASK;
reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
PCCRX_COAL_PKT_MASK;
CSR_WRITE_4(sc, JME_PCCRX0, reg);
/*
* Configure PCD(Packet Completion Deferring). It seems PCD
* generates an interrupt when the time interval between two
* back-to-back incoming/outgoing packet is long enough for
* it to reach its timer value 0. The arrival of new packets
* after timer has started causes the PCD timer to restart.
* Unfortunately, it's not clear how PCD is useful at this
* moment, so just use the same of PCC parameters.
*/
if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
sc->jme_rx_pcd_to = PCDRX_TO_MAX;
sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
sc->jme_tx_pcd_to = PCDTX_TO_MAX;
reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
CSR_WRITE_4(sc, PCDRX_REG(0), reg);
reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
CSR_WRITE_4(sc, JME_PCDTX, reg);
}
/* Configure shadow status block but don't enable posting. */
paddr = sc->jme_rdata.jme_ssb_block_paddr;
CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
/* Disable Timer 1 and Timer 2. */
CSR_WRITE_4(sc, JME_TIMER1, 0);
CSR_WRITE_4(sc, JME_TIMER2, 0);
/* Configure retry transmit period, retry limit value. */
CSR_WRITE_4(sc, JME_TXTRHD,
((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
TXTRHD_RT_PERIOD_MASK) |
((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
TXTRHD_RT_LIMIT_SHIFT));
/* Disable RSS. */
CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
/* Initialize the interrupt mask. */
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
/*
* Enabling Tx/Rx DMA engines and Rx queue processing is
* done after detection of valid link in jme_link_task.
*/
sc->jme_flags &= ~JME_FLAG_LINK;
/* Set the current media. */
mii_mediachg(mii);
callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
jme_stop(struct jme_softc *sc)
{
struct ifnet *ifp;
struct jme_txdesc *txd;
struct jme_rxdesc *rxd;
int i;
JME_LOCK_ASSERT(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp = sc->jme_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->jme_flags &= ~JME_FLAG_LINK;
callout_stop(&sc->jme_tick_ch);
sc->jme_watchdog_timer = 0;
/*
* Disable interrupts.
*/
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
/* Disable updating shadow status block. */
CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
/* Stop receiver, transmitter. */
jme_stop_rx(sc);
jme_stop_tx(sc);
/* Reclaim Rx/Tx buffers that have been completed. */
jme_rxintr(sc, JME_RX_RING_CNT);
if (sc->jme_cdata.jme_rxhead != NULL)
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
jme_txeof(sc);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_ndesc = 0;
}
}
jme_stats_update(sc);
jme_stats_save(sc);
}
static void
jme_stop_tx(struct jme_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, JME_TXCSR);
if ((reg & TXCSR_TX_ENB) == 0)
return;
reg &= ~TXCSR_TX_ENB;
CSR_WRITE_4(sc, JME_TXCSR, reg);
for (i = JME_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
break;
}
if (i == 0)
device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
}
static void
jme_stop_rx(struct jme_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, JME_RXCSR);
if ((reg & RXCSR_RX_ENB) == 0)
return;
reg &= ~RXCSR_RX_ENB;
CSR_WRITE_4(sc, JME_RXCSR, reg);
for (i = JME_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
break;
}
if (i == 0)
device_printf(sc->jme_dev, "stopping recevier timeout!\n");
}
static void
jme_init_tx_ring(struct jme_softc *sc)
{
struct jme_ring_data *rd;
struct jme_txdesc *txd;
int i;
sc->jme_cdata.jme_tx_prod = 0;
sc->jme_cdata.jme_tx_cons = 0;
sc->jme_cdata.jme_tx_cnt = 0;
rd = &sc->jme_rdata;
bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
txd->tx_m = NULL;
txd->tx_desc = &rd->jme_tx_ring[i];
txd->tx_ndesc = 0;
}
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
jme_init_ssb(struct jme_softc *sc)
{
struct jme_ring_data *rd;
rd = &sc->jme_rdata;
bzero(rd->jme_ssb_block, JME_SSB_SIZE);
bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
jme_init_rx_ring(struct jme_softc *sc)
{
struct jme_ring_data *rd;
struct jme_rxdesc *rxd;
int i;
sc->jme_cdata.jme_rx_cons = 0;
JME_RXCHAIN_RESET(sc);
sc->jme_morework = 0;
rd = &sc->jme_rdata;
bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->jme_rx_ring[i];
if (jme_newbuf(sc, rxd) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
{
struct jme_desc *desc;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
/*
* JMC250 has 64bit boundary alignment limitation so jme(4)
* takes advantage of 10 bytes padding feature of hardware
* in order not to copy entire frame to align IP header on
* 32bit boundary.
