freebsd-nq/sys/dev/ath/if_ath.c

5870 lines
158 KiB
C

/*-
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#include "opt_inet.h"
#include "opt_ath.h"
/*
* This is needed for register operations which are performed
* by the driver - eg, calls to ath_hal_gettsf32().
*
* It's also required for any AH_DEBUG checks in here, eg the
* module dependencies.
*/
#include "opt_ah.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/priv.h>
#include <sys/module.h>
#include <sys/ktr.h>
#include <sys/smp.h> /* for mp_ncpus */
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <dev/ath/if_athvar.h>
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
#include <dev/ath/ath_hal/ah_diagcodes.h>
#include <dev/ath/if_ath_debug.h>
#include <dev/ath/if_ath_misc.h>
#include <dev/ath/if_ath_tsf.h>
#include <dev/ath/if_ath_tx.h>
#include <dev/ath/if_ath_sysctl.h>
#include <dev/ath/if_ath_led.h>
#include <dev/ath/if_ath_keycache.h>
#include <dev/ath/if_ath_rx.h>
#include <dev/ath/if_ath_rx_edma.h>
#include <dev/ath/if_ath_tx_edma.h>
#include <dev/ath/if_ath_beacon.h>
#include <dev/ath/if_ath_spectral.h>
#include <dev/ath/if_athdfs.h>
#ifdef ATH_TX99_DIAG
#include <dev/ath/ath_tx99/ath_tx99.h>
#endif
#ifdef ATH_DEBUG_ALQ
#include <dev/ath/if_ath_alq.h>
#endif
/*
* Only enable this if you're working on PS-POLL support.
*/
#undef ATH_SW_PSQ
/*
* ATH_BCBUF determines the number of vap's that can transmit
* beacons and also (currently) the number of vap's that can
* have unique mac addresses/bssid. When staggering beacons
* 4 is probably a good max as otherwise the beacons become
* very closely spaced and there is limited time for cab q traffic
* to go out. You can burst beacons instead but that is not good
* for stations in power save and at some point you really want
* another radio (and channel).
*
* The limit on the number of mac addresses is tied to our use of
* the U/L bit and tracking addresses in a byte; it would be
* worthwhile to allow more for applications like proxy sta.
*/
CTASSERT(ATH_BCBUF <= 8);
static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void ath_vap_delete(struct ieee80211vap *);
static void ath_init(void *);
static void ath_stop_locked(struct ifnet *);
static void ath_stop(struct ifnet *);
static int ath_reset_vap(struct ieee80211vap *, u_long);
static void ath_start_queue(struct ifnet *ifp);
static int ath_media_change(struct ifnet *);
static void ath_watchdog(void *);
static int ath_ioctl(struct ifnet *, u_long, caddr_t);
static void ath_fatal_proc(void *, int);
static void ath_bmiss_vap(struct ieee80211vap *);
static void ath_bmiss_proc(void *, int);
static void ath_key_update_begin(struct ieee80211vap *);
static void ath_key_update_end(struct ieee80211vap *);
static void ath_update_mcast(struct ifnet *);
static void ath_update_promisc(struct ifnet *);
static void ath_updateslot(struct ifnet *);
static void ath_bstuck_proc(void *, int);
static void ath_reset_proc(void *, int);
static int ath_desc_alloc(struct ath_softc *);
static void ath_desc_free(struct ath_softc *);
static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
const uint8_t [IEEE80211_ADDR_LEN]);
static void ath_node_cleanup(struct ieee80211_node *);
static void ath_node_free(struct ieee80211_node *);
static void ath_node_getsignal(const struct ieee80211_node *,
int8_t *, int8_t *);
static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
static int ath_tx_setup(struct ath_softc *, int, int);
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
static void ath_tx_cleanup(struct ath_softc *);
static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
int dosched);
static void ath_tx_proc_q0(void *, int);
static void ath_tx_proc_q0123(void *, int);
static void ath_tx_proc(void *, int);
static void ath_txq_sched_tasklet(void *, int);
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
static void ath_scan_start(struct ieee80211com *);
static void ath_scan_end(struct ieee80211com *);
static void ath_set_channel(struct ieee80211com *);
#ifdef ATH_ENABLE_11N
static void ath_update_chw(struct ieee80211com *);
#endif /* ATH_ENABLE_11N */
static void ath_calibrate(void *);
static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void ath_setup_stationkey(struct ieee80211_node *);
static void ath_newassoc(struct ieee80211_node *, int);
static int ath_setregdomain(struct ieee80211com *,
struct ieee80211_regdomain *, int,
struct ieee80211_channel []);
static void ath_getradiocaps(struct ieee80211com *, int, int *,
struct ieee80211_channel []);
static int ath_getchannels(struct ath_softc *);
static int ath_rate_setup(struct ath_softc *, u_int mode);
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
static void ath_announce(struct ath_softc *);
static void ath_dfs_tasklet(void *, int);
static void ath_node_powersave(struct ieee80211_node *, int);
static int ath_node_set_tim(struct ieee80211_node *, int);
#ifdef IEEE80211_SUPPORT_TDMA
#include <dev/ath/if_ath_tdma.h>
#endif
SYSCTL_DECL(_hw_ath);
/* XXX validate sysctl values */
static int ath_longcalinterval = 30; /* long cals every 30 secs */
SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
0, "long chip calibration interval (secs)");
static int ath_shortcalinterval = 100; /* short cals every 100 ms */
SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
0, "short chip calibration interval (msecs)");
static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
0, "reset chip calibration results (secs)");
static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */
SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
0, "ANI calibration (msecs)");
int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
0, "rx buffers allocated");
TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
0, "tx buffers allocated");
TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
0, "tx (mgmt) buffers allocated");
TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
int ath_bstuck_threshold = 4; /* max missed beacons */
SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
0, "max missed beacon xmits before chip reset");
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
void
ath_legacy_attach_comp_func(struct ath_softc *sc)
{
/*
* Special case certain configurations. Note the
* CAB queue is handled by these specially so don't
* include them when checking the txq setup mask.
*/
switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
case 0x01:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
break;
case 0x0f:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
break;
default:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
break;
}
}
#define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
#define HAL_MODE_HT40 \
(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
int
ath_attach(u_int16_t devid, struct ath_softc *sc)
{
struct ifnet *ifp;
struct ieee80211com *ic;
struct ath_hal *ah = NULL;
HAL_STATUS status;
int error = 0, i;
u_int wmodes;
uint8_t macaddr[IEEE80211_ADDR_LEN];
int rx_chainmask, tx_chainmask;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
CURVNET_SET(vnet0);
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
error = ENOSPC;
CURVNET_RESTORE();
goto bad;
}
ic = ifp->if_l2com;
/* set these up early for if_printf use */
if_initname(ifp, device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
CURVNET_RESTORE();
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
sc->sc_eepromdata, &status);
if (ah == NULL) {
if_printf(ifp, "unable to attach hardware; HAL status %u\n",
status);
error = ENXIO;
goto bad;
}
sc->sc_ah = ah;
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
#ifdef ATH_DEBUG
sc->sc_debug = ath_debug;
#endif
/*
* Setup the DMA/EDMA functions based on the current
* hardware support.
*
* This is required before the descriptors are allocated.
*/
if (ath_hal_hasedma(sc->sc_ah)) {
sc->sc_isedma = 1;
ath_recv_setup_edma(sc);
ath_xmit_setup_edma(sc);
} else {
ath_recv_setup_legacy(sc);
ath_xmit_setup_legacy(sc);
}
/*
* Check if the MAC has multi-rate retry support.
* We do this by trying to setup a fake extended
* descriptor. MAC's that don't have support will
* return false w/o doing anything. MAC's that do
* support it will return true w/o doing anything.
*/
sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
/*
* Check if the device has hardware counters for PHY
* errors. If so we need to enable the MIB interrupt
* so we can act on stat triggers.
*/
if (ath_hal_hwphycounters(ah))
sc->sc_needmib = 1;
/*
* Get the hardware key cache size.
*/
sc->sc_keymax = ath_hal_keycachesize(ah);
if (sc->sc_keymax > ATH_KEYMAX) {
if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
ATH_KEYMAX, sc->sc_keymax);
sc->sc_keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
/*
* Collect the default channel list.
*/
error = ath_getchannels(sc);
if (error != 0)
goto bad;
/*
* Setup rate tables for all potential media types.
*/
ath_rate_setup(sc, IEEE80211_MODE_11A);
ath_rate_setup(sc, IEEE80211_MODE_11B);
ath_rate_setup(sc, IEEE80211_MODE_11G);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
ath_rate_setup(sc, IEEE80211_MODE_11NA);
ath_rate_setup(sc, IEEE80211_MODE_11NG);
ath_rate_setup(sc, IEEE80211_MODE_HALF);
ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
/* NB: setup here so ath_rate_update is happy */
ath_setcurmode(sc, IEEE80211_MODE_11A);
/*
* Allocate TX descriptors and populate the lists.
*/
error = ath_desc_alloc(sc);
if (error != 0) {
if_printf(ifp, "failed to allocate TX descriptors: %d\n",
error);
goto bad;
}
error = ath_txdma_setup(sc);
if (error != 0) {
if_printf(ifp, "failed to allocate TX descriptors: %d\n",
error);
goto bad;
}
/*
* Allocate RX descriptors and populate the lists.
*/
error = ath_rxdma_setup(sc);
if (error != 0) {
if_printf(ifp, "failed to allocate RX descriptors: %d\n",
error);
goto bad;
}
callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
ATH_TXBUF_LOCK_INIT(sc);
sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->sc_tq);
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
"%s taskq", ifp->if_xname);
TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
/* XXX make this a higher priority taskqueue? */
TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that the hal handles resetting
* these queues at the needed time.
*
* XXX PS-Poll
*/
sc->sc_bhalq = ath_beaconq_setup(sc);
if (sc->sc_bhalq == (u_int) -1) {
if_printf(ifp, "unable to setup a beacon xmit queue!\n");
error = EIO;
goto bad2;
}
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
if (sc->sc_cabq == NULL) {
if_printf(ifp, "unable to setup CAB xmit queue!\n");
error = EIO;
goto bad2;
}
/* NB: insure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
ieee80211_wme_acnames[WME_AC_BK]);
error = EIO;
goto bad2;
}
if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
!ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
!ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
/*
* Not enough hardware tx queues to properly do WME;
* just punt and assign them all to the same h/w queue.
* We could do a better job of this if, for example,
* we allocate queues when we switch from station to
* AP mode.
*/
if (sc->sc_ac2q[WME_AC_VI] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
if (sc->sc_ac2q[WME_AC_BE] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
}
/*
* Attach the TX completion function.
*
* The non-EDMA chips may have some special case optimisations;
* this method gives everyone a chance to attach cleanly.
*/
sc->sc_tx.xmit_attach_comp_func(sc);
/*
* Setup rate control. Some rate control modules
* call back to change the anntena state so expose
* the necessary entry points.
* XXX maybe belongs in struct ath_ratectrl?
*/
sc->sc_setdefantenna = ath_setdefantenna;
sc->sc_rc = ath_rate_attach(sc);
if (sc->sc_rc == NULL) {
error = EIO;
goto bad2;
}
/* Attach DFS module */
if (! ath_dfs_attach(sc)) {
device_printf(sc->sc_dev,
"%s: unable to attach DFS\n", __func__);
error = EIO;
goto bad2;
}
/* Attach spectral module */
if (ath_spectral_attach(sc) < 0) {
device_printf(sc->sc_dev,
"%s: unable to attach spectral\n", __func__);
error = EIO;
goto bad2;
}
/* Start DFS processing tasklet */
TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
/* Configure LED state */
sc->sc_blinking = 0;
sc->sc_ledstate = 1;
sc->sc_ledon = 0; /* low true */
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
/*
* Don't setup hardware-based blinking.
*
* Although some NICs may have this configured in the
* default reset register values, the user may wish
* to alter which pins have which function.
*
* The reference driver attaches the MAC network LED to GPIO1 and
* the MAC power LED to GPIO2. However, the DWA-552 cardbus
* NIC has these reversed.
*/
sc->sc_hardled = (1 == 0);
sc->sc_led_net_pin = -1;
sc->sc_led_pwr_pin = -1;
/*
* Auto-enable soft led processing for IBM cards and for
* 5211 minipci cards. Users can also manually enable/disable
* support with a sysctl.
*/
sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
ath_led_config(sc);
ath_hal_setledstate(ah, HAL_LED_INIT);
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
ifp->if_start = ath_start_queue;
ifp->if_ioctl = ath_ioctl;
ifp->if_init = ath_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
/* XXX not right but it's not used anywhere important */
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_AHDEMO /* adhoc demo mode */
| IEEE80211_C_WDS /* 4-address traffic works */
| IEEE80211_C_MBSS /* mesh point link mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
#ifndef ATH_ENABLE_11N
| IEEE80211_C_BGSCAN /* capable of bg scanning */
#endif
| IEEE80211_C_TXFRAG /* handle tx frags */
#ifdef ATH_ENABLE_DFS
| IEEE80211_C_DFS /* Enable radar detection */
#endif
;
/*
* Query the hal to figure out h/w crypto support.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
/*
* Check if h/w does the MIC and/or whether the
* separate key cache entries are required to
* handle both tx+rx MIC keys.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
/*
* If the h/w supports storing tx+rx MIC keys
* in one cache slot automatically enable use.
*/
if (ath_hal_hastkipsplit(ah) ||
!ath_hal_settkipsplit(ah, AH_FALSE))
sc->sc_splitmic = 1;
/*
* If the h/w can do TKIP MIC together with WME then
* we use it; otherwise we force the MIC to be done
* in software by the net80211 layer.
*/
if (ath_hal_haswmetkipmic(ah))
sc->sc_wmetkipmic = 1;
}
sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
/*
* Check for multicast key search support.
*/
if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
!ath_hal_getmcastkeysearch(sc->sc_ah)) {
ath_hal_setmcastkeysearch(sc->sc_ah, 1);
}
sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
/*
* Mark key cache slots associated with global keys
* as in use. If we knew TKIP was not to be used we
* could leave the +32, +64, and +32+64 slots free.
*/
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
setbit(sc->sc_keymap, i);
setbit(sc->sc_keymap, i+64);
if (sc->sc_splitmic) {
setbit(sc->sc_keymap, i+32);
setbit(sc->sc_keymap, i+32+64);
}
}
/*
* TPC support can be done either with a global cap or
* per-packet support. The latter is not available on
* all parts. We're a bit pedantic here as all parts
* support a global cap.
*/
if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
ic->ic_caps |= IEEE80211_C_TXPMGT;
/*
* Mark WME capability only if we have sufficient
* hardware queues to do proper priority scheduling.
*/
if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
ic->ic_caps |= IEEE80211_C_WME;
/*
* Check for misc other capabilities.
*/
if (ath_hal_hasbursting(ah))
ic->ic_caps |= IEEE80211_C_BURST;
sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
if (ath_hal_hasfastframes(ah))
ic->ic_caps |= IEEE80211_C_FF;
wmodes = ath_hal_getwirelessmodes(ah);
if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
ic->ic_caps |= IEEE80211_C_TURBOP;
#ifdef IEEE80211_SUPPORT_TDMA
if (ath_hal_macversion(ah) > 0x78) {
ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
ic->ic_tdma_update = ath_tdma_update;
}
#endif
/*
* TODO: enforce that at least this many frames are available
* in the txbuf list before allowing data frames (raw or
* otherwise) to be transmitted.
*/
sc->sc_txq_data_minfree = 10;
/*
* Leave this as default to maintain legacy behaviour.
* Shortening the cabq/mcastq may end up causing some
* undesirable behaviour.
*/
sc->sc_txq_mcastq_maxdepth = ath_txbuf;
/*
* Allow the TX and RX chainmasks to be overridden by
* environment variables and/or device.hints.
*
* This must be done early - before the hardware is
* calibrated or before the 802.11n stream calculation
* is done.
*/
if (resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "rx_chainmask",
&rx_chainmask) == 0) {
device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
rx_chainmask);
(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
}
if (resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "tx_chainmask",
&tx_chainmask) == 0) {
device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
tx_chainmask);
(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
}
/*
* Disable MRR with protected frames by default.
* Only 802.11n series NICs can handle this.
