freebsd-nq/sys/dev/random/fortuna.c
Conrad Meyer 13774e8228 random(4): Block read_random(9) on initial seeding
read_random() is/was used, mostly without error checking, in a lot of
very sensitive places in the kernel -- including seeding the widely used
arc4random(9).

Most uses, especially arc4random(9), should block until the device is seeded
rather than proceeding with a bogus or empty seed.  I did not spy any
obvious kernel consumers where blocking would be inappropriate (in the
sense that lack of entropy would be ok -- I did not investigate locking
angle thoroughly).  In many instances, arc4random_buf(9) or that family
of APIs would be more appropriate anyway; that work was done in r345865.

A minor cleanup was made to the implementation of the READ_RANDOM function:
instead of using a variable-length array on the stack to temporarily store
all full random blocks sufficient to satisfy the requested 'len', only store
a single block on the stack.  This has some benefit in terms of reducing
stack usage, reducing memcpy overhead and reducing devrandom output leakage
via the stack.  Additionally, the stack block is now safely zeroed if it was
used.

One caveat of this change is that the kern.arandom sysctl no longer returns
zero bytes immediately if the random device is not seeded.  This means that
FreeBSD-specific userspace applications which attempted to handle an
unseeded random device may be broken by this change.  If such behavior is
needed, it can be replaced by the more portable getrandom(2) GRND_NONBLOCK
option.

On any typical FreeBSD system, entropy is persisted on read/write media and
used to seed the random device very early in boot, and blocking is never a
problem.

This change primarily impacts the behavior of /dev/random on embedded
systems with read-only media that do not configure "nodevice random".  We
toggle the default from 'charge on blindly with no entropy' to 'block
indefinitely.'  This default is safer, but may cause frustration.  Embedded
system designers using FreeBSD have several options.  The most obvious is to
plan to have a small writable NVRAM or NAND to persist entropy, like larger
systems.  Early entropy can be fed from any loader, or by writing directly
to /dev/random during boot.  Some embedded SoCs now provide a fast hardware
entropy source; this would also work for quickly seeding Fortuna.  A 3rd
option would be creating an embedded-specific, more simplistic random
module, like that designed by DJB in [1] (this design still requires a small
rewritable media for forward secrecy).  Finally, the least preferred option
might be "nodevice random", although I plan to remove this in a subsequent
revision.

To help developers emulate the behavior of these embedded systems on
ordinary workstations, the tunable kern.random.block_seeded_status was
added.  When set to 1, it blocks the random device.

I attempted to document this change in random.4 and random.9 and ran into a
bunch of out-of-date or irrelevant or inaccurate content and ended up
rototilling those documents more than I intended to.  Sorry.  I think
they're in a better state now.

PR:		230875
Reviewed by:	delphij, markm (earlier version)
Approved by:	secteam(delphij), devrandom(markm)
Relnotes:	yes
Differential Revision:	https://reviews.freebsd.org/D19744
2019-04-15 18:40:36 +00:00

