freebsd-nq/sys/kern/subr_intr.c
Jessica Clarke a3e828c91d intrng: Use less confusing return value for intr_pic_add_handler
Currently intr_pic_add_handler either returns the PIC you gave it (which
is useless and risks causing confusion about whether it's creating
another PIC) or, on error, NULL. Instead, convert it to return an int
error code as one would expect.

Note that the only consumer of this API, arm64's gicv3_its, does not use
the return value, so no uses need updating to work with the revised API.

Reviewed by:	markj, mmel
MFC after:	1 week
Differential Revision:	https://reviews.freebsd.org/D33341
2022-01-03 17:08:44 +00:00

1744 lines
41 KiB
C

/*-
* Copyright (c) 2015-2016 Svatopluk Kraus
* Copyright (c) 2015-2016 Michal Meloun
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* New-style Interrupt Framework
*
* TODO: - add support for disconnected PICs.
* - to support IPI (PPI) enabling on other CPUs if already started.
* - to complete things for removable PICs.
*/
#include "opt_ddb.h"
#include "opt_hwpmc_hooks.h"
#include "opt_iommu.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/syslog.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/conf.h>
#include <sys/cpuset.h>
#include <sys/rman.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
#endif
#include <machine/atomic.h>
#include <machine/intr.h>
#include <machine/cpu.h>
#include <machine/smp.h>
#include <machine/stdarg.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#ifdef IOMMU
#include <dev/iommu/iommu_msi.h>
#endif
#include "pic_if.h"
#include "msi_if.h"
#define INTRNAME_LEN (2*MAXCOMLEN + 1)
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
MALLOC_DECLARE(M_INTRNG);
MALLOC_DEFINE(M_INTRNG, "intr", "intr interrupt handling");
/* Main interrupt handler called from assembler -> 'hidden' for C code. */
void intr_irq_handler(struct trapframe *tf);
/* Root interrupt controller stuff. */
device_t intr_irq_root_dev;
static intr_irq_filter_t *irq_root_filter;
static void *irq_root_arg;
static u_int irq_root_ipicount;
struct intr_pic_child {
SLIST_ENTRY(intr_pic_child) pc_next;
struct intr_pic *pc_pic;
intr_child_irq_filter_t *pc_filter;
void *pc_filter_arg;
uintptr_t pc_start;
uintptr_t pc_length;
};
/* Interrupt controller definition. */
struct intr_pic {
SLIST_ENTRY(intr_pic) pic_next;
intptr_t pic_xref; /* hardware identification */
device_t pic_dev;
/* Only one of FLAG_PIC or FLAG_MSI may be set */
#define FLAG_PIC (1 << 0)
#define FLAG_MSI (1 << 1)
#define FLAG_TYPE_MASK (FLAG_PIC | FLAG_MSI)
u_int pic_flags;
struct mtx pic_child_lock;
SLIST_HEAD(, intr_pic_child) pic_children;
};
static struct mtx pic_list_lock;
static SLIST_HEAD(, intr_pic) pic_list;
static struct intr_pic *pic_lookup(device_t dev, intptr_t xref, int flags);
/* Interrupt source definition. */
static struct mtx isrc_table_lock;
static struct intr_irqsrc **irq_sources;
u_int irq_next_free;
#ifdef SMP
#ifdef EARLY_AP_STARTUP
static bool irq_assign_cpu = true;
#else
static bool irq_assign_cpu = false;
#endif
#endif
u_int intr_nirq = NIRQ;
SYSCTL_UINT(_machdep, OID_AUTO, nirq, CTLFLAG_RDTUN, &intr_nirq, 0,
"Number of IRQs");
/* Data for MI statistics reporting. */
u_long *intrcnt;
char *intrnames;
size_t sintrcnt;
size_t sintrnames;
static u_int intrcnt_index;
static struct intr_irqsrc *intr_map_get_isrc(u_int res_id);
static void intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc);
static struct intr_map_data * intr_map_get_map_data(u_int res_id);
static void intr_map_copy_map_data(u_int res_id, device_t *dev, intptr_t *xref,
struct intr_map_data **data);
/*
* Interrupt framework initialization routine.
*/
static void
intr_irq_init(void *dummy __unused)
{
u_int intrcnt_count;
SLIST_INIT(&pic_list);
mtx_init(&pic_list_lock, "intr pic list", NULL, MTX_DEF);
mtx_init(&isrc_table_lock, "intr isrc table", NULL, MTX_DEF);
/*
* - 2 counters for each I/O interrupt.
* - MAXCPU counters for each IPI counters for SMP.
*/
intrcnt_count = intr_nirq * 2;
#ifdef SMP
intrcnt_count += INTR_IPI_COUNT * MAXCPU;
#endif
intrcnt = mallocarray(intrcnt_count, sizeof(u_long), M_INTRNG,
M_WAITOK | M_ZERO);
intrnames = mallocarray(intrcnt_count, INTRNAME_LEN, M_INTRNG,
M_WAITOK | M_ZERO);
sintrcnt = intrcnt_count * sizeof(u_long);
sintrnames = intrcnt_count * INTRNAME_LEN;
irq_sources = mallocarray(intr_nirq, sizeof(struct intr_irqsrc*),
M_INTRNG, M_WAITOK | M_ZERO);
}
SYSINIT(intr_irq_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_irq_init, NULL);
static void
intrcnt_setname(const char *name, int index)
{
snprintf(intrnames + INTRNAME_LEN * index, INTRNAME_LEN, "%-*s",
INTRNAME_LEN - 1, name);
}
/*
* Update name for interrupt source with interrupt event.
