freebsd-nq/sys/dev/usb/input/atp.c
Matthew D Fleming 6dc7dc9a3e sysctl(9) cleanup checkpoint: amd64 GENERIC builds cleanly.
Commit the rest of the devices.
2011-01-12 19:53:56 +00:00

2226 lines
64 KiB
C

/*-
* Copyright (c) 2009 Rohit Grover
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/selinfo.h>
#include <sys/poll.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbhid.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR atp_debug
#include <dev/usb/usb_debug.h>
#include <sys/mouse.h>
#define ATP_DRIVER_NAME "atp"
/*
* Driver specific options: the following options may be set by
* `options' statements in the kernel configuration file.
*/
/* The multiplier used to translate sensor reported positions to mickeys. */
#ifndef ATP_SCALE_FACTOR
#define ATP_SCALE_FACTOR 48
#endif
/*
* This is the age (in microseconds) beyond which a touch is
* considered to be a slide; and therefore a tap event isn't registered.
*/
#ifndef ATP_TOUCH_TIMEOUT
#define ATP_TOUCH_TIMEOUT 125000
#endif
/*
* A double-tap followed by a single-finger slide is treated as a
* special gesture. The driver responds to this gesture by assuming a
* virtual button-press for the lifetime of the slide. The following
* threshold is the maximum time gap (in microseconds) between the two
* tap events preceding the slide for such a gesture.
*/
#ifndef ATP_DOUBLE_TAP_N_DRAG_THRESHOLD
#define ATP_DOUBLE_TAP_N_DRAG_THRESHOLD 200000
#endif
/*
* The device provides us only with pressure readings from an array of
* X and Y sensors; for our algorithms, we need to interpret groups
* (typically pairs) of X and Y readings as being related to a single
* finger stroke. We can relate X and Y readings based on their times
* of incidence. The coincidence window should be at least 10000us
* since it is used against values from getmicrotime(), which has a
* precision of around 10ms.
*/
#ifndef ATP_COINCIDENCE_THRESHOLD
#define ATP_COINCIDENCE_THRESHOLD 40000 /* unit: microseconds */
#if ATP_COINCIDENCE_THRESHOLD > 100000
#error "ATP_COINCIDENCE_THRESHOLD too large"
#endif
#endif /* #ifndef ATP_COINCIDENCE_THRESHOLD */
/*
* The wait duration (in microseconds) after losing a touch contact
* before zombied strokes are reaped and turned into button events.
*/
#define ATP_ZOMBIE_STROKE_REAP_WINDOW 50000
#if ATP_ZOMBIE_STROKE_REAP_WINDOW > 100000
#error "ATP_ZOMBIE_STROKE_REAP_WINDOW too large"
#endif
/* end of driver specific options */
/* Tunables */
SYSCTL_NODE(_hw_usb, OID_AUTO, atp, CTLFLAG_RW, 0, "USB atp");
#ifdef USB_DEBUG
enum atp_log_level {
ATP_LLEVEL_DISABLED = 0,
ATP_LLEVEL_ERROR,
ATP_LLEVEL_DEBUG, /* for troubleshooting */
ATP_LLEVEL_INFO, /* for diagnostics */
};
static int atp_debug = ATP_LLEVEL_ERROR; /* the default is to only log errors */
SYSCTL_INT(_hw_usb_atp, OID_AUTO, debug, CTLFLAG_RW,
&atp_debug, ATP_LLEVEL_ERROR, "ATP debug level");
#endif /* USB_DEBUG */
static u_int atp_touch_timeout = ATP_TOUCH_TIMEOUT;
SYSCTL_UINT(_hw_usb_atp, OID_AUTO, touch_timeout, CTLFLAG_RW,
&atp_touch_timeout, 125000, "age threshold (in micros) for a touch");
static u_int atp_double_tap_threshold = ATP_DOUBLE_TAP_N_DRAG_THRESHOLD;
SYSCTL_UINT(_hw_usb_atp, OID_AUTO, double_tap_threshold, CTLFLAG_RW,
&atp_double_tap_threshold, ATP_DOUBLE_TAP_N_DRAG_THRESHOLD,
"maximum time (in micros) between a double-tap");
static u_int atp_mickeys_scale_factor = ATP_SCALE_FACTOR;
static int atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_hw_usb_atp, OID_AUTO, scale_factor, CTLTYPE_UINT | CTLFLAG_RW,
&atp_mickeys_scale_factor, sizeof(atp_mickeys_scale_factor),
atp_sysctl_scale_factor_handler, "IU", "movement scale factor");
static u_int atp_small_movement_threshold = ATP_SCALE_FACTOR >> 3;
SYSCTL_UINT(_hw_usb_atp, OID_AUTO, small_movement, CTLFLAG_RW,
&atp_small_movement_threshold, ATP_SCALE_FACTOR >> 3,
"the small movement black-hole for filtering noise");
/*
* The movement threshold for a stroke; this is the maximum difference
* in position which will be resolved as a continuation of a stroke
* component.
*/
static u_int atp_max_delta_mickeys = ((3 * ATP_SCALE_FACTOR) >> 1);
SYSCTL_UINT(_hw_usb_atp, OID_AUTO, max_delta_mickeys, CTLFLAG_RW,
&atp_max_delta_mickeys, ((3 * ATP_SCALE_FACTOR) >> 1),
"max. mickeys-delta which will match against an existing stroke");
/*
* Strokes which accumulate at least this amount of absolute movement
* from the aggregate of their components are considered as
* slides. Unit: mickeys.
*/
static u_int atp_slide_min_movement = (ATP_SCALE_FACTOR >> 3);
SYSCTL_UINT(_hw_usb_atp, OID_AUTO, slide_min_movement, CTLFLAG_RW,
&atp_slide_min_movement, (ATP_SCALE_FACTOR >> 3),
"strokes with at least this amt. of movement are considered slides");
/*
* The minimum age of a stroke for it to be considered mature; this
* helps filter movements (noise) from immature strokes. Units: interrupts.
*/
static u_int atp_stroke_maturity_threshold = 2;
SYSCTL_UINT(_hw_usb_atp, OID_AUTO, stroke_maturity_threshold, CTLFLAG_RW,
&atp_stroke_maturity_threshold, 2,
"the minimum age of a stroke for it to be considered mature");
/* Accept pressure readings from sensors only if above this value. */
static u_int atp_sensor_noise_threshold = 2;
SYSCTL_UINT(_hw_usb_atp, OID_AUTO, sensor_noise_threshold, CTLFLAG_RW,
&atp_sensor_noise_threshold, 2,
"accept pressure readings from sensors only if above this value");
/* Ignore pressure spans with cumulative press. below this value. */
static u_int atp_pspan_min_cum_pressure = 10;
SYSCTL_UINT(_hw_usb_atp, OID_AUTO, pspan_min_cum_pressure, CTLFLAG_RW,
&atp_pspan_min_cum_pressure, 10,
"ignore pressure spans with cumulative press. below this value");
/* Maximum allowed width for pressure-spans.*/
static u_int atp_pspan_max_width = 4;
SYSCTL_UINT(_hw_usb_atp, OID_AUTO, pspan_max_width, CTLFLAG_RW,
&atp_pspan_max_width, 4,
"maximum allowed width (in sensors) for pressure-spans");
/* We support three payload protocols */
typedef enum {
ATP_PROT_GEYSER1,
ATP_PROT_GEYSER2,
ATP_PROT_GEYSER3,
} atp_protocol;
/* Define the various flavours of devices supported by this driver. */
enum {
ATP_DEV_PARAMS_0,
ATP_DEV_PARAMS_PBOOK,
ATP_DEV_PARAMS_PBOOK_15A,
ATP_DEV_PARAMS_PBOOK_17,
ATP_N_DEV_PARAMS
};
struct atp_dev_params {
u_int data_len; /* for sensor data */
u_int n_xsensors;
u_int n_ysensors;
atp_protocol prot;
} atp_dev_params[ATP_N_DEV_PARAMS] = {
[ATP_DEV_PARAMS_0] = {
.data_len = 64,
.n_xsensors = 20,
.n_ysensors = 10,
.prot = ATP_PROT_GEYSER3
},
[ATP_DEV_PARAMS_PBOOK] = {
.data_len = 81,
.n_xsensors = 16,
.n_ysensors = 16,
.prot = ATP_PROT_GEYSER1
},
[ATP_DEV_PARAMS_PBOOK_15A] = {
.data_len = 64,
.n_xsensors = 15,
.n_ysensors = 9,
.prot = ATP_PROT_GEYSER2
},
[ATP_DEV_PARAMS_PBOOK_17] = {
.data_len = 81,
.n_xsensors = 26,
.n_ysensors = 16,
.prot = ATP_PROT_GEYSER1
},
};
static const struct usb_device_id atp_devs[] = {
/* Core Duo MacBook & MacBook Pro */
{ USB_VPI(USB_VENDOR_APPLE, 0x0217, ATP_DEV_PARAMS_0) },
{ USB_VPI(USB_VENDOR_APPLE, 0x0218, ATP_DEV_PARAMS_0) },
{ USB_VPI(USB_VENDOR_APPLE, 0x0219, ATP_DEV_PARAMS_0) },
/* Core2 Duo MacBook & MacBook Pro */
{ USB_VPI(USB_VENDOR_APPLE, 0x021a, ATP_DEV_PARAMS_0) },
{ USB_VPI(USB_VENDOR_APPLE, 0x021b, ATP_DEV_PARAMS_0) },
{ USB_VPI(USB_VENDOR_APPLE, 0x021c, ATP_DEV_PARAMS_0) },
/* Core2 Duo MacBook3,1 */
{ USB_VPI(USB_VENDOR_APPLE, 0x0229, ATP_DEV_PARAMS_0) },
{ USB_VPI(USB_VENDOR_APPLE, 0x022a, ATP_DEV_PARAMS_0) },
{ USB_VPI(USB_VENDOR_APPLE, 0x022b, ATP_DEV_PARAMS_0) },
/* 12 inch PowerBook and iBook */
{ USB_VPI(USB_VENDOR_APPLE, 0x030a, ATP_DEV_PARAMS_PBOOK) },
{ USB_VPI(USB_VENDOR_APPLE, 0x030b, ATP_DEV_PARAMS_PBOOK) },
/* 15 inch PowerBook */
{ USB_VPI(USB_VENDOR_APPLE, 0x020e, ATP_DEV_PARAMS_PBOOK) },
{ USB_VPI(USB_VENDOR_APPLE, 0x020f, ATP_DEV_PARAMS_PBOOK) },
{ USB_VPI(USB_VENDOR_APPLE, 0x0215, ATP_DEV_PARAMS_PBOOK_15A) },
/* 17 inch PowerBook */
{ USB_VPI(USB_VENDOR_APPLE, 0x020d, ATP_DEV_PARAMS_PBOOK_17) },
};
/*
* The following structure captures the state of a pressure span along
* an axis. Each contact with the touchpad results in separate
* pressure spans along the two axes.