*/
sc->sc_mrrprot = 0; /* XXX should be a capability */
/*
* Query the enterprise mode information the HAL.
*/
if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
&sc->sc_ent_cfg) == HAL_OK)
sc->sc_use_ent = 1;
#ifdef ATH_ENABLE_11N
/*
* Query HT capabilities
*/
if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
(wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
int rxs, txs;
device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
sc->sc_mrrprot = 1; /* XXX should be a capability */
ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */
| IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */
| IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */
| IEEE80211_HTCAP_MAXAMSDU_3839
/* max A-MSDU length */
| IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */
;
/*
* Enable short-GI for HT20 only if the hardware
* advertises support.
* Notably, anything earlier than the AR9287 doesn't.
*/
if ((ath_hal_getcapability(ah,
HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
(wmodes & HAL_MODE_HT20)) {
device_printf(sc->sc_dev,
"[HT] enabling short-GI in 20MHz mode\n");
ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
}
if (wmodes & HAL_MODE_HT40)
ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
| IEEE80211_HTCAP_SHORTGI40;
/*
* TX/RX streams need to be taken into account when
* negotiating which MCS rates it'll receive and
* what MCS rates are available for TX.
*/
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
ic->ic_txstream = txs;
ic->ic_rxstream = rxs;
/*
* Setup TX and RX STBC based on what the HAL allows and
* the currently configured chainmask set.
* Ie - don't enable STBC TX if only one chain is enabled.
* STBC RX is fine on a single RX chain; it just won't
* provide any real benefit.
*/
if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
NULL) == HAL_OK) {
sc->sc_rx_stbc = 1;
device_printf(sc->sc_dev,
"[HT] 1 stream STBC receive enabled\n");
ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
}
if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
NULL) == HAL_OK) {
sc->sc_tx_stbc = 1;
device_printf(sc->sc_dev,
"[HT] 1 stream STBC transmit enabled\n");
ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
}
(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
&sc->sc_rts_aggr_limit);
if (sc->sc_rts_aggr_limit != (64 * 1024))
device_printf(sc->sc_dev,
"[HT] RTS aggregates limited to %d KiB\n",
sc->sc_rts_aggr_limit / 1024);
device_printf(sc->sc_dev,
"[HT] %d RX streams; %d TX streams\n", rxs, txs);
}
#endif
/*
* Initial aggregation settings.
*/
sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
sc->sc_delim_min_pad = 0;
/*
* Check if the hardware requires PCI register serialisation.
* Some of the Owl based MACs require this.
*/
if (mp_ncpus > 1 &&
ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
0, NULL) == HAL_OK) {
sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
device_printf(sc->sc_dev,
"Enabling register serialisation\n");
}
/*
* Indicate we need the 802.11 header padded to a
* 32-bit boundary for 4-address and QoS frames.
*/
ic->ic_flags |= IEEE80211_F_DATAPAD;
/*
* Query the hal about antenna support.
*/
sc->sc_defant = ath_hal_getdefantenna(ah);
/*
* Not all chips have the VEOL support we want to
* use with IBSS beacons; check here for it.
*/
sc->sc_hasveol = ath_hal_hasveol(ah);
/* get mac address from hardware */
ath_hal_getmac(ah, macaddr);
if (sc->sc_hasbmask)
ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
/* NB: used to size node table key mapping array */
ic->ic_max_keyix = sc->sc_keymax;
/* call MI attach routine. */
ieee80211_ifattach(ic, macaddr);
ic->ic_setregdomain = ath_setregdomain;
ic->ic_getradiocaps = ath_getradiocaps;
sc->sc_opmode = HAL_M_STA;
/* override default methods */
ic->ic_newassoc = ath_newassoc;
ic->ic_updateslot = ath_updateslot;
ic->ic_wme.wme_update = ath_wme_update;
ic->ic_vap_create = ath_vap_create;
ic->ic_vap_delete = ath_vap_delete;
ic->ic_raw_xmit = ath_raw_xmit;
ic->ic_update_mcast = ath_update_mcast;
ic->ic_update_promisc = ath_update_promisc;
ic->ic_node_alloc = ath_node_alloc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = ath_node_free;
sc->sc_node_cleanup = ic->ic_node_cleanup;
ic->ic_node_cleanup = ath_node_cleanup;
ic->ic_node_getsignal = ath_node_getsignal;
ic->ic_scan_start = ath_scan_start;
ic->ic_scan_end = ath_scan_end;
ic->ic_set_channel = ath_set_channel;
#ifdef ATH_ENABLE_11N
/* 802.11n specific - but just override anyway */
sc->sc_addba_request = ic->ic_addba_request;
sc->sc_addba_response = ic->ic_addba_response;
sc->sc_addba_stop = ic->ic_addba_stop;
sc->sc_bar_response = ic->ic_bar_response;
sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
ic->ic_addba_request = ath_addba_request;
ic->ic_addba_response = ath_addba_response;
ic->ic_addba_response_timeout = ath_addba_response_timeout;
ic->ic_addba_stop = ath_addba_stop;
ic->ic_bar_response = ath_bar_response;
ic->ic_update_chw = ath_update_chw;
#endif /* ATH_ENABLE_11N */
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
/*
* There's one vendor bitmap entry in the RX radiotap
* header; make sure that's taken into account.
*/
ieee80211_radiotap_attachv(ic,
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
ATH_TX_RADIOTAP_PRESENT,
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
ATH_RX_RADIOTAP_PRESENT);
#else
/*
* No vendor bitmap/extensions are present.
*/
ieee80211_radiotap_attach(ic,
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
ATH_TX_RADIOTAP_PRESENT,
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
ATH_RX_RADIOTAP_PRESENT);
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
/*
* Setup the ALQ logging if required
*/
#ifdef ATH_DEBUG_ALQ
if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
if_ath_alq_setcfg(&sc->sc_alq,
sc->sc_ah->ah_macVersion,
sc->sc_ah->ah_macRev,
sc->sc_ah->ah_phyRev,
sc->sc_ah->ah_magic);
#endif
/*
* Setup dynamic sysctl's now that country code and
* regdomain are available from the hal.
*/
ath_sysctlattach(sc);
ath_sysctl_stats_attach(sc);
ath_sysctl_hal_attach(sc);
if (bootverbose)
ieee80211_announce(ic);
ath_announce(sc);
return 0;
bad2:
ath_tx_cleanup(sc);
ath_desc_free(sc);
ath_txdma_teardown(sc);
ath_rxdma_teardown(sc);
bad:
if (ah)
ath_hal_detach(ah);
/*
* To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
*/
if (ifp != NULL && ifp->if_vnet) {
CURVNET_SET(ifp->if_vnet);
if_free(ifp);
CURVNET_RESTORE();
} else if (ifp != NULL)
if_free(ifp);
sc->sc_invalid = 1;
return error;
}
int
ath_detach(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
/*
* NB: the order of these is important:
* o stop the chip so no more interrupts will fire
* o call the 802.11 layer before detaching the hal to
* insure callbacks into the driver to delete global
* key cache entries can be handled
* o free the taskqueue which drains any pending tasks
* o reclaim the tx queue data structures after calling
* the 802.11 layer as we'll get called back to reclaim
* node state and potentially want to use them
* o to cleanup the tx queues the hal is called, so detach
* it last
* Other than that, it's straightforward...
*/
ath_stop(ifp);
ieee80211_ifdetach(ifp->if_l2com);
taskqueue_free(sc->sc_tq);
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->detach(sc->sc_tx99);
#endif
ath_rate_detach(sc->sc_rc);
#ifdef ATH_DEBUG_ALQ
if_ath_alq_tidyup(&sc->sc_alq);
#endif
ath_spectral_detach(sc);
ath_dfs_detach(sc);
ath_desc_free(sc);
ath_txdma_teardown(sc);
ath_rxdma_teardown(sc);
ath_tx_cleanup(sc);
ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
CURVNET_SET(ifp->if_vnet);
if_free(ifp);
CURVNET_RESTORE();
return 0;
}
/*
* MAC address handling for multiple BSS on the same radio.
* The first vap uses the MAC address from the EEPROM. For
* subsequent vap's we set the U/L bit (bit 1) in the MAC
* address and use the next six bits as an index.
*/
static void
assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
{
int i;
if (clone && sc->sc_hasbmask) {
/* NB: we only do this if h/w supports multiple bssid */
for (i = 0; i < 8; i++)
if ((sc->sc_bssidmask & (1<<i)) == 0)
break;
if (i != 0)
mac[0] |= (i << 2)|0x2;
} else
i = 0;
sc->sc_bssidmask |= 1<<i;
sc->sc_hwbssidmask[0] &= ~mac[0];
if (i == 0)
sc->sc_nbssid0++;
}
static void
reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
{
int i = mac[0] >> 2;
uint8_t mask;
if (i != 0 || --sc->sc_nbssid0 == 0) {
sc->sc_bssidmask &= ~(1<<i);
/* recalculate bssid mask from remaining addresses */
mask = 0xff;
for (i = 1; i < 8; i++)
if (sc->sc_bssidmask & (1<<i))
mask &= ~((i<<2)|0x2);
sc->sc_hwbssidmask[0] |= mask;
}
}
/*
* Assign a beacon xmit slot. We try to space out
* assignments so when beacons are staggered the
* traffic coming out of the cab q has maximal time
* to go out before the next beacon is scheduled.
*/
static int
assign_bslot(struct ath_softc *sc)
{
u_int slot, free;
free = 0;
for (slot = 0; slot < ATH_BCBUF; slot++)
if (sc->sc_bslot[slot] == NULL) {
if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
return slot;
free = slot;
/* NB: keep looking for a double slot */
}
return free;
}
static struct ieee80211vap *
ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac0[IEEE80211_ADDR_LEN])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_vap *avp;
struct ieee80211vap *vap;
uint8_t mac[IEEE80211_ADDR_LEN];
int needbeacon, error;
enum ieee80211_opmode ic_opmode;
avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
M_80211_VAP, M_WAITOK | M_ZERO);
needbeacon = 0;
IEEE80211_ADDR_COPY(mac, mac0);
ATH_LOCK(sc);
ic_opmode = opmode; /* default to opmode of new vap */
switch (opmode) {
case IEEE80211_M_STA:
if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */
device_printf(sc->sc_dev, "only 1 sta vap supported\n");
goto bad;
}
if (sc->sc_nvaps) {
/*
* With multiple vaps we must fall back
* to s/w beacon miss handling.
*/
flags |= IEEE80211_CLONE_NOBEACONS;
}
if (flags & IEEE80211_CLONE_NOBEACONS) {
/*
* Station mode w/o beacons are implemented w/ AP mode.
*/
ic_opmode = IEEE80211_M_HOSTAP;
}
break;
case IEEE80211_M_IBSS:
if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
device_printf(sc->sc_dev,
"only 1 ibss vap supported\n");
goto bad;
}
needbeacon = 1;
break;
case IEEE80211_M_AHDEMO:
#ifdef IEEE80211_SUPPORT_TDMA
if (flags & IEEE80211_CLONE_TDMA) {
if (sc->sc_nvaps != 0) {
device_printf(sc->sc_dev,
"only 1 tdma vap supported\n");
goto bad;
}
needbeacon = 1;
flags |= IEEE80211_CLONE_NOBEACONS;
}
/* fall thru... */
#endif
case IEEE80211_M_MONITOR:
if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
/*
* Adopt existing mode. Adding a monitor or ahdemo
* vap to an existing configuration is of dubious
* value but should be ok.
*/
/* XXX not right for monitor mode */
ic_opmode = ic->ic_opmode;
}
break;
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
needbeacon = 1;
break;
case IEEE80211_M_WDS:
if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
device_printf(sc->sc_dev,
"wds not supported in sta mode\n");
goto bad;
}
/*
* Silently remove any request for a unique
* bssid; WDS vap's always share the local
* mac address.
*/
flags &= ~IEEE80211_CLONE_BSSID;
if (sc->sc_nvaps == 0)
ic_opmode = IEEE80211_M_HOSTAP;
else
ic_opmode = ic->ic_opmode;
break;
default:
device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
goto bad;
}
/*
* Check that a beacon buffer is available; the code below assumes it.
*/
if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
device_printf(sc->sc_dev, "no beacon buffer available\n");
goto bad;
}
/* STA, AHDEMO? */
if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
}
vap = &avp->av_vap;
/* XXX can't hold mutex across if_alloc */
ATH_UNLOCK(sc);
error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
bssid, mac);
ATH_LOCK(sc);
if (error != 0) {
device_printf(sc->sc_dev, "%s: error %d creating vap\n",
__func__, error);
goto bad2;
}
/* h/w crypto support */
vap->iv_key_alloc = ath_key_alloc;
vap->iv_key_delete = ath_key_delete;
vap->iv_key_set = ath_key_set;
vap->iv_key_update_begin = ath_key_update_begin;
vap->iv_key_update_end = ath_key_update_end;
/* override various methods */
avp->av_recv_mgmt = vap->iv_recv_mgmt;
vap->iv_recv_mgmt = ath_recv_mgmt;
vap->iv_reset = ath_reset_vap;
vap->iv_update_beacon = ath_beacon_update;
avp->av_newstate = vap->iv_newstate;
vap->iv_newstate = ath_newstate;
avp->av_bmiss = vap->iv_bmiss;
vap->iv_bmiss = ath_bmiss_vap;
avp->av_node_ps = vap->iv_node_ps;
vap->iv_node_ps = ath_node_powersave;
avp->av_set_tim = vap->iv_set_tim;
vap->iv_set_tim = ath_node_set_tim;
/* Set default parameters */
/*
* Anything earlier than some AR9300 series MACs don't
* support a smaller MPDU density.
*/
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
/*
* All NICs can handle the maximum size, however
* AR5416 based MACs can only TX aggregates w/ RTS
* protection when the total aggregate size is <= 8k.
* However, for now that's enforced by the TX path.
*/
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
avp->av_bslot = -1;
if (needbeacon) {
/*
* Allocate beacon state and setup the q for buffered
* multicast frames. We know a beacon buffer is
* available because we checked above.
*/
avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
/*
* Assign the vap to a beacon xmit slot. As above
* this cannot fail to find a free one.
*/
avp->av_bslot = assign_bslot(sc);
KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
("beacon slot %u not empty", avp->av_bslot));
sc->sc_bslot[avp->av_bslot] = vap;
sc->sc_nbcnvaps++;
}
if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
/*
* Multple vaps are to transmit beacons and we
* have h/w support for TSF adjusting; enable
* use of staggered beacons.
*/
sc->sc_stagbeacons = 1;
}
ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
}
ic->ic_opmode = ic_opmode;
if (opmode != IEEE80211_M_WDS) {
sc->sc_nvaps++;
if (opmode == IEEE80211_M_STA)
sc->sc_nstavaps++;
if (opmode == IEEE80211_M_MBSS)
sc->sc_nmeshvaps++;
}
switch (ic_opmode) {
case IEEE80211_M_IBSS:
sc->sc_opmode = HAL_M_IBSS;
break;
case IEEE80211_M_STA:
sc->sc_opmode = HAL_M_STA;
break;
case IEEE80211_M_AHDEMO:
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA) {
sc->sc_tdma = 1;
/* NB: disable tsf adjust */
sc->sc_stagbeacons = 0;
}
/*
* NB: adhoc demo mode is a pseudo mode; to the hal it's
* just ap mode.
*/
/* fall thru... */
#endif
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
sc->sc_opmode = HAL_M_HOSTAP;
break;
case IEEE80211_M_MONITOR:
sc->sc_opmode = HAL_M_MONITOR;
break;
default:
/* XXX should not happen */
break;
}
if (sc->sc_hastsfadd) {
/*
* Configure whether or not TSF adjust should be done.
*/
ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
}
if (flags & IEEE80211_CLONE_NOBEACONS) {
/*
* Enable s/w beacon miss handling.
*/
sc->sc_swbmiss = 1;
}
ATH_UNLOCK(sc);
/* complete setup */
ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
return vap;
bad2:
reclaim_address(sc, mac);
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
bad:
free(avp, M_80211_VAP);
ATH_UNLOCK(sc);
return NULL;
}
static void
ath_vap_delete(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp = ATH_VAP(vap);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Quiesce the hardware while we remove the vap. In
* particular we need to reclaim all references to
* the vap state by any frames pending on the tx queues.