*/
static void
intrcnt_updatename(struct intr_irqsrc *isrc)
{
/* QQQ: What about stray counter name? */
mtx_assert(&isrc_table_lock, MA_OWNED);
intrcnt_setname(isrc->isrc_event->ie_fullname, isrc->isrc_index);
}
/*
* Virtualization for interrupt source interrupt counter increment.
*/
static inline void
isrc_increment_count(struct intr_irqsrc *isrc)
{
if (isrc->isrc_flags & INTR_ISRCF_PPI)
atomic_add_long(&isrc->isrc_count[0], 1);
else
isrc->isrc_count[0]++;
}
/*
* Virtualization for interrupt source interrupt stray counter increment.
*/
static inline void
isrc_increment_straycount(struct intr_irqsrc *isrc)
{
isrc->isrc_count[1]++;
}
/*
* Virtualization for interrupt source interrupt name update.
*/
static void
isrc_update_name(struct intr_irqsrc *isrc, const char *name)
{
char str[INTRNAME_LEN];
mtx_assert(&isrc_table_lock, MA_OWNED);
if (name != NULL) {
snprintf(str, INTRNAME_LEN, "%s: %s", isrc->isrc_name, name);
intrcnt_setname(str, isrc->isrc_index);
snprintf(str, INTRNAME_LEN, "stray %s: %s", isrc->isrc_name,
name);
intrcnt_setname(str, isrc->isrc_index + 1);
} else {
snprintf(str, INTRNAME_LEN, "%s:", isrc->isrc_name);
intrcnt_setname(str, isrc->isrc_index);
snprintf(str, INTRNAME_LEN, "stray %s:", isrc->isrc_name);
intrcnt_setname(str, isrc->isrc_index + 1);
}
}
/*
* Virtualization for interrupt source interrupt counters setup.
*/
static void
isrc_setup_counters(struct intr_irqsrc *isrc)
{
u_int index;
/*
* XXX - it does not work well with removable controllers and
* interrupt sources !!!
*/
index = atomic_fetchadd_int(&intrcnt_index, 2);
isrc->isrc_index = index;
isrc->isrc_count = &intrcnt[index];
isrc_update_name(isrc, NULL);
}
/*
* Virtualization for interrupt source interrupt counters release.
*/
static void
isrc_release_counters(struct intr_irqsrc *isrc)
{
panic("%s: not implemented", __func__);
}
#ifdef SMP
/*
* Virtualization for interrupt source IPI counters setup.
*/
u_long *
intr_ipi_setup_counters(const char *name)
{
u_int index, i;
char str[INTRNAME_LEN];
index = atomic_fetchadd_int(&intrcnt_index, MAXCPU);
for (i = 0; i < MAXCPU; i++) {
snprintf(str, INTRNAME_LEN, "cpu%d:%s", i, name);
intrcnt_setname(str, index + i);
}
return (&intrcnt[index]);
}
#endif
/*
* Main interrupt dispatch handler. It's called straight
* from the assembler, where CPU interrupt is served.
*/
void
intr_irq_handler(struct trapframe *tf)
{
struct trapframe * oldframe;
struct thread * td;
KASSERT(irq_root_filter != NULL, ("%s: no filter", __func__));
VM_CNT_INC(v_intr);
critical_enter();
td = curthread;
oldframe = td->td_intr_frame;
td->td_intr_frame = tf;
irq_root_filter(irq_root_arg);
td->td_intr_frame = oldframe;
critical_exit();
#ifdef HWPMC_HOOKS
if (pmc_hook && TRAPF_USERMODE(tf) &&
(PCPU_GET(curthread)->td_pflags & TDP_CALLCHAIN))
pmc_hook(PCPU_GET(curthread), PMC_FN_USER_CALLCHAIN, tf);
#endif
}
int
intr_child_irq_handler(struct intr_pic *parent, uintptr_t irq)
{
struct intr_pic_child *child;
bool found;
found = false;
mtx_lock_spin(&parent->pic_child_lock);
SLIST_FOREACH(child, &parent->pic_children, pc_next) {
if (child->pc_start <= irq &&
irq < (child->pc_start + child->pc_length)) {
found = true;
break;
}
}
mtx_unlock_spin(&parent->pic_child_lock);
if (found)
return (child->pc_filter(child->pc_filter_arg, irq));
return (FILTER_STRAY);
}
/*
* interrupt controller dispatch function for interrupts. It should
* be called straight from the interrupt controller, when associated interrupt
* source is learned.