*/
typedef struct atp_pspan {
u_int width; /* in units of sensors */
u_int cum; /* cumulative compression (from all sensors) */
u_int cog; /* center of gravity */
u_int loc; /* location (scaled using the mickeys factor) */
boolean_t matched; /* to track pspans as they match against strokes. */
} atp_pspan;
typedef enum atp_stroke_type {
ATP_STROKE_TOUCH,
ATP_STROKE_SLIDE,
} atp_stroke_type;
#define ATP_MAX_PSPANS_PER_AXIS 3
typedef struct atp_stroke_component {
/* Fields encapsulating the pressure-span. */
u_int loc; /* location (scaled) */
u_int cum_pressure; /* cumulative compression */
u_int max_cum_pressure; /* max cumulative compression */
boolean_t matched; /*to track components as they match against pspans.*/
/* Fields containing information about movement. */
int delta_mickeys; /* change in location (un-smoothened movement)*/
int pending; /* cum. of pending short movements */
int movement; /* current smoothened movement */
} atp_stroke_component;
typedef enum atp_axis {
X = 0,
Y = 1
} atp_axis;
#define ATP_MAX_STROKES (2 * ATP_MAX_PSPANS_PER_AXIS)
/*
* The following structure captures a finger contact with the
* touchpad. A stroke comprises two p-span components and some state.
*/
typedef struct atp_stroke {
atp_stroke_type type;
struct timeval ctime; /* create time; for coincident siblings. */
u_int age; /*
* Unit: interrupts; we maintain
* this value in addition to
* 'ctime' in order to avoid the
* expensive call to microtime()
* at every interrupt.
*/
atp_stroke_component components[2];
u_int velocity_squared; /*
* Average magnitude (squared)
* of recent velocity.
*/
u_int cum_movement; /* cum. absolute movement so far */
uint32_t flags; /* the state of this stroke */
#define ATSF_ZOMBIE 0x1
} atp_stroke;
#define ATP_FIFO_BUF_SIZE 8 /* bytes */
#define ATP_FIFO_QUEUE_MAXLEN 50 /* units */
enum {
ATP_INTR_DT,
ATP_RESET,
ATP_N_TRANSFER,
};
struct atp_softc {
device_t sc_dev;
struct usb_device *sc_usb_device;
#define MODE_LENGTH 8
char sc_mode_bytes[MODE_LENGTH]; /* device mode */
struct mtx sc_mutex; /* for synchronization */
struct usb_xfer *sc_xfer[ATP_N_TRANSFER];
struct usb_fifo_sc sc_fifo;
struct atp_dev_params *sc_params;
mousehw_t sc_hw;
mousemode_t sc_mode;
u_int sc_pollrate;
mousestatus_t sc_status;
u_int sc_state;
#define ATP_ENABLED 0x01
#define ATP_ZOMBIES_EXIST 0x02
#define ATP_DOUBLE_TAP_DRAG 0x04
#define ATP_VALID 0x08
u_int sc_left_margin;
u_int sc_right_margin;
atp_stroke sc_strokes[ATP_MAX_STROKES];
u_int sc_n_strokes;
int8_t *sensor_data; /* from interrupt packet */
int *base_x; /* base sensor readings */
int *base_y;
int *cur_x; /* current sensor readings */
int *cur_y;
int *pressure_x; /* computed pressures */
int *pressure_y;
u_int sc_idlecount; /* preceding idle interrupts */
#define ATP_IDLENESS_THRESHOLD 10
struct timeval sc_reap_time;
struct timeval sc_reap_ctime; /*ctime of siblings to be reaped*/
};
/*
* The last byte of the sensor data contains status bits; the
* following values define the meanings of these bits.
*/
enum atp_status_bits {
ATP_STATUS_BUTTON = (uint8_t)0x01, /* The button was pressed */
ATP_STATUS_BASE_UPDATE = (uint8_t)0x04, /* Data from an untouched pad.*/
};
typedef enum interface_mode {
RAW_SENSOR_MODE = (uint8_t)0x04,
HID_MODE = (uint8_t)0x08
} interface_mode;
/*
* function prototypes
*/
static usb_fifo_cmd_t atp_start_read;
static usb_fifo_cmd_t atp_stop_read;
static usb_fifo_open_t atp_open;
static usb_fifo_close_t atp_close;
static usb_fifo_ioctl_t atp_ioctl;
static struct usb_fifo_methods atp_fifo_methods = {
.f_open = &atp_open,
.f_close = &atp_close,
.f_ioctl = &atp_ioctl,
.f_start_read = &atp_start_read,
.f_stop_read = &atp_stop_read,
.basename[0] = ATP_DRIVER_NAME,
};
/* device initialization and shutdown */
static usb_error_t atp_req_get_report(struct usb_device *udev, void *data);
static int atp_set_device_mode(device_t dev, interface_mode mode);
static void atp_reset_callback(struct usb_xfer *, usb_error_t);
static int atp_enable(struct atp_softc *sc);
static void atp_disable(struct atp_softc *sc);
static int atp_softc_populate(struct atp_softc *);
static void atp_softc_unpopulate(struct atp_softc *);
/* sensor interpretation */
static __inline void atp_interpret_sensor_data(const int8_t *, u_int, atp_axis,
int *, atp_protocol);
static __inline void atp_get_pressures(int *, const int *, const int *, int);
static void atp_detect_pspans(int *, u_int, u_int, atp_pspan *,
u_int *);
/* movement detection */
static boolean_t atp_match_stroke_component(atp_stroke_component *,
const atp_pspan *, atp_stroke_type);
static void atp_match_strokes_against_pspans(struct atp_softc *,
atp_axis, atp_pspan *, u_int, u_int);
static boolean_t atp_update_strokes(struct atp_softc *,
atp_pspan *, u_int, atp_pspan *, u_int);
static __inline void atp_add_stroke(struct atp_softc *, const atp_pspan *,
const atp_pspan *);
static void atp_add_new_strokes(struct atp_softc *, atp_pspan *,
u_int, atp_pspan *, u_int);
static void atp_advance_stroke_state(struct atp_softc *,
atp_stroke *, boolean_t *);
static void atp_terminate_stroke(struct atp_softc *, u_int);
static __inline boolean_t atp_stroke_has_small_movement(const atp_stroke *);
static __inline void atp_update_pending_mickeys(atp_stroke_component *);
static void atp_compute_smoothening_scale_ratio(atp_stroke *, int *,
int *);
static boolean_t atp_compute_stroke_movement(atp_stroke *);
/* tap detection */
static __inline void atp_setup_reap_time(struct atp_softc *, struct timeval *);
static void atp_reap_zombies(struct atp_softc *, u_int *, u_int *);
static void atp_convert_to_slide(struct atp_softc *, atp_stroke *);
/* updating fifo */
static void atp_reset_buf(struct atp_softc *sc);
static void atp_add_to_queue(struct atp_softc *, int, int, uint32_t);
usb_error_t
atp_req_get_report(struct usb_device *udev, void *data)
{
struct usb_device_request req;
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = UR_GET_REPORT;
USETW2(req.wValue, (uint8_t)0x03 /* type */, (uint8_t)0x00 /* id */);
USETW(req.wIndex, 0);
USETW(req.wLength, MODE_LENGTH);
return (usbd_do_request(udev, NULL /* mutex */, &req, data));
}
static int
atp_set_device_mode(device_t dev, interface_mode mode)
{
struct atp_softc *sc;
usb_device_request_t req;
usb_error_t err;
if ((mode != RAW_SENSOR_MODE) && (mode != HID_MODE))
return (ENXIO);
sc = device_get_softc(dev);
sc->sc_mode_bytes[0] = mode;
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UR_SET_REPORT;
USETW2(req.wValue, (uint8_t)0x03 /* type */, (uint8_t)0x00 /* id */);
USETW(req.wIndex, 0);
USETW(req.wLength, MODE_LENGTH);
err = usbd_do_request(sc->sc_usb_device, NULL, &req, sc->sc_mode_bytes);
if (err != USB_ERR_NORMAL_COMPLETION)
return (ENXIO);
return (0);
}
void
atp_reset_callback(struct usb_xfer *xfer, usb_error_t error)
{
usb_device_request_t req;
