freebsd-nq/sys/contrib/octeon-sdk/cvmx-compactflash.c
Juli Mallett dc4ee6ca91 Merge the Cavium Octeon SDK 2.3.0 Simple Executive code and update FreeBSD to
make use of it where possible.

This primarily brings in support for newer hardware, and FreeBSD is not yet
able to support the abundance of IRQs on new hardware and many features in the
Ethernet driver.

Because of the changes to IRQs in the Simple Executive, we have to maintain our
own list of Octeon IRQs now, which probably can be pared-down and be specific
to the CIU interrupt unit soon, and when other interrupt mechanisms are added
they can maintain their own definitions.

Remove unmasking of interrupts from within the UART device now that the
function used is no longer present in the Simple Executive.  The unmasking
seems to have been gratuitous as this is more properly handled by the buses
above the UART device, and seems to work on that basis.
2012-03-11 06:17:49 +00:00

434 lines
13 KiB
C

/***********************license start***************
* Copyright (c) 2003-2010 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
#include "cvmx.h"
#include "cvmx-sysinfo.h"
#include "cvmx-compactflash.h"
#ifndef MAX
#define MAX(a,b) (((a)>(b))?(a):(b))
#endif
#define FLASH_RoundUP(_Dividend, _Divisor) (((_Dividend)+(_Divisor-1))/(_Divisor))
/**
* Convert nanosecond based time to setting used in the
* boot bus timing register, based on timing multiple
*
*
*/
static uint32_t ns_to_tim_reg(int tim_mult, uint32_t nsecs)
{
uint32_t val;
/* Compute # of eclock periods to get desired duration in nanoseconds */
val = FLASH_RoundUP(nsecs * (cvmx_clock_get_rate(CVMX_CLOCK_SCLK)/1000000), 1000);
/* Factor in timing multiple, if not 1 */
if (tim_mult != 1)
val = FLASH_RoundUP(val, tim_mult);
return (val);
}
uint64_t cvmx_compactflash_generate_dma_tim(int tim_mult, uint16_t *ident_data, int *mwdma_mode_ptr)
{
cvmx_mio_boot_dma_timx_t dma_tim;
int oe_a;
int oe_n;
int dma_acks;
int dma_ackh;
int dma_arq;
int pause;
int To,Tkr,Td;
int mwdma_mode = -1;
uint16_t word53_field_valid;
uint16_t word63_mwdma;
uint16_t word163_adv_timing_info;
if (!ident_data)
return 0;
word53_field_valid = ident_data[53];
word63_mwdma = ident_data[63];
word163_adv_timing_info = ident_data[163];
dma_tim.u64 = 0;
/* Check for basic MWDMA modes */
if (word53_field_valid & 0x2)
{
if (word63_mwdma & 0x4)
mwdma_mode = 2;
else if (word63_mwdma & 0x2)
mwdma_mode = 1;
else if (word63_mwdma & 0x1)
mwdma_mode = 0;
}
/* Check for advanced MWDMA modes */
switch ((word163_adv_timing_info >> 3) & 0x7)
{
case 1:
mwdma_mode = 3;
break;
case 2:
mwdma_mode = 4;
break;
default:
break;
}
/* DMA is not supported by this card */
if (mwdma_mode < 0)
return 0;
/* Now set up the DMA timing */
switch (tim_mult)
{
case 1:
dma_tim.s.tim_mult = 1;
break;
case 2:
dma_tim.s.tim_mult = 2;
break;
case 4:
dma_tim.s.tim_mult = 0;
break;
case 8:
dma_tim.s.tim_mult = 3;
break;
default:
cvmx_dprintf("ERROR: invalid boot bus dma tim_mult setting\n");
break;
}
switch (mwdma_mode)
{
case 4:
To = 80;
Td = 55;
Tkr = 20;
oe_a = Td + 20; // Td (Seem to need more margin here....
oe_n = MAX(To - oe_a, Tkr); // Tkr from cf spec, lengthened to meet To
// oe_n + oe_h must be >= To (cycle time)
dma_acks = 0; //Ti
dma_ackh = 5; // Tj