*/
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */
/* XXX Do all frames from all vaps/nodes need draining here? */
ath_stoprecv(sc, 1); /* stop recv side */
}
ieee80211_vap_detach(vap);
/*
* XXX Danger Will Robinson! Danger!
*
* Because ieee80211_vap_detach() can queue a frame (the station
* diassociate message?) after we've drained the TXQ and
* flushed the software TXQ, we will end up with a frame queued
* to a node whose vap is about to be freed.
*
* To work around this, flush the hardware/software again.
* This may be racy - the ath task may be running and the packet
* may be being scheduled between sw->hw txq. Tsk.
*
* TODO: figure out why a new node gets allocated somewhere around
* here (after the ath_tx_swq() call; and after an ath_stop_locked()
* call!)
*/
ath_draintxq(sc, ATH_RESET_DEFAULT);
ATH_LOCK(sc);
/*
* Reclaim beacon state. Note this must be done before
* the vap instance is reclaimed as we may have a reference
* to it in the buffer for the beacon frame.
*/
if (avp->av_bcbuf != NULL) {
if (avp->av_bslot != -1) {
sc->sc_bslot[avp->av_bslot] = NULL;
sc->sc_nbcnvaps--;
}
ath_beacon_return(sc, avp->av_bcbuf);
avp->av_bcbuf = NULL;
if (sc->sc_nbcnvaps == 0) {
sc->sc_stagbeacons = 0;
if (sc->sc_hastsfadd)
ath_hal_settsfadjust(sc->sc_ah, 0);
}
/*
* Reclaim any pending mcast frames for the vap.
*/
ath_tx_draintxq(sc, &avp->av_mcastq);
}
/*
* Update bookkeeping.
*/
if (vap->iv_opmode == IEEE80211_M_STA) {
sc->sc_nstavaps--;
if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
sc->sc_swbmiss = 0;
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_MBSS) {
reclaim_address(sc, vap->iv_myaddr);
ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
if (vap->iv_opmode == IEEE80211_M_MBSS)
sc->sc_nmeshvaps--;
}
if (vap->iv_opmode != IEEE80211_M_WDS)
sc->sc_nvaps--;
#ifdef IEEE80211_SUPPORT_TDMA
/* TDMA operation ceases when the last vap is destroyed */
if (sc->sc_tdma && sc->sc_nvaps == 0) {
sc->sc_tdma = 0;
sc->sc_swbmiss = 0;
}
#endif
free(avp, M_80211_VAP);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Restart rx+tx machines if still running (RUNNING will
* be reset if we just destroyed the last vap).
*/
if (ath_startrecv(sc) != 0)
if_printf(ifp, "%s: unable to restart recv logic\n",
__func__);
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
ath_hal_intrset(ah, sc->sc_imask);
}
ATH_UNLOCK(sc);
}
void
ath_suspend(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
ieee80211_suspend_all(ic);
/*
* NB: don't worry about putting the chip in low power
* mode; pci will power off our socket on suspend and
* CardBus detaches the device.
*/
/*
* XXX ensure none of the taskqueues are running
* XXX ensure sc_invalid is 1
* XXX ensure the calibration callout is disabled
*/
/* Disable the PCIe PHY, complete with workarounds */
ath_hal_enablepcie(sc->sc_ah, 1, 1);
}
/*
* Reset the key cache since some parts do not reset the
* contents on resume. First we clear all entries, then
* re-load keys that the 802.11 layer assumes are setup
* in h/w.
*/
static void
ath_reset_keycache(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
int i;
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
ieee80211_crypto_reload_keys(ic);
}
/*
* Fetch the current chainmask configuration based on the current
* operating channel and options.
*/
static void
ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
{
/*
* Set TX chainmask to the currently configured chainmask;
* the TX chainmask depends upon the current operating mode.
*/
sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
if (IEEE80211_IS_CHAN_HT(chan)) {
sc->sc_cur_txchainmask = sc->sc_txchainmask;
} else {
sc->sc_cur_txchainmask = 1;
}
}
void
ath_resume(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
/* Re-enable PCIe, re-enable the PCIe bus */
ath_hal_enablepcie(ah, 0, 0);
/*
* Must reset the chip before we reload the
* keycache as we were powered down on suspend.
*/
ath_update_chainmasks(sc,
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
sc->sc_cur_rxchainmask);
ath_hal_reset(ah, sc->sc_opmode,
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
AH_FALSE, &status);
ath_reset_keycache(sc);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/* Let spectral at in case spectral is enabled */
ath_spectral_enable(sc, ic->ic_curchan);
/* Restore the LED configuration */
ath_led_config(sc);
ath_hal_setledstate(ah, HAL_LED_INIT);
if (sc->sc_resume_up)
ieee80211_resume_all(ic);
/* XXX beacons ? */
}
void
ath_shutdown(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
ath_stop(ifp);
/* NB: no point powering down chip as we're about to reboot */
}
/*
* Interrupt handler. Most of the actual processing is deferred.
*/
void
ath_intr(void *arg)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ath_hal *ah = sc->sc_ah;
HAL_INT status = 0;
uint32_t txqs;
/*
* If we're inside a reset path, just print a warning and
* clear the ISR. The reset routine will finish it for us.
*/
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt) {
HAL_INT status;
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: in reset, ignoring: status=0x%x\n",
__func__, status);
ATH_PCU_UNLOCK(sc);
return;
}
if (sc->sc_invalid) {
/*
* The hardware is not ready/present, don't touch anything.
* Note this can happen early on if the IRQ is shared.
*/
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
ATH_PCU_UNLOCK(sc);
return;
}
if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */
ATH_PCU_UNLOCK(sc);
return;
}
if ((ifp->if_flags & IFF_UP) == 0 ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
HAL_INT status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
__func__, ifp->if_flags);
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
ATH_PCU_UNLOCK(sc);
return;
}
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
#ifdef ATH_DEBUG_ALQ
if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
ah->ah_syncstate);
#endif /* ATH_DEBUG_ALQ */
#ifdef ATH_KTR_INTR_DEBUG
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
"ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
ah->ah_intrstate[0],
ah->ah_intrstate[1],
ah->ah_intrstate[2],
ah->ah_intrstate[3],
ah->ah_intrstate[6]);
#endif
/* Squirrel away SYNC interrupt debugging */
if (ah->ah_syncstate != 0) {
int i;
for (i = 0; i < 32; i++)
if (ah->ah_syncstate & (i << i))
sc->sc_intr_stats.sync_intr[i]++;
}
status &= sc->sc_imask; /* discard unasked for bits */
/* Short-circuit un-handled interrupts */
if (status == 0x0) {
ATH_PCU_UNLOCK(sc);
return;
}
/*
* Take a note that we're inside the interrupt handler, so
* the reset routines know to wait.
*/
sc->sc_intr_cnt++;
ATH_PCU_UNLOCK(sc);
/*
* Handle the interrupt. We won't run concurrent with the reset
* or channel change routines as they'll wait for sc_intr_cnt
* to be 0 before continuing.
*/
if (status & HAL_INT_FATAL) {
sc->sc_stats.ast_hardware++;
ath_hal_intrset(ah, 0); /* disable intr's until reset */
taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
} else {
if (status & HAL_INT_SWBA) {
/*
* Software beacon alert--time to send a beacon.
* Handle beacon transmission directly; deferring
* this is too slow to meet timing constraints
* under load.
*/
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma) {
if (sc->sc_tdmaswba == 0) {
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap =
TAILQ_FIRST(&ic->ic_vaps);
ath_tdma_beacon_send(sc, vap);
sc->sc_tdmaswba =
vap->iv_tdma->tdma_bintval;
} else
sc->sc_tdmaswba--;
} else
#endif
{
ath_beacon_proc(sc, 0);
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Schedule the rx taskq in case there's no
* traffic so any frames held on the staging
* queue are aged and potentially flushed.
*/
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
#endif
}
}
if (status & HAL_INT_RXEOL) {
int imask;
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
ATH_PCU_LOCK(sc);
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work at
* least on older hardware revs.
*/
sc->sc_stats.ast_rxeol++;
/*
* Disable RXEOL/RXORN - prevent an interrupt
* storm until the PCU logic can be reset.
* In case the interface is reset some other
* way before "sc_kickpcu" is called, don't
* modify sc_imask - that way if it is reset
* by a call to ath_reset() somehow, the
* interrupt mask will be correctly reprogrammed.
*/
imask = sc->sc_imask;
imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
ath_hal_intrset(ah, imask);
/*
* Only blank sc_rxlink if we've not yet kicked
* the PCU.
*
* This isn't entirely correct - the correct solution
* would be to have a PCU lock and engage that for
* the duration of the PCU fiddling; which would include
* running the RX process. Otherwise we could end up
* messing up the RX descriptor chain and making the
* RX desc list much shorter.
*/
if (! sc->sc_kickpcu)
sc->sc_rxlink = NULL;
sc->sc_kickpcu = 1;
/*
* Enqueue an RX proc, to handled whatever
* is in the RX queue.
* This will then kick the PCU.
*/
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
ATH_PCU_UNLOCK(sc);
}
if (status & HAL_INT_TXURN) {
sc->sc_stats.ast_txurn++;
/* bump tx trigger level */
ath_hal_updatetxtriglevel(ah, AH_TRUE);
}
/*
* Handle both the legacy and RX EDMA interrupt bits.
* Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
*/
if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
sc->sc_stats.ast_rx_intr++;
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
}
if (status & HAL_INT_TX) {
sc->sc_stats.ast_tx_intr++;
/*
* Grab all the currently set bits in the HAL txq bitmap
* and blank them. This is the only place we should be
* doing this.
*/
if (! sc->sc_isedma) {
ATH_PCU_LOCK(sc);
txqs = 0xffffffff;
ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
"ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
txqs,
sc->sc_txq_active,
sc->sc_txq_active | txqs);
sc->sc_txq_active |= txqs;
ATH_PCU_UNLOCK(sc);
}
taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
}
if (status & HAL_INT_BMISS) {
sc->sc_stats.ast_bmiss++;
taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
}
if (status & HAL_INT_GTT)
sc->sc_stats.ast_tx_timeout++;
if (status & HAL_INT_CST)
sc->sc_stats.ast_tx_cst++;
if (status & HAL_INT_MIB) {
sc->sc_stats.ast_mib++;
ATH_PCU_LOCK(sc);
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to fire.
*/
ath_hal_intrset(ah, 0);
/*
* Let the hal handle the event. We assume it will
* clear whatever condition caused the interrupt.
*/
ath_hal_mibevent(ah, &sc->sc_halstats);
/*
* Don't reset the interrupt if we've just
* kicked the PCU, or we may get a nested
* RXEOL before the rxproc has had a chance
* to run.
*/
if (sc->sc_kickpcu == 0)
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
}
if (status & HAL_INT_RXORN) {
/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
sc->sc_stats.ast_rxorn++;
}
}
ATH_PCU_LOCK(sc);
sc->sc_intr_cnt--;
ATH_PCU_UNLOCK(sc);
}
static void
ath_fatal_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
u_int32_t *state;
u_int32_t len;
void *sp;
if_printf(ifp, "hardware error; resetting\n");
/*
* Fatal errors are unrecoverable. Typically these
* are caused by DMA errors. Collect h/w state from
* the hal so we can diagnose what's going on.
*/
if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
state = sp;
if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
state[0], state[1] , state[2], state[3],
state[4], state[5]);
}
ath_reset(ifp, ATH_RESET_NOLOSS);
}
static void
ath_bmiss_vap(struct ieee80211vap *vap)
{
/*
* Workaround phantom bmiss interrupts by sanity-checking
* the time of our last rx'd frame. If it is within the
* beacon miss interval then ignore the interrupt. If it's
* truly a bmiss we'll get another interrupt soon and that'll
* be dispatched up for processing. Note this applies only
* for h/w beacon miss events.
*/
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
u_int64_t lastrx = sc->sc_lastrx;
u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
/* XXX should take a locked ref to iv_bss */
u_int bmisstimeout =
vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
__func__, (unsigned long long) tsf,
(unsigned long long)(tsf - lastrx),
(unsigned long long) lastrx, bmisstimeout);
if (tsf - lastrx <= bmisstimeout) {
sc->sc_stats.ast_bmiss_phantom++;
return;
}
}
ATH_VAP(vap)->av_bmiss(vap);
}
static int
ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
{
uint32_t rsize;
void *sp;
if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
return 0;
KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
*hangs = *(uint32_t *)sp;
return 1;
}
static void
ath_bmiss_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t hangs;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
/*
* Do a reset upon any becaon miss event.
*
* It may be a non-recognised RX clear hang which needs a reset
* to clear.
*/
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
ath_reset(ifp, ATH_RESET_NOLOSS);
if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
} else {
ath_reset(ifp, ATH_RESET_NOLOSS);
ieee80211_beacon_miss(ifp->if_l2com);
}
}
/*
* Handle TKIP MIC setup to deal hardware that doesn't do MIC
* calcs together with WME. If necessary disable the crypto
* hardware and mark the 802.11 state so keys will be setup
* with the MIC work done in software.
*/
static void
ath_settkipmic(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
if (ic->ic_flags & IEEE80211_F_WME) {
ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
} else {
ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
}
}
}
static void
ath_init(void *arg)
{
struct ath_softc *sc = (struct ath_softc *) arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
__func__, ifp->if_flags);
ATH_LOCK(sc);
/*
* Stop anything previously setup. This is safe
* whether this is the first time through or not.
*/
ath_stop_locked(ifp);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
ath_settkipmic(sc);
ath_update_chainmasks(sc, ic->ic_curchan);
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
sc->sc_cur_rxchainmask);
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
if_printf(ifp, "unable to reset hardware; hal status %u\n",
status);
ATH_UNLOCK(sc);
return;
}
ath_chan_change(sc, ic->ic_curchan);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/* Let spectral at in case spectral is enabled */
ath_spectral_enable(sc, ic->ic_curchan);
/*
* Likewise this is set during reset so update
* state cached in the driver.
*/
sc->sc_diversity = ath_hal_getdiversity(ah);
sc->sc_lastlongcal = 0;
sc->sc_resetcal = 1;
sc->sc_lastcalreset = 0;
sc->sc_lastani = 0;
sc->sc_lastshortcal = 0;
sc->sc_doresetcal = AH_FALSE;
/*
* Beacon timers were cleared here; give ath_newstate()
* a hint that the beacon timers should be poked when
* things transition to the RUN state.
*/
sc->sc_beacons = 0;
/*
* Setup the hardware after reset: the key cache
* is filled as needed and the receive engine is
* set going. Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ath_startrecv(sc) != 0) {
if_printf(ifp, "unable to start recv logic\n");
ATH_UNLOCK(sc);
return;
}
/*
* Enable interrupts.
*/
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
| HAL_INT_RXEOL | HAL_INT_RXORN
| HAL_INT_TXURN
| HAL_INT_FATAL | HAL_INT_GLOBAL;
/*
* Enable RX EDMA bits. Note these overlap with
* HAL_INT_RX and HAL_INT_RXDESC respectively.
*/
if (sc->sc_isedma)
sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
sc->sc_imask |= HAL_INT_MIB;
/* Enable global TX timeout and carrier sense timeout if available */
if (ath_hal_gtxto_supported(ah))
sc->sc_imask |= HAL_INT_GTT;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
__func__, sc->sc_imask);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
ath_hal_intrset(ah, sc->sc_imask);
ATH_UNLOCK(sc);
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->start(sc->sc_tx99);
else
#endif
ieee80211_start_all(ic); /* start all vap's */
}
static void
ath_stop_locked(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
__func__, sc->sc_invalid, ifp->if_flags);
ATH_LOCK_ASSERT(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Shutdown the hardware and driver:
* reset 802.11 state machine
* turn off timers
* disable interrupts
* turn off the radio
* clear transmit machinery
* clear receive machinery
* drain and release tx queues
* reclaim beacon resources
* power down hardware
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->stop(sc->sc_tx99);
#endif
callout_stop(&sc->sc_wd_ch);
sc->sc_wd_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
if (!sc->sc_invalid) {
if (sc->sc_softled) {
callout_stop(&sc->sc_ledtimer);
ath_hal_gpioset(ah, sc->sc_ledpin,
!sc->sc_ledon);
sc->sc_blinking = 0;
}
ath_hal_intrset(ah, 0);
}
ath_draintxq(sc, ATH_RESET_DEFAULT);
if (!sc->sc_invalid) {
ath_stoprecv(sc, 1);
ath_hal_phydisable(ah);
} else
sc->sc_rxlink = NULL;
ath_beacon_free(sc); /* XXX not needed */
}
}
#define MAX_TXRX_ITERATIONS 1000
static void
ath_txrx_stop_locked(struct ath_softc *sc)
{
int i = MAX_TXRX_ITERATIONS;
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK_ASSERT(sc);
/*
* Sleep until all the pending operations have completed.