struct usb_page_cache *pc;
struct atp_softc *sc = usbd_xfer_softc(xfer);
switch (USB_GET_STATE(xfer)) {
case USB_ST_SETUP:
sc->sc_mode_bytes[0] = RAW_SENSOR_MODE;
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UR_SET_REPORT;
USETW2(req.wValue,
(uint8_t)0x03 /* type */, (uint8_t)0x00 /* id */);
USETW(req.wIndex, 0);
USETW(req.wLength, MODE_LENGTH);
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &req, sizeof(req));
pc = usbd_xfer_get_frame(xfer, 1);
usbd_copy_in(pc, 0, sc->sc_mode_bytes, MODE_LENGTH);
usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
usbd_xfer_set_frame_len(xfer, 1, MODE_LENGTH);
usbd_xfer_set_frames(xfer, 2);
usbd_transfer_submit(xfer);
break;
case USB_ST_TRANSFERRED:
default:
break;
}
}
static int
atp_enable(struct atp_softc *sc)
{
/* Allocate the dynamic buffers */
if (atp_softc_populate(sc) != 0) {
atp_softc_unpopulate(sc);
return (ENOMEM);
}
/* reset status */
memset(sc->sc_strokes, 0, sizeof(sc->sc_strokes));
sc->sc_n_strokes = 0;
memset(&sc->sc_status, 0, sizeof(sc->sc_status));
sc->sc_idlecount = 0;
sc->sc_state |= ATP_ENABLED;
DPRINTFN(ATP_LLEVEL_INFO, "enabled atp\n");
return (0);
}
static void
atp_disable(struct atp_softc *sc)
{
atp_softc_unpopulate(sc);
sc->sc_state &= ~(ATP_ENABLED | ATP_VALID);
DPRINTFN(ATP_LLEVEL_INFO, "disabled atp\n");
}
/* Allocate dynamic memory for some fields in softc. */
static int
atp_softc_populate(struct atp_softc *sc)
{
const struct atp_dev_params *params = sc->sc_params;
if (params == NULL) {
DPRINTF("params uninitialized!\n");
return (ENXIO);
}
if (params->data_len) {
sc->sensor_data = malloc(params->data_len * sizeof(int8_t),
M_USB, M_WAITOK);
if (sc->sensor_data == NULL) {
DPRINTF("mem for sensor_data\n");
return (ENXIO);
}
}
if (params->n_xsensors != 0) {
sc->base_x = malloc(params->n_xsensors * sizeof(*(sc->base_x)),
M_USB, M_WAITOK);
if (sc->base_x == NULL) {
DPRINTF("mem for sc->base_x\n");
return (ENXIO);
}
sc->cur_x = malloc(params->n_xsensors * sizeof(*(sc->cur_x)),
M_USB, M_WAITOK);
if (sc->cur_x == NULL) {
DPRINTF("mem for sc->cur_x\n");
return (ENXIO);
}
sc->pressure_x =
malloc(params->n_xsensors * sizeof(*(sc->pressure_x)),
M_USB, M_WAITOK);
if (sc->pressure_x == NULL) {
DPRINTF("mem. for pressure_x\n");
return (ENXIO);
}
}
if (params->n_ysensors != 0) {
sc->base_y = malloc(params->n_ysensors * sizeof(*(sc->base_y)),
M_USB, M_WAITOK);
if (sc->base_y == NULL) {
DPRINTF("mem for base_y\n");
return (ENXIO);
}
sc->cur_y = malloc(params->n_ysensors * sizeof(*(sc->cur_y)),
M_USB, M_WAITOK);
if (sc->cur_y == NULL) {
DPRINTF("mem for cur_y\n");
return (ENXIO);
}
sc->pressure_y =
malloc(params->n_ysensors * sizeof(*(sc->pressure_y)),
M_USB, M_WAITOK);
if (sc->pressure_y == NULL) {
DPRINTF("mem. for pressure_y\n");
return (ENXIO);
}
}
return (0);
}
/* Free dynamic memory allocated for some fields in softc. */
static void
atp_softc_unpopulate(struct atp_softc *sc)
{
const struct atp_dev_params *params = sc->sc_params;
if (params == NULL) {
return;
}
if (params->n_xsensors != 0) {
if (sc->base_x != NULL) {
free(sc->base_x, M_USB);
sc->base_x = NULL;
}
if (sc->cur_x != NULL) {
free(sc->cur_x, M_USB);
sc->cur_x = NULL;
}
if (sc->pressure_x != NULL) {
free(sc->pressure_x, M_USB);
sc->pressure_x = NULL;
}
}
if (params->n_ysensors != 0) {
if (sc->base_y != NULL) {
free(sc->base_y, M_USB);
sc->base_y = NULL;
}
if (sc->cur_y != NULL) {
free(sc->cur_y, M_USB);
sc->cur_y = NULL;
}
if (sc->pressure_y != NULL) {
free(sc->pressure_y, M_USB);
sc->pressure_y = NULL;
}
}
if (sc->sensor_data != NULL) {
free(sc->sensor_data, M_USB);
sc->sensor_data = NULL;
}
}
/*
* Interpret the data from the X and Y pressure sensors. This function
* is called separately for the X and Y sensor arrays. The data in the
* USB packet is laid out in the following manner:
*
* sensor_data:
* --,--,Y1,Y2,--,Y3,Y4,--,Y5,...,Y10, ... X1,X2,--,X3,X4
* indices: 0 1 2 3 4 5 6 7 8 ... 15 ... 20 21 22 23 24
*
* '--' (in the above) indicates that the value is unimportant.
*
* Information about the above layout was obtained from the
* implementation of the AppleTouch driver in Linux.
*
* parameters:
* sensor_data
* raw sensor data from the USB packet.
* num
* The number of elements in the array 'arr'.
* axis
* Axis of data to fetch
* arr
* The array to be initialized with the readings.
* prot
* The protocol to use to interpret the data
*/
static __inline void
atp_interpret_sensor_data(const int8_t *sensor_data, u_int num, atp_axis axis,
int *arr, atp_protocol prot)
{
u_int i;
u_int di; /* index into sensor data */
switch (prot) {
case ATP_PROT_GEYSER1:
/*
* For Geyser 1, the sensors are laid out in pairs
* every 5 bytes.
*/
for (i = 0, di = (axis == Y) ? 1 : 2; i < 8; di += 5, i++) {
arr[i] = sensor_data[di];
arr[i+8] = sensor_data[di+2];
if (axis == X && num > 16)
arr[i+16] = sensor_data[di+40];
}
break;
case ATP_PROT_GEYSER2:
case ATP_PROT_GEYSER3:
for (i = 0, di = (axis == Y) ? 2 : 20; i < num; /* empty */ ) {
arr[i++] = sensor_data[di++];
arr[i++] = sensor_data[di++];
di++;
}
break;
}
}
static __inline void
atp_get_pressures(int *p, const int *cur, const int *base, int n)
{
int i;
for (i = 0; i < n; i++) {
p[i] = cur[i] - base[i];
if (p[i] > 127)
p[i] -= 256;
if (p[i] < -127)
p[i] += 256;
if (p[i] < 0)
p[i] = 0;
/*
* Shave off pressures below the noise-pressure
* threshold; this will reduce the contribution from
* lower pressure readings.
*/
if (p[i] <= atp_sensor_noise_threshold)
p[i] = 0; /* filter away noise */
else
p[i] -= atp_sensor_noise_threshold;
}
}
static void
atp_detect_pspans(int *p, u_int num_sensors,
u_int max_spans, /* max # of pspans permitted */
atp_pspan *spans, /* finger spans */
u_int *nspans_p) /* num spans detected */
{
u_int i;
int maxp; /* max pressure seen within a span */
u_int num_spans = 0;
enum atp_pspan_state {
ATP_PSPAN_INACTIVE,
ATP_PSPAN_INCREASING,
ATP_PSPAN_DECREASING,
} state; /* state of the pressure span */
/*
* The following is a simple state machine to track
* the phase of the pressure span.
*/
memset(spans, 0, max_spans * sizeof(atp_pspan));
maxp = 0;
state = ATP_PSPAN_INACTIVE;
for (i = 0; i < num_sensors; i++) {
if (num_spans >= max_spans)
break;
if (p[i] == 0) {
if (state == ATP_PSPAN_INACTIVE) {
/*
* There is no pressure information for this
* sensor, and we aren't tracking a finger.
*/
continue;
} else {
state = ATP_PSPAN_INACTIVE;
maxp = 0;
num_spans++;
}
} else {
switch (state) {
case ATP_PSPAN_INACTIVE:
state = ATP_PSPAN_INCREASING;
maxp = p[i];
break;
case ATP_PSPAN_INCREASING:
if (p[i] > maxp)
maxp = p[i];
else if (p[i] <= (maxp >> 1))
state = ATP_PSPAN_DECREASING;
break;
case ATP_PSPAN_DECREASING:
if (p[i] > p[i - 1]) {
/*
* This is the beginning of
* another span; change state
* to give the appearance that
* we're starting from an
* inactive span, and then
* re-process this reading in
* the next iteration.