*/
int
intr_isrc_dispatch(struct intr_irqsrc *isrc, struct trapframe *tf)
{
KASSERT(isrc != NULL, ("%s: no source", __func__));
isrc_increment_count(isrc);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL) {
int error;
error = isrc->isrc_filter(isrc->isrc_arg, tf);
PIC_POST_FILTER(isrc->isrc_dev, isrc);
if (error == FILTER_HANDLED)
return (0);
} else
#endif
if (isrc->isrc_event != NULL) {
if (intr_event_handle(isrc->isrc_event, tf) == 0)
return (0);
}
isrc_increment_straycount(isrc);
return (EINVAL);
}
/*
* Alloc unique interrupt number (resource handle) for interrupt source.
*
* There could be various strategies how to allocate free interrupt number
* (resource handle) for new interrupt source.
*
* 1. Handles are always allocated forward, so handles are not recycled
* immediately. However, if only one free handle left which is reused
* constantly...
*/
static inline int
isrc_alloc_irq(struct intr_irqsrc *isrc)
{
u_int irq;
mtx_assert(&isrc_table_lock, MA_OWNED);
if (irq_next_free >= intr_nirq)
return (ENOSPC);
for (irq = irq_next_free; irq < intr_nirq; irq++) {
if (irq_sources[irq] == NULL)
goto found;
}
for (irq = 0; irq < irq_next_free; irq++) {
if (irq_sources[irq] == NULL)
goto found;
}
irq_next_free = intr_nirq;
return (ENOSPC);
found:
isrc->isrc_irq = irq;
irq_sources[irq] = isrc;
irq_next_free = irq + 1;
if (irq_next_free >= intr_nirq)
irq_next_free = 0;
return (0);
}
/*
* Free unique interrupt number (resource handle) from interrupt source.
*/
static inline int
isrc_free_irq(struct intr_irqsrc *isrc)
{
mtx_assert(&isrc_table_lock, MA_OWNED);
if (isrc->isrc_irq >= intr_nirq)
return (EINVAL);
if (irq_sources[isrc->isrc_irq] != isrc)
return (EINVAL);
irq_sources[isrc->isrc_irq] = NULL;
isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */
/*
* If we are recovering from the state irq_sources table is full,
* then the following allocation should check the entire table. This
* will ensure maximum separation of allocation order from release
* order.
*/
if (irq_next_free >= intr_nirq)
irq_next_free = 0;
return (0);
}
/*
* Initialize interrupt source and register it into global interrupt table.
*/
int
intr_isrc_register(struct intr_irqsrc *isrc, device_t dev, u_int flags,
const char *fmt, ...)
{
int error;
va_list ap;
bzero(isrc, sizeof(struct intr_irqsrc));
isrc->isrc_dev = dev;
isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */
isrc->isrc_flags = flags;
va_start(ap, fmt);
vsnprintf(isrc->isrc_name, INTR_ISRC_NAMELEN, fmt, ap);
va_end(ap);
mtx_lock(&isrc_table_lock);
error = isrc_alloc_irq(isrc);
if (error != 0) {
mtx_unlock(&isrc_table_lock);
return (error);
}
/*
* Setup interrupt counters, but not for IPI sources. Those are setup
* later and only for used ones (up to INTR_IPI_COUNT) to not exhaust
* our counter pool.
*/
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
isrc_setup_counters(isrc);
mtx_unlock(&isrc_table_lock);
return (0);
}
/*
* Deregister interrupt source from global interrupt table.
*/
int
intr_isrc_deregister(struct intr_irqsrc *isrc)
{
int error;
mtx_lock(&isrc_table_lock);
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
isrc_release_counters(isrc);
error = isrc_free_irq(isrc);
mtx_unlock(&isrc_table_lock);
return (error);
}
#ifdef SMP
/*
* A support function for a PIC to decide if provided ISRC should be inited
* on given cpu. The logic of INTR_ISRCF_BOUND flag and isrc_cpu member of
* struct intr_irqsrc is the following:
*
* If INTR_ISRCF_BOUND is set, the ISRC should be inited only on cpus
* set in isrc_cpu. If not, the ISRC should be inited on every cpu and
* isrc_cpu is kept consistent with it. Thus isrc_cpu is always correct.
*/
bool
intr_isrc_init_on_cpu(struct intr_irqsrc *isrc, u_int cpu)
{
if (isrc->isrc_handlers == 0)
return (false);
if ((isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) == 0)
return (false);
if (isrc->isrc_flags & INTR_ISRCF_BOUND)
return (CPU_ISSET(cpu, &isrc->isrc_cpu));
CPU_SET(cpu, &isrc->isrc_cpu);
return (true);
}
#endif
#ifdef INTR_SOLO
/*
* Setup filter into interrupt source.
*/
static int
iscr_setup_filter(struct intr_irqsrc *isrc, const char *name,
intr_irq_filter_t *filter, void *arg, void **cookiep)
{
if (filter == NULL)
return (EINVAL);
mtx_lock(&isrc_table_lock);
/*
* Make sure that we do not mix the two ways
* how we handle interrupt sources.