474 lines
14 KiB
C

/*-
* Copyright (c) 2017 W. Dean Freeman
* Copyright (c) 2013-2015 Mark R V Murray
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* This implementation of Fortuna is based on the descriptions found in
* ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier
* and Kohno ("FS&K").
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/limits.h>
#ifdef _KERNEL
#include <sys/fail.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/sdt.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <machine/cpu.h>
#else /* !_KERNEL */
#include <inttypes.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <threads.h>
#include "unit_test.h"
#endif /* _KERNEL */
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha256.h>
#include <dev/random/hash.h>
#include <dev/random/randomdev.h>
#ifdef _KERNEL
#include <dev/random/random_harvestq.h>
#endif
#include <dev/random/uint128.h>
#include <dev/random/fortuna.h>
/* Defined in FS&K */
#define RANDOM_FORTUNA_NPOOLS 32 /* The number of accumulation pools */
#define RANDOM_FORTUNA_DEFPOOLSIZE 64 /* The default pool size/length for a (re)seed */
#define RANDOM_FORTUNA_MAX_READ (1 << 20) /* Max bytes in a single read */
/*
* The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above.
* Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds,
* and too small may compromise initial security but get faster reseeds.
*/
#define RANDOM_FORTUNA_MINPOOLSIZE 16
#define RANDOM_FORTUNA_MAXPOOLSIZE INT_MAX
CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE);
CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE);
/* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */
CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t));
CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE);
/* Probes for dtrace(1) */
#ifdef _KERNEL
SDT_PROVIDER_DECLARE(random);
SDT_PROVIDER_DEFINE(random);
SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *");
#endif /* _KERNEL */
/*
* This is the beastie that needs protecting. It contains all of the
* state that we are excited about. Exactly one is instantiated.
*/
static struct fortuna_state {
struct fs_pool { /* P_i */
u_int fsp_length; /* Only the first one is used by Fortuna */
struct randomdev_hash fsp_hash;
} fs_pool[RANDOM_FORTUNA_NPOOLS];
u_int fs_reseedcount; /* ReseedCnt */
uint128_t fs_counter; /* C */
union randomdev_key fs_key; /* K */
u_int fs_minpoolsize; /* Extras */
/* Extras for the OS */
#ifdef _KERNEL
/* For use when 'pacing' the reseeds */
sbintime_t fs_lasttime;
#endif
/* Reseed lock */
mtx_t fs_mtx;
} fortuna_state;
#ifdef _KERNEL
static struct sysctl_ctx_list random_clist;
RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE);
#else
static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE];
#endif
static void random_fortuna_pre_read(void);
static void random_fortuna_read(uint8_t *, u_int);
static bool random_fortuna_seeded(void);
static void random_fortuna_process_event(struct harvest_event *);
static void random_fortuna_init_alg(void *);
static void random_fortuna_deinit_alg(void *);
static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount);
struct random_algorithm random_alg_context = {
.ra_ident = "Fortuna",
.ra_init_alg = random_fortuna_init_alg,
.ra_deinit_alg = random_fortuna_deinit_alg,
.ra_pre_read = random_fortuna_pre_read,
.ra_read = random_fortuna_read,
.ra_seeded = random_fortuna_seeded,
.ra_event_processor = random_fortuna_process_event,
.ra_poolcount = RANDOM_FORTUNA_NPOOLS,
};
/* ARGSUSED */
static void
random_fortuna_init_alg(void *unused __unused)
{
int i;
#ifdef _KERNEL
struct sysctl_oid *random_fortuna_o;
#endif
RANDOM_RESEED_INIT_LOCK();
/*
* Fortuna parameters. Do not adjust these unless you have
* have a very good clue about what they do!
*/
fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE;
#ifdef _KERNEL
fortuna_state.fs_lasttime = 0;
random_fortuna_o = SYSCTL_ADD_NODE(&random_clist,
SYSCTL_STATIC_CHILDREN(_kern_random),
OID_AUTO, "fortuna", CTLFLAG_RW, 0,
"Fortuna Parameters");
SYSCTL_ADD_PROC(&random_clist,
SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO,
"minpoolsize", CTLTYPE_UINT | CTLFLAG_RWTUN,
&fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE,