*/
num_spans++;
state = ATP_PSPAN_INACTIVE;
maxp = 0;
i--;
continue;
}
break;
}
/* Update the finger span with this reading. */
spans[num_spans].width++;
spans[num_spans].cum += p[i];
spans[num_spans].cog += p[i] * (i + 1);
}
}
if (state != ATP_PSPAN_INACTIVE)
num_spans++; /* close the last finger span */
/* post-process the spans */
for (i = 0; i < num_spans; i++) {
/* filter away unwanted pressure spans */
if ((spans[i].cum < atp_pspan_min_cum_pressure) ||
(spans[i].width > atp_pspan_max_width)) {
if ((i + 1) < num_spans) {
memcpy(&spans[i], &spans[i + 1],
(num_spans - i - 1) * sizeof(atp_pspan));
i--;
}
num_spans--;
continue;
}
/* compute this span's representative location */
spans[i].loc = spans[i].cog * atp_mickeys_scale_factor /
spans[i].cum;
spans[i].matched = FALSE; /* not yet matched against a stroke */
}
*nspans_p = num_spans;
}
/*
* Match a pressure-span against a stroke-component. If there is a
* match, update the component's state and return TRUE.
*/
static boolean_t
atp_match_stroke_component(atp_stroke_component *component,
const atp_pspan *pspan, atp_stroke_type stroke_type)
{
int delta_mickeys;
u_int min_pressure;
delta_mickeys = pspan->loc - component->loc;
if (abs(delta_mickeys) > atp_max_delta_mickeys)
return (FALSE); /* the finger span is too far out; no match */
component->loc = pspan->loc;
/*
* A sudden and significant increase in a pspan's cumulative
* pressure indicates the incidence of a new finger
* contact. This usually revises the pspan's
* centre-of-gravity, and hence the location of any/all
* matching stroke component(s). But such a change should
* *not* be interpreted as a movement.
*/
if (pspan->cum > ((3 * component->cum_pressure) >> 1))
delta_mickeys = 0;
component->cum_pressure = pspan->cum;
if (pspan->cum > component->max_cum_pressure)
component->max_cum_pressure = pspan->cum;
/*
* Disregard the component's movement if its cumulative
* pressure drops below a fraction of the maximum; this
* fraction is determined based on the stroke's type.
*/
if (stroke_type == ATP_STROKE_TOUCH)
min_pressure = (3 * component->max_cum_pressure) >> 2;
else
min_pressure = component->max_cum_pressure >> 2;
if (component->cum_pressure < min_pressure)
delta_mickeys = 0;
component->delta_mickeys = delta_mickeys;
return (TRUE);
}
static void
atp_match_strokes_against_pspans(struct atp_softc *sc, atp_axis axis,
atp_pspan *pspans, u_int n_pspans, u_int repeat_count)
{
u_int i, j;
u_int repeat_index = 0;
/* Determine the index of the multi-span. */
if (repeat_count) {
u_int cum = 0;
for (i = 0; i < n_pspans; i++) {
if (pspans[i].cum > cum) {
repeat_index = i;
cum = pspans[i].cum;
}
}
}
for (i = 0; i < sc->sc_n_strokes; i++) {
atp_stroke *stroke = &sc->sc_strokes[i];
if (stroke->components[axis].matched)
continue; /* skip matched components */
for (j = 0; j < n_pspans; j++) {
if (pspans[j].matched)
continue; /* skip matched pspans */
if (atp_match_stroke_component(
&stroke->components[axis], &pspans[j],
stroke->type)) {
/* There is a match. */
stroke->components[axis].matched = TRUE;
/* Take care to repeat at the multi-span. */
if ((repeat_count > 0) && (j == repeat_index))
repeat_count--;
else
pspans[j].matched = TRUE;
break; /* skip to the next stroke */
}
} /* loop over pspans */
} /* loop over strokes */
}
/*
* Update strokes by matching against current pressure-spans.
* Return TRUE if any movement is detected.
*/
static boolean_t
atp_update_strokes(struct atp_softc *sc, atp_pspan *pspans_x,
u_int n_xpspans, atp_pspan *pspans_y, u_int n_ypspans)
{
u_int i, j;
atp_stroke *stroke;
boolean_t movement = FALSE;
u_int repeat_count = 0;
/* Reset X and Y components of all strokes as unmatched. */
for (i = 0; i < sc->sc_n_strokes; i++) {
stroke = &sc->sc_strokes[i];
stroke->components[X].matched = FALSE;
stroke->components[Y].matched = FALSE;
}
/*
* Usually, the X and Y pspans come in pairs (the common case
* being a single pair). It is possible, however, that
* multiple contacts resolve to a single pspan along an
* axis, as illustrated in the following:
*
* F = finger-contact
*
* pspan pspan
* +-----------------------+
* | . . |
* | . . |
* | . . |
* | . . |
* pspan |.........F......F |
* | |
* | |
* | |
* +-----------------------+
*
*
* The above case can be detected by a difference in the
* number of X and Y pspans. When this happens, X and Y pspans
* aren't easy to pair or match against strokes.
*
* When X and Y pspans differ in number, the axis with the
* smaller number of pspans is regarded as having a repeating
* pspan (or a multi-pspan)--in the above illustration, the
* Y-axis has a repeating pspan. Our approach is to try to
* match the multi-pspan repeatedly against strokes. The
* difference between the number of X and Y pspans gives us a
* crude repeat_count for matching multi-pspans--i.e. the
* multi-pspan along the Y axis (above) has a repeat_count of 1.
*/
repeat_count = abs(n_xpspans - n_ypspans);
atp_match_strokes_against_pspans(sc, X, pspans_x, n_xpspans,
(((repeat_count != 0) && ((n_xpspans < n_ypspans))) ?
repeat_count : 0));
atp_match_strokes_against_pspans(sc, Y, pspans_y, n_ypspans,
(((repeat_count != 0) && (n_ypspans < n_xpspans)) ?
repeat_count : 0));
/* Update the state of strokes based on the above pspan matches. */
for (i = 0; i < sc->sc_n_strokes; i++) {
stroke = &sc->sc_strokes[i];
if (stroke->components[X].matched &&
stroke->components[Y].matched) {
atp_advance_stroke_state(sc, stroke, &movement);
} else {
/*
* At least one component of this stroke
* didn't match against current pspans;
* terminate it.
*/
atp_terminate_stroke(sc, i);
}
}
/* Add new strokes for pairs of unmatched pspans */
for (i = 0; i < n_xpspans; i++) {
if (pspans_x[i].matched == FALSE) break;
}
for (j = 0; j < n_ypspans; j++) {
if (pspans_y[j].matched == FALSE) break;
}
if ((i < n_xpspans) && (j < n_ypspans)) {
#ifdef USB_DEBUG
if (atp_debug >= ATP_LLEVEL_INFO) {
printf("unmatched pspans:");
for (; i < n_xpspans; i++) {
if (pspans_x[i].matched)
continue;
printf(" X:[loc:%u,cum:%u]",
pspans_x[i].loc, pspans_x[i].cum);
}
for (; j < n_ypspans; j++) {
if (pspans_y[j].matched)
continue;
printf(" Y:[loc:%u,cum:%u]",
pspans_y[j].loc, pspans_y[j].cum);
}
printf("\n");
}
#endif /* USB_DEBUG */
if ((n_xpspans == 1) && (n_ypspans == 1))
/* The common case of a single pair of new pspans. */
atp_add_stroke(sc, &pspans_x[0], &pspans_y[0]);
else
atp_add_new_strokes(sc,
pspans_x, n_xpspans,
pspans_y, n_ypspans);
}
#ifdef USB_DEBUG
if (atp_debug >= ATP_LLEVEL_INFO) {
for (i = 0; i < sc->sc_n_strokes; i++) {
atp_stroke *stroke = &sc->sc_strokes[i];
printf(" %s%clc:%u,dm:%d,pnd:%d,cum:%d,max:%d,mv:%d%c"
",%clc:%u,dm:%d,pnd:%d,cum:%d,max:%d,mv:%d%c",
(stroke->flags & ATSF_ZOMBIE) ? "zomb:" : "",
(stroke->type == ATP_STROKE_TOUCH) ? '[' : '<',
stroke->components[X].loc,
stroke->components[X].delta_mickeys,
stroke->components[X].pending,
stroke->components[X].cum_pressure,
stroke->components[X].max_cum_pressure,
stroke->components[X].movement,
(stroke->type == ATP_STROKE_TOUCH) ? ']' : '>',
(stroke->type == ATP_STROKE_TOUCH) ? '[' : '<',
stroke->components[Y].loc,
stroke->components[Y].delta_mickeys,
stroke->components[Y].pending,
stroke->components[Y].cum_pressure,
stroke->components[Y].max_cum_pressure,
stroke->components[Y].movement,
(stroke->type == ATP_STROKE_TOUCH) ? ']' : '>');
}
if (sc->sc_n_strokes)
printf("\n");
}
#endif /* USB_DEBUG */
return (movement);
}
/* Initialize a stroke using a pressure-span. */
static __inline void
atp_add_stroke(struct atp_softc *sc, const atp_pspan *pspan_x,
const atp_pspan *pspan_y)
{
atp_stroke *stroke;
if (sc->sc_n_strokes >= ATP_MAX_STROKES)
return;
stroke = &sc->sc_strokes[sc->sc_n_strokes];
memset(stroke, 0, sizeof(atp_stroke));
/*
* Strokes begin as potential touches. If a stroke survives
* longer than a threshold, or if it records significant
* cumulative movement, then it is considered a 'slide'.