*/
if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
mtx_unlock(&isrc_table_lock);
return (EBUSY);
}
isrc->isrc_filter = filter;
isrc->isrc_arg = arg;
isrc_update_name(isrc, name);
mtx_unlock(&isrc_table_lock);
*cookiep = isrc;
return (0);
}
#endif
/*
* Interrupt source pre_ithread method for MI interrupt framework.
*/
static void
intr_isrc_pre_ithread(void *arg)
{
struct intr_irqsrc *isrc = arg;
PIC_PRE_ITHREAD(isrc->isrc_dev, isrc);
}
/*
* Interrupt source post_ithread method for MI interrupt framework.
*/
static void
intr_isrc_post_ithread(void *arg)
{
struct intr_irqsrc *isrc = arg;
PIC_POST_ITHREAD(isrc->isrc_dev, isrc);
}
/*
* Interrupt source post_filter method for MI interrupt framework.
*/
static void
intr_isrc_post_filter(void *arg)
{
struct intr_irqsrc *isrc = arg;
PIC_POST_FILTER(isrc->isrc_dev, isrc);
}
/*
* Interrupt source assign_cpu method for MI interrupt framework.
*/
static int
intr_isrc_assign_cpu(void *arg, int cpu)
{
#ifdef SMP
struct intr_irqsrc *isrc = arg;
int error;
mtx_lock(&isrc_table_lock);
if (cpu == NOCPU) {
CPU_ZERO(&isrc->isrc_cpu);
isrc->isrc_flags &= ~INTR_ISRCF_BOUND;
} else {
CPU_SETOF(cpu, &isrc->isrc_cpu);
isrc->isrc_flags |= INTR_ISRCF_BOUND;
}
/*
* In NOCPU case, it's up to PIC to either leave ISRC on same CPU or
* re-balance it to another CPU or enable it on more CPUs. However,
* PIC is expected to change isrc_cpu appropriately to keep us well
* informed if the call is successful.
*/
if (irq_assign_cpu) {
error = PIC_BIND_INTR(isrc->isrc_dev, isrc);
if (error) {
CPU_ZERO(&isrc->isrc_cpu);
mtx_unlock(&isrc_table_lock);
return (error);
}
}
mtx_unlock(&isrc_table_lock);
return (0);
#else
return (EOPNOTSUPP);
#endif
}
/*
* Create interrupt event for interrupt source.
*/
static int
isrc_event_create(struct intr_irqsrc *isrc)
{
struct intr_event *ie;
int error;
error = intr_event_create(&ie, isrc, 0, isrc->isrc_irq,
intr_isrc_pre_ithread, intr_isrc_post_ithread, intr_isrc_post_filter,
intr_isrc_assign_cpu, "%s:", isrc->isrc_name);
if (error)
return (error);
mtx_lock(&isrc_table_lock);
/*
* Make sure that we do not mix the two ways
* how we handle interrupt sources. Let contested event wins.
*/
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
#else
if (isrc->isrc_event != NULL) {
#endif
mtx_unlock(&isrc_table_lock);
intr_event_destroy(ie);
return (isrc->isrc_event != NULL ? EBUSY : 0);
}
isrc->isrc_event = ie;
mtx_unlock(&isrc_table_lock);
return (0);
}
#ifdef notyet
/*
* Destroy interrupt event for interrupt source.
*/
static void
isrc_event_destroy(struct intr_irqsrc *isrc)
{
struct intr_event *ie;
mtx_lock(&isrc_table_lock);
ie = isrc->isrc_event;
isrc->isrc_event = NULL;
mtx_unlock(&isrc_table_lock);
if (ie != NULL)
intr_event_destroy(ie);
}
#endif
/*
* Add handler to interrupt source.
*/
static int
isrc_add_handler(struct intr_irqsrc *isrc, const char *name,
driver_filter_t filter, driver_intr_t handler, void *arg,
enum intr_type flags, void **cookiep)
{
int error;
if (isrc->isrc_event == NULL) {
error = isrc_event_create(isrc);
if (error)
return (error);
}
error = intr_event_add_handler(isrc->isrc_event, name, filter, handler,
arg, intr_priority(flags), flags, cookiep);
if (error == 0) {
mtx_lock(&isrc_table_lock);
intrcnt_updatename(isrc);
mtx_unlock(&isrc_table_lock);
}
return (error);
}
/*
* Lookup interrupt controller locked.
*/
static inline struct intr_pic *
pic_lookup_locked(device_t dev, intptr_t xref, int flags)
{
struct intr_pic *pic;
mtx_assert(&pic_list_lock, MA_OWNED);
if (dev == NULL && xref == 0)
return (NULL);
/* Note that pic->pic_dev is never NULL on registered PIC. */
SLIST_FOREACH(pic, &pic_list, pic_next) {
if ((pic->pic_flags & FLAG_TYPE_MASK) !=
(flags & FLAG_TYPE_MASK))
continue;
if (dev == NULL) {
if (xref == pic->pic_xref)
return (pic);
} else if (xref == 0 || pic->pic_xref == 0) {
if (dev == pic->pic_dev)
return (pic);
} else if (xref == pic->pic_xref && dev == pic->pic_dev)
return (pic);
}
return (NULL);
}
/*
* Lookup interrupt controller.
