Pedro F. Giffuni 74b8d63dcc Cleanup unnecessary semicolons from the kernel.
Found with devel/coccinelle.
2016-04-10 23:07:00 +00:00

825 lines
19 KiB
C

/*-
* Copyright (C) 2009-2012 Semihalf
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/callout.h>
#include <sys/sysctl.h>
#include <dev/nand/nand.h>
#include <dev/nand/nandbus.h>
#include <dev/nand/nand_ecc_pos.h>
#include "nfc_if.h"
#include "nand_if.h"
#include "nandbus_if.h"
#include <machine/stdarg.h>
#define NAND_RESET_DELAY 1000 /* tRST */
#define NAND_ERASE_DELAY 3000 /* tBERS */
#define NAND_PROG_DELAY 700 /* tPROG */
#define NAND_READ_DELAY 50 /* tR */
#define BIT0(x) ((x) & 0x1)
#define BIT1(x) (BIT0(x >> 1))
#define BIT2(x) (BIT0(x >> 2))
#define BIT3(x) (BIT0(x >> 3))
#define BIT4(x) (BIT0(x >> 4))
#define BIT5(x) (BIT0(x >> 5))
#define BIT6(x) (BIT0(x >> 6))
#define BIT7(x) (BIT0(x >> 7))
#define SOFTECC_SIZE 256
#define SOFTECC_BYTES 3
int nand_debug_flag = 0;
SYSCTL_INT(_debug, OID_AUTO, nand_debug, CTLFLAG_RWTUN, &nand_debug_flag, 0,
"NAND subsystem debug flag");
MALLOC_DEFINE(M_NAND, "NAND", "NAND dynamic data");
static void calculate_ecc(const uint8_t *, uint8_t *);
static int correct_ecc(uint8_t *, uint8_t *, uint8_t *);
void
nand_debug(int level, const char *fmt, ...)
{
va_list ap;
if (!(nand_debug_flag & level))
return;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf("\n");
}
void
nand_init(struct nand_softc *nand, device_t dev, int ecc_mode,
int ecc_bytes, int ecc_size, uint16_t *eccposition, char *cdev_name)
{
nand->ecc.eccmode = ecc_mode;
nand->chip_cdev_name = cdev_name;
if (ecc_mode == NAND_ECC_SOFT) {
nand->ecc.eccbytes = SOFTECC_BYTES;
nand->ecc.eccsize = SOFTECC_SIZE;
} else if (ecc_mode != NAND_ECC_NONE) {
nand->ecc.eccbytes = ecc_bytes;
nand->ecc.eccsize = ecc_size;
if (eccposition)
nand->ecc.eccpositions = eccposition;
}
}
void
nand_onfi_set_params(struct nand_chip *chip, struct onfi_chip_params *params)
{
struct chip_geom *cg;
cg = &chip->chip_geom;
init_chip_geom(cg, params->luns, params->blocks_per_lun,
params->pages_per_block, params->bytes_per_page,
params->spare_bytes_per_page);
chip->t_bers = params->t_bers;
chip->t_prog = params->t_prog;
chip->t_r = params->t_r;
chip->t_ccs = params->t_ccs;
if (params->features & ONFI_FEAT_16BIT)
chip->flags |= NAND_16_BIT;
}
void
nand_set_params(struct nand_chip *chip, struct nand_params *params)
{
struct chip_geom *cg;
uint32_t blocks_per_chip;
cg = &chip->chip_geom;
blocks_per_chip = (params->chip_size << 20) /
(params->page_size * params->pages_per_block);
init_chip_geom(cg, 1, blocks_per_chip,
params->pages_per_block, params->page_size,
params->oob_size);
chip->t_bers = NAND_ERASE_DELAY;
chip->t_prog = NAND_PROG_DELAY;
chip->t_r = NAND_READ_DELAY;
chip->t_ccs = 0;
if (params->flags & NAND_16_BIT)
chip->flags |= NAND_16_BIT;
}
int
nand_init_stat(struct nand_chip *chip)
{
struct block_stat *blk_stat;
struct page_stat *pg_stat;
struct chip_geom *cg;
uint32_t blks, pgs;
cg = &chip->chip_geom;
blks = cg->blks_per_lun * cg->luns;
blk_stat = malloc(sizeof(struct block_stat) * blks, M_NAND,
M_WAITOK | M_ZERO);
if (!blk_stat)
return (ENOMEM);
pgs = blks * cg->pgs_per_blk;