random_check_uint_fs_minpoolsize, "IU",
"Minimum pool size necessary to cause a reseed");
KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup"));
#endif
/*-
* FS&K - InitializePRNG()
* - P_i = \epsilon
* - ReseedCNT = 0
*/
for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
fortuna_state.fs_pool[i].fsp_length = 0;
}
fortuna_state.fs_reseedcount = 0;
/*-
* FS&K - InitializeGenerator()
* - C = 0
* - K = 0
*/
fortuna_state.fs_counter = UINT128_ZERO;
explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key));
}
/* ARGSUSED */
static void
random_fortuna_deinit_alg(void *unused __unused)
{
RANDOM_RESEED_DEINIT_LOCK();
explicit_bzero(&fortuna_state, sizeof(fortuna_state));
#ifdef _KERNEL
sysctl_ctx_free(&random_clist);
#endif
}
/*-
* FS&K - AddRandomEvent()
* Process a single stochastic event off the harvest queue
*/
static void
random_fortuna_process_event(struct harvest_event *event)
{
u_int pl;
RANDOM_RESEED_LOCK();
/*-
* FS&K - P_i = P_i|<harvested stuff>
* Accumulate the event into the appropriate pool
* where each event carries the destination information.
*
* The hash_init() and hash_finish() calls are done in
* random_fortuna_pre_read().
*
* We must be locked against pool state modification which can happen
* during accumulation/reseeding and reading/regating.
*/
pl = event->he_destination % RANDOM_FORTUNA_NPOOLS;
/*
* We ignore low entropy static/counter fields towards the end of the
* he_event structure in order to increase measurable entropy when
* conducting SP800-90B entropy analysis measurements of seed material
* fed into PRNG.
* -- wdf
*/
KASSERT(event->he_size <= sizeof(event->he_entropy),
("%s: event->he_size: %hhu > sizeof(event->he_entropy): %zu\n",
__func__, event->he_size, sizeof(event->he_entropy)));
randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
&event->he_somecounter, sizeof(event->he_somecounter));
randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
event->he_entropy, event->he_size);
/*-
* Don't wrap the length. This is a "saturating" add.
* XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0],
* but it's been useful debugging to see them all.
*/
fortuna_state.fs_pool[pl].fsp_length = MIN(RANDOM_FORTUNA_MAXPOOLSIZE,
fortuna_state.fs_pool[pl].fsp_length +
sizeof(event->he_somecounter) + event->he_size);
explicit_bzero(event, sizeof(*event));
RANDOM_RESEED_UNLOCK();
}
/*-
* FS&K - Reseed()
* This introduces new key material into the output generator.
* Additionally it increments the output generator's counter
* variable C. When C > 0, the output generator is seeded and
* will deliver output.
* The entropy_data buffer passed is a very specific size; the
* product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE.
*/
static void
random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount)
{
struct randomdev_hash context;
uint8_t hash[RANDOM_KEYSIZE];
const void *keymaterial;
size_t keysz;
bool seeded;
RANDOM_RESEED_ASSERT_LOCK_OWNED();
seeded = random_fortuna_seeded();
if (seeded) {
randomdev_getkey(&fortuna_state.fs_key, &keymaterial, &keysz);
KASSERT(keysz == RANDOM_KEYSIZE, ("%s: key size %zu not %u",
__func__, keysz, (unsigned)RANDOM_KEYSIZE));
}
/*-
* FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m))
* - C = C + 1
*/
randomdev_hash_init(&context);
randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE);
if (seeded)
randomdev_hash_iterate(&context, keymaterial, keysz);
randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount);
randomdev_hash_finish(&context, hash);
randomdev_hash_init(&context);
randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE);
randomdev_hash_finish(&context, hash);
randomdev_encrypt_init(&fortuna_state.fs_key, hash);
explicit_bzero(hash, sizeof(hash));
/* Unblock the device if this is the first time we are reseeding. */
if (uint128_is_zero(fortuna_state.fs_counter))
randomdev_unblock();
uint128_increment(&fortuna_state.fs_counter);
}
/*-
* FS&K - GenerateBlocks()
* Generate a number of complete blocks of random output.
*/
static __inline void
random_fortuna_genblocks(uint8_t *buf, u_int blockcount)
{
RANDOM_RESEED_ASSERT_LOCK_OWNED();
KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0"));
/*