*/
stroke->type = ATP_STROKE_TOUCH;
microtime(&stroke->ctime);
stroke->age = 1; /* Unit: interrupts */
stroke->components[X].loc = pspan_x->loc;
stroke->components[X].cum_pressure = pspan_x->cum;
stroke->components[X].max_cum_pressure = pspan_x->cum;
stroke->components[X].matched = TRUE;
stroke->components[Y].loc = pspan_y->loc;
stroke->components[Y].cum_pressure = pspan_y->cum;
stroke->components[Y].max_cum_pressure = pspan_y->cum;
stroke->components[Y].matched = TRUE;
sc->sc_n_strokes++;
if (sc->sc_n_strokes > 1) {
/* Reset double-tap-n-drag if we have more than one strokes. */
sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
}
DPRINTFN(ATP_LLEVEL_INFO, "[%u,%u], time: %u,%ld\n",
stroke->components[X].loc,
stroke->components[Y].loc,
(unsigned int)stroke->ctime.tv_sec,
(unsigned long int)stroke->ctime.tv_usec);
}
static void
atp_add_new_strokes(struct atp_softc *sc, atp_pspan *pspans_x,
u_int n_xpspans, atp_pspan *pspans_y, u_int n_ypspans)
{
int i, j;
atp_pspan spans[2][ATP_MAX_PSPANS_PER_AXIS];
u_int nspans[2];
/* Copy unmatched pspans into the local arrays. */
for (i = 0, nspans[X] = 0; i < n_xpspans; i++) {
if (pspans_x[i].matched == FALSE) {
spans[X][nspans[X]] = pspans_x[i];
nspans[X]++;
}
}
for (j = 0, nspans[Y] = 0; j < n_ypspans; j++) {
if (pspans_y[j].matched == FALSE) {
spans[Y][nspans[Y]] = pspans_y[j];
nspans[Y]++;
}
}
if (nspans[X] == nspans[Y]) {
/* Create new strokes from pairs of unmatched pspans */
for (i = 0, j = 0; (i < nspans[X]) && (j < nspans[Y]); i++, j++)
atp_add_stroke(sc, &spans[X][i], &spans[Y][j]);
} else {
u_int cum = 0;
atp_axis repeat_axis; /* axis with multi-pspans */
u_int repeat_count; /* repeat count for the multi-pspan*/
u_int repeat_index = 0; /* index of the multi-span */
repeat_axis = (nspans[X] > nspans[Y]) ? Y : X;
repeat_count = abs(nspans[X] - nspans[Y]);
for (i = 0; i < nspans[repeat_axis]; i++) {
if (spans[repeat_axis][i].cum > cum) {
repeat_index = i;
cum = spans[repeat_axis][i].cum;
}
}
/* Create new strokes from pairs of unmatched pspans */
i = 0, j = 0;
for (; (i < nspans[X]) && (j < nspans[Y]); i++, j++) {
atp_add_stroke(sc, &spans[X][i], &spans[Y][j]);
/* Take care to repeat at the multi-pspan. */
if (repeat_count > 0) {
if ((repeat_axis == X) &&
(repeat_index == i)) {
i--; /* counter loop increment */
repeat_count--;
} else if ((repeat_axis == Y) &&
(repeat_index == j)) {
j--; /* counter loop increment */
repeat_count--;
}
}
}
}
}
/*
* Advance the state of this stroke--and update the out-parameter
* 'movement' as a side-effect.
*/
void
atp_advance_stroke_state(struct atp_softc *sc, atp_stroke *stroke,
boolean_t *movement)
{
stroke->age++;
if (stroke->age <= atp_stroke_maturity_threshold) {
/* Avoid noise from immature strokes. */
stroke->components[X].delta_mickeys = 0;
stroke->components[Y].delta_mickeys = 0;
}
/* Revitalize stroke if it had previously been marked as a zombie. */
if (stroke->flags & ATSF_ZOMBIE)
stroke->flags &= ~ATSF_ZOMBIE;
if (atp_compute_stroke_movement(stroke))
*movement = TRUE;
if (stroke->type != ATP_STROKE_TOUCH)
return;
/* Convert touch strokes to slides upon detecting movement or age. */
if (stroke->cum_movement >= atp_slide_min_movement) {
atp_convert_to_slide(sc, stroke);
} else {
/* If a touch stroke is found to be older than the
* touch-timeout threshold, it should be converted to
* a slide; except if there is a co-incident sibling
* with a later creation time.
*
* When multiple fingers make contact with the
* touchpad, they are likely to be separated in their
* times of incidence. During a multi-finger tap,
* therefore, the last finger to make
* contact--i.e. the one with the latest
* 'ctime'--should be used to determine how the
* touch-siblings get treated; otherwise older
* siblings may lapse the touch-timeout and get
* converted into slides prematurely. The following
* loop determines if there exists another touch
* stroke with a larger 'ctime' than the current
* stroke (NOTE: zombies with a larger 'ctime' are
* also considered) .
*/
u_int i;
for (i = 0; i < sc->sc_n_strokes; i++) {
if ((&sc->sc_strokes[i] == stroke) ||
(sc->sc_strokes[i].type != ATP_STROKE_TOUCH))
continue;
if (timevalcmp(&sc->sc_strokes[i].ctime,
&stroke->ctime, >))
break;
}
if (i == sc->sc_n_strokes) {
/* Found no other touch stroke with a larger 'ctime'. */
struct timeval tdiff;
/* Compute the stroke's age. */
getmicrotime(&tdiff);
if (timevalcmp(&tdiff, &stroke->ctime, >))
timevalsub(&tdiff, &stroke->ctime);
else {
/*
* If we are here, it is because getmicrotime
* reported the current time as being behind
* the stroke's start time; getmicrotime can
* be imprecise.
*/
tdiff.tv_sec = 0;
tdiff.tv_usec = 0;
}
if ((tdiff.tv_sec > (atp_touch_timeout / 1000000)) ||
((tdiff.tv_sec == (atp_touch_timeout / 1000000)) &&
(tdiff.tv_usec >=
(atp_touch_timeout % 1000000))))
atp_convert_to_slide(sc, stroke);
}
}
}
/* Switch a given touch stroke to being a slide. */
void
atp_convert_to_slide(struct atp_softc *sc, atp_stroke *stroke)
{
stroke->type = ATP_STROKE_SLIDE;
/* Are we at the beginning of a double-click-n-drag? */
if ((sc->sc_n_strokes == 1) &&
((sc->sc_state & ATP_ZOMBIES_EXIST) == 0) &&
timevalcmp(&stroke->ctime, &sc->sc_reap_time, >)) {
struct timeval delta;
struct timeval window = {
atp_double_tap_threshold / 1000000,
atp_double_tap_threshold % 1000000
};
delta = stroke->ctime;
timevalsub(&delta, &sc->sc_reap_time);
if (timevalcmp(&delta, &window, <=))
sc->sc_state |= ATP_DOUBLE_TAP_DRAG;
}
}
/*
* Terminate a stroke. While SLIDE strokes are dropped, TOUCH strokes
* are retained as zombies so as to reap all their siblings together;
* this helps establish the number of fingers involved in the tap.
*/
static void
atp_terminate_stroke(struct atp_softc *sc,
u_int index) /* index of the stroke to be terminated */
{
atp_stroke *s = &sc->sc_strokes[index];
if (s->flags & ATSF_ZOMBIE) {
return;
}
if ((s->type == ATP_STROKE_TOUCH) &&
(s->age > atp_stroke_maturity_threshold)) {
s->flags |= ATSF_ZOMBIE;
/* If no zombies exist, then prepare to reap zombies later. */
if ((sc->sc_state & ATP_ZOMBIES_EXIST) == 0) {
atp_setup_reap_time(sc, &s->ctime);
sc->sc_state |= ATP_ZOMBIES_EXIST;
}
} else {
/* Drop this stroke. */
memcpy(&sc->sc_strokes[index], &sc->sc_strokes[index + 1],
(sc->sc_n_strokes - index - 1) * sizeof(atp_stroke));
sc->sc_n_strokes--;
/*
* Reset the double-click-n-drag at the termination of
* any slide stroke.
*/
sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
}
}
static __inline boolean_t
atp_stroke_has_small_movement(const atp_stroke *stroke)
{
return ((abs(stroke->components[X].delta_mickeys) <=
atp_small_movement_threshold) &&
(abs(stroke->components[Y].delta_mickeys) <=
atp_small_movement_threshold));
}
/*
* Accumulate delta_mickeys into the component's 'pending' bucket; if
* the aggregate exceeds the small_movement_threshold, then retain
* delta_mickeys for later.
*/
static __inline void
atp_update_pending_mickeys(atp_stroke_component *component)
{
component->pending += component->delta_mickeys;
if (abs(component->pending) <= atp_small_movement_threshold)
component->delta_mickeys = 0;
else {
/*
* Penalise pending mickeys for having accumulated
* over short deltas. This operation has the effect of
* scaling down the cumulative contribution of short
* movements.