*
* The caller must ensure that reset has been incremented
* or the pending operations may continue being queued.
*/
while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
sc->sc_txstart_cnt || sc->sc_intr_cnt) {
if (i <= 0)
break;
msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
i--;
}
if (i <= 0)
device_printf(sc->sc_dev,
"%s: didn't finish after %d iterations\n",
__func__, MAX_TXRX_ITERATIONS);
}
#undef MAX_TXRX_ITERATIONS
#if 0
static void
ath_txrx_stop(struct ath_softc *sc)
{
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK(sc);
ath_txrx_stop_locked(sc);
ATH_PCU_UNLOCK(sc);
}
#endif
static void
ath_txrx_start(struct ath_softc *sc)
{
taskqueue_unblock(sc->sc_tq);
}
/*
* Grab the reset lock, and wait around until noone else
* is trying to do anything with it.
*
* This is totally horrible but we can't hold this lock for
* long enough to do TX/RX or we end up with net80211/ip stack
* LORs and eventual deadlock.
*
* "dowait" signals whether to spin, waiting for the reset
* lock count to reach 0. This should (for now) only be used
* during the reset path, as the rest of the code may not
* be locking-reentrant enough to behave correctly.
*
* Another, cleaner way should be found to serialise all of
* these operations.
*/
#define MAX_RESET_ITERATIONS 10
static int
ath_reset_grablock(struct ath_softc *sc, int dowait)
{
int w = 0;
int i = MAX_RESET_ITERATIONS;
ATH_PCU_LOCK_ASSERT(sc);
do {
if (sc->sc_inreset_cnt == 0) {
w = 1;
break;
}
if (dowait == 0) {
w = 0;
break;
}
ATH_PCU_UNLOCK(sc);
pause("ath_reset_grablock", 1);
i--;
ATH_PCU_LOCK(sc);
} while (i > 0);
/*
* We always increment the refcounter, regardless
* of whether we succeeded to get it in an exclusive
* way.
*/
sc->sc_inreset_cnt++;
if (i <= 0)
device_printf(sc->sc_dev,
"%s: didn't finish after %d iterations\n",
__func__, MAX_RESET_ITERATIONS);
if (w == 0)
device_printf(sc->sc_dev,
"%s: warning, recursive reset path!\n",
__func__);
return w;
}
#undef MAX_RESET_ITERATIONS
/*
* XXX TODO: write ath_reset_releaselock
*/
static void
ath_stop(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
ATH_LOCK(sc);
ath_stop_locked(ifp);
ATH_UNLOCK(sc);
}
/*
* Reset the hardware w/o losing operational state. This is
* basically a more efficient way of doing ath_stop, ath_init,
* followed by state transitions to the current 802.11
* operational state. Used to recover from various errors and
* to reset or reload hardware state.
*/
int
ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
int i;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_UNLOCK_ASSERT(sc);
/* Try to (stop any further TX/RX from occuring */
taskqueue_block(sc->sc_tq);
ATH_PCU_LOCK(sc);
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */
if (ath_reset_grablock(sc, 1) == 0) {
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
__func__);
}
ATH_PCU_UNLOCK(sc);
/*
* Should now wait for pending TX/RX to complete
* and block future ones from occuring. This needs to be
* done before the TX queue is drained.
*/
ath_draintxq(sc, reset_type); /* stop xmit side */
/*
* Regardless of whether we're doing a no-loss flush or
* not, stop the PCU and handle what's in the RX queue.
* That way frames aren't dropped which shouldn't be.
*/
ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
ath_rx_flush(sc);
ath_settkipmic(sc); /* configure TKIP MIC handling */
/* NB: indicate channel change so we do a full reset */
ath_update_chainmasks(sc, ic->ic_curchan);
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
sc->sc_cur_rxchainmask);
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
__func__, status);
sc->sc_diversity = ath_hal_getdiversity(ah);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/* Let spectral at in case spectral is enabled */
ath_spectral_enable(sc, ic->ic_curchan);
if (ath_startrecv(sc) != 0) /* restart recv */
if_printf(ifp, "%s: unable to start recv logic\n", __func__);
/*
* We may be doing a reset in response to an ioctl
* that changes the channel so update any state that
* might change as a result.
*/
ath_chan_change(sc, ic->ic_curchan);
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
/*
* Release the reset lock and re-enable interrupts here.
* If an interrupt was being processed in ath_intr(),
* it would disable interrupts at this point. So we have
* to atomically enable interrupts and decrement the
* reset counter - this way ath_intr() doesn't end up
* disabling interrupts without a corresponding enable
* in the rest or channel change path.
*/
ATH_PCU_LOCK(sc);
sc->sc_inreset_cnt--;
/* XXX only do this if sc_inreset_cnt == 0? */
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
/*
* TX and RX can be started here. If it were started with
* sc_inreset_cnt > 0, the TX and RX path would abort.
* Thus if this is a nested call through the reset or
* channel change code, TX completion will occur but
* RX completion and ath_start / ath_tx_start will not
* run.
*/
/* Restart TX/RX as needed */
ath_txrx_start(sc);
/* Restart TX completion and pending TX */
if (reset_type == ATH_RESET_NOLOSS) {
ATH_TX_LOCK(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ath_txq_restart_dma(sc, &sc->sc_txq[i]);
ath_txq_sched(sc, &sc->sc_txq[i]);
}
}
ATH_TX_UNLOCK(sc);
}
/*
* This may have been set during an ath_start() call which
* set this once it detected a concurrent TX was going on.
* So, clear it.
*/
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
/* Handle any frames in the TX queue */
/*
* XXX should this be done by the caller, rather than
* ath_reset() ?
*/
ath_tx_kick(sc); /* restart xmit */
return 0;
}
static int
ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
switch (cmd) {
case IEEE80211_IOC_TXPOWER:
/*
* If per-packet TPC is enabled, then we have nothing
* to do; otherwise we need to force the global limit.
* All this can happen directly; no need to reset.
*/
if (!ath_hal_gettpc(ah))
ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
return 0;
}
/* XXX? Full or NOLOSS? */
return ath_reset(ifp, ATH_RESET_FULL);
}
struct ath_buf *
_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
{
struct ath_buf *bf;
ATH_TXBUF_LOCK_ASSERT(sc);
if (btype == ATH_BUFTYPE_MGMT)
bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
else
bf = TAILQ_FIRST(&sc->sc_txbuf);
if (bf == NULL) {
sc->sc_stats.ast_tx_getnobuf++;
} else {
if (bf->bf_flags & ATH_BUF_BUSY) {
sc->sc_stats.ast_tx_getbusybuf++;
bf = NULL;
}
}
if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
if (btype == ATH_BUFTYPE_MGMT)
TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
else {
TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
sc->sc_txbuf_cnt--;
/*
* This shuldn't happen; however just to be
* safe print a warning and fudge the txbuf
* count.
*/
if (sc->sc_txbuf_cnt < 0) {
device_printf(sc->sc_dev,
"%s: sc_txbuf_cnt < 0?\n",
__func__);
sc->sc_txbuf_cnt = 0;
}
}
} else
bf = NULL;
if (bf == NULL) {
/* XXX should check which list, mgmt or otherwise */
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
"out of xmit buffers" : "xmit buffer busy");
return NULL;
}
/* XXX TODO: should do this at buffer list initialisation */
/* XXX (then, ensure the buffer has the right flag set) */
if (btype == ATH_BUFTYPE_MGMT)
bf->bf_flags |= ATH_BUF_MGMT;
else
bf->bf_flags &= (~ATH_BUF_MGMT);
/* Valid bf here; clear some basic fields */
bf->bf_next = NULL; /* XXX just to be sure */
bf->bf_last = NULL; /* XXX again, just to be sure */
bf->bf_comp = NULL; /* XXX again, just to be sure */
bzero(&bf->bf_state, sizeof(bf->bf_state));
/*
* Track the descriptor ID only if doing EDMA
*/
if (sc->sc_isedma) {
bf->bf_descid = sc->sc_txbuf_descid;
sc->sc_txbuf_descid++;
}
return bf;
}
/*
* When retrying a software frame, buffers marked ATH_BUF_BUSY
* can't be thrown back on the queue as they could still be
* in use by the hardware.
*
* This duplicates the buffer, or returns NULL.
*
* The descriptor is also copied but the link pointers and
* the DMA segments aren't copied; this frame should thus
* be again passed through the descriptor setup/chain routines
* so the link is correct.
*
* The caller must free the buffer using ath_freebuf().
*
* XXX TODO: this call shouldn't fail as it'll cause packet loss
* XXX in the TX pathway when retries are needed.
* XXX Figure out how to keep some buffers free, or factor the
* XXX number of busy buffers into the xmit path (ath_start())
* XXX so we don't over-commit.
*/
struct ath_buf *
ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
{
struct ath_buf *tbf;
tbf = ath_getbuf(sc,
(bf->bf_flags & ATH_BUF_MGMT) ?
ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
if (tbf == NULL)
return NULL; /* XXX failure? Why? */
/* Copy basics */
tbf->bf_next = NULL;
tbf->bf_nseg = bf->bf_nseg;
tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
tbf->bf_status = bf->bf_status;
tbf->bf_m = bf->bf_m;
/*
* XXX Copy the node reference, the caller is responsible
* for deleting the node reference before it frees its
* buffer.
*
* XXX It's done like this so we don't call the net80211
* code whilst having active TX queue locks held.
*/
tbf->bf_node = bf->bf_node;
/* will be setup by the chain/setup function */
tbf->bf_lastds = NULL;
/* for now, last == self */
tbf->bf_last = tbf;
tbf->bf_comp = bf->bf_comp;
/* NOTE: DMA segments will be setup by the setup/chain functions */
/* The caller has to re-init the descriptor + links */
/* Copy state */
memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
return tbf;
}
struct ath_buf *
ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
{
struct ath_buf *bf;
ATH_TXBUF_LOCK(sc);
bf = _ath_getbuf_locked(sc, btype);
/*
* If a mgmt buffer was requested but we're out of those,
* try requesting a normal one.
*/
if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
ATH_TXBUF_UNLOCK(sc);
if (bf == NULL) {
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
sc->sc_stats.ast_tx_qstop++;
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
}
return bf;
}
static void
ath_start_queue(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
ath_tx_kick(sc);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
}
void
ath_start_task(void *arg, int npending)
{
struct ath_softc *sc = (struct ath_softc *) arg;
struct ifnet *ifp = sc->sc_ifp;
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
/* XXX is it ok to hold the ATH_LOCK here? */
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt > 0) {
device_printf(sc->sc_dev,
"%s: sc_inreset_cnt > 0; bailing\n", __func__);
ATH_PCU_UNLOCK(sc);
IF_LOCK(&ifp->if_snd);
sc->sc_stats.ast_tx_qstop++;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
return;
}
sc->sc_txstart_cnt++;
ATH_PCU_UNLOCK(sc);
ATH_TX_LOCK(sc);
ath_start(sc->sc_ifp);
ATH_TX_UNLOCK(sc);
ATH_PCU_LOCK(sc);
sc->sc_txstart_cnt--;
ATH_PCU_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
}
void
ath_start(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct ath_buf *bf;
struct mbuf *m, *next;
ath_bufhead frags;
int npkts = 0;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
return;
ATH_TX_LOCK_ASSERT(sc);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
for (;;) {
ATH_TXBUF_LOCK(sc);
if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
/* XXX increment counter? */
ATH_TXBUF_UNLOCK(sc);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
break;
}
ATH_TXBUF_UNLOCK(sc);
/*
* Grab a TX buffer and associated resources.
*/
bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
if (bf == NULL)
break;
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
ATH_TXBUF_LOCK(sc);
ath_returnbuf_head(sc, bf);
ATH_TXBUF_UNLOCK(sc);
break;
}
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
npkts ++;
/*
* Check for fragmentation. If this frame
* has been broken up verify we have enough
* buffers to send all the fragments so all
* go out or none...
*/
TAILQ_INIT(&frags);
if ((m->m_flags & M_FRAG) &&
!ath_txfrag_setup(sc, &frags, m, ni)) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: out of txfrag buffers\n", __func__);
sc->sc_stats.ast_tx_nofrag++;
ifp->if_oerrors++;
ath_freetx(m);
goto bad;
}
ifp->if_opackets++;
nextfrag:
/*
* Pass the frame to the h/w for transmission.
* Fragmented frames have each frag chained together
* with m_nextpkt. We know there are sufficient ath_buf's
* to send all the frags because of work done by
* ath_txfrag_setup. We leave m_nextpkt set while
* calling ath_tx_start so it can use it to extend the
* the tx duration to cover the subsequent frag and
* so it can reclaim all the mbufs in case of an error;
* ath_tx_start clears m_nextpkt once it commits to
* handing the frame to the hardware.
*/
next = m->m_nextpkt;
if (ath_tx_start(sc, ni, bf, m)) {
bad:
ifp->if_oerrors++;
reclaim:
bf->bf_m = NULL;
bf->bf_node = NULL;
ATH_TXBUF_LOCK(sc);
ath_returnbuf_head(sc, bf);
ath_txfrag_cleanup(sc, &frags, ni);
ATH_TXBUF_UNLOCK(sc);
/*
* XXX todo, free the node outside of
* the TX lock context!
*/
if (ni != NULL)
ieee80211_free_node(ni);
continue;
}
/*
* Check here if the node is in power save state.
*/
ath_tx_update_tim(sc, ni, 1);
if (next != NULL) {
/*
* Beware of state changing between frags.
* XXX check sta power-save state?
*/
if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: flush fragmented packet, state %s\n",
__func__,
ieee80211_state_name[ni->ni_vap->iv_state]);
ath_freetx(next);
goto reclaim;
}
m = next;
bf = TAILQ_FIRST(&frags);
KASSERT(bf != NULL, ("no buf for txfrag"));
TAILQ_REMOVE(&frags, bf, bf_list);
goto nextfrag;
}
sc->sc_wd_timer = 5;
}
ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
}
static int
ath_media_change(struct ifnet *ifp)
{
int error = ieee80211_media_change(ifp);
/* NB: only the fixed rate can change and that doesn't need a reset */
return (error == ENETRESET ? 0 : error);
}
/*
* Block/unblock tx+rx processing while a key change is done.
* We assume the caller serializes key management operations
* so we only need to worry about synchronization with other
* uses that originate in the driver.
*/
static void
ath_key_update_begin(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
taskqueue_block(sc->sc_tq);
IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
}
static void
ath_key_update_end(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
IF_UNLOCK(&ifp->if_snd);
taskqueue_unblock(sc->sc_tq);
}
static void
ath_update_promisc(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
u_int32_t rfilt;
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath_hal_setrxfilter(sc->sc_ah, rfilt);
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
}
static void
ath_update_mcast(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
u_int32_t mfilt[2];
/* calculate and install multicast filter */
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
struct ifmultiaddr *ifma;
/*
* Merge multicast addresses to form the hardware filter.
*/
mfilt[0] = mfilt[1] = 0;
if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
caddr_t dl;
u_int32_t val;
u_int8_t pos;
/* calculate XOR of eight 6bit values */
dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
val = LE_READ_4(dl + 0);
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
val = LE_READ_4(dl + 3);
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
pos &= 0x3f;
mfilt[pos / 32] |= (1 << (pos % 32));
}
if_maddr_runlock(ifp);
} else
mfilt[0] = mfilt[1] = ~0;
ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
__func__, mfilt[0], mfilt[1]);
}
void
ath_mode_init(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath_hal_setrxfilter(ah, rfilt);
/* configure operational mode */
ath_hal_setopmode(ah);
DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
"%s: ah=%p, ifp=%p, if_addr=%p\n",
__func__,
ah,
ifp,
(ifp == NULL) ? NULL : ifp->if_addr);
/* handle any link-level address change */
ath_hal_setmac(ah, IF_LLADDR(ifp));
/* calculate and install multicast filter */
ath_update_mcast(ifp);
}
/*
* Set the slot time based on the current setting.
