freebsd-nq/contrib/gcc/sbitmap.c
2007-05-19 01:19:51 +00:00

798 lines
18 KiB
C

/* Simple bitmaps.
Copyright (C) 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "basic-block.h"
/* Bitmap manipulation routines. */
/* Allocate a simple bitmap of N_ELMS bits. */
sbitmap
sbitmap_alloc (unsigned int n_elms)
{
unsigned int bytes, size, amt;
sbitmap bmap;
size = SBITMAP_SET_SIZE (n_elms);
bytes = size * sizeof (SBITMAP_ELT_TYPE);
amt = (sizeof (struct simple_bitmap_def)
+ bytes - sizeof (SBITMAP_ELT_TYPE));
bmap = xmalloc (amt);
bmap->n_bits = n_elms;
bmap->size = size;
bmap->bytes = bytes;
return bmap;
}
/* Resize a simple bitmap BMAP to N_ELMS bits. If increasing the
size of BMAP, clear the new bits to zero if the DEF argument
is zero, and set them to one otherwise. */
sbitmap
sbitmap_resize (sbitmap bmap, unsigned int n_elms, int def)
{
unsigned int bytes, size, amt;
unsigned int last_bit;
size = SBITMAP_SET_SIZE (n_elms);
bytes = size * sizeof (SBITMAP_ELT_TYPE);
if (bytes > bmap->bytes)
{
amt = (sizeof (struct simple_bitmap_def)
+ bytes - sizeof (SBITMAP_ELT_TYPE));
bmap = xrealloc (bmap, amt);
}
if (n_elms > bmap->n_bits)
{
if (def)
{
memset (bmap->elms + bmap->size, -1, bytes - bmap->bytes);
/* Set the new bits if the original last element. */
last_bit = bmap->n_bits % SBITMAP_ELT_BITS;
if (last_bit)
bmap->elms[bmap->size - 1]
|= ~((SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit));
/* Clear the unused bit in the new last element. */
last_bit = n_elms % SBITMAP_ELT_BITS;
if (last_bit)
bmap->elms[size - 1]
&= (SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit);
}
else
memset (bmap->elms + bmap->size, 0, bytes - bmap->bytes);
}
else if (n_elms < bmap->n_bits)
{
/* Clear the surplus bits in the last word. */
last_bit = n_elms % SBITMAP_ELT_BITS;
if (last_bit)
bmap->elms[size - 1]
&= (SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit);
}
bmap->n_bits = n_elms;
bmap->size = size;
bmap->bytes = bytes;
return bmap;
}
/* Re-allocate a simple bitmap of N_ELMS bits. New storage is uninitialized. */
sbitmap
sbitmap_realloc (sbitmap src, unsigned int n_elms)
{
unsigned int bytes, size, amt;
sbitmap bmap;
size = SBITMAP_SET_SIZE (n_elms);
bytes = size * sizeof (SBITMAP_ELT_TYPE);
amt = (sizeof (struct simple_bitmap_def)
+ bytes - sizeof (SBITMAP_ELT_TYPE));
if (src->bytes >= bytes)
{
src->n_bits = n_elms;
return src;
}
bmap = (sbitmap) xrealloc (src, amt);
bmap->n_bits = n_elms;
bmap->size = size;
bmap->bytes = bytes;
return bmap;
}
/* Allocate a vector of N_VECS bitmaps of N_ELMS bits. */
sbitmap *
sbitmap_vector_alloc (unsigned int n_vecs, unsigned int n_elms)
{
unsigned int i, bytes, offset, elm_bytes, size, amt, vector_bytes;
sbitmap *bitmap_vector;
size = SBITMAP_SET_SIZE (n_elms);
bytes = size * sizeof (SBITMAP_ELT_TYPE);
elm_bytes = (sizeof (struct simple_bitmap_def)
+ bytes - sizeof (SBITMAP_ELT_TYPE));
vector_bytes = n_vecs * sizeof (sbitmap *);
/* Round up `vector_bytes' to account for the alignment requirements
of an sbitmap. One could allocate the vector-table and set of sbitmaps
separately, but that requires maintaining two pointers or creating
a cover struct to hold both pointers (so our result is still just
one pointer). Neither is a bad idea, but this is simpler for now. */
{
/* Based on DEFAULT_ALIGNMENT computation in obstack.c. */
struct { char x; SBITMAP_ELT_TYPE y; } align;
int alignment = (char *) & align.y - & align.x;