*/
component->pending -= (component->delta_mickeys << 1);
}
}
static void
atp_compute_smoothening_scale_ratio(atp_stroke *stroke, int *numerator,
int *denominator)
{
int dxdt;
int dydt;
u_int vel_squared; /* Square of the velocity vector's magnitude. */
u_int vel_squared_smooth;
/* Table holding (10 * sqrt(x)) for x between 1 and 256. */
static uint8_t sqrt_table[256] = {
10, 14, 17, 20, 22, 24, 26, 28,
30, 31, 33, 34, 36, 37, 38, 40,
41, 42, 43, 44, 45, 46, 47, 48,
50, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 60, 61, 62, 63,
64, 64, 65, 66, 67, 67, 68, 69,
70, 70, 71, 72, 72, 73, 74, 74,
75, 76, 76, 77, 78, 78, 79, 80,
80, 81, 81, 82, 83, 83, 84, 84,
85, 86, 86, 87, 87, 88, 88, 89,
90, 90, 91, 91, 92, 92, 93, 93,
94, 94, 95, 95, 96, 96, 97, 97,
98, 98, 99, 100, 100, 100, 101, 101,
102, 102, 103, 103, 104, 104, 105, 105,
106, 106, 107, 107, 108, 108, 109, 109,
110, 110, 110, 111, 111, 112, 112, 113,
113, 114, 114, 114, 115, 115, 116, 116,
117, 117, 117, 118, 118, 119, 119, 120,
120, 120, 121, 121, 122, 122, 122, 123,
123, 124, 124, 124, 125, 125, 126, 126,
126, 127, 127, 128, 128, 128, 129, 129,
130, 130, 130, 131, 131, 131, 132, 132,
133, 133, 133, 134, 134, 134, 135, 135,
136, 136, 136, 137, 137, 137, 138, 138,
138, 139, 139, 140, 140, 140, 141, 141,
141, 142, 142, 142, 143, 143, 143, 144,
144, 144, 145, 145, 145, 146, 146, 146,
147, 147, 147, 148, 148, 148, 149, 149,
150, 150, 150, 150, 151, 151, 151, 152,
152, 152, 153, 153, 153, 154, 154, 154,
155, 155, 155, 156, 156, 156, 157, 157,
157, 158, 158, 158, 159, 159, 159, 160
};
const u_int N = sizeof(sqrt_table) / sizeof(sqrt_table[0]);
dxdt = stroke->components[X].delta_mickeys;
dydt = stroke->components[Y].delta_mickeys;
*numerator = 0, *denominator = 0; /* default values. */
/* Compute a smoothened magnitude_squared of the stroke's velocity. */
vel_squared = dxdt * dxdt + dydt * dydt;
vel_squared_smooth = (3 * stroke->velocity_squared + vel_squared) >> 2;
stroke->velocity_squared = vel_squared_smooth; /* retained as history */
if ((vel_squared == 0) || (vel_squared_smooth == 0))
return; /* returning (numerator == 0) will imply zero movement*/
/*
* In order to determine the overall movement scale factor,
* we're actually interested in the effect of smoothening upon
* the *magnitude* of velocity; i.e. we need to compute the
* square-root of (vel_squared_smooth / vel_squared) in the
* form of a numerator and denominator.
*/
/* Keep within the bounds of the square-root table. */
while ((vel_squared > N) || (vel_squared_smooth > N)) {
/* Dividing uniformly by 2 won't disturb the final ratio. */
vel_squared >>= 1;
vel_squared_smooth >>= 1;
}
*numerator = sqrt_table[vel_squared_smooth - 1];
*denominator = sqrt_table[vel_squared - 1];
}
/*
* Compute a smoothened value for the stroke's movement from
* delta_mickeys in the X and Y components.
*/
static boolean_t
atp_compute_stroke_movement(atp_stroke *stroke)
{
int num; /* numerator of scale ratio */
int denom; /* denominator of scale ratio */
/*
* Short movements are added first to the 'pending' bucket,
* and then acted upon only when their aggregate exceeds a
* threshold. This has the effect of filtering away movement
* noise.
*/
if (atp_stroke_has_small_movement(stroke)) {
atp_update_pending_mickeys(&stroke->components[X]);
atp_update_pending_mickeys(&stroke->components[Y]);
} else { /* large movement */
/* clear away any pending mickeys if there are large movements*/
stroke->components[X].pending = 0;
stroke->components[Y].pending = 0;
}
/* Get the scale ratio and smoothen movement. */
atp_compute_smoothening_scale_ratio(stroke, &num, &denom);
if ((num == 0) || (denom == 0)) {
stroke->components[X].movement = 0;
stroke->components[Y].movement = 0;
stroke->velocity_squared >>= 1; /* Erode velocity_squared. */
} else {
stroke->components[X].movement =
(stroke->components[X].delta_mickeys * num) / denom;
stroke->components[Y].movement =
(stroke->components[Y].delta_mickeys * num) / denom;
stroke->cum_movement +=
abs(stroke->components[X].movement) +
abs(stroke->components[Y].movement);
}
return ((stroke->components[X].movement != 0) ||
(stroke->components[Y].movement != 0));
}
static __inline void
atp_setup_reap_time(struct atp_softc *sc, struct timeval *tvp)
{
struct timeval reap_window = {
ATP_ZOMBIE_STROKE_REAP_WINDOW / 1000000,
ATP_ZOMBIE_STROKE_REAP_WINDOW % 1000000
};
microtime(&sc->sc_reap_time);
timevaladd(&sc->sc_reap_time, &reap_window);
sc->sc_reap_ctime = *tvp; /* ctime to reap */
}
static void
atp_reap_zombies(struct atp_softc *sc, u_int *n_reaped, u_int *reaped_xlocs)
{
u_int i;
atp_stroke *stroke;
*n_reaped = 0;
for (i = 0; i < sc->sc_n_strokes; i++) {
struct timeval tdiff;
stroke = &sc->sc_strokes[i];
if ((stroke->flags & ATSF_ZOMBIE) == 0)
continue;
/* Compare this stroke's ctime with the ctime being reaped. */
if (timevalcmp(&stroke->ctime, &sc->sc_reap_ctime, >=)) {
tdiff = stroke->ctime;
timevalsub(&tdiff, &sc->sc_reap_ctime);
} else {
tdiff = sc->sc_reap_ctime;
timevalsub(&tdiff, &stroke->ctime);
}
if ((tdiff.tv_sec > (ATP_COINCIDENCE_THRESHOLD / 1000000)) ||
((tdiff.tv_sec == (ATP_COINCIDENCE_THRESHOLD / 1000000)) &&
(tdiff.tv_usec > (ATP_COINCIDENCE_THRESHOLD % 1000000)))) {
continue; /* Skip non-siblings. */
}
/*
* Reap this sibling zombie stroke.
*/
if (reaped_xlocs != NULL)
reaped_xlocs[*n_reaped] = stroke->components[X].loc;
/* Erase the stroke from the sc. */
memcpy(&stroke[i], &stroke[i + 1],
(sc->sc_n_strokes - i - 1) * sizeof(atp_stroke));
sc->sc_n_strokes--;
*n_reaped += 1;
--i; /* Decr. i to keep it unchanged for the next iteration */
}
DPRINTFN(ATP_LLEVEL_INFO, "reaped %u zombies\n", *n_reaped);
/* There could still be zombies remaining in the system. */
for (i = 0; i < sc->sc_n_strokes; i++) {
stroke = &sc->sc_strokes[i];
if (stroke->flags & ATSF_ZOMBIE) {
DPRINTFN(ATP_LLEVEL_INFO, "zombies remain!\n");
atp_setup_reap_time(sc, &stroke->ctime);
return;
}
}
/* If we reach here, then no more zombies remain. */
sc->sc_state &= ~ATP_ZOMBIES_EXIST;
}
/* Device methods. */
static device_probe_t atp_probe;
static device_attach_t atp_attach;
static device_detach_t atp_detach;
static usb_callback_t atp_intr;
static const struct usb_config atp_config[ATP_N_TRANSFER] = {
[ATP_INTR_DT] = {
.type = UE_INTERRUPT,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.flags = {
.pipe_bof = 1,
.short_xfer_ok = 1,
},
.bufsize = 0, /* use wMaxPacketSize */
.callback = &atp_intr,
},
[ATP_RESET] = {
.type = UE_CONTROL,
.endpoint = 0, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request) + MODE_LENGTH,
.callback = &atp_reset_callback,
.interval = 0, /* no pre-delay */
},
};
static int
atp_probe(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if ((uaa->info.bInterfaceClass != UICLASS_HID) ||
(uaa->info.bInterfaceProtocol != UIPROTO_MOUSE))
return (ENXIO);
return (usbd_lookup_id_by_uaa(atp_devs, sizeof(atp_devs), uaa));
}
static int
atp_attach(device_t dev)
{
struct atp_softc *sc = device_get_softc(dev);
struct usb_attach_arg *uaa = device_get_ivars(dev);
usb_error_t err;
DPRINTFN(ATP_LLEVEL_INFO, "sc=%p\n", sc);
sc->sc_dev = dev;
sc->sc_usb_device = uaa->device;
/*
* By default the touchpad behaves like an HID device, sending
* packets with reportID = 2. Such reports contain only
* limited information--they encode movement deltas and button
* events,--but do not include data from the pressure
* sensors. The device input mode can be switched from HID
* reports to raw sensor data using vendor-specific USB
* control commands; but first the mode must be read.