pg_stat = malloc(sizeof(struct page_stat) * pgs, M_NAND,
M_WAITOK | M_ZERO);
if (!pg_stat) {
free(blk_stat, M_NAND);
return (ENOMEM);
}
chip->blk_stat = blk_stat;
chip->pg_stat = pg_stat;
return (0);
}
void
nand_destroy_stat(struct nand_chip *chip)
{
free(chip->pg_stat, M_NAND);
free(chip->blk_stat, M_NAND);
}
int
init_chip_geom(struct chip_geom *cg, uint32_t luns, uint32_t blks_per_lun,
uint32_t pgs_per_blk, uint32_t pg_size, uint32_t oob_size)
{
int shift;
if (!cg)
return (-1);
cg->luns = luns;
cg->blks_per_lun = blks_per_lun;
cg->blks_per_chip = blks_per_lun * luns;
cg->pgs_per_blk = pgs_per_blk;
cg->page_size = pg_size;
cg->oob_size = oob_size;
cg->block_size = cg->page_size * cg->pgs_per_blk;
cg->chip_size = cg->block_size * cg->blks_per_chip;
shift = fls(cg->pgs_per_blk - 1);
cg->pg_mask = (1 << shift) - 1;
cg->blk_shift = shift;
if (cg->blks_per_lun > 0) {
shift = fls(cg->blks_per_lun - 1);
cg->blk_mask = ((1 << shift) - 1) << cg->blk_shift;
} else {
shift = 0;
cg->blk_mask = 0;
}
cg->lun_shift = shift + cg->blk_shift;
shift = fls(cg->luns - 1);
cg->lun_mask = ((1 << shift) - 1) << cg->lun_shift;
nand_debug(NDBG_NAND, "Masks: lun 0x%x blk 0x%x page 0x%x\n"
"Shifts: lun %d blk %d",
cg->lun_mask, cg->blk_mask, cg->pg_mask,
cg->lun_shift, cg->blk_shift);
return (0);
}
int
nand_row_to_blkpg(struct chip_geom *cg, uint32_t row, uint32_t *lun,
uint32_t *blk, uint32_t *pg)
{
if (!cg || !lun || !blk || !pg)
return (-1);
if (row & ~(cg->lun_mask | cg->blk_mask | cg->pg_mask)) {
nand_debug(NDBG_NAND,"Address out of bounds\n");
return (-1);
}
*lun = (row & cg->lun_mask) >> cg->lun_shift;
*blk = (row & cg->blk_mask) >> cg->blk_shift;
*pg = (row & cg->pg_mask);
nand_debug(NDBG_NAND,"address %x-%x-%x\n", *lun, *blk, *pg);
return (0);
}
int page_to_row(struct chip_geom *cg, uint32_t page, uint32_t *row)
{
uint32_t lun, block, pg_in_blk;
if (!cg || !row)
return (-1);
block = page / cg->pgs_per_blk;
pg_in_blk = page % cg->pgs_per_blk;
lun = block / cg->blks_per_lun;
block = block % cg->blks_per_lun;
*row = (lun << cg->lun_shift) & cg->lun_mask;
*row |= ((block << cg->blk_shift) & cg->blk_mask);
*row |= (pg_in_blk & cg->pg_mask);
return (0);
}
int
nand_check_page_boundary(struct nand_chip *chip, uint32_t page)
{
struct chip_geom* cg;
cg = &chip->chip_geom;
if (page >= (cg->pgs_per_blk * cg->blks_per_lun * cg->luns)) {
nand_debug(NDBG_GEN,"%s: page number too big %#x\n",
__func__, page);
return (1);
}
return (0);
}
void
nand_get_chip_param(struct nand_chip *chip, struct chip_param_io *param)
{
struct chip_geom *cg;
cg = &chip->chip_geom;
param->page_size = cg->page_size;
param->oob_size = cg->oob_size;
param->blocks = cg->blks_per_lun * cg->luns;
param->pages_per_block = cg->pgs_per_blk;
}
static uint16_t *
default_software_ecc_positions(struct nand_chip *chip)
{
/* If positions have been set already, use them. */
if (chip->nand->ecc.eccpositions)
return (chip->nand->ecc.eccpositions);
/*
* XXX Note that the following logic isn't really sufficient, especially
* in the ONFI case where the number of ECC bytes can be dictated by
* values in the parameters page, and that could lead to needing more
* byte positions than exist within the tables of software-ecc defaults.