*/
static struct intr_pic *
pic_lookup(device_t dev, intptr_t xref, int flags)
{
struct intr_pic *pic;
mtx_lock(&pic_list_lock);
pic = pic_lookup_locked(dev, xref, flags);
mtx_unlock(&pic_list_lock);
return (pic);
}
/*
* Create interrupt controller.
*/
static struct intr_pic *
pic_create(device_t dev, intptr_t xref, int flags)
{
struct intr_pic *pic;
mtx_lock(&pic_list_lock);
pic = pic_lookup_locked(dev, xref, flags);
if (pic != NULL) {
mtx_unlock(&pic_list_lock);
return (pic);
}
pic = malloc(sizeof(*pic), M_INTRNG, M_NOWAIT | M_ZERO);
if (pic == NULL) {
mtx_unlock(&pic_list_lock);
return (NULL);
}
pic->pic_xref = xref;
pic->pic_dev = dev;
pic->pic_flags = flags;
mtx_init(&pic->pic_child_lock, "pic child lock", NULL, MTX_SPIN);
SLIST_INSERT_HEAD(&pic_list, pic, pic_next);
mtx_unlock(&pic_list_lock);
return (pic);
}
#ifdef notyet
/*
* Destroy interrupt controller.
*/
static void
pic_destroy(device_t dev, intptr_t xref, int flags)
{
struct intr_pic *pic;
mtx_lock(&pic_list_lock);
pic = pic_lookup_locked(dev, xref, flags);
if (pic == NULL) {
mtx_unlock(&pic_list_lock);
return;
}
SLIST_REMOVE(&pic_list, pic, intr_pic, pic_next);
mtx_unlock(&pic_list_lock);
free(pic, M_INTRNG);
}
#endif
/*
* Register interrupt controller.
*/
struct intr_pic *
intr_pic_register(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
if (dev == NULL)
return (NULL);
pic = pic_create(dev, xref, FLAG_PIC);
if (pic == NULL)
return (NULL);
debugf("PIC %p registered for %s <dev %p, xref %jx>\n", pic,
device_get_nameunit(dev), dev, (uintmax_t)xref);
return (pic);
}
/*
* Unregister interrupt controller.
*/
int
intr_pic_deregister(device_t dev, intptr_t xref)
{
panic("%s: not implemented", __func__);
}
/*
* Mark interrupt controller (itself) as a root one.
*
* Note that only an interrupt controller can really know its position
* in interrupt controller's tree. So root PIC must claim itself as a root.
*
* In FDT case, according to ePAPR approved version 1.1 from 08 April 2011,
* page 30:
* "The root of the interrupt tree is determined when traversal
* of the interrupt tree reaches an interrupt controller node without
* an interrupts property and thus no explicit interrupt parent."
*/
int
intr_pic_claim_root(device_t dev, intptr_t xref, intr_irq_filter_t *filter,
void *arg, u_int ipicount)
{
struct intr_pic *pic;
pic = pic_lookup(dev, xref, FLAG_PIC);
if (pic == NULL) {
device_printf(dev, "not registered\n");
return (EINVAL);
}
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_PIC,
("%s: Found a non-PIC controller: %s", __func__,
device_get_name(pic->pic_dev)));
if (filter == NULL) {
device_printf(dev, "filter missing\n");
return (EINVAL);
}
/*
* Only one interrupt controllers could be on the root for now.
* Note that we further suppose that there is not threaded interrupt
* routine (handler) on the root. See intr_irq_handler().
*/
if (intr_irq_root_dev != NULL) {
device_printf(dev, "another root already set\n");
return (EBUSY);
}
intr_irq_root_dev = dev;
irq_root_filter = filter;
irq_root_arg = arg;
irq_root_ipicount = ipicount;
debugf("irq root set to %s\n", device_get_nameunit(dev));
return (0);
}
/*
* Add a handler to manage a sub range of a parents interrupts.