*/
void
ath_setslottime(struct ath_softc *sc)
{
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
u_int usec;
if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
usec = 13;
else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
usec = 21;
else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
/* honor short/long slot time only in 11g */
/* XXX shouldn't honor on pure g or turbo g channel */
if (ic->ic_flags & IEEE80211_F_SHSLOT)
usec = HAL_SLOT_TIME_9;
else
usec = HAL_SLOT_TIME_20;
} else
usec = HAL_SLOT_TIME_9;
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
__func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
ath_hal_setslottime(ah, usec);
sc->sc_updateslot = OK;
}
/*
* Callback from the 802.11 layer to update the
* slot time based on the current setting.
*/
static void
ath_updateslot(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
/*
* When not coordinating the BSS, change the hardware
* immediately. For other operation we defer the change
* until beacon updates have propagated to the stations.
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS)
sc->sc_updateslot = UPDATE;
else
ath_setslottime(sc);
}
/*
* Append the contents of src to dst; both queues
* are assumed to be locked.
*/
void
ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
{
TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
dst->axq_link = src->axq_link;
src->axq_link = NULL;
dst->axq_depth += src->axq_depth;
dst->axq_aggr_depth += src->axq_aggr_depth;
src->axq_depth = 0;
src->axq_aggr_depth = 0;
}
/*
* Reset the hardware, with no loss.
*
* This can't be used for a general case reset.
*/
static void
ath_reset_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
#if 0
if_printf(ifp, "%s: resetting\n", __func__);
#endif
ath_reset(ifp, ATH_RESET_NOLOSS);
}
/*
* Reset the hardware after detecting beacons have stopped.
*/
static void
ath_bstuck_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t hangs = 0;
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
sc->sc_bmisscount);
sc->sc_stats.ast_bstuck++;
/*
* This assumes that there's no simultaneous channel mode change
* occuring.
*/
ath_reset(ifp, ATH_RESET_NOLOSS);
}
static void
ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
KASSERT(error == 0, ("error %u on bus_dma callback", error));
*paddr = segs->ds_addr;
}
/*
* Allocate the descriptors and appropriate DMA tag/setup.
*
* For some situations (eg EDMA TX completion), there isn't a requirement
* for the ath_buf entries to be allocated.
*/
int
ath_descdma_alloc_desc(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head,
const char *name, int ds_size, int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
struct ifnet *ifp = sc->sc_ifp;
int error;
dd->dd_descsize = ds_size;
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: %s DMA: %u desc, %d bytes per descriptor\n",
__func__, name, ndesc, dd->dd_descsize);
dd->dd_name = name;
dd->dd_desc_len = dd->dd_descsize * ndesc;
/*
* Merlin work-around:
* Descriptors that cross the 4KB boundary can't be used.
* Assume one skipped descriptor per 4KB page.
*/
if (! ath_hal_split4ktrans(sc->sc_ah)) {
int numpages = dd->dd_desc_len / 4096;
dd->dd_desc_len += ds_size * numpages;
}
/*
* Setup DMA descriptor area.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */
PAGE_SIZE, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dd->dd_desc_len, /* maxsize */
1, /* nsegments */
dd->dd_desc_len, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&dd->dd_dmat);
if (error != 0) {
if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
return error;
}
/* allocate descriptors */
error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&dd->dd_dmamap);
if (error != 0) {
if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
"error %u\n", ndesc, dd->dd_name, error);
goto fail1;
}
error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
dd->dd_desc, dd->dd_desc_len,
ath_load_cb, &dd->dd_desc_paddr,
BUS_DMA_NOWAIT);
if (error != 0) {
if_printf(ifp, "unable to map %s descriptors, error %u\n",
dd->dd_name, error);
goto fail2;
}
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
__func__, dd->dd_name, (uint8_t *) dd->dd_desc,
(u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
/*XXX*/ (u_long) dd->dd_desc_len);
return (0);
fail2:
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
fail1:
bus_dma_tag_destroy(dd->dd_dmat);
memset(dd, 0, sizeof(*dd));
return error;
#undef DS2PHYS
#undef ATH_DESC_4KB_BOUND_CHECK
}
int
ath_descdma_setup(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head,
const char *name, int ds_size, int nbuf, int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
struct ifnet *ifp = sc->sc_ifp;
uint8_t *ds;
struct ath_buf *bf;
int i, bsize, error;
/* Allocate descriptors */
error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
nbuf * ndesc);
/* Assume any errors during allocation were dealt with */
if (error != 0) {
return (error);
}
ds = (uint8_t *) dd->dd_desc;
/* allocate rx buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
if (bf == NULL) {
if_printf(ifp, "malloc of %s buffers failed, size %u\n",
dd->dd_name, bsize);
goto fail3;
}
dd->dd_bufptr = bf;
TAILQ_INIT(head);
for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
bf->bf_desc = (struct ath_desc *) ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (! ath_hal_split4ktrans(sc->sc_ah)) {
/*
* Merlin WAR: Skip descriptor addresses which
* cause 4KB boundary crossing along any point
* in the descriptor.
*/
if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
dd->dd_descsize)) {
/* Start at the next page */
ds += 0x1000 - (bf->bf_daddr & 0xFFF);
bf->bf_desc = (struct ath_desc *) ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
&bf->bf_dmamap);
if (error != 0) {
if_printf(ifp, "unable to create dmamap for %s "
"buffer %u, error %u\n", dd->dd_name, i, error);
ath_descdma_cleanup(sc, dd, head);
return error;
}
bf->bf_lastds = bf->bf_desc; /* Just an initial value */
TAILQ_INSERT_TAIL(head, bf, bf_list);
}
/*
* XXX TODO: ensure that ds doesn't overflow the descriptor
* allocation otherwise weird stuff will occur and crash your
* machine.
*/
return 0;
/* XXX this should likely just call ath_descdma_cleanup() */
fail3:
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
bus_dma_tag_destroy(dd->dd_dmat);
memset(dd, 0, sizeof(*dd));
return error;
#undef DS2PHYS
#undef ATH_DESC_4KB_BOUND_CHECK
}
/*
* Allocate ath_buf entries but no descriptor contents.
*
* This is for RX EDMA where the descriptors are the header part of
* the RX buffer.
*/
int
ath_descdma_setup_rx_edma(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head,
const char *name, int nbuf, int rx_status_len)
{
struct ifnet *ifp = sc->sc_ifp;
struct ath_buf *bf;
int i, bsize, error;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
__func__, name, nbuf);
dd->dd_name = name;
/*
* This is (mostly) purely for show. We're not allocating any actual
* descriptors here as EDMA RX has the descriptor be part
* of the RX buffer.
*
* However, dd_desc_len is used by ath_descdma_free() to determine
* whether we have already freed this DMA mapping.
*/
dd->dd_desc_len = rx_status_len * nbuf;
dd->dd_descsize = rx_status_len;
/* allocate rx buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
if (bf == NULL) {
if_printf(ifp, "malloc of %s buffers failed, size %u\n",
dd->dd_name, bsize);
error = ENOMEM;
goto fail3;
}
dd->dd_bufptr = bf;
TAILQ_INIT(head);
for (i = 0; i < nbuf; i++, bf++) {
bf->bf_desc = NULL;
bf->bf_daddr = 0;
bf->bf_lastds = NULL; /* Just an initial value */
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
&bf->bf_dmamap);
if (error != 0) {
if_printf(ifp, "unable to create dmamap for %s "
"buffer %u, error %u\n", dd->dd_name, i, error);
ath_descdma_cleanup(sc, dd, head);
return error;
}
TAILQ_INSERT_TAIL(head, bf, bf_list);
}
return 0;
fail3:
memset(dd, 0, sizeof(*dd));
return error;
}
void
ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head)
{
struct ath_buf *bf;
struct ieee80211_node *ni;
if (dd->dd_dmamap != 0) {
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
bus_dma_tag_destroy(dd->dd_dmat);
}
if (head != NULL) {
TAILQ_FOREACH(bf, head, bf_list) {
if (bf->bf_m) {
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
if (bf->bf_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
bf->bf_dmamap = NULL;
}
ni = bf->bf_node;
bf->bf_node = NULL;
if (ni != NULL) {
/*
* Reclaim node reference.
*/
ieee80211_free_node(ni);
}
}
}
if (head != NULL)
TAILQ_INIT(head);
if (dd->dd_bufptr != NULL)
free(dd->dd_bufptr, M_ATHDEV);
memset(dd, 0, sizeof(*dd));
}
static int
ath_desc_alloc(struct ath_softc *sc)
{
int error;
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
"tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
if (error != 0) {
return error;
}
sc->sc_txbuf_cnt = ath_txbuf;
error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
"tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
ATH_TXDESC);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
return error;
}
/*
* XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
* flag doesn't have to be set in ath_getbuf_locked().
*/
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
&sc->sc_txbuf_mgmt);
return error;
}
return 0;
}
static void
ath_desc_free(struct ath_softc *sc)
{
if (sc->sc_bdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
if (sc->sc_txdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
if (sc->sc_txdma_mgmt.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
&sc->sc_txbuf_mgmt);
}
static struct ieee80211_node *
ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
struct ath_node *an;
an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
if (an == NULL) {
/* XXX stat+msg */
return NULL;
}
ath_rate_node_init(sc, an);
/* Setup the mutex - there's no associd yet so set the name to NULL */
snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
device_get_nameunit(sc->sc_dev), an);
mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
/* XXX setup ath_tid */
ath_tx_tid_init(sc, an);
DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
return &an->an_node;
}
static void
ath_node_cleanup(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
ath_tx_node_flush(sc, ATH_NODE(ni));
ath_rate_node_cleanup(sc, ATH_NODE(ni));
sc->sc_node_cleanup(ni);
}
static void
ath_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
mtx_destroy(&ATH_NODE(ni)->an_mtx);
sc->sc_node_free(ni);
}
static void
ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
*rssi = ic->ic_node_getrssi(ni);
if (ni->ni_chan != IEEE80211_CHAN_ANYC)
*noise = ath_hal_getchannoise(ah, ni->ni_chan);
else
*noise = -95; /* nominally correct */
}
/*
* Set the default antenna.
*/
void
ath_setdefantenna(struct ath_softc *sc, u_int antenna)
{
struct ath_hal *ah = sc->sc_ah;
/* XXX block beacon interrupts */
ath_hal_setdefantenna(ah, antenna);
if (sc->sc_defant != antenna)
sc->sc_stats.ast_ant_defswitch++;
sc->sc_defant = antenna;
sc->sc_rxotherant = 0;
}
static void
ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
{
txq->axq_qnum = qnum;
txq->axq_ac = 0;
txq->axq_depth = 0;
txq->axq_aggr_depth = 0;
txq->axq_intrcnt = 0;
txq->axq_link = NULL;
txq->axq_softc = sc;
TAILQ_INIT(&txq->axq_q);
TAILQ_INIT(&txq->axq_tidq);
}
/*
* Setup a h/w transmit queue.
*/
static struct ath_txq *
ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
int qnum;
memset(&qi, 0, sizeof(qi));
qi.tqi_subtype = subtype;
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise waiting for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*/
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
if (qnum == -1) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return NULL;
}
if (qnum >= N(sc->sc_txq)) {
device_printf(sc->sc_dev,
"hal qnum %u out of range, max %zu!\n",
qnum, N(sc->sc_txq));
ath_hal_releasetxqueue(ah, qnum);
return NULL;
}
if (!ATH_TXQ_SETUP(sc, qnum)) {
ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
sc->sc_txqsetup |= 1<<qnum;
}
return &sc->sc_txq[qnum];
#undef N
}
/*
* Setup a hardware data transmit queue for the specified
* access control. The hal may not support all requested
* queues in which case it will return a reference to a
* previously setup queue. We record the mapping from ac's
* to h/w queues for use by ath_tx_start and also track
* the set of h/w queues being used to optimize work in the
* transmit interrupt handler and related routines.
*/
static int
ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_txq *txq;
if (ac >= N(sc->sc_ac2q)) {
device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
ac, N(sc->sc_ac2q));
return 0;
}
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
if (txq != NULL) {
txq->axq_ac = ac;
sc->sc_ac2q[ac] = txq;
return 1;
} else
return 0;
#undef N
}
/*
* Update WME parameters for a transmit queue.
*/
static int
ath_txq_update(struct ath_softc *sc, int ac)
{
#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
#define ATH_TXOP_TO_US(v) (v<<5)
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_txq *txq = sc->sc_ac2q[ac];
struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma) {
/*
* AIFS is zero so there's no pre-transmit wait. The
* burst time defines the slot duration and is configured
* through net80211. The QCU is setup to not do post-xmit
* back off, lockout all lower-priority QCU's, and fire
* off the DMA beacon alert timer which is setup based
* on the slot configuration.
*/
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE
| HAL_TXQ_TXEOLINT_ENABLE
| HAL_TXQ_DBA_GATED
| HAL_TXQ_BACKOFF_DISABLE
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
;
qi.tqi_aifs = 0;
/* XXX +dbaprep? */
qi.tqi_readyTime = sc->sc_tdmaslotlen;
qi.tqi_burstTime = qi.tqi_readyTime;
} else {
#endif
/*
* XXX shouldn't this just use the default flags
* used in the previous queue setup?
*/
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXDESCINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE
| HAL_TXQ_TXEOLINT_ENABLE
;
qi.tqi_aifs = wmep->wmep_aifsn;
qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
qi.tqi_readyTime = 0;
qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
#ifdef IEEE80211_SUPPORT_TDMA
}
#endif
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
__func__, txq->axq_qnum, qi.tqi_qflags,
qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
if_printf(ifp, "unable to update hardware queue "
"parameters for %s traffic!\n",
ieee80211_wme_acnames[ac]);
return 0;
} else {
ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
return 1;
}
#undef ATH_TXOP_TO_US
#undef ATH_EXPONENT_TO_VALUE
}
/*
* Callback from the 802.11 layer to update WME parameters.
*/
int
ath_wme_update(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
return !ath_txq_update(sc, WME_AC_BE) ||
!ath_txq_update(sc, WME_AC_BK) ||
!ath_txq_update(sc, WME_AC_VI) ||
!ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
}
/*
* Reclaim resources for a setup queue.
*/
static void
ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
{
ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
}
/*
* Reclaim all tx queue resources.
*/
static void
ath_tx_cleanup(struct ath_softc *sc)
{
int i;
ATH_TXBUF_LOCK_DESTROY(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
}
/*
* Return h/w rate index for an IEEE rate (w/o basic rate bit)
* using the current rates in sc_rixmap.
*/
int
ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
{
int rix = sc->sc_rixmap[rate];
/* NB: return lowest rix for invalid rate */
return (rix == 0xff ? 0 : rix);
}
static void
ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
int sr, lr, pri;
if (ts->ts_status == 0) {
u_int8_t txant = ts->ts_antenna;
sc->sc_stats.ast_ant_tx[txant]++;
sc->sc_ant_tx[txant]++;
if (ts->ts_finaltsi != 0)
sc->sc_stats.ast_tx_altrate++;
pri = M_WME_GETAC(bf->bf_m);
if (pri >= WME_AC_VO)
ic->ic_wme.wme_hipri_traffic++;
if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
ni->ni_inact = ni->ni_inact_reload;
} else {
if (ts->ts_status & HAL_TXERR_XRETRY)
sc->sc_stats.ast_tx_xretries++;
if (ts->ts_status & HAL_TXERR_FIFO)
sc->sc_stats.ast_tx_fifoerr++;
if (ts->ts_status & HAL_TXERR_FILT)
sc->sc_stats.ast_tx_filtered++;
if (ts->ts_status & HAL_TXERR_XTXOP)
sc->sc_stats.ast_tx_xtxop++;
if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
sc->sc_stats.ast_tx_timerexpired++;
if (bf->bf_m->m_flags & M_FF)
sc->sc_stats.ast_ff_txerr++;
}
/* XXX when is this valid? */
if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
sc->sc_stats.ast_tx_desccfgerr++;
/*
* This can be valid for successful frame transmission!