vector_bytes = (vector_bytes + alignment - 1) & ~ (alignment - 1);
}
amt = vector_bytes + (n_vecs * elm_bytes);
bitmap_vector = xmalloc (amt);
for (i = 0, offset = vector_bytes; i < n_vecs; i++, offset += elm_bytes)
{
sbitmap b = (sbitmap) ((char *) bitmap_vector + offset);
bitmap_vector[i] = b;
b->n_bits = n_elms;
b->size = size;
b->bytes = bytes;
}
return bitmap_vector;
}
/* Copy sbitmap SRC to DST. */
void
sbitmap_copy (sbitmap dst, sbitmap src)
{
memcpy (dst->elms, src->elms, sizeof (SBITMAP_ELT_TYPE) * dst->size);
}
/* Determine if a == b. */
int
sbitmap_equal (sbitmap a, sbitmap b)
{
return !memcmp (a->elms, b->elms, sizeof (SBITMAP_ELT_TYPE) * a->size);
}
/* Zero all elements in a bitmap. */
void
sbitmap_zero (sbitmap bmap)
{
memset (bmap->elms, 0, bmap->bytes);
}
/* Set all elements in a bitmap to ones. */
void
sbitmap_ones (sbitmap bmap)
{
unsigned int last_bit;
memset (bmap->elms, -1, bmap->bytes);
last_bit = bmap->n_bits % SBITMAP_ELT_BITS;
if (last_bit)
bmap->elms[bmap->size - 1]
= (SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit);
}
/* Zero a vector of N_VECS bitmaps. */
void
sbitmap_vector_zero (sbitmap *bmap, unsigned int n_vecs)
{
unsigned int i;
for (i = 0; i < n_vecs; i++)
sbitmap_zero (bmap[i]);
}
/* Set a vector of N_VECS bitmaps to ones. */
void
sbitmap_vector_ones (sbitmap *bmap, unsigned int n_vecs)
{
unsigned int i;
for (i = 0; i < n_vecs; i++)
sbitmap_ones (bmap[i]);
}
/* Set DST to be A union (B - C).
DST = A | (B & ~C).
Returns true if any change is made. */
bool
sbitmap_union_of_diff_cg (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ | (*bp++ & ~*cp++);
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_union_of_diff (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ | (*bp++ & ~*cp++);
}
/* Set bitmap DST to the bitwise negation of the bitmap SRC. */
void
sbitmap_not (sbitmap dst, sbitmap src)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr srcp = src->elms;
unsigned int last_bit;
for (i = 0; i < n; i++)
*dstp++ = ~*srcp++;
/* Zero all bits past n_bits, by ANDing dst with sbitmap_ones. */
last_bit = src->n_bits % SBITMAP_ELT_BITS;
if (last_bit)
dst->elms[n-1] = dst->elms[n-1]
& ((SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit));
}
/* Set the bits in DST to be the difference between the bits
in A and the bits in B. i.e. dst = a & (~b). */
void
sbitmap_difference (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, dst_size = dst->size;
unsigned int min_size = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
/* A should be at least as large as DEST, to have a defined source. */
gcc_assert (a->size >= dst_size);
/* If minuend is smaller, we simply pretend it to be zero bits, i.e.
only copy the subtrahend into dest. */
if (b->size < min_size)
min_size = b->size;
for (i = 0; i < min_size; i++)
*dstp++ = *ap++ & (~*bp++);
/* Now fill the rest of dest from A, if B was too short.
This makes sense only when destination and A differ. */
if (dst != a && i != dst_size)
for (; i < dst_size; i++)
*dstp++ = *ap++;
}
/* Return true if there are any bits set in A are also set in B.
Return false otherwise. */
bool
sbitmap_any_common_bits (sbitmap a, sbitmap b)
{
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
unsigned int i, n;
n = MIN (a->size, b->size);
for (i = 0; i < n; i++)
if ((*ap++ & *bp++) != 0)
return true;
return false;
}
/* Set DST to be (A and B).