dma_arq = 8; // not spec'ed, value in eclocks, not affected by tim_mult
pause = 25 - dma_arq * 1000/(cvmx_clock_get_rate(CVMX_CLOCK_SCLK)/1000000); // Tz
break;
case 3:
To = 100;
Td = 65;
Tkr = 20;
oe_a = Td + 20; // Td (Seem to need more margin here....
oe_n = MAX(To - oe_a, Tkr); // Tkr from cf spec, lengthened to meet To
// oe_n + oe_h must be >= To (cycle time)
dma_acks = 0; //Ti
dma_ackh = 5; // Tj
dma_arq = 8; // not spec'ed, value in eclocks, not affected by tim_mult
pause = 25 - dma_arq * 1000/(cvmx_clock_get_rate(CVMX_CLOCK_SCLK)/1000000); // Tz
break;
case 2:
// +20 works
// +10 works
// + 10 + 0 fails
// n=40, a=80 works
To = 120;
Td = 70;
Tkr = 25;
// oe_a 0 fudge doesn't work; 10 seems to
oe_a = Td + 20 + 10; // Td (Seem to need more margin here....
oe_n = MAX(To - oe_a, Tkr) + 10; // Tkr from cf spec, lengthened to meet To
// oe_n 0 fudge fails;;; 10 boots
// 20 ns fudge needed on dma_acks
// oe_n + oe_h must be >= To (cycle time)
dma_acks = 0 + 20; //Ti
dma_ackh = 5; // Tj
dma_arq = 8; // not spec'ed, value in eclocks, not affected by tim_mult
pause = 25 - dma_arq * 1000/(cvmx_clock_get_rate(CVMX_CLOCK_SCLK)/1000000); // Tz
// no fudge needed on pause
break;
case 1:
case 0:
default:
cvmx_dprintf("ERROR: Unsupported DMA mode: %d\n", mwdma_mode);
return(-1);
break;
}
if (mwdma_mode_ptr)
*mwdma_mode_ptr = mwdma_mode;
dma_tim.s.dmack_pi = 1;
dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, dma_acks);
dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
dma_tim.s.dmarq = dma_arq;
dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
dma_tim.s.rd_dly = 0; /* Sample right on edge */
/* writes only */
dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
#if 0
cvmx_dprintf("ns to ticks (mult %d) of %d is: %d\n", TIM_MULT, 60, ns_to_tim_reg(60));
cvmx_dprintf("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
#endif
return(dma_tim.u64);
}
/**
* Setup timing and region config to support a specific IDE PIO
* mode over the bootbus.
*
* @param cs0 Bootbus region number connected to CS0 on the IDE device
* @param cs1 Bootbus region number connected to CS1 on the IDE device
* @param pio_mode PIO mode to set (0-6)
*/
void cvmx_compactflash_set_piomode(int cs0, int cs1, int pio_mode)
{
cvmx_mio_boot_reg_cfgx_t mio_boot_reg_cfg;
cvmx_mio_boot_reg_timx_t mio_boot_reg_tim;
int cs;
int clocks_us; /* Number of clock cycles per microsec */
int tim_mult;
int use_iordy; /* Set for PIO0-4, not set for PIO5-6 */
int t1; /* These t names are timing parameters from the ATA spec */
int t2;
int t2i;
int t4;
int t6;
int t6z;
int t9;
/* PIO modes 0-4 all allow the device to deassert IORDY to slow down
the host */
use_iordy = 1;
/* Use the PIO mode to determine timing parameters */
switch(pio_mode) {
case 6:
/* CF spec say IORDY should be ignore in PIO 5 */
use_iordy = 0;
t1 = 10;
t2 = 55;
t2i = 20;
t4 = 5;
t6 = 5;
t6z = 20;
t9 = 10;
break;
case 5:
/* CF spec say IORDY should be ignore in PIO 6 */
use_iordy = 0;
t1 = 15;
t2 = 65;
t2i = 25;
t4 = 5;
t6 = 5;
t6z = 20;
t9 = 10;
break;
case 4:
t1 = 25;
t2 = 70;
t2i = 25;
t4 = 10;
t6 = 5;
t6z = 30;
t9 = 10;
break;
case 3:
t1 = 30;
t2 = 80;
t2i = 70;
t4 = 10;
t6 = 5;
t6z = 30;
t9 = 10;
break;
case 2:
t1 = 30;
t2 = 100;
t2i = 0;
t4 = 15;
t6 = 5;
t6z = 30;
t9 = 10;
break;
case 1:
t1 = 50;
t2 = 125;