* If there's a TX FIFO underrun during aggregate transmission,
* the MAC will pad the rest of the aggregate with delimiters.
* If a BA is returned, the frame is marked as "OK" and it's up
* to the TX completion code to notice which frames weren't
* successfully transmitted.
*/
if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
sc->sc_stats.ast_tx_data_underrun++;
if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
sc->sc_stats.ast_tx_delim_underrun++;
sr = ts->ts_shortretry;
lr = ts->ts_longretry;
sc->sc_stats.ast_tx_shortretry += sr;
sc->sc_stats.ast_tx_longretry += lr;
}
/*
* The default completion. If fail is 1, this means
* "please don't retry the frame, and just return -1 status
* to the net80211 stack.
*/
void
ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
int st;
if (fail == 1)
st = -1;
else
st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
ts->ts_status : HAL_TXERR_XRETRY;
#if 0
if (bf->bf_state.bfs_dobaw)
device_printf(sc->sc_dev,
"%s: bf %p: seqno %d: dobaw should've been cleared!\n",
__func__,
bf,
SEQNO(bf->bf_state.bfs_seqno));
#endif
if (bf->bf_next != NULL)
device_printf(sc->sc_dev,
"%s: bf %p: seqno %d: bf_next not NULL!\n",
__func__,
bf,
SEQNO(bf->bf_state.bfs_seqno));
/*
* Check if the node software queue is empty; if so
* then clear the TIM.
*
* This needs to be done before the buffer is freed as
* otherwise the node reference will have been released
* and the node may not actually exist any longer.
*
* XXX I don't like this belonging here, but it's cleaner
* to do it here right now then all the other places
* where ath_tx_default_comp() is called.
*
* XXX TODO: during drain, ensure that the callback is
* being called so we get a chance to update the TIM.
*/
if (bf->bf_node)
ath_tx_update_tim(sc, bf->bf_node, 0);
/*
* Do any tx complete callback. Note this must
* be done before releasing the node reference.
* This will free the mbuf, release the net80211
* node and recycle the ath_buf.
*/
ath_tx_freebuf(sc, bf, st);
}
/*
* Update rate control with the given completion status.
*/
void
ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
int nframes, int nbad)
{
struct ath_node *an;
/* Only for unicast frames */
if (ni == NULL)
return;
an = ATH_NODE(ni);
ATH_NODE_UNLOCK_ASSERT(an);
if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
ATH_NODE_LOCK(an);
ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
ATH_NODE_UNLOCK(an);
}
}
/*
* Update the busy status of the last frame on the free list.
* When doing TDMA, the busy flag tracks whether the hardware
* currently points to this buffer or not, and thus gated DMA
* may restart by re-reading the last descriptor in this
* buffer.
*
* This should be called in the completion function once one
* of the buffers has been used.
*/
static void
ath_tx_update_busy(struct ath_softc *sc)
{
struct ath_buf *last;
/*
* Since the last frame may still be marked
* as ATH_BUF_BUSY, unmark it here before
* finishing the frame processing.
* Since we've completed a frame (aggregate
* or otherwise), the hardware has moved on
* and is no longer referencing the previous
* descriptor.
*/
ATH_TXBUF_LOCK_ASSERT(sc);
last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
if (last != NULL)
last->bf_flags &= ~ATH_BUF_BUSY;
last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
if (last != NULL)
last->bf_flags &= ~ATH_BUF_BUSY;
}
/*
* Process the completion of the given buffer.
*
* This calls the rate control update and then the buffer completion.
* This will either free the buffer or requeue it. In any case, the
* bf pointer should be treated as invalid after this function is called.
*/
void
ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
struct ath_tx_status *ts, struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = NULL;
ATH_TX_UNLOCK_ASSERT(sc);
/* If unicast frame, update general statistics */
if (ni != NULL) {
an = ATH_NODE(ni);
/* update statistics */
ath_tx_update_stats(sc, ts, bf);
}
/*
* Call the completion handler.
* The completion handler is responsible for
* calling the rate control code.
*
* Frames with no completion handler get the
* rate control code called here.
*/
if (bf->bf_comp == NULL) {
if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
(bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
/*
* XXX assume this isn't an aggregate
* frame.
*/
ath_tx_update_ratectrl(sc, ni,
bf->bf_state.bfs_rc, ts,
bf->bf_state.bfs_pktlen, 1,
(ts->ts_status == 0 ? 0 : 1));
}
ath_tx_default_comp(sc, bf, 0);
} else
bf->bf_comp(sc, bf, 0);
}
/*
* Process completed xmit descriptors from the specified queue.
* Kick the packet scheduler if needed. This can occur from this
* particular task.
*/
static int
ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
struct ath_desc *ds;
struct ath_tx_status *ts;
struct ieee80211_node *ni;
#ifdef IEEE80211_SUPPORT_SUPERG
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
#endif /* IEEE80211_SUPPORT_SUPERG */
int nacked;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
__func__, txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link);
ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
"ath_tx_processq: txq=%u head %p link %p depth %p",
txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link,
txq->axq_depth);
nacked = 0;
for (;;) {
ATH_TX_LOCK(sc);
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
bf = TAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
ATH_TX_UNLOCK(sc);
break;
}
ds = bf->bf_lastds; /* XXX must be setup correctly! */
ts = &bf->bf_status.ds_txstat;
status = ath_hal_txprocdesc(ah, ds, ts);
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
status == HAL_OK);
else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
status == HAL_OK);
#endif
#ifdef ATH_DEBUG_ALQ
if (if_ath_alq_checkdebug(&sc->sc_alq,
ATH_ALQ_EDMA_TXSTATUS)) {
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
sc->sc_tx_statuslen,
(char *) ds);
}
#endif
if (status == HAL_EINPROGRESS) {
ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
"ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
txq->axq_qnum, bf, ds);
ATH_TX_UNLOCK(sc);
break;
}
ATH_TXQ_REMOVE(txq, bf, bf_list);
#ifdef IEEE80211_SUPPORT_TDMA
if (txq->axq_depth > 0) {
/*
* More frames follow. Mark the buffer busy
* so it's not re-used while the hardware may
* still re-read the link field in the descriptor.
*
* Use the last buffer in an aggregate as that
* is where the hardware may be - intermediate
* descriptors won't be "busy".
*/
bf->bf_last->bf_flags |= ATH_BUF_BUSY;
} else
#else
if (txq->axq_depth == 0)
#endif
txq->axq_link = NULL;
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth--;
ni = bf->bf_node;
ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
"ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
txq->axq_qnum, bf, ds, ni, ts->ts_status);
/*
* If unicast frame was ack'd update RSSI,
* including the last rx time used to
* workaround phantom bmiss interrupts.
*/
if (ni != NULL && ts->ts_status == 0 &&
((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
nacked++;
sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
ts->ts_rssi);
}
ATH_TX_UNLOCK(sc);
/*
* Update statistics and call completion
*/
ath_tx_process_buf_completion(sc, txq, ts, bf);
/* XXX at this point, bf and ni may be totally invalid */
}
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Flush fast-frame staging queue when traffic slows.
*/
if (txq->axq_depth <= 1)
ieee80211_ff_flush(ic, txq->axq_ac);
#endif
/* Kick the software TXQ scheduler */
if (dosched) {
ATH_TX_LOCK(sc);
ath_txq_sched(sc, txq);
ATH_TX_UNLOCK(sc);
}
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
"ath_tx_processq: txq=%u: done",
txq->axq_qnum);
return nacked;
}
#define TXQACTIVE(t, q) ( (t) & (1 << (q)))
/*
* Deferred processing of transmit interrupt; special-cased
* for a single hardware transmit queue (e.g. 5210 and 5211).
*/
static void
ath_tx_proc_q0(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
"ath_tx_proc_q0: txqs=0x%08x", txqs);
if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
/* XXX why is lastrx updated in tx code? */
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq, 1);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ath_tx_kick(sc);
}
/*
* Deferred processing of transmit interrupt; special-cased
* for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
*/
static void
ath_tx_proc_q0123(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
int nacked;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
"ath_tx_proc_q0123: txqs=0x%08x", txqs);
/*
* Process each active queue.
*/
nacked = 0;
if (TXQACTIVE(txqs, 0))
nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
if (TXQACTIVE(txqs, 1))
nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
if (TXQACTIVE(txqs, 2))
nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
if (TXQACTIVE(txqs, 3))
nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq, 1);
if (nacked)
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ath_tx_kick(sc);
}
/*
* Deferred processing of transmit interrupt.
*/
static void
ath_tx_proc(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
int i, nacked;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
/*
* Process each active queue.
*/
nacked = 0;
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
if (nacked)
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
/* XXX check this inside of IF_LOCK? */
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ath_tx_kick(sc);
}
#undef TXQACTIVE
/*
* Deferred processing of TXQ rescheduling.
*/
static void
ath_txq_sched_tasklet(void *arg, int npending)
{
struct ath_softc *sc = arg;
int i;
/* XXX is skipping ok? */
ATH_PCU_LOCK(sc);
#if 0
if (sc->sc_inreset_cnt > 0) {
device_printf(sc->sc_dev,
"%s: sc_inreset_cnt > 0; skipping\n", __func__);
ATH_PCU_UNLOCK(sc);
return;
}
#endif
sc->sc_txproc_cnt++;
ATH_PCU_UNLOCK(sc);
ATH_TX_LOCK(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ath_txq_sched(sc, &sc->sc_txq[i]);
}
}
ATH_TX_UNLOCK(sc);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
}
void
ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
{
ATH_TXBUF_LOCK_ASSERT(sc);
if (bf->bf_flags & ATH_BUF_MGMT)
TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
else {
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
sc->sc_txbuf_cnt++;
if (sc->sc_txbuf_cnt > ath_txbuf) {
device_printf(sc->sc_dev,
"%s: sc_txbuf_cnt > %d?\n",
__func__,
ath_txbuf);
sc->sc_txbuf_cnt = ath_txbuf;
}
}
}
void
ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
{
ATH_TXBUF_LOCK_ASSERT(sc);
if (bf->bf_flags & ATH_BUF_MGMT)
TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
else {
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
sc->sc_txbuf_cnt++;
if (sc->sc_txbuf_cnt > ATH_TXBUF) {
device_printf(sc->sc_dev,
"%s: sc_txbuf_cnt > %d?\n",
__func__,
ATH_TXBUF);
sc->sc_txbuf_cnt = ATH_TXBUF;
}
}
}
/*
* Return a buffer to the pool and update the 'busy' flag on the
* previous 'tail' entry.
*
* This _must_ only be called when the buffer is involved in a completed
* TX. The logic is that if it was part of an active TX, the previous
* buffer on the list is now not involved in a halted TX DMA queue, waiting
* for restart (eg for TDMA.)
*
* The caller must free the mbuf and recycle the node reference.
*/
void
ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
{
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
ATH_TXBUF_LOCK(sc);
ath_tx_update_busy(sc);
ath_returnbuf_tail(sc, bf);
ATH_TXBUF_UNLOCK(sc);
}
/*
* This is currently used by ath_tx_draintxq() and
* ath_tx_tid_free_pkts().
*
* It recycles a single ath_buf.
*/
void
ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
{
struct ieee80211_node *ni = bf->bf_node;
struct mbuf *m0 = bf->bf_m;
bf->bf_node = NULL;
bf->bf_m = NULL;
/* Free the buffer, it's not needed any longer */
ath_freebuf(sc, bf);
if (ni != NULL) {
/*
* Do any callback and reclaim the node reference.
*/
if (m0->m_flags & M_TXCB)
ieee80211_process_callback(ni, m0, status);
ieee80211_free_node(ni);
}
m_freem(m0);
/*
* XXX the buffer used to be freed -after-, but the DMA map was
* freed where ath_freebuf() now is. I've no idea what this
* will do.
*/
}
void
ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
{
#ifdef ATH_DEBUG
struct ath_hal *ah = sc->sc_ah;
#endif
struct ath_buf *bf;
u_int ix;
/*
* NB: this assumes output has been stopped and
* we do not need to block ath_tx_proc
*/
ATH_TXBUF_LOCK(sc);
bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
if (bf != NULL)
bf->bf_flags &= ~ATH_BUF_BUSY;
bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
if (bf != NULL)
bf->bf_flags &= ~ATH_BUF_BUSY;
ATH_TXBUF_UNLOCK(sc);
for (ix = 0;; ix++) {
ATH_TX_LOCK(sc);
bf = TAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
txq->axq_link = NULL;
/*
* There's currently no flag that indicates
* a buffer is on the FIFO. So until that
* occurs, just clear the FIFO counter here.
*
* Yes, this means that if something in parallel
* is pushing things onto this TXQ and pushing
* _that_ into the hardware, things will get
* very fruity very quickly.
*/
txq->axq_fifo_depth = 0;
ATH_TX_UNLOCK(sc);
break;
}
ATH_TXQ_REMOVE(txq, bf, bf_list);
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth--;
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET) {
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
int status = 0;
/*
* EDMA operation has a TX completion FIFO
* separate from the TX descriptor, so this
* method of checking the "completion" status
* is wrong.
*/
if (! sc->sc_isedma) {
status = (ath_hal_txprocdesc(ah,
bf->bf_lastds,
&bf->bf_status.ds_txstat) == HAL_OK);
}
ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
bf->bf_m->m_len, 0, -1);
}
#endif /* ATH_DEBUG */
/*
* Since we're now doing magic in the completion
* functions, we -must- call it for aggregation
* destinations or BAW tracking will get upset.
*/
/*
* Clear ATH_BUF_BUSY; the completion handler
* will free the buffer.
*/
ATH_TX_UNLOCK(sc);
bf->bf_flags &= ~ATH_BUF_BUSY;
if (bf->bf_comp)
bf->bf_comp(sc, bf, 1);
else
ath_tx_default_comp(sc, bf, 1);
}
/*
* Drain software queued frames which are on
* active TIDs.
*/
ath_tx_txq_drain(sc, txq);
}
static void
ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: tx queue [%u] %p, flags 0x%08x, link %p\n",
__func__,
txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
txq->axq_flags,
txq->axq_link);
(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
}
int
ath_stoptxdma(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int i;
/* XXX return value */
if (sc->sc_invalid)
return 0;
if (!sc->sc_invalid) {
/* don't touch the hardware if marked invalid */
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
__func__, sc->sc_bhalq,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
NULL);
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_stopdma(sc, &sc->sc_txq[i]);
}
return 1;
}
/*
* Drain the transmit queues and reclaim resources.
*/
void
ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
{
#ifdef ATH_DEBUG
struct ath_hal *ah = sc->sc_ah;
#endif
struct ifnet *ifp = sc->sc_ifp;
int i;
(void) ath_stoptxdma(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
/*
* XXX TODO: should we just handle the completed TX frames
* here, whether or not the reset is a full one or not?
*/
if (ATH_TXQ_SETUP(sc, i)) {
if (reset_type == ATH_RESET_NOLOSS)
ath_tx_processq(sc, &sc->sc_txq[i], 0);
else
ath_tx_draintxq(sc, &sc->sc_txq[i]);
}
}
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET) {
struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
if (bf != NULL && bf->bf_m != NULL) {
ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
ath_hal_txprocdesc(ah, bf->bf_lastds,
&bf->bf_status.ds_txstat) == HAL_OK);
ieee80211_dump_pkt(ifp->if_l2com,
mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
0, -1);
}
}
#endif /* ATH_DEBUG */
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
}
/*
* Update internal state after a channel change.
*/
static void
ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
{
enum ieee80211_phymode mode;
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
mode = ieee80211_chan2mode(chan);
if (mode != sc->sc_curmode)
ath_setcurmode(sc, mode);
sc->sc_curchan = chan;
}
/*
* Set/change channels. If the channel is really being changed,
* it's done by resetting the chip. To accomplish this we must
* first cleanup any pending DMA, then restart stuff after a la
* ath_init.
*/
static int
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
int ret = 0;
/* Treat this as an interface reset */
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_UNLOCK_ASSERT(sc);
/* (Try to) stop TX/RX from occuring */
taskqueue_block(sc->sc_tq);
ATH_PCU_LOCK(sc);
ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */
ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */
if (ath_reset_grablock(sc, 1) == 0) {
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
__func__);
}
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
__func__, ieee80211_chan2ieee(ic, chan),
chan->ic_freq, chan->ic_flags);
if (chan != sc->sc_curchan) {
HAL_STATUS status;
/*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
#if 0
ath_hal_intrset(ah, 0); /* disable interrupts */
#endif
ath_stoprecv(sc, 1); /* turn off frame recv */
/*
* First, handle completed TX/RX frames.