* Fills buf with RANDOM_BLOCKSIZE * blockcount bytes of keystream.
* Increments fs_counter as it goes.
*/
randomdev_keystream(&fortuna_state.fs_key, &fortuna_state.fs_counter,
buf, blockcount);
}
/*-
* FS&K - PseudoRandomData()
* This generates no more than 2^20 bytes of data, and cleans up its
* internal state when finished. It is assumed that a whole number of
* blocks are available for writing; any excess generated will be
* ignored.
*/
static __inline void
random_fortuna_genrandom(uint8_t *buf, u_int bytecount)
{
uint8_t temp[RANDOM_BLOCKSIZE * RANDOM_KEYS_PER_BLOCK];
u_int blockcount;
RANDOM_RESEED_ASSERT_LOCK_OWNED();
/*-
* FS&K - assert(n < 2^20 (== 1 MB)
* - r = first-n-bytes(GenerateBlocks(ceil(n/16)))
* - K = GenerateBlocks(2)
*/
KASSERT((bytecount <= RANDOM_FORTUNA_MAX_READ), ("invalid single read request to Fortuna of %d bytes", bytecount));
blockcount = howmany(bytecount, RANDOM_BLOCKSIZE);
random_fortuna_genblocks(buf, blockcount);
random_fortuna_genblocks(temp, RANDOM_KEYS_PER_BLOCK);
randomdev_encrypt_init(&fortuna_state.fs_key, temp);
explicit_bzero(temp, sizeof(temp));
}
/*-
* FS&K - RandomData() (Part 1)
* Used to return processed entropy from the PRNG. There is a pre_read
* required to be present (but it can be a stub) in order to allow
* specific actions at the begin of the read.
*/
void
random_fortuna_pre_read(void)
{
#ifdef _KERNEL
sbintime_t now;
#endif
struct randomdev_hash context;
uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS];
uint8_t temp[RANDOM_KEYSIZE];
u_int i;
KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0"));
RANDOM_RESEED_LOCK();
#ifdef _KERNEL
/* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
now = getsbinuptime();
#endif
if (fortuna_state.fs_pool[0].fsp_length < fortuna_state.fs_minpoolsize
#ifdef _KERNEL
/* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
|| (now - fortuna_state.fs_lasttime <= SBT_1S/10)
#endif
) {
RANDOM_RESEED_UNLOCK();
return;
}
#ifdef _KERNEL
/*
* When set, pretend we do not have enough entropy to reseed yet.
*/
KFAIL_POINT_CODE(DEBUG_FP, random_fortuna_pre_read, {
if (RETURN_VALUE != 0) {
RANDOM_RESEED_UNLOCK();
return;
}
});
#endif
#ifdef _KERNEL
fortuna_state.fs_lasttime = now;
#endif
/* FS&K - ReseedCNT = ReseedCNT + 1 */
fortuna_state.fs_reseedcount++;
/* s = \epsilon at start */
for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
/* FS&K - if Divides(ReseedCnt, 2^i) ... */
if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) {
/*-
* FS&K - temp = (P_i)
* - P_i = \epsilon
* - s = s|H(temp)
*/
randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp);
randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
fortuna_state.fs_pool[i].fsp_length = 0;
randomdev_hash_init(&context);
randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE);
randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS);
} else
break;
}
#ifdef _KERNEL
SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool);
#endif
/* FS&K */
random_fortuna_reseed_internal(s, i);
RANDOM_RESEED_UNLOCK();
/* Clean up and secure */
explicit_bzero(s, sizeof(s));
explicit_bzero(temp, sizeof(temp));
}
/*-
* FS&K - RandomData() (Part 2)
* Main read from Fortuna, continued. May be called multiple times after
* the random_fortuna_pre_read() above.
* The supplied buf MUST be a multiple of RANDOM_BLOCKSIZE in size.
* Lots of code presumes this for efficiency, both here and in other
* routines. You are NOT allowed to break this!
*/
void
random_fortuna_read(uint8_t *buf, u_int bytecount)
{
KASSERT((bytecount % RANDOM_BLOCKSIZE) == 0, ("%s(): bytecount (= %d) must be a multiple of %d", __func__, bytecount, RANDOM_BLOCKSIZE ));
RANDOM_RESEED_LOCK();
random_fortuna_genrandom(buf, bytecount);
RANDOM_RESEED_UNLOCK();
}
#ifdef _KERNEL
static bool block_seeded_status = false;
SYSCTL_BOOL(_kern_random, OID_AUTO, block_seeded_status, CTLFLAG_RWTUN,
&block_seeded_status, 0,
"If non-zero, pretend Fortuna is in an unseeded state. By setting "
"this as a tunable, boot can be tested as if the random device is "
"unavailable.");
#endif
bool
random_fortuna_seeded(void)
{
#ifdef _KERNEL
if (block_seeded_status)
return (false);
#endif
return (!uint128_is_zero(fortuna_state.fs_counter));
}