*/
if (chip->chip_geom.oob_size >= 128)
return (default_software_ecc_positions_128);
if (chip->chip_geom.oob_size >= 64)
return (default_software_ecc_positions_64);
else if (chip->chip_geom.oob_size >= 16)
return (default_software_ecc_positions_16);
return (NULL);
}
static void
calculate_ecc(const uint8_t *buf, uint8_t *ecc)
{
uint8_t p8, byte;
int i;
memset(ecc, 0, 3);
for (i = 0; i < 256; i++) {
byte = buf[i];
ecc[0] ^= (BIT0(byte) ^ BIT2(byte) ^ BIT4(byte) ^
BIT6(byte)) << 2;
ecc[0] ^= (BIT1(byte) ^ BIT3(byte) ^ BIT5(byte) ^
BIT7(byte)) << 3;
ecc[0] ^= (BIT0(byte) ^ BIT1(byte) ^ BIT4(byte) ^
BIT5(byte)) << 4;
ecc[0] ^= (BIT2(byte) ^ BIT3(byte) ^ BIT6(byte) ^
BIT7(byte)) << 5;
ecc[0] ^= (BIT0(byte) ^ BIT1(byte) ^ BIT2(byte) ^
BIT3(byte)) << 6;
ecc[0] ^= (BIT4(byte) ^ BIT5(byte) ^ BIT6(byte) ^
BIT7(byte)) << 7;
p8 = BIT0(byte) ^ BIT1(byte) ^ BIT2(byte) ^
BIT3(byte) ^ BIT4(byte) ^ BIT5(byte) ^ BIT6(byte) ^
BIT7(byte);
if (p8) {
ecc[2] ^= (0x1 << BIT0(i));
ecc[2] ^= (0x4 << BIT1(i));
ecc[2] ^= (0x10 << BIT2(i));
ecc[2] ^= (0x40 << BIT3(i));
ecc[1] ^= (0x1 << BIT4(i));
ecc[1] ^= (0x4 << BIT5(i));
ecc[1] ^= (0x10 << BIT6(i));
ecc[1] ^= (0x40 << BIT7(i));
}
}
ecc[0] = ~ecc[0];
ecc[1] = ~ecc[1];
ecc[2] = ~ecc[2];
ecc[0] |= 3;
}
static int
correct_ecc(uint8_t *buf, uint8_t *calc_ecc, uint8_t *read_ecc)
{
uint8_t ecc0, ecc1, ecc2, onesnum, bit, byte;
uint16_t addr = 0;
ecc0 = calc_ecc[0] ^ read_ecc[0];
ecc1 = calc_ecc[1] ^ read_ecc[1];
ecc2 = calc_ecc[2] ^ read_ecc[2];
if (!ecc0 && !ecc1 && !ecc2)
return (ECC_OK);
addr = BIT3(ecc0) | (BIT5(ecc0) << 1) | (BIT7(ecc0) << 2);
addr |= (BIT1(ecc2) << 3) | (BIT3(ecc2) << 4) |
(BIT5(ecc2) << 5) | (BIT7(ecc2) << 6);
addr |= (BIT1(ecc1) << 7) | (BIT3(ecc1) << 8) |
(BIT5(ecc1) << 9) | (BIT7(ecc1) << 10);
onesnum = 0;
while (ecc0 || ecc1 || ecc2) {
if (ecc0 & 1)
onesnum++;
if (ecc1 & 1)
onesnum++;
if (ecc2 & 1)
onesnum++;
ecc0 >>= 1;
ecc1 >>= 1;
ecc2 >>= 1;
}
if (onesnum == 11) {
/* Correctable error */
bit = addr & 7;
byte = addr >> 3;
buf[byte] ^= (1 << bit);
return (ECC_CORRECTABLE);
} else if (onesnum == 1) {
/* ECC error */
return (ECC_ERROR_ECC);
} else {
/* Uncorrectable error */
return (ECC_UNCORRECTABLE);
}
return (0);
}
int
nand_softecc_get(device_t dev, uint8_t *buf, int pagesize, uint8_t *ecc)
{
int steps = pagesize / SOFTECC_SIZE;
int i = 0, j = 0;
for (; i < (steps * SOFTECC_BYTES);
i += SOFTECC_BYTES, j += SOFTECC_SIZE) {
calculate_ecc(&buf[j], &ecc[i]);
}
return (0);
}
int
nand_softecc_correct(device_t dev, uint8_t *buf, int pagesize,