Return nonzero if any change is made. */
bool
sbitmap_a_and_b_cg (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ & *bp++;
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_and_b (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ & *bp++;
}
/* Set DST to be (A xor B)).
Return nonzero if any change is made. */
bool
sbitmap_a_xor_b_cg (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ ^ *bp++;
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_xor_b (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ ^ *bp++;
}
/* Set DST to be (A or B)).
Return nonzero if any change is made. */
bool
sbitmap_a_or_b_cg (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ | *bp++;
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_or_b (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ | *bp++;
}
/* Return nonzero if A is a subset of B. */
bool
sbitmap_a_subset_b_p (sbitmap a, sbitmap b)
{
unsigned int i, n = a->size;
sbitmap_ptr ap, bp;
for (ap = a->elms, bp = b->elms, i = 0; i < n; i++, ap++, bp++)
if ((*ap | *bp) != *bp)
return false;
return true;
}
/* Set DST to be (A or (B and C)).
Return nonzero if any change is made. */
bool
sbitmap_a_or_b_and_c_cg (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ | (*bp++ & *cp++);
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_or_b_and_c (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ | (*bp++ & *cp++);
}
/* Set DST to be (A and (B or C)).
Return nonzero if any change is made. */
bool
sbitmap_a_and_b_or_c_cg (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ & (*bp++ | *cp++);
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_and_b_or_c (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ & (*bp++ | *cp++);
}
#ifdef IN_GCC
/* Set the bitmap DST to the intersection of SRC of successors of
block number BB, using the new flow graph structures. */
void
sbitmap_intersection_of_succs (sbitmap dst, sbitmap *src, int bb)
{
basic_block b = BASIC_BLOCK (bb);
unsigned int set_size = dst->size;
edge e;
unsigned ix;
for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
{
e = EDGE_SUCC (b, ix);
if (e->dest == EXIT_BLOCK_PTR)
continue;
sbitmap_copy (dst, src[e->dest->index]);
break;
}
if (e == 0)
sbitmap_ones (dst);
else
for (++ix; ix < EDGE_COUNT (b->succs); ix++)
{
unsigned int i;
sbitmap_ptr p, r;
e = EDGE_SUCC (b, ix);
if (e->dest == EXIT_BLOCK_PTR)
continue;
p = src[e->dest->index]->elms;
r = dst->elms;
for (i = 0; i < set_size; i++)
*r++ &= *p++;
}
}
/* Set the bitmap DST to the intersection of SRC of predecessors of
block number BB, using the new flow graph structures. */
void
sbitmap_intersection_of_preds (sbitmap dst, sbitmap *src, int bb)
{
basic_block b = BASIC_BLOCK (bb);
unsigned int set_size = dst->size;
edge e;
unsigned ix;
for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
{
e = EDGE_PRED (b, ix);
if (e->src == ENTRY_BLOCK_PTR)
continue;
sbitmap_copy (dst, src[e->src->index]);
break;
}
if (e == 0)
sbitmap_ones (dst);
else
for (++ix; ix < EDGE_COUNT (b->preds); ix++)
{
unsigned int i;
sbitmap_ptr p, r;
e = EDGE_PRED (b, ix);
if (e->src == ENTRY_BLOCK_PTR)
continue;
p = src[e->src->index]->elms;
r = dst->elms;
for (i = 0; i < set_size; i++)
*r++ &= *p++;
}
}
/* Set the bitmap DST to the union of SRC of successors of