*/
int
intr_pic_add_handler(device_t parent, struct intr_pic *pic,
intr_child_irq_filter_t *filter, void *arg, uintptr_t start,
uintptr_t length)
{
struct intr_pic *parent_pic;
struct intr_pic_child *newchild;
#ifdef INVARIANTS
struct intr_pic_child *child;
#endif
/* Find the parent PIC */
parent_pic = pic_lookup(parent, 0, FLAG_PIC);
if (parent_pic == NULL)
return (ENXIO);
newchild = malloc(sizeof(*newchild), M_INTRNG, M_WAITOK | M_ZERO);
newchild->pc_pic = pic;
newchild->pc_filter = filter;
newchild->pc_filter_arg = arg;
newchild->pc_start = start;
newchild->pc_length = length;
mtx_lock_spin(&parent_pic->pic_child_lock);
#ifdef INVARIANTS
SLIST_FOREACH(child, &parent_pic->pic_children, pc_next) {
KASSERT(child->pc_pic != pic, ("%s: Adding a child PIC twice",
__func__));
}
#endif
SLIST_INSERT_HEAD(&parent_pic->pic_children, newchild, pc_next);
mtx_unlock_spin(&parent_pic->pic_child_lock);
return (0);
}
static int
intr_resolve_irq(device_t dev, intptr_t xref, struct intr_map_data *data,
struct intr_irqsrc **isrc)
{
struct intr_pic *pic;
struct intr_map_data_msi *msi;
if (data == NULL)
return (EINVAL);
pic = pic_lookup(dev, xref,
(data->type == INTR_MAP_DATA_MSI) ? FLAG_MSI : FLAG_PIC);
if (pic == NULL)
return (ESRCH);
switch (data->type) {
case INTR_MAP_DATA_MSI:
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
msi = (struct intr_map_data_msi *)data;
*isrc = msi->isrc;
return (0);
default:
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_PIC,
("%s: Found a non-PIC controller: %s", __func__,
device_get_name(pic->pic_dev)));
return (PIC_MAP_INTR(pic->pic_dev, data, isrc));
}
}
bool
intr_is_per_cpu(struct resource *res)
{
u_int res_id;
struct intr_irqsrc *isrc;
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL)
panic("Attempt to get isrc for non-active resource id: %u\n",
res_id);
return ((isrc->isrc_flags & INTR_ISRCF_PPI) != 0);
}
int
intr_activate_irq(device_t dev, struct resource *res)
{
device_t map_dev;
intptr_t map_xref;
struct intr_map_data *data;
struct intr_irqsrc *isrc;
u_int res_id;
int error;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
if (intr_map_get_isrc(res_id) != NULL)
panic("Attempt to double activation of resource id: %u\n",
res_id);
intr_map_copy_map_data(res_id, &map_dev, &map_xref, &data);
error = intr_resolve_irq(map_dev, map_xref, data, &isrc);
if (error != 0) {
free(data, M_INTRNG);
/* XXX TODO DISCONECTED PICs */
/* if (error == EINVAL) return(0); */
return (error);
}
intr_map_set_isrc(res_id, isrc);
rman_set_virtual(res, data);
return (PIC_ACTIVATE_INTR(isrc->isrc_dev, isrc, res, data));
}
int
intr_deactivate_irq(device_t dev, struct resource *res)
{
struct intr_map_data *data;
struct intr_irqsrc *isrc;
u_int res_id;
int error;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL)
panic("Attempt to deactivate non-active resource id: %u\n",
res_id);
data = rman_get_virtual(res);
error = PIC_DEACTIVATE_INTR(isrc->isrc_dev, isrc, res, data);
intr_map_set_isrc(res_id, NULL);
rman_set_virtual(res, NULL);
free(data, M_INTRNG);
return (error);
}
int
intr_setup_irq(device_t dev, struct resource *res, driver_filter_t filt,
driver_intr_t hand, void *arg, int flags, void **cookiep)
{
int error;
struct intr_map_data *data;
struct intr_irqsrc *isrc;
const char *name;
u_int res_id;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL) {
/* XXX TODO DISCONECTED PICs */
return (EINVAL);
}
data = rman_get_virtual(res);
name = device_get_nameunit(dev);
#ifdef INTR_SOLO
/*
* Standard handling is done through MI interrupt framework. However,
* some interrupts could request solely own special handling. This
* non standard handling can be used for interrupt controllers without
* handler (filter only), so in case that interrupt controllers are
* chained, MI interrupt framework is called only in leaf controller.
*
* Note that root interrupt controller routine is served as well,
* however in intr_irq_handler(), i.e. main system dispatch routine.
*/
if (flags & INTR_SOLO && hand != NULL) {
debugf("irq %u cannot solo on %s\n", irq, name);
return (EINVAL);
}
if (flags & INTR_SOLO) {
error = iscr_setup_filter(isrc, name, (intr_irq_filter_t *)filt,
arg, cookiep);
debugf("irq %u setup filter error %d on %s\n", isrc->isrc_irq, error,
name);
} else
#endif
{
error = isrc_add_handler(isrc, name, filt, hand, arg, flags,
cookiep);
debugf("irq %u add handler error %d on %s\n", isrc->isrc_irq, error, name);
}
if (error != 0)
return (error);
mtx_lock(&isrc_table_lock);
error = PIC_SETUP_INTR(isrc->isrc_dev, isrc, res, data);
if (error == 0) {
isrc->isrc_handlers++;
if (isrc->isrc_handlers == 1)
PIC_ENABLE_INTR(isrc->isrc_dev, isrc);
}
mtx_unlock(&isrc_table_lock);
if (error != 0)
intr_event_remove_handler(*cookiep);
return (error);
}
int
intr_teardown_irq(device_t dev, struct resource *res, void *cookie)
{
int error;
struct intr_map_data *data;