uint8_t *readecc, uint8_t *calcecc)
{
int steps = pagesize / SOFTECC_SIZE;
int i = 0, j = 0, ret = 0;
for (i = 0; i < (steps * SOFTECC_BYTES);
i += SOFTECC_BYTES, j += SOFTECC_SIZE) {
ret += correct_ecc(&buf[j], &calcecc[i], &readecc[i]);
if (ret < 0)
return (ret);
}
return (ret);
}
static int
offset_to_page(struct chip_geom *cg, uint32_t offset)
{
return (offset / cg->page_size);
}
int
nand_read_pages(struct nand_chip *chip, uint32_t offset, void *buf,
uint32_t len)
{
struct chip_geom *cg;
struct nand_ecc_data *eccd;
struct page_stat *pg_stat;
device_t nandbus;
void *oob = NULL;
uint8_t *ptr;
uint16_t *eccpos = NULL;
uint32_t page, num, steps = 0;
int i, retval = 0, needwrite;
nand_debug(NDBG_NAND,"%p read page %x[%x]", chip, offset, len);
cg = &chip->chip_geom;
eccd = &chip->nand->ecc;
page = offset_to_page(cg, offset);
num = len / cg->page_size;
if (eccd->eccmode != NAND_ECC_NONE) {
steps = cg->page_size / eccd->eccsize;
eccpos = default_software_ecc_positions(chip);
oob = malloc(cg->oob_size, M_NAND, M_WAITOK);
}
nandbus = device_get_parent(chip->dev);
NANDBUS_LOCK(nandbus);
NANDBUS_SELECT_CS(device_get_parent(chip->dev), chip->num);
ptr = (uint8_t *)buf;
while (num--) {
pg_stat = &(chip->pg_stat[page]);
if (NAND_READ_PAGE(chip->dev, page, ptr, cg->page_size, 0)) {
retval = ENXIO;
break;
}
if (eccd->eccmode != NAND_ECC_NONE) {
if (NAND_GET_ECC(chip->dev, ptr, eccd->ecccalculated,
&needwrite)) {
retval = ENXIO;
break;
}
nand_debug(NDBG_ECC,"%s: ECC calculated:",
__func__);
if (nand_debug_flag & NDBG_ECC)
for (i = 0; i < (eccd->eccbytes * steps); i++)
printf("%x ", eccd->ecccalculated[i]);
nand_debug(NDBG_ECC,"\n");
if (NAND_READ_OOB(chip->dev, page, oob, cg->oob_size,
0)) {
retval = ENXIO;
break;
}
for (i = 0; i < (eccd->eccbytes * steps); i++)
eccd->eccread[i] = ((uint8_t *)oob)[eccpos[i]];
nand_debug(NDBG_ECC,"%s: ECC read:", __func__);
if (nand_debug_flag & NDBG_ECC)
for (i = 0; i < (eccd->eccbytes * steps); i++)
printf("%x ", eccd->eccread[i]);
nand_debug(NDBG_ECC,"\n");
retval = NAND_CORRECT_ECC(chip->dev, ptr, eccd->eccread,
eccd->ecccalculated);
nand_debug(NDBG_ECC, "NAND_CORRECT_ECC() returned %d",
retval);
if (retval == 0)
pg_stat->ecc_stat.ecc_succeded++;
else if (retval > 0) {
pg_stat->ecc_stat.ecc_corrected += retval;
retval = ECC_CORRECTABLE;
} else {
pg_stat->ecc_stat.ecc_failed++;
break;
}
}
pg_stat->page_read++;
page++;
ptr += cg->page_size;
}
NANDBUS_UNLOCK(nandbus);
if (oob)
free(oob, M_NAND);
return (retval);
}
int
nand_read_pages_raw(struct nand_chip *chip, uint32_t offset, void *buf,
uint32_t len)