block number BB, using the new flow graph structures. */
void
sbitmap_union_of_succs (sbitmap dst, sbitmap *src, int bb)
{
basic_block b = BASIC_BLOCK (bb);
unsigned int set_size = dst->size;
edge e;
unsigned ix;
for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
{
e = EDGE_SUCC (b, ix);
if (e->dest == EXIT_BLOCK_PTR)
continue;
sbitmap_copy (dst, src[e->dest->index]);
break;
}
if (ix == EDGE_COUNT (b->succs))
sbitmap_zero (dst);
else
for (ix++; ix < EDGE_COUNT (b->succs); ix++)
{
unsigned int i;
sbitmap_ptr p, r;
e = EDGE_SUCC (b, ix);
if (e->dest == EXIT_BLOCK_PTR)
continue;
p = src[e->dest->index]->elms;
r = dst->elms;
for (i = 0; i < set_size; i++)
*r++ |= *p++;
}
}
/* Set the bitmap DST to the union of SRC of predecessors of
block number BB, using the new flow graph structures. */
void
sbitmap_union_of_preds (sbitmap dst, sbitmap *src, int bb)
{
basic_block b = BASIC_BLOCK (bb);
unsigned int set_size = dst->size;
edge e;
unsigned ix;
for (ix = 0; ix < EDGE_COUNT (b->preds); ix++)
{
e = EDGE_PRED (b, ix);
if (e->src== ENTRY_BLOCK_PTR)
continue;
sbitmap_copy (dst, src[e->src->index]);
break;
}
if (ix == EDGE_COUNT (b->preds))
sbitmap_zero (dst);
else
for (ix++; ix < EDGE_COUNT (b->preds); ix++)
{
unsigned int i;
sbitmap_ptr p, r;
e = EDGE_PRED (b, ix);
if (e->src == ENTRY_BLOCK_PTR)
continue;
p = src[e->src->index]->elms;
r = dst->elms;
for (i = 0; i < set_size; i++)
*r++ |= *p++;
}
}
#endif
/* Return number of first bit set in the bitmap, -1 if none. */
int
sbitmap_first_set_bit (sbitmap bmap)
{
unsigned int n = 0;
sbitmap_iterator sbi;
EXECUTE_IF_SET_IN_SBITMAP (bmap, 0, n, sbi)
return n;
return -1;
}
/* Return number of last bit set in the bitmap, -1 if none. */
int
sbitmap_last_set_bit (sbitmap bmap)
{
int i;
SBITMAP_ELT_TYPE *ptr = bmap->elms;
for (i = bmap->size - 1; i >= 0; i--)
{
SBITMAP_ELT_TYPE word = ptr[i];
if (word != 0)
{
unsigned int index = (i + 1) * SBITMAP_ELT_BITS - 1;
SBITMAP_ELT_TYPE mask
= (SBITMAP_ELT_TYPE) 1 << (SBITMAP_ELT_BITS - 1);
while (1)
{
if ((word & mask) != 0)
return index;
mask >>= 1;
index--;
}
}
}
return -1;
}
void
dump_sbitmap (FILE *file, sbitmap bmap)
{
unsigned int i, n, j;
unsigned int set_size = bmap->size;
unsigned int total_bits = bmap->n_bits;
fprintf (file, " ");
for (i = n = 0; i < set_size && n < total_bits; i++)
for (j = 0; j < SBITMAP_ELT_BITS && n < total_bits; j++, n++)
{
if (n != 0 && n % 10 == 0)
fprintf (file, " ");
fprintf (file, "%d",
(bmap->elms[i] & ((SBITMAP_ELT_TYPE) 1 << j)) != 0);
}
fprintf (file, "\n");
}
void
dump_sbitmap_file (FILE *file, sbitmap bmap)
{
unsigned int i, pos;
fprintf (file, "n_bits = %d, set = {", bmap->n_bits);
for (pos = 30, i = 0; i < bmap->n_bits; i++)
if (TEST_BIT (bmap, i))
{
if (pos > 70)
{
fprintf (file, "\n ");
pos = 0;
}
fprintf (file, "%d ", i);
pos += 2 + (i >= 10) + (i >= 100) + (i >= 1000);
}
fprintf (file, "}\n");
}
void
debug_sbitmap (sbitmap bmap)
{
dump_sbitmap_file (stderr, bmap);
}
void
dump_sbitmap_vector (FILE *file, const char *title, const char *subtitle,
sbitmap *bmaps, int n_maps)
{
int bb;
fprintf (file, "%s\n", title);
for (bb = 0; bb < n_maps; bb++)
{
fprintf (file, "%s %d\n", subtitle, bb);
dump_sbitmap (file, bmaps[bb]);
}
fprintf (file, "\n");
}