*/
ath_rx_flush(sc);
ath_draintxq(sc, ATH_RESET_NOLOSS);
/*
* Next, flush the non-scheduled frames.
*/
ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */
ath_update_chainmasks(sc, chan);
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
sc->sc_cur_rxchainmask);
if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
if_printf(ifp, "%s: unable to reset "
"channel %u (%u MHz, flags 0x%x), hal status %u\n",
__func__, ieee80211_chan2ieee(ic, chan),
chan->ic_freq, chan->ic_flags, status);
ret = EIO;
goto finish;
}
sc->sc_diversity = ath_hal_getdiversity(ah);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, chan);
/* Let spectral at in case spectral is enabled */
ath_spectral_enable(sc, chan);
/*
* Re-enable rx framework.
*/
if (ath_startrecv(sc) != 0) {
if_printf(ifp, "%s: unable to restart recv logic\n",
__func__);
ret = EIO;
goto finish;
}
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
ath_chan_change(sc, chan);
/*
* Reset clears the beacon timers; reset them
* here if needed.
*/
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
/*
* Re-enable interrupts.
*/
#if 0
ath_hal_intrset(ah, sc->sc_imask);
#endif
}
finish:
ATH_PCU_LOCK(sc);
sc->sc_inreset_cnt--;
/* XXX only do this if sc_inreset_cnt == 0? */
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
ath_txrx_start(sc);
/* XXX ath_start? */
return ret;
}
/*
* Periodically recalibrate the PHY to account
* for temperature/environment changes.
*/
static void
ath_calibrate(void *arg)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
HAL_BOOL longCal, isCalDone = AH_TRUE;
HAL_BOOL aniCal, shortCal = AH_FALSE;
int nextcal;
if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
goto restart;
longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
if (sc->sc_doresetcal)
shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
if (aniCal) {
sc->sc_stats.ast_ani_cal++;
sc->sc_lastani = ticks;
ath_hal_ani_poll(ah, sc->sc_curchan);
}
if (longCal) {
sc->sc_stats.ast_per_cal++;
sc->sc_lastlongcal = ticks;
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
/*
* Rfgain is out of bounds, reset the chip
* to load new gain values.
*/
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: rfgain change\n", __func__);
sc->sc_stats.ast_per_rfgain++;
sc->sc_resetcal = 0;
sc->sc_doresetcal = AH_TRUE;
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
return;
}
/*
* If this long cal is after an idle period, then
* reset the data collection state so we start fresh.
*/
if (sc->sc_resetcal) {
(void) ath_hal_calreset(ah, sc->sc_curchan);
sc->sc_lastcalreset = ticks;
sc->sc_lastshortcal = ticks;
sc->sc_resetcal = 0;
sc->sc_doresetcal = AH_TRUE;
}
}
/* Only call if we're doing a short/long cal, not for ANI calibration */
if (shortCal || longCal) {
isCalDone = AH_FALSE;
if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
if (longCal) {
/*
* Calibrate noise floor data again in case of change.
*/
ath_hal_process_noisefloor(ah);
}
} else {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: calibration of channel %u failed\n",
__func__, sc->sc_curchan->ic_freq);
sc->sc_stats.ast_per_calfail++;
}
if (shortCal)
sc->sc_lastshortcal = ticks;
}
if (!isCalDone) {
restart:
/*
* Use a shorter interval to potentially collect multiple
* data samples required to complete calibration. Once
* we're told the work is done we drop back to a longer
* interval between requests. We're more aggressive doing
* work when operating as an AP to improve operation right
* after startup.
*/
sc->sc_lastshortcal = ticks;
nextcal = ath_shortcalinterval*hz/1000;
if (sc->sc_opmode != HAL_M_HOSTAP)
nextcal *= 10;
sc->sc_doresetcal = AH_TRUE;
} else {
/* nextcal should be the shortest time for next event */
nextcal = ath_longcalinterval*hz;
if (sc->sc_lastcalreset == 0)
sc->sc_lastcalreset = sc->sc_lastlongcal;
else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
sc->sc_resetcal = 1; /* setup reset next trip */
sc->sc_doresetcal = AH_FALSE;
}
/* ANI calibration may occur more often than short/long/resetcal */
if (ath_anicalinterval > 0)
nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
if (nextcal != 0) {
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
__func__, nextcal, isCalDone ? "" : "!");
callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
} else {
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
__func__);
/* NB: don't rearm timer */
}
}
static void
ath_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
/* XXX calibration timer? */
ATH_LOCK(sc);
sc->sc_scanning = 1;
sc->sc_syncbeacon = 0;
rfilt = ath_calcrxfilter(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
ath_hal_setrxfilter(ah, rfilt);
ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
__func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
}
static void
ath_scan_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
ATH_LOCK(sc);
sc->sc_scanning = 0;
rfilt = ath_calcrxfilter(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
ath_hal_setrxfilter(ah, rfilt);
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
ath_hal_process_noisefloor(ah);
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, ether_sprintf(sc->sc_curbssid),
sc->sc_curaid);
}
#ifdef ATH_ENABLE_11N
/*
* For now, just do a channel change.
*
* Later, we'll go through the hard slog of suspending tx/rx, changing rate
* control state and resetting the hardware without dropping frames out
* of the queue.
*
* The unfortunate trouble here is making absolutely sure that the
* channel width change has propagated enough so the hardware
* absolutely isn't handed bogus frames for it's current operating
* mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
* does occur in parallel, we need to make certain we've blocked
* any further ongoing TX (and RX, that can cause raw TX)
* before we do this.
*/
static void
ath_update_chw(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
ath_set_channel(ic);
}
#endif /* ATH_ENABLE_11N */
static void
ath_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
(void) ath_chan_set(sc, ic->ic_curchan);
/*
* If we are returning to our bss channel then mark state
* so the next recv'd beacon's tsf will be used to sync the
* beacon timers. Note that since we only hear beacons in
* sta/ibss mode this has no effect in other operating modes.
*/
ATH_LOCK(sc);
if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
sc->sc_syncbeacon = 1;
ATH_UNLOCK(sc);
}
/*
* Walk the vap list and check if there any vap's in RUN state.
*/
static int
ath_isanyrunningvaps(struct ieee80211vap *this)
{
struct ieee80211com *ic = this->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
return 1;
}
return 0;
}
static int
ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_vap *avp = ATH_VAP(vap);
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_node *ni = NULL;
int i, error, stamode;
u_int32_t rfilt;
int csa_run_transition = 0;
static const HAL_LED_STATE leds[] = {
HAL_LED_INIT, /* IEEE80211_S_INIT */
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
HAL_LED_RUN, /* IEEE80211_S_CAC */
HAL_LED_RUN, /* IEEE80211_S_RUN */
HAL_LED_RUN, /* IEEE80211_S_CSA */
HAL_LED_RUN, /* IEEE80211_S_SLEEP */
};
DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate]);
/*
* net80211 _should_ have the comlock asserted at this point.
* There are some comments around the calls to vap->iv_newstate
* which indicate that it (newstate) may end up dropping the
* lock. This and the subsequent lock assert check after newstate
* are an attempt to catch these and figure out how/why.
*/
IEEE80211_LOCK_ASSERT(ic);
if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
csa_run_transition = 1;
callout_drain(&sc->sc_cal_ch);
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
if (nstate == IEEE80211_S_SCAN) {
/*
* Scanning: turn off beacon miss and don't beacon.
* Mark beacon state so when we reach RUN state we'll
* [re]setup beacons. Unblock the task q thread so
* deferred interrupt processing is done.
*/
ath_hal_intrset(ah,
sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
sc->sc_beacons = 0;
taskqueue_unblock(sc->sc_tq);
}
ni = ieee80211_ref_node(vap->iv_bss);
rfilt = ath_calcrxfilter(sc);
stamode = (vap->iv_opmode == IEEE80211_M_STA ||
vap->iv_opmode == IEEE80211_M_AHDEMO ||
vap->iv_opmode == IEEE80211_M_IBSS);
if (stamode && nstate == IEEE80211_S_RUN) {
sc->sc_curaid = ni->ni_associd;
IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
}
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
ath_hal_setrxfilter(ah, rfilt);
/* XXX is this to restore keycache on resume? */
if (vap->iv_opmode != IEEE80211_M_STA &&
(vap->iv_flags & IEEE80211_F_PRIVACY)) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath_hal_keyisvalid(ah, i))
ath_hal_keysetmac(ah, i, ni->ni_bssid);
}
/*
* Invoke the parent method to do net80211 work.
*/
error = avp->av_newstate(vap, nstate, arg);
if (error != 0)
goto bad;
/*
* See above: ensure av_newstate() doesn't drop the lock
* on us.
*/
IEEE80211_LOCK_ASSERT(ic);
if (nstate == IEEE80211_S_RUN) {
/* NB: collect bss node again, it may have changed */
ieee80211_free_node(ni);
ni = ieee80211_ref_node(vap->iv_bss);
DPRINTF(sc, ATH_DEBUG_STATE,
"%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
"capinfo 0x%04x chan %d\n", __func__,
vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
switch (vap->iv_opmode) {
#ifdef IEEE80211_SUPPORT_TDMA
case IEEE80211_M_AHDEMO:
if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
break;
/* fall thru... */
#endif
case IEEE80211_M_HOSTAP:
case IEEE80211_M_IBSS:
case IEEE80211_M_MBSS:
/*
* Allocate and setup the beacon frame.
*
* Stop any previous beacon DMA. This may be
* necessary, for example, when an ibss merge
* causes reconfiguration; there will be a state
* transition from RUN->RUN that means we may
* be called with beacon transmission active.
*/
ath_hal_stoptxdma(ah, sc->sc_bhalq);
error = ath_beacon_alloc(sc, ni);
if (error != 0)
goto bad;
/*
* If joining an adhoc network defer beacon timer
* configuration to the next beacon frame so we
* have a current TSF to use. Otherwise we're
* starting an ibss/bss so there's no need to delay;
* if this is the first vap moving to RUN state, then
* beacon state needs to be [re]configured.
*/
if (vap->iv_opmode == IEEE80211_M_IBSS &&
ni->ni_tstamp.tsf != 0) {
sc->sc_syncbeacon = 1;
} else if (!sc->sc_beacons) {
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA)
ath_tdma_config(sc, vap);
else
#endif
ath_beacon_config(sc, vap);
sc->sc_beacons = 1;
}
break;
case IEEE80211_M_STA:
/*
* Defer beacon timer configuration to the next
* beacon frame so we have a current TSF to use
* (any TSF collected when scanning is likely old).
* However if it's due to a CSA -> RUN transition,
* force a beacon update so we pick up a lack of
* beacons from an AP in CAC and thus force a
* scan.
*
* And, there's also corner cases here where
* after a scan, the AP may have disappeared.
* In that case, we may not receive an actual
* beacon to update the beacon timer and thus we
* won't get notified of the missing beacons.
*/
sc->sc_syncbeacon = 1;
#if 0
if (csa_run_transition)
#endif
ath_beacon_config(sc, vap);
/*
* PR: kern/175227
*
* Reconfigure beacons during reset; as otherwise
* we won't get the beacon timers reprogrammed
* after a reset and thus we won't pick up a
* beacon miss interrupt.
*
* Hopefully we'll see a beacon before the BMISS
* timer fires (too often), leading to a STA
* disassociation.
*/
sc->sc_beacons = 1;
break;
case IEEE80211_M_MONITOR:
/*
* Monitor mode vaps have only INIT->RUN and RUN->RUN
* transitions so we must re-enable interrupts here to
* handle the case of a single monitor mode vap.
*/
ath_hal_intrset(ah, sc->sc_imask);
break;
case IEEE80211_M_WDS:
break;
default:
break;
}
/*
* Let the hal process statistics collected during a
* scan so it can provide calibrated noise floor data.
*/
ath_hal_process_noisefloor(ah);
/*
* Reset rssi stats; maybe not the best place...
*/
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
/*
* Finally, start any timers and the task q thread
* (in case we didn't go through SCAN state).
*/
if (ath_longcalinterval != 0) {
/* start periodic recalibration timer */
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
} else {
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: calibration disabled\n", __func__);
}
taskqueue_unblock(sc->sc_tq);
} else if (nstate == IEEE80211_S_INIT) {
/*
* If there are no vaps left in RUN state then
* shutdown host/driver operation:
* o disable interrupts
* o disable the task queue thread
* o mark beacon processing as stopped
*/
if (!ath_isanyrunningvaps(vap)) {
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
/* disable interrupts */
ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
taskqueue_block(sc->sc_tq);
sc->sc_beacons = 0;
}
#ifdef IEEE80211_SUPPORT_TDMA
ath_hal_setcca(ah, AH_TRUE);
#endif
}
bad:
ieee80211_free_node(ni);
return error;
}
/*
* Allocate a key cache slot to the station so we can
* setup a mapping from key index to node. The key cache
* slot is needed for managing antenna state and for
* compression when stations do not use crypto. We do
* it uniliaterally here; if crypto is employed this slot
* will be reassigned.
*/
static void
ath_setup_stationkey(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
ieee80211_keyix keyix, rxkeyix;
/* XXX should take a locked ref to vap->iv_bss */
if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
/*
* Key cache is full; we'll fall back to doing
* the more expensive lookup in software. Note
* this also means no h/w compression.
*/
/* XXX msg+statistic */
} else {
/* XXX locking? */
ni->ni_ucastkey.wk_keyix = keyix;
ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
/* NB: must mark device key to get called back on delete */
ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
/* NB: this will create a pass-thru key entry */
ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
}
}
/*
* Setup driver-specific state for a newly associated node.
* Note that we're called also on a re-associate, the isnew
* param tells us if this is the first time or not.
*/
static void
ath_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ath_node *an = ATH_NODE(ni);
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
const struct ieee80211_txparam *tp = ni->ni_txparms;
an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
ath_rate_newassoc(sc, an, isnew);
if (isnew &&
(vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
ath_setup_stationkey(ni);
}
static int
ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
int nchans, struct ieee80211_channel chans[])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
"%s: rd %u cc %u location %c%s\n",
__func__, reg->regdomain, reg->country, reg->location,
reg->ecm ? " ecm" : "");
status = ath_hal_set_channels(ah, chans, nchans,
reg->country, reg->regdomain);
if (status != HAL_OK) {
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
__func__, status);
return EINVAL; /* XXX */
}
return 0;
}
static void
ath_getradiocaps(struct ieee80211com *ic,
int maxchans, int *nchans, struct ieee80211_channel chans[])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
__func__, SKU_DEBUG, CTRY_DEFAULT);
/* XXX check return */
(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
}
static int
ath_getchannels(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
/*
* Collect channel set based on EEPROM contents.