{
struct chip_geom *cg;
device_t nandbus;
uint8_t *ptr;
uint32_t page, num, end, begin = 0, begin_off;
int retval = 0;
cg = &chip->chip_geom;
page = offset_to_page(cg, offset);
begin_off = offset - page * cg->page_size;
if (begin_off) {
begin = cg->page_size - begin_off;
len -= begin;
}
num = len / cg->page_size;
end = len % cg->page_size;
nandbus = device_get_parent(chip->dev);
NANDBUS_LOCK(nandbus);
NANDBUS_SELECT_CS(device_get_parent(chip->dev), chip->num);
ptr = (uint8_t *)buf;
if (begin_off) {
if (NAND_READ_PAGE(chip->dev, page, ptr, begin, begin_off)) {
NANDBUS_UNLOCK(nandbus);
return (ENXIO);
}
page++;
ptr += begin;
}
while (num--) {
if (NAND_READ_PAGE(chip->dev, page, ptr, cg->page_size, 0)) {
NANDBUS_UNLOCK(nandbus);
return (ENXIO);
}
page++;
ptr += cg->page_size;
}
if (end)
if (NAND_READ_PAGE(chip->dev, page, ptr, end, 0)) {
NANDBUS_UNLOCK(nandbus);
return (ENXIO);
}
NANDBUS_UNLOCK(nandbus);
return (retval);
}
int
nand_prog_pages(struct nand_chip *chip, uint32_t offset, uint8_t *buf,
uint32_t len)
{
struct chip_geom *cg;
struct page_stat *pg_stat;
struct nand_ecc_data *eccd;
device_t nandbus;
uint32_t page, num;
uint8_t *oob = NULL;
uint16_t *eccpos = NULL;
int steps = 0, i, needwrite, err = 0;
nand_debug(NDBG_NAND,"%p prog page %x[%x]", chip, offset, len);
eccd = &chip->nand->ecc;
cg = &chip->chip_geom;
page = offset_to_page(cg, offset);
num = len / cg->page_size;
if (eccd->eccmode != NAND_ECC_NONE) {
steps = cg->page_size / eccd->eccsize;
oob = malloc(cg->oob_size, M_NAND, M_WAITOK);
eccpos = default_software_ecc_positions(chip);
}
nandbus = device_get_parent(chip->dev);
NANDBUS_LOCK(nandbus);
NANDBUS_SELECT_CS(device_get_parent(chip->dev), chip->num);
while (num--) {
if (NAND_PROGRAM_PAGE(chip->dev, page, buf, cg->page_size, 0)) {
err = ENXIO;
break;
}
if (eccd->eccmode != NAND_ECC_NONE) {
if (NAND_GET_ECC(chip->dev, buf, &eccd->ecccalculated,
&needwrite)) {
err = ENXIO;
break;
}
nand_debug(NDBG_ECC,"ECC calculated:");
if (nand_debug_flag & NDBG_ECC)
for (i = 0; i < (eccd->eccbytes * steps); i++)
printf("%x ", eccd->ecccalculated[i]);
nand_debug(NDBG_ECC,"\n");
if (needwrite) {
if (NAND_READ_OOB(chip->dev, page, oob, cg->oob_size,
0)) {
err = ENXIO;
break;
}
for (i = 0; i < (eccd->eccbytes * steps); i++)
oob[eccpos[i]] = eccd->ecccalculated[i];
if (NAND_PROGRAM_OOB(chip->dev, page, oob,
cg->oob_size, 0)) {
err = ENXIO;
break;
}
}
}
pg_stat = &(chip->pg_stat[page]);
pg_stat->page_written++;
page++;
buf += cg->page_size;
}
NANDBUS_UNLOCK(nandbus);
if (oob)
free(oob, M_NAND);
return (err);