struct intr_irqsrc *isrc;
u_int res_id;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL || isrc->isrc_handlers == 0)
return (EINVAL);
data = rman_get_virtual(res);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL) {
if (isrc != cookie)
return (EINVAL);
mtx_lock(&isrc_table_lock);
isrc->isrc_filter = NULL;
isrc->isrc_arg = NULL;
isrc->isrc_handlers = 0;
PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data);
isrc_update_name(isrc, NULL);
mtx_unlock(&isrc_table_lock);
return (0);
}
#endif
if (isrc != intr_handler_source(cookie))
return (EINVAL);
error = intr_event_remove_handler(cookie);
if (error == 0) {
mtx_lock(&isrc_table_lock);
isrc->isrc_handlers--;
if (isrc->isrc_handlers == 0)
PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data);
intrcnt_updatename(isrc);
mtx_unlock(&isrc_table_lock);
}
return (error);
}
int
intr_describe_irq(device_t dev, struct resource *res, void *cookie,
const char *descr)
{
int error;
struct intr_irqsrc *isrc;
u_int res_id;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL || isrc->isrc_handlers == 0)
return (EINVAL);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL) {
if (isrc != cookie)
return (EINVAL);
mtx_lock(&isrc_table_lock);
isrc_update_name(isrc, descr);
mtx_unlock(&isrc_table_lock);
return (0);
}
#endif
error = intr_event_describe_handler(isrc->isrc_event, cookie, descr);
if (error == 0) {
mtx_lock(&isrc_table_lock);
intrcnt_updatename(isrc);
mtx_unlock(&isrc_table_lock);
}
return (error);
}
#ifdef SMP
int
intr_bind_irq(device_t dev, struct resource *res, int cpu)
{
struct intr_irqsrc *isrc;
u_int res_id;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL || isrc->isrc_handlers == 0)
return (EINVAL);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL)
return (intr_isrc_assign_cpu(isrc, cpu));
#endif
return (intr_event_bind(isrc->isrc_event, cpu));
}
/*
* Return the CPU that the next interrupt source should use.
* For now just returns the next CPU according to round-robin.
*/
u_int
intr_irq_next_cpu(u_int last_cpu, cpuset_t *cpumask)
{
u_int cpu;
KASSERT(!CPU_EMPTY(cpumask), ("%s: Empty CPU mask", __func__));
if (!irq_assign_cpu || mp_ncpus == 1) {
cpu = PCPU_GET(cpuid);
if (CPU_ISSET(cpu, cpumask))
return (curcpu);
return (CPU_FFS(cpumask) - 1);
}
do {
last_cpu++;
if (last_cpu > mp_maxid)
last_cpu = 0;
} while (!CPU_ISSET(last_cpu, cpumask));
return (last_cpu);
}
#ifndef EARLY_AP_STARTUP
/*
* Distribute all the interrupt sources among the available
* CPUs once the AP's have been launched.
*/
static void
intr_irq_shuffle(void *arg __unused)
{
struct intr_irqsrc *isrc;
u_int i;
if (mp_ncpus == 1)
return;
mtx_lock(&isrc_table_lock);
irq_assign_cpu = true;
for (i = 0; i < intr_nirq; i++) {
isrc = irq_sources[i];
if (isrc == NULL || isrc->isrc_handlers == 0 ||
isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI))
continue;
if (isrc->isrc_event != NULL &&
isrc->isrc_flags & INTR_ISRCF_BOUND &&
isrc->isrc_event->ie_cpu != CPU_FFS(&isrc->isrc_cpu) - 1)
panic("%s: CPU inconsistency", __func__);
if ((isrc->isrc_flags & INTR_ISRCF_BOUND) == 0)
CPU_ZERO(&isrc->isrc_cpu); /* start again */
/*
* We are in wicked position here if the following call fails
* for bound ISRC. The best thing we can do is to clear
* isrc_cpu so inconsistency with ie_cpu will be detectable.
*/
if (PIC_BIND_INTR(isrc->isrc_dev, isrc) != 0)
CPU_ZERO(&isrc->isrc_cpu);
}
mtx_unlock(&isrc_table_lock);
}
SYSINIT(intr_irq_shuffle, SI_SUB_SMP, SI_ORDER_SECOND, intr_irq_shuffle, NULL);
#endif /* !EARLY_AP_STARTUP */
#else
u_int
intr_irq_next_cpu(u_int current_cpu, cpuset_t *cpumask)
{
return (PCPU_GET(cpuid));
}
#endif /* SMP */
/*
* Allocate memory for new intr_map_data structure.
* Initialize common fields.
*/
struct intr_map_data *
intr_alloc_map_data(enum intr_map_data_type type, size_t len, int flags)
{
struct intr_map_data *data;
data = malloc(len, M_INTRNG, flags);
data->type = type;
data->len = len;
return (data);
}
void intr_free_intr_map_data(struct intr_map_data *data)
{
free(data, M_INTRNG);
}
/*
* Register a MSI/MSI-X interrupt controller
*/
int
intr_msi_register(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
if (dev == NULL)
return (EINVAL);
pic = pic_create(dev, xref, FLAG_MSI);
if (pic == NULL)
return (ENOMEM);
debugf("PIC %p registered for %s <dev %p, xref %jx>\n", pic,
device_get_nameunit(dev), dev, (uintmax_t)xref);
return (0);
}
int
intr_alloc_msi(device_t pci, device_t child, intptr_t xref, int count,
int maxcount, int *irqs)
{
struct iommu_domain *domain;
struct intr_irqsrc **isrc;
struct intr_pic *pic;
device_t pdev;
struct intr_map_data_msi *msi;
int err, i;
pic = pic_lookup(NULL, xref, FLAG_MSI);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
/*
* If this is the first time we have used this context ask the
* interrupt controller to map memory the msi source will need.