*/
m->m_len = m->m_pkthdr.len = MCLBYTES;
if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
sc->jme_cdata.jme_rx_sparemap = map;
bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = rxd->rx_desc;
desc->buflen = htole32(segs[0].ds_len);
desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
return (0);
}
static void
jme_set_vlan(struct jme_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
reg = CSR_READ_4(sc, JME_RXMAC);
reg &= ~RXMAC_VLAN_ENB;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
reg |= RXMAC_VLAN_ENB;
CSR_WRITE_4(sc, JME_RXMAC, reg);
}
static void
jme_set_filter(struct jme_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
rxcfg = CSR_READ_4(sc, JME_RXMAC);
rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
RXMAC_ALLMULTI);
/* Always accept frames destined to our station address. */
rxcfg |= RXMAC_UNICAST;
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxcfg |= RXMAC_BROADCAST;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= RXMAC_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= RXMAC_ALLMULTI;
CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
return;
}
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the low-order
* 6 bits as an index into the 64 bit multicast hash table. The
* high order bits select the register, while the rest of the bits
* select the bit within the register.
*/
rxcfg |= RXMAC_MULTICAST;
bzero(mchash, sizeof(mchash));
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 5] |= 1 << (crc & 0x1f);
}
if_maddr_runlock(ifp);
CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
}
static void
jme_stats_clear(struct jme_softc *sc)
{
JME_LOCK_ASSERT(sc);
if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
return;
/* Disable and clear counters. */
CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
/* Activate hw counters. */
CSR_WRITE_4(sc, JME_STATCSR, 0);
CSR_READ_4(sc, JME_STATCSR);
bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
}
static void
jme_stats_save(struct jme_softc *sc)
{
JME_LOCK_ASSERT(sc);
if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
return;
/* Save current counters. */
bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
/* Disable and clear counters. */
CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
}
static void
jme_stats_update(struct jme_softc *sc)
{
struct jme_hw_stats *stat, *ostat;
uint32_t reg;
JME_LOCK_ASSERT(sc);
if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
return;
stat = &sc->jme_stats;
ostat = &sc->jme_ostats;
stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
reg = CSR_READ_4(sc, JME_STAT_CRCMII);
stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
STAT_RX_CRC_ERR_SHIFT;
stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
STAT_RX_MII_ERR_SHIFT;
reg = CSR_READ_4(sc, JME_STAT_RXERR);
stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
STAT_RXERR_OFLOW_SHIFT;
stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
STAT_RXERR_MPTY_SHIFT;
reg = CSR_READ_4(sc, JME_STAT_FAIL);
stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
/* Account for previous counters. */
stat->rx_good_frames += ostat->rx_good_frames;
stat->rx_crc_errs += ostat->rx_crc_errs;
stat->rx_mii_errs += ostat->rx_mii_errs;
stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
stat->rx_desc_empty += ostat->rx_desc_empty;
stat->rx_bad_frames += ostat->rx_bad_frames;
stat->tx_good_frames += ostat->tx_good_frames;
stat->tx_bad_frames += ostat->tx_bad_frames;
}
static void
jme_phy_down(struct jme_softc *sc)
{
uint32_t reg;
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
reg = CSR_READ_4(sc, JME_PHYPOWDN);
reg |= 0x0000000F;
CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
reg &= ~PE1_GIGA_PDOWN_MASK;
reg |= PE1_GIGA_PDOWN_D3;
pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
}
}
static void
jme_phy_up(struct jme_softc *sc)
{
uint32_t reg;
uint16_t bmcr;
bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
bmcr &= ~BMCR_PDOWN;
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
reg = CSR_READ_4(sc, JME_PHYPOWDN);
reg &= ~0x0000000F;
CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
reg &= ~PE1_GIGA_PDOWN_MASK;
reg |= PE1_GIGA_PDOWN_DIS;
pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
}
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
}
static int
sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
}
static int
sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
}
static int
sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
}
static int
sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
JME_PROC_MIN, JME_PROC_MAX));
}