*/
status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
&ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
if (status != HAL_OK) {
if_printf(ifp, "%s: unable to collect channel list from hal, "
"status %d\n", __func__, status);
return EINVAL;
}
(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
/* XXX map Atheros sku's to net80211 SKU's */
/* XXX net80211 types too small */
ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
ic->ic_regdomain.isocc[1] = ' ';
ic->ic_regdomain.ecm = 1;
ic->ic_regdomain.location = 'I';
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
"%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
__func__, sc->sc_eerd, sc->sc_eecc,
ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
return 0;
}
static int
ath_rate_setup(struct ath_softc *sc, u_int mode)
{
struct ath_hal *ah = sc->sc_ah;
const HAL_RATE_TABLE *rt;
switch (mode) {
case IEEE80211_MODE_11A:
rt = ath_hal_getratetable(ah, HAL_MODE_11A);
break;
case IEEE80211_MODE_HALF:
rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
break;
case IEEE80211_MODE_QUARTER:
rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
break;
case IEEE80211_MODE_11B:
rt = ath_hal_getratetable(ah, HAL_MODE_11B);
break;
case IEEE80211_MODE_11G:
rt = ath_hal_getratetable(ah, HAL_MODE_11G);
break;
case IEEE80211_MODE_TURBO_A:
rt = ath_hal_getratetable(ah, HAL_MODE_108A);
break;
case IEEE80211_MODE_TURBO_G:
rt = ath_hal_getratetable(ah, HAL_MODE_108G);
break;
case IEEE80211_MODE_STURBO_A:
rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
break;
case IEEE80211_MODE_11NA:
rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
break;
case IEEE80211_MODE_11NG:
rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
break;
default:
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
__func__, mode);
return 0;
}
sc->sc_rates[mode] = rt;
return (rt != NULL);
}
static void
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
static const struct {
u_int rate; /* tx/rx 802.11 rate */
u_int16_t timeOn; /* LED on time (ms) */
u_int16_t timeOff; /* LED off time (ms) */
} blinkrates[] = {
{ 108, 40, 10 },
{ 96, 44, 11 },
{ 72, 50, 13 },
{ 48, 57, 14 },
{ 36, 67, 16 },
{ 24, 80, 20 },
{ 22, 100, 25 },
{ 18, 133, 34 },
{ 12, 160, 40 },
{ 10, 200, 50 },
{ 6, 240, 58 },
{ 4, 267, 66 },
{ 2, 400, 100 },
{ 0, 500, 130 },
/* XXX half/quarter rates */
};
const HAL_RATE_TABLE *rt;
int i, j;
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
rt = sc->sc_rates[mode];
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
for (i = 0; i < rt->rateCount; i++) {
uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
if (rt->info[i].phy != IEEE80211_T_HT)
sc->sc_rixmap[ieeerate] = i;
else
sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
}
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
for (i = 0; i < N(sc->sc_hwmap); i++) {
if (i >= rt->rateCount) {
sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
continue;
}
sc->sc_hwmap[i].ieeerate =
rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
if (rt->info[i].phy == IEEE80211_T_HT)
sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
if (rt->info[i].shortPreamble ||
rt->info[i].phy == IEEE80211_T_OFDM)
sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
for (j = 0; j < N(blinkrates)-1; j++)
if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
break;
/* NB: this uses the last entry if the rate isn't found */
/* XXX beware of overlow */
sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
}
sc->sc_currates = rt;
sc->sc_curmode = mode;
/*
* All protection frames are transmited at 2Mb/s for
* 11g, otherwise at 1Mb/s.
*/
if (mode == IEEE80211_MODE_11G)
sc->sc_protrix = ath_tx_findrix(sc, 2*2);
else
sc->sc_protrix = ath_tx_findrix(sc, 2*1);
/* NB: caller is responsible for resetting rate control state */
#undef N
}
static void
ath_watchdog(void *arg)
{
struct ath_softc *sc = arg;
int do_reset = 0;
if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
struct ifnet *ifp = sc->sc_ifp;
uint32_t hangs;
if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
hangs != 0) {
if_printf(ifp, "%s hang detected (0x%x)\n",
hangs & 0xff ? "bb" : "mac", hangs);
} else
if_printf(ifp, "device timeout\n");
do_reset = 1;
ifp->if_oerrors++;
sc->sc_stats.ast_watchdog++;
}
/*
* We can't hold the lock across the ath_reset() call.
*
* And since this routine can't hold a lock and sleep,
* do the reset deferred.
*/
if (do_reset) {
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
}
callout_schedule(&sc->sc_wd_ch, hz);
}
/*
* Fetch the rate control statistics for the given node.
*/
static int
ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
{
struct ath_node *an;
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ieee80211_node *ni;
int error = 0;
/* Perform a lookup on the given node */
ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
if (ni == NULL) {
error = EINVAL;
goto bad;
}
/* Lock the ath_node */
an = ATH_NODE(ni);
ATH_NODE_LOCK(an);
/* Fetch the rate control stats for this node */
error = ath_rate_fetch_node_stats(sc, an, rs);
/* No matter what happens here, just drop through */
/* Unlock the ath_node */
ATH_NODE_UNLOCK(an);
/* Unref the node */
ieee80211_node_decref(ni);
bad:
return (error);
}
#ifdef ATH_DIAGAPI
/*
* Diagnostic interface to the HAL. This is used by various
* tools to do things like retrieve register contents for
* debugging. The mechanism is intentionally opaque so that
* it can change frequently w/o concern for compatiblity.
*/
static int
ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
{
struct ath_hal *ah = sc->sc_ah;
u_int id = ad->ad_id & ATH_DIAG_ID;
void *indata = NULL;
void *outdata = NULL;
u_int32_t insize = ad->ad_in_size;
u_int32_t outsize = ad->ad_out_size;
int error = 0;
if (ad->ad_id & ATH_DIAG_IN) {
/*
* Copy in data.
*/
indata = malloc(insize, M_TEMP, M_NOWAIT);
if (indata == NULL) {
error = ENOMEM;
goto bad;
}
error = copyin(ad->ad_in_data, indata, insize);
if (error)
goto bad;
}
if (ad->ad_id & ATH_DIAG_DYN) {
/*
* Allocate a buffer for the results (otherwise the HAL
* returns a pointer to a buffer where we can read the
* results). Note that we depend on the HAL leaving this
* pointer for us to use below in reclaiming the buffer;
* may want to be more defensive.
*/
outdata = malloc(outsize, M_TEMP, M_NOWAIT);
if (outdata == NULL) {
error = ENOMEM;
goto bad;
}
}
if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
if (outsize < ad->ad_out_size)
ad->ad_out_size = outsize;
if (outdata != NULL)
error = copyout(outdata, ad->ad_out_data,
ad->ad_out_size);
} else {
error = EINVAL;
}
bad:
if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
free(indata, M_TEMP);
if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
free(outdata, M_TEMP);
return error;
}
#endif /* ATH_DIAGAPI */
static int
ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
#define IS_RUNNING(ifp) \
((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *)data;
const HAL_RATE_TABLE *rt;
int error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
ATH_LOCK(sc);
if (IS_RUNNING(ifp)) {
/*
* To avoid rescanning another access point,
* do not call ath_init() here. Instead,
* only reflect promisc mode settings.
*/
ath_mode_init(sc);
} else if (ifp->if_flags & IFF_UP) {
/*
* Beware of being called during attach/detach
* to reset promiscuous mode. In that case we
* will still be marked UP but not RUNNING.
* However trying to re-init the interface
* is the wrong thing to do as we've already
* torn down much of our state. There's
* probably a better way to deal with this.
*/
if (!sc->sc_invalid)
ath_init(sc); /* XXX lose error */
} else {
ath_stop_locked(ifp);
#ifdef notyet
/* XXX must wakeup in places like ath_vap_delete */
if (!sc->sc_invalid)
ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
#endif
}
ATH_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGATHSTATS:
/* NB: embed these numbers to get a consistent view */
sc->sc_stats.ast_tx_packets = ifp->if_opackets;
sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
#ifdef IEEE80211_SUPPORT_TDMA
sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
#endif
rt = sc->sc_currates;
sc->sc_stats.ast_tx_rate =
rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
return copyout(&sc->sc_stats,
ifr->ifr_data, sizeof (sc->sc_stats));
case SIOCGATHAGSTATS:
return copyout(&sc->sc_aggr_stats,
ifr->ifr_data, sizeof (sc->sc_aggr_stats));
case SIOCZATHSTATS:
error = priv_check(curthread, PRIV_DRIVER);
if (error == 0) {
memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
memset(&sc->sc_aggr_stats, 0,
sizeof(sc->sc_aggr_stats));
memset(&sc->sc_intr_stats, 0,
sizeof(sc->sc_intr_stats));
}
break;
#ifdef ATH_DIAGAPI
case SIOCGATHDIAG:
error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
break;
case SIOCGATHPHYERR:
error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
break;
#endif
case SIOCGATHSPECTRAL:
error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
break;
case SIOCGATHNODERATESTATS:
error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
#undef IS_RUNNING
}
/*
* Announce various information on device/driver attach.
*/
static void
ath_announce(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ath_hal *ah = sc->sc_ah;
if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
if (bootverbose) {
int i;
for (i = 0; i <= WME_AC_VO; i++) {
struct ath_txq *txq = sc->sc_ac2q[i];
if_printf(ifp, "Use hw queue %u for %s traffic\n",
txq->axq_qnum, ieee80211_wme_acnames[i]);
}
if_printf(ifp, "Use hw queue %u for CAB traffic\n",
sc->sc_cabq->axq_qnum);
if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
}
if (ath_rxbuf != ATH_RXBUF)
if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
if (ath_txbuf != ATH_TXBUF)
if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
if (sc->sc_mcastkey && bootverbose)
if_printf(ifp, "using multicast key search\n");
}
static void
ath_dfs_tasklet(void *p, int npending)
{
struct ath_softc *sc = (struct ath_softc *) p;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/*
* If previous processing has found a radar event,
* signal this to the net80211 layer to begin DFS
* processing.
*/
if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
/* DFS event found, initiate channel change */
/*
* XXX doesn't currently tell us whether the event
* XXX was found in the primary or extension
* XXX channel!
*/
IEEE80211_LOCK(ic);
ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
IEEE80211_UNLOCK(ic);
}
}
/*
* Enable/disable power save. This must be called with
* no TX driver locks currently held, so it should only
* be called from the RX path (which doesn't hold any
* TX driver locks.)
*/
static void
ath_node_powersave(struct ieee80211_node *ni, int enable)
{
#ifdef ATH_SW_PSQ
struct ath_node *an = ATH_NODE(ni);
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
ATH_NODE_UNLOCK_ASSERT(an);
/* XXX and no TXQ locks should be held here */
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
__func__, ni, enable);
/* Suspend or resume software queue handling */
if (enable)
ath_tx_node_sleep(sc, an);
else
ath_tx_node_wakeup(sc, an);
/* Update net80211 state */
avp->av_node_ps(ni, enable);
#else
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
/* Update net80211 state */
avp->av_node_ps(ni, enable);
#endif/* ATH_SW_PSQ */
}
/*
* Notification from net80211 that the powersave queue state has
* changed.
*
* Since the software queue also may have some frames:
*
* + if the node software queue has frames and the TID state
* is 0, we set the TIM;
* + if the node and the stack are both empty, we clear the TIM bit.
* + If the stack tries to set the bit, always set it.
* + If the stack tries to clear the bit, only clear it if the
* software queue in question is also cleared.
*
* TODO: this is called during node teardown; so let's ensure this
* is all correctly handled and that the TIM bit is cleared.
* It may be that the node flush is called _AFTER_ the net80211
* stack clears the TIM.
*
* Here is the racy part. Since it's possible >1 concurrent,
* overlapping TXes will appear complete with a TX completion in
* another thread, it's possible that the concurrent TIM calls will
* clash. We can't hold the node lock here because setting the
* TIM grabs the net80211 comlock and this may cause a LOR.
* The solution is either to totally serialise _everything_ at
* this point (ie, all TX, completion and any reset/flush go into
* one taskqueue) or a new "ath TIM lock" needs to be created that
* just wraps the driver state change and this call to avp->av_set_tim().
*
* The same race exists in the net80211 power save queue handling
* as well. Since multiple transmitting threads may queue frames
* into the driver, as well as ps-poll and the driver transmitting
* frames (and thus clearing the psq), it's quite possible that
* a packet entering the PSQ and a ps-poll being handled will
* race, causing the TIM to be cleared and not re-set.
*/
static int
ath_node_set_tim(struct ieee80211_node *ni, int enable)
{
#ifdef ATH_SW_PSQ
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_node *an = ATH_NODE(ni);
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
int changed = 0;
ATH_NODE_UNLOCK_ASSERT(an);
/*
* For now, just track and then update the TIM.
*/
ATH_NODE_LOCK(an);
an->an_stack_psq = enable;
/*
* This will get called for all operating modes,
* even if avp->av_set_tim is unset.
* It's currently set for hostap/ibss modes; but
* the same infrastructure is used for both STA
* and AP/IBSS node power save.
*/
if (avp->av_set_tim == NULL) {
ATH_NODE_UNLOCK(an);
return (0);
}
/*
* If setting the bit, always set it here.
* If clearing the bit, only clear it if the
* software queue is also empty.
*
* If the node has left power save, just clear the TIM
* bit regardless of the state of the power save queue.
*
* XXX TODO: although atomics are used, it's quite possible
* that a race will occur between this and setting/clearing
* in another thread. TX completion will occur always in
* one thread, however setting/clearing the TIM bit can come
* from a variety of different process contexts!
*/
if (enable && an->an_tim_set == 1) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, enable=%d, tim_set=1, ignoring\n",
__func__, an, enable);
ATH_NODE_UNLOCK(an);
} else if (enable) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, enable=%d, enabling TIM\n",
__func__, an, enable);
an->an_tim_set = 1;
ATH_NODE_UNLOCK(an);
changed = avp->av_set_tim(ni, enable);
} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
/* disable */
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
__func__, an, enable);
an->an_tim_set = 0;
ATH_NODE_UNLOCK(an);
changed = avp->av_set_tim(ni, enable);
} else if (! an->an_is_powersave) {
/*
* disable regardless; the node isn't in powersave now
*/
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
__func__, an, enable);
an->an_tim_set = 0;
ATH_NODE_UNLOCK(an);
changed = avp->av_set_tim(ni, enable);
} else {
/*
* psq disable, node is currently in powersave, node
* software queue isn't empty, so don't clear the TIM bit
* for now.
*/
ATH_NODE_UNLOCK(an);
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: enable=%d, an_swq_depth > 0, ignoring\n",
__func__, enable);
changed = 0;
}
return (changed);
#else
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
/*
* Some operating modes don't set av_set_tim(), so don't
* update it here.
*/
if (avp->av_set_tim == NULL)
return (0);
return (avp->av_set_tim(ni, enable));
#endif /* ATH_SW_PSQ */
}
/*
* Set or update the TIM from the software queue.
*
* Check the software queue depth before attempting to do lock
* anything; that avoids trying to obtain the lock. Then,
* re-check afterwards to ensure nothing has changed in the
* meantime.
*
* set: This is designed to be called from the TX path, after
* a frame has been queued; to see if the swq > 0.
*
* clear: This is designed to be called from the buffer completion point
* (right now it's ath_tx_default_comp()) where the state of
* a software queue has changed.
*
* It makes sense to place it at buffer free / completion rather
* than after each software queue operation, as there's no real
* point in churning the TIM bit as the last frames in the software
* queue are transmitted. If they fail and we retry them, we'd
* just be setting the TIM bit again anyway.
*/
void
ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
int enable)
{
#ifdef ATH_SW_PSQ
struct ath_node *an;
struct ath_vap *avp;
/* Don't do this for broadcast/etc frames */
if (ni == NULL)
return;
an = ATH_NODE(ni);
avp = ATH_VAP(ni->ni_vap);
/*
* And for operating modes without the TIM handler set, let's
* just skip those.
*/
if (avp->av_set_tim == NULL)
return;
ATH_NODE_UNLOCK_ASSERT(an);
if (enable) {
/*
* Don't bother grabbing the lock unless the queue is not
* empty.
*/
if (atomic_load_acq_int(&an->an_swq_depth) == 0)
return;
ATH_NODE_LOCK(an);
if (an->an_is_powersave &&
an->an_tim_set == 0 &&
atomic_load_acq_int(&an->an_swq_depth) != 0) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, swq_depth>0, tim_set=0, set!\n",
__func__, an);
an->an_tim_set = 1;
ATH_NODE_UNLOCK(an);
(void) avp->av_set_tim(ni, 1);
} else {
ATH_NODE_UNLOCK(an);
}
} else {
/*
* Don't bother grabbing the lock unless the queue is empty.
*/
if (atomic_load_acq_int(&an->an_swq_depth) != 0)
return;
ATH_NODE_LOCK(an);
if (an->an_is_powersave &&
an->an_stack_psq == 0 &&
an->an_tim_set == 1 &&
atomic_load_acq_int(&an->an_swq_depth) == 0) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
" clear!\n",
__func__, an);
an->an_tim_set = 0;
ATH_NODE_UNLOCK(an);
(void) avp->av_set_tim(ni, 0);
} else {
ATH_NODE_UNLOCK(an);
}
}
#else
return;
#endif /* ATH_SW_PSQ */
}
MODULE_VERSION(if_ath, 1);
MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */
#if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
MODULE_DEPEND(if_ath, alq, 1, 1, 1);
#endif