*/
err = atp_req_get_report(sc->sc_usb_device, sc->sc_mode_bytes);
if (err != USB_ERR_NORMAL_COMPLETION) {
DPRINTF("failed to read device mode (%d)\n", err);
return (ENXIO);
}
if (atp_set_device_mode(dev, RAW_SENSOR_MODE) != 0) {
DPRINTF("failed to set mode to 'RAW_SENSOR' (%d)\n", err);
return (ENXIO);
}
mtx_init(&sc->sc_mutex, "atpmtx", NULL, MTX_DEF | MTX_RECURSE);
err = usbd_transfer_setup(uaa->device,
&uaa->info.bIfaceIndex, sc->sc_xfer, atp_config,
ATP_N_TRANSFER, sc, &sc->sc_mutex);
if (err) {
DPRINTF("error=%s\n", usbd_errstr(err));
goto detach;
}
if (usb_fifo_attach(sc->sc_usb_device, sc, &sc->sc_mutex,
&atp_fifo_methods, &sc->sc_fifo,
device_get_unit(dev), 0 - 1, uaa->info.bIfaceIndex,
UID_ROOT, GID_OPERATOR, 0644)) {
goto detach;
}
device_set_usb_desc(dev);
sc->sc_params = &atp_dev_params[uaa->driver_info];
sc->sc_hw.buttons = 3;
sc->sc_hw.iftype = MOUSE_IF_USB;
sc->sc_hw.type = MOUSE_PAD;
sc->sc_hw.model = MOUSE_MODEL_GENERIC;
sc->sc_hw.hwid = 0;
sc->sc_mode.protocol = MOUSE_PROTO_MSC;
sc->sc_mode.rate = -1;
sc->sc_mode.resolution = MOUSE_RES_UNKNOWN;
sc->sc_mode.accelfactor = 0;
sc->sc_mode.level = 0;
sc->sc_mode.packetsize = MOUSE_MSC_PACKETSIZE;
sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
sc->sc_state = 0;
sc->sc_left_margin = atp_mickeys_scale_factor;
sc->sc_right_margin = (sc->sc_params->n_xsensors - 1) *
atp_mickeys_scale_factor;
return (0);
detach:
atp_detach(dev);
return (ENOMEM);
}
static int
atp_detach(device_t dev)
{
struct atp_softc *sc;
sc = device_get_softc(dev);
if (sc->sc_state & ATP_ENABLED) {
mtx_lock(&sc->sc_mutex);
atp_disable(sc);
mtx_unlock(&sc->sc_mutex);
}
usb_fifo_detach(&sc->sc_fifo);
usbd_transfer_unsetup(sc->sc_xfer, ATP_N_TRANSFER);
mtx_destroy(&sc->sc_mutex);
return (0);
}
static void
atp_intr(struct usb_xfer *xfer, usb_error_t error)
{
struct atp_softc *sc = usbd_xfer_softc(xfer);
int len;
struct usb_page_cache *pc;
uint8_t status_bits;
atp_pspan pspans_x[ATP_MAX_PSPANS_PER_AXIS];
atp_pspan pspans_y[ATP_MAX_PSPANS_PER_AXIS];
u_int n_xpspans = 0, n_ypspans = 0;
u_int reaped_xlocs[ATP_MAX_STROKES];
u_int tap_fingers = 0;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
if (len > sc->sc_params->data_len) {
DPRINTFN(ATP_LLEVEL_ERROR,
"truncating large packet from %u to %u bytes\n",
len, sc->sc_params->data_len);
len = sc->sc_params->data_len;
}
if (len < sc->sc_params->data_len)
goto tr_setup;
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_out(pc, 0, sc->sensor_data, sc->sc_params->data_len);
/* Interpret sensor data */
atp_interpret_sensor_data(sc->sensor_data,
sc->sc_params->n_xsensors, X, sc->cur_x,
sc->sc_params->prot);
atp_interpret_sensor_data(sc->sensor_data,
sc->sc_params->n_ysensors, Y, sc->cur_y,
sc->sc_params->prot);
/*
* If this is the initial update (from an untouched
* pad), we should set the base values for the sensor
* data; deltas with respect to these base values can
* be used as pressure readings subsequently.
*/
status_bits = sc->sensor_data[sc->sc_params->data_len - 1];
if ((sc->sc_params->prot == ATP_PROT_GEYSER3 &&
(status_bits & ATP_STATUS_BASE_UPDATE)) ||
!(sc->sc_state & ATP_VALID)) {
memcpy(sc->base_x, sc->cur_x,
sc->sc_params->n_xsensors * sizeof(*(sc->base_x)));
memcpy(sc->base_y, sc->cur_y,
sc->sc_params->n_ysensors * sizeof(*(sc->base_y)));
sc->sc_state |= ATP_VALID;
goto tr_setup;
}
/* Get pressure readings and detect p-spans for both axes. */
atp_get_pressures(sc->pressure_x, sc->cur_x, sc->base_x,
sc->sc_params->n_xsensors);
atp_detect_pspans(sc->pressure_x, sc->sc_params->n_xsensors,
ATP_MAX_PSPANS_PER_AXIS,
pspans_x, &n_xpspans);
atp_get_pressures(sc->pressure_y, sc->cur_y, sc->base_y,
sc->sc_params->n_ysensors);
atp_detect_pspans(sc->pressure_y, sc->sc_params->n_ysensors,
ATP_MAX_PSPANS_PER_AXIS,
pspans_y, &n_ypspans);
/* Update strokes with new pspans to detect movements. */
sc->sc_status.flags &= ~MOUSE_POSCHANGED;
if (atp_update_strokes(sc,
pspans_x, n_xpspans,
pspans_y, n_ypspans))
sc->sc_status.flags |= MOUSE_POSCHANGED;
/* Reap zombies if it is time. */
if (sc->sc_state & ATP_ZOMBIES_EXIST) {
struct timeval now;
getmicrotime(&now);
if (timevalcmp(&now, &sc->sc_reap_time, >=))
atp_reap_zombies(sc, &tap_fingers,
reaped_xlocs);
}
sc->sc_status.flags &= ~MOUSE_STDBUTTONSCHANGED;
sc->sc_status.obutton = sc->sc_status.button;
/* Get the state of the physical buttton. */
sc->sc_status.button = (status_bits & ATP_STATUS_BUTTON) ?
MOUSE_BUTTON1DOWN : 0;
if (sc->sc_status.button != 0) {
/* Reset DOUBLE_TAP_N_DRAG if the button is pressed. */
sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
} else if (sc->sc_state & ATP_DOUBLE_TAP_DRAG) {
/* Assume a button-press with DOUBLE_TAP_N_DRAG. */
sc->sc_status.button = MOUSE_BUTTON1DOWN;
}
sc->sc_status.flags |=
sc->sc_status.button ^ sc->sc_status.obutton;
if (sc->sc_status.flags & MOUSE_STDBUTTONSCHANGED) {
DPRINTFN(ATP_LLEVEL_INFO, "button %s\n",
((sc->sc_status.button & MOUSE_BUTTON1DOWN) ?
"pressed" : "released"));
} else if ((sc->sc_status.obutton == 0) &&
(sc->sc_status.button == 0) &&
(tap_fingers != 0)) {
/* Ignore single-finger taps at the edges. */
if ((tap_fingers == 1) &&
((reaped_xlocs[0] <= sc->sc_left_margin) ||
(reaped_xlocs[0] > sc->sc_right_margin))) {
tap_fingers = 0;
}
DPRINTFN(ATP_LLEVEL_INFO,
"tap_fingers: %u\n", tap_fingers);
}
if (sc->sc_status.flags &
(MOUSE_POSCHANGED | MOUSE_STDBUTTONSCHANGED)) {
int dx, dy;
u_int n_movements;
dx = 0, dy = 0, n_movements = 0;
for (u_int i = 0; i < sc->sc_n_strokes; i++) {
atp_stroke *stroke = &sc->sc_strokes[i];
if ((stroke->components[X].movement) ||
(stroke->components[Y].movement)) {
dx += stroke->components[X].movement;
dy += stroke->components[Y].movement;
n_movements++;
}
}
/*
* Disregard movement if multiple
* strokes record motion.
*/
if (n_movements != 1)
dx = 0, dy = 0;
sc->sc_status.dx += dx;
sc->sc_status.dy += dy;
atp_add_to_queue(sc, dx, -dy, sc->sc_status.button);
}
if (tap_fingers != 0) {
/* Add a pair of events (button-down and button-up). */
switch (tap_fingers) {
case 1: atp_add_to_queue(sc, 0, 0, MOUSE_BUTTON1DOWN);
break;
case 2: atp_add_to_queue(sc, 0, 0, MOUSE_BUTTON2DOWN);
break;
case 3: atp_add_to_queue(sc, 0, 0, MOUSE_BUTTON3DOWN);
break;
default: break;/* handle taps of only up to 3 fingers */
}
atp_add_to_queue(sc, 0, 0, 0); /* button release */
}
/*
* The device continues to trigger interrupts at a
* fast rate even after touchpad activity has
* stopped. Upon detecting that the device has
* remained idle beyond a threshold, we reinitialize
* it to silence the interrupts.