t2i = 0;
t4 = 20;
t6 = 5;
t6z = 30;
t9 = 15;
break;
default:
t1 = 70;
t2 = 165;
t2i = 0;
t4 = 30;
t6 = 5;
t6z = 30;
t9 = 20;
break;
}
/* Convert times in ns to clock cycles, rounding up */
clocks_us = FLASH_RoundUP(cvmx_clock_get_rate(CVMX_CLOCK_SCLK), 1000000);
/* Convert times in clock cycles, rounding up. Octeon parameters are in
minus one notation, so take off one after the conversion */
t1 = FLASH_RoundUP(t1 * clocks_us, 1000);
if (t1)
t1--;
t2 = FLASH_RoundUP(t2 * clocks_us, 1000);
if (t2)
t2--;
t2i = FLASH_RoundUP(t2i * clocks_us, 1000);
if (t2i)
t2i--;
t4 = FLASH_RoundUP(t4 * clocks_us, 1000);
if (t4)
t4--;
t6 = FLASH_RoundUP(t6 * clocks_us, 1000);
if (t6)
t6--;
t6z = FLASH_RoundUP(t6z * clocks_us, 1000);
if (t6z)
t6z--;
t9 = FLASH_RoundUP(t9 * clocks_us, 1000);
if (t9)
t9--;
/* Start using a scale factor of one cycle. Keep doubling it until
the parameters fit in their fields. Since t2 is the largest number,
we only need to check it */
tim_mult = 1;
while (t2 >= 1<<6)
{
t1 = FLASH_RoundUP(t1, 2);
t2 = FLASH_RoundUP(t2, 2);
t2i = FLASH_RoundUP(t2i, 2);
t4 = FLASH_RoundUP(t4, 2);
t6 = FLASH_RoundUP(t6, 2);
t6z = FLASH_RoundUP(t6z, 2);
t9 = FLASH_RoundUP(t9, 2);
tim_mult *= 2;
}
cs = cs0;
do {
mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
mio_boot_reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
switch(tim_mult) {
case 1:
mio_boot_reg_cfg.s.tim_mult = 1;
break;
case 2:
mio_boot_reg_cfg.s.tim_mult = 2;
break;
case 4:
mio_boot_reg_cfg.s.tim_mult = 0;
break;
case 8:
default:
mio_boot_reg_cfg.s.tim_mult = 3;
break;
}
mio_boot_reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
mio_boot_reg_cfg.s.sam = 0; /* Don't combine write and output enable */
mio_boot_reg_cfg.s.we_ext = 0; /* No write enable extension */
mio_boot_reg_cfg.s.oe_ext = 0; /* No read enable extension */
mio_boot_reg_cfg.s.en = 1; /* Enable this region */
mio_boot_reg_cfg.s.orbit = 0; /* Don't combine with previos region */
mio_boot_reg_cfg.s.width = 1; /* 16 bits wide */
cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), mio_boot_reg_cfg.u64);
if(cs == cs0)
cs = cs1;
else
cs = cs0;
} while(cs != cs0);
mio_boot_reg_tim.u64 = 0;
mio_boot_reg_tim.s.pagem = 0; /* Disable page mode */
mio_boot_reg_tim.s.waitm = use_iordy; /* Enable dynamic timing */
mio_boot_reg_tim.s.pages = 0; /* Pages are disabled */
mio_boot_reg_tim.s.ale = 8; /* If someone uses ALE, this seems to work */
mio_boot_reg_tim.s.page = 0; /* Not used */
mio_boot_reg_tim.s.wait = 0; /* Time after IORDY to coninue to assert the data */
mio_boot_reg_tim.s.pause = 0; /* Time after CE that signals stay valid */
mio_boot_reg_tim.s.wr_hld = t9; /* How long to hold after a write */
mio_boot_reg_tim.s.rd_hld = t9; /* How long to wait after a read for device to tristate */
mio_boot_reg_tim.s.we = t2; /* How long write enable is asserted */
mio_boot_reg_tim.s.oe = t2; /* How long read enable is asserted */
mio_boot_reg_tim.s.ce = t1; /* Time after CE that read/write starts */
mio_boot_reg_tim.s.adr = 1; /* Time before CE that address is valid */
/* Program the bootbus region timing for both chip selects */
cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs0), mio_boot_reg_tim.u64);
cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs1), mio_boot_reg_tim.u64);
}