}
int
nand_prog_pages_raw(struct nand_chip *chip, uint32_t offset, void *buf,
uint32_t len)
{
struct chip_geom *cg;
device_t nandbus;
uint8_t *ptr;
uint32_t page, num, end, begin = 0, begin_off;
int retval = 0;
cg = &chip->chip_geom;
page = offset_to_page(cg, offset);
begin_off = offset - page * cg->page_size;
if (begin_off) {
begin = cg->page_size - begin_off;
len -= begin;
}
num = len / cg->page_size;
end = len % cg->page_size;
nandbus = device_get_parent(chip->dev);
NANDBUS_LOCK(nandbus);
NANDBUS_SELECT_CS(device_get_parent(chip->dev), chip->num);
ptr = (uint8_t *)buf;
if (begin_off) {
if (NAND_PROGRAM_PAGE(chip->dev, page, ptr, begin, begin_off)) {
NANDBUS_UNLOCK(nandbus);
return (ENXIO);
}
page++;
ptr += begin;
}
while (num--) {
if (NAND_PROGRAM_PAGE(chip->dev, page, ptr, cg->page_size, 0)) {
NANDBUS_UNLOCK(nandbus);
return (ENXIO);
}
page++;
ptr += cg->page_size;
}
if (end)
retval = NAND_PROGRAM_PAGE(chip->dev, page, ptr, end, 0);
NANDBUS_UNLOCK(nandbus);
return (retval);
}
int
nand_read_oob(struct nand_chip *chip, uint32_t page, void *buf,
uint32_t len)
{
device_t nandbus;
int retval = 0;
nandbus = device_get_parent(chip->dev);
NANDBUS_LOCK(nandbus);
NANDBUS_SELECT_CS(device_get_parent(chip->dev), chip->num);
retval = NAND_READ_OOB(chip->dev, page, buf, len, 0);
NANDBUS_UNLOCK(nandbus);
return (retval);
}
int
nand_prog_oob(struct nand_chip *chip, uint32_t page, void *buf,
uint32_t len)
{
device_t nandbus;
int retval = 0;
nandbus = device_get_parent(chip->dev);
NANDBUS_LOCK(nandbus);
NANDBUS_SELECT_CS(device_get_parent(chip->dev), chip->num);
retval = NAND_PROGRAM_OOB(chip->dev, page, buf, len, 0);
NANDBUS_UNLOCK(nandbus);
return (retval);
}
int
nand_erase_blocks(struct nand_chip *chip, off_t offset, size_t len)
{
device_t nandbus;
struct chip_geom *cg;
uint32_t block, num_blocks;
int err = 0;
cg = &chip->chip_geom;
if ((offset % cg->block_size) || (len % cg->block_size))
return (EINVAL);
block = offset / cg->block_size;
num_blocks = len / cg->block_size;
nand_debug(NDBG_NAND,"%p erase blocks %d[%d]", chip, block, num_blocks);
nandbus = device_get_parent(chip->dev);
NANDBUS_LOCK(nandbus);
NANDBUS_SELECT_CS(device_get_parent(chip->dev), chip->num);
while (num_blocks--) {
if (!nand_check_bad_block(chip, block)) {
if (NAND_ERASE_BLOCK(chip->dev, block)) {
nand_debug(NDBG_NAND,"%p erase blocks %d error",
chip, block);
nand_mark_bad_block(chip, block);
err = ENXIO;
}
} else
err = ENXIO;
block++;
}
NANDBUS_UNLOCK(nandbus);
if (err)
nand_update_bbt(chip);
return (err);
}
MODULE_VERSION(nand, 1);