*/
if ((sc->sc_status.flags == 0) &&
(sc->sc_n_strokes == 0) &&
(sc->sc_status.button == 0)) {
sc->sc_idlecount++;
if (sc->sc_idlecount >= ATP_IDLENESS_THRESHOLD) {
DPRINTFN(ATP_LLEVEL_INFO, "idle\n");
/*
* Use the last frame before we go idle for
* calibration on pads which do not send
* calibration frames.
*/
if (sc->sc_params->prot < ATP_PROT_GEYSER3) {
memcpy(sc->base_x, sc->cur_x,
sc->sc_params->n_xsensors *
sizeof(*(sc->base_x)));
memcpy(sc->base_y, sc->cur_y,
sc->sc_params->n_ysensors *
sizeof(*(sc->base_y)));
}
sc->sc_idlecount = 0;
usbd_transfer_start(sc->sc_xfer[ATP_RESET]);
}
} else {
sc->sc_idlecount = 0;
}
case USB_ST_SETUP:
tr_setup:
/* check if we can put more data into the FIFO */
if (usb_fifo_put_bytes_max(
sc->sc_fifo.fp[USB_FIFO_RX]) != 0) {
usbd_xfer_set_frame_len(xfer, 0,
sc->sc_params->data_len);
usbd_transfer_submit(xfer);
}
break;
default: /* Error */
if (error != USB_ERR_CANCELLED) {
/* try clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
return;
}
static void
atp_add_to_queue(struct atp_softc *sc, int dx, int dy, uint32_t buttons_in)
{
uint32_t buttons_out;
uint8_t buf[8];
dx = imin(dx, 254); dx = imax(dx, -256);
dy = imin(dy, 254); dy = imax(dy, -256);
buttons_out = MOUSE_MSC_BUTTONS;
if (buttons_in & MOUSE_BUTTON1DOWN)
buttons_out &= ~MOUSE_MSC_BUTTON1UP;
else if (buttons_in & MOUSE_BUTTON2DOWN)
buttons_out &= ~MOUSE_MSC_BUTTON2UP;
else if (buttons_in & MOUSE_BUTTON3DOWN)
buttons_out &= ~MOUSE_MSC_BUTTON3UP;
DPRINTFN(ATP_LLEVEL_INFO, "dx=%d, dy=%d, buttons=%x\n",
dx, dy, buttons_out);
/* Encode the mouse data in standard format; refer to mouse(4) */
buf[0] = sc->sc_mode.syncmask[1];
buf[0] |= buttons_out;
buf[1] = dx >> 1;
buf[2] = dy >> 1;
buf[3] = dx - (dx >> 1);
buf[4] = dy - (dy >> 1);
/* Encode extra bytes for level 1 */
if (sc->sc_mode.level == 1) {
buf[5] = 0; /* dz */
buf[6] = 0; /* dz - (dz / 2) */
buf[7] = MOUSE_SYS_EXTBUTTONS; /* Extra buttons all up. */
}
usb_fifo_put_data_linear(sc->sc_fifo.fp[USB_FIFO_RX], buf,
sc->sc_mode.packetsize, 1);
}
static void
atp_reset_buf(struct atp_softc *sc)
{
/* reset read queue */
usb_fifo_reset(sc->sc_fifo.fp[USB_FIFO_RX]);
}
static void
atp_start_read(struct usb_fifo *fifo)
{
struct atp_softc *sc = usb_fifo_softc(fifo);
int rate;
/* Check if we should override the default polling interval */
rate = sc->sc_pollrate;
/* Range check rate */
if (rate > 1000)
rate = 1000;
/* Check for set rate */
if ((rate > 0) && (sc->sc_xfer[ATP_INTR_DT] != NULL)) {
/* Stop current transfer, if any */
usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
/* Set new interval */
usbd_xfer_set_interval(sc->sc_xfer[ATP_INTR_DT], 1000 / rate);
/* Only set pollrate once */
sc->sc_pollrate = 0;
}
usbd_transfer_start(sc->sc_xfer[ATP_INTR_DT]);
}
static void
atp_stop_read(struct usb_fifo *fifo)
{
struct atp_softc *sc = usb_fifo_softc(fifo);
usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
}
static int
atp_open(struct usb_fifo *fifo, int fflags)
{
DPRINTFN(ATP_LLEVEL_INFO, "\n");
if (fflags & FREAD) {
struct atp_softc *sc = usb_fifo_softc(fifo);
int rc;
if (sc->sc_state & ATP_ENABLED)
return (EBUSY);
if (usb_fifo_alloc_buffer(fifo,
ATP_FIFO_BUF_SIZE, ATP_FIFO_QUEUE_MAXLEN)) {
return (ENOMEM);
}
rc = atp_enable(sc);
if (rc != 0) {
usb_fifo_free_buffer(fifo);
return (rc);
}
}
return (0);
}
static void
atp_close(struct usb_fifo *fifo, int fflags)
{
if (fflags & FREAD) {
struct atp_softc *sc = usb_fifo_softc(fifo);
atp_disable(sc);
usb_fifo_free_buffer(fifo);
}
}
int
atp_ioctl(struct usb_fifo *fifo, u_long cmd, void *addr, int fflags)
{
struct atp_softc *sc = usb_fifo_softc(fifo);
mousemode_t mode;
int error = 0;
mtx_lock(&sc->sc_mutex);
switch(cmd) {
case MOUSE_GETHWINFO:
*(mousehw_t *)addr = sc->sc_hw;
break;
case MOUSE_GETMODE:
*(mousemode_t *)addr = sc->sc_mode;
break;
case MOUSE_SETMODE:
mode = *(mousemode_t *)addr;
if (mode.level == -1)
/* Don't change the current setting */
;
else if ((mode.level < 0) || (mode.level > 1)) {
error = EINVAL;
goto done;
}
sc->sc_mode.level = mode.level;
sc->sc_pollrate = mode.rate;
sc->sc_hw.buttons = 3;
if (sc->sc_mode.level == 0) {
sc->sc_mode.protocol = MOUSE_PROTO_MSC;
sc->sc_mode.packetsize = MOUSE_MSC_PACKETSIZE;
sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
} else if (sc->sc_mode.level == 1) {
sc->sc_mode.protocol = MOUSE_PROTO_SYSMOUSE;
sc->sc_mode.packetsize = MOUSE_SYS_PACKETSIZE;
sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
}
atp_reset_buf(sc);
break;
case MOUSE_GETLEVEL:
*(int *)addr = sc->sc_mode.level;
break;
case MOUSE_SETLEVEL:
if (*(int *)addr < 0 || *(int *)addr > 1) {
error = EINVAL;
goto done;
}
sc->sc_mode.level = *(int *)addr;
sc->sc_hw.buttons = 3;
if (sc->sc_mode.level == 0) {
sc->sc_mode.protocol = MOUSE_PROTO_MSC;
sc->sc_mode.packetsize = MOUSE_MSC_PACKETSIZE;
sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
} else if (sc->sc_mode.level == 1) {
sc->sc_mode.protocol = MOUSE_PROTO_SYSMOUSE;
sc->sc_mode.packetsize = MOUSE_SYS_PACKETSIZE;
sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
}
atp_reset_buf(sc);
break;
case MOUSE_GETSTATUS: {
mousestatus_t *status = (mousestatus_t *)addr;
*status = sc->sc_status;
sc->sc_status.obutton = sc->sc_status.button;
sc->sc_status.button = 0;
sc->sc_status.dx = 0;
sc->sc_status.dy = 0;
sc->sc_status.dz = 0;
if (status->dx || status->dy || status->dz)
status->flags |= MOUSE_POSCHANGED;
if (status->button != status->obutton)
status->flags |= MOUSE_BUTTONSCHANGED;
break;
}
default:
error = ENOTTY;
}
done:
mtx_unlock(&sc->sc_mutex);
return (error);
}
static int
atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS)
{
int error;
u_int tmp;
u_int prev_mickeys_scale_factor;
prev_mickeys_scale_factor = atp_mickeys_scale_factor;
tmp = atp_mickeys_scale_factor;
error = sysctl_handle_int(oidp, &tmp, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (tmp == prev_mickeys_scale_factor)
return (0); /* no change */
atp_mickeys_scale_factor = tmp;
DPRINTFN(ATP_LLEVEL_INFO, "%s: resetting mickeys_scale_factor to %u\n",
ATP_DRIVER_NAME, tmp);
/* Update dependent thresholds. */
if (atp_small_movement_threshold == (prev_mickeys_scale_factor >> 3))
atp_small_movement_threshold = atp_mickeys_scale_factor >> 3;
if (atp_max_delta_mickeys == ((3 * prev_mickeys_scale_factor) >> 1))
atp_max_delta_mickeys = ((3 * atp_mickeys_scale_factor) >>1);
if (atp_slide_min_movement == (prev_mickeys_scale_factor >> 3))
atp_slide_min_movement = atp_mickeys_scale_factor >> 3;
return (0);
}
static device_method_t atp_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, atp_probe),
DEVMETHOD(device_attach, atp_attach),
DEVMETHOD(device_detach, atp_detach),
{ 0, 0 }
};
static driver_t atp_driver = {
ATP_DRIVER_NAME,
atp_methods,
sizeof(struct atp_softc)
};
static devclass_t atp_devclass;
DRIVER_MODULE(atp, uhub, atp_driver, atp_devclass, NULL, 0);
MODULE_DEPEND(atp, usb, 1, 1, 1);
MODULE_VERSION(atp, 1);