*/
err = MSI_IOMMU_INIT(pic->pic_dev, child, &domain);
if (err != 0)
return (err);
isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK);
err = MSI_ALLOC_MSI(pic->pic_dev, child, count, maxcount, &pdev, isrc);
if (err != 0) {
free(isrc, M_INTRNG);
return (err);
}
for (i = 0; i < count; i++) {
isrc[i]->isrc_iommu = domain;
msi = (struct intr_map_data_msi *)intr_alloc_map_data(
INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO);
msi-> isrc = isrc[i];
irqs[i] = intr_map_irq(pic->pic_dev, xref,
(struct intr_map_data *)msi);
}
free(isrc, M_INTRNG);
return (err);
}
int
intr_release_msi(device_t pci, device_t child, intptr_t xref, int count,
int *irqs)
{
struct intr_irqsrc **isrc;
struct intr_pic *pic;
struct intr_map_data_msi *msi;
int i, err;
pic = pic_lookup(NULL, xref, FLAG_MSI);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK);
for (i = 0; i < count; i++) {
msi = (struct intr_map_data_msi *)
intr_map_get_map_data(irqs[i]);
KASSERT(msi->hdr.type == INTR_MAP_DATA_MSI,
("%s: irq %d map data is not MSI", __func__,
irqs[i]));
isrc[i] = msi->isrc;
}
MSI_IOMMU_DEINIT(pic->pic_dev, child);
err = MSI_RELEASE_MSI(pic->pic_dev, child, count, isrc);
for (i = 0; i < count; i++) {
if (isrc[i] != NULL)
intr_unmap_irq(irqs[i]);
}
free(isrc, M_INTRNG);
return (err);
}
int
intr_alloc_msix(device_t pci, device_t child, intptr_t xref, int *irq)
{
struct iommu_domain *domain;
struct intr_irqsrc *isrc;
struct intr_pic *pic;
device_t pdev;
struct intr_map_data_msi *msi;
int err;
pic = pic_lookup(NULL, xref, FLAG_MSI);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
/*
* If this is the first time we have used this context ask the
* interrupt controller to map memory the msi source will need.
*/
err = MSI_IOMMU_INIT(pic->pic_dev, child, &domain);
if (err != 0)
return (err);
err = MSI_ALLOC_MSIX(pic->pic_dev, child, &pdev, &isrc);
if (err != 0)
return (err);
isrc->isrc_iommu = domain;
msi = (struct intr_map_data_msi *)intr_alloc_map_data(
INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO);
msi->isrc = isrc;
*irq = intr_map_irq(pic->pic_dev, xref, (struct intr_map_data *)msi);
return (0);
}
int
intr_release_msix(device_t pci, device_t child, intptr_t xref, int irq)
{
struct intr_irqsrc *isrc;
struct intr_pic *pic;
struct intr_map_data_msi *msi;
int err;
pic = pic_lookup(NULL, xref, FLAG_MSI);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
msi = (struct intr_map_data_msi *)
intr_map_get_map_data(irq);
KASSERT(msi->hdr.type == INTR_MAP_DATA_MSI,
("%s: irq %d map data is not MSI", __func__,
irq));
isrc = msi->isrc;
if (isrc == NULL) {
intr_unmap_irq(irq);
return (EINVAL);
}
MSI_IOMMU_DEINIT(pic->pic_dev, child);
err = MSI_RELEASE_MSIX(pic->pic_dev, child, isrc);
intr_unmap_irq(irq);
return (err);
}
int
intr_map_msi(device_t pci, device_t child, intptr_t xref, int irq,
uint64_t *addr, uint32_t *data)
{
struct intr_irqsrc *isrc;
struct intr_pic *pic;
int err;
pic = pic_lookup(NULL, xref, FLAG_MSI);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = intr_map_get_isrc(irq);
if (isrc == NULL)
return (EINVAL);
err = MSI_MAP_MSI(pic->pic_dev, child, isrc, addr, data);
#ifdef IOMMU
if (isrc->isrc_iommu != NULL)
iommu_translate_msi(isrc->isrc_iommu, addr);
#endif
return (err);
}
void dosoftints(void);
void
dosoftints(void)
{
}
#ifdef SMP
/*
* Init interrupt controller on another CPU.
*/
void
intr_pic_init_secondary(void)
{
/*
* QQQ: Only root PIC is aware of other CPUs ???
*/
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
//mtx_lock(&isrc_table_lock);
PIC_INIT_SECONDARY(intr_irq_root_dev);
//mtx_unlock(&isrc_table_lock);
}
#endif
#ifdef DDB
DB_SHOW_COMMAND(irqs, db_show_irqs)
{
u_int i, irqsum;
u_long num;
struct intr_irqsrc *isrc;
for (irqsum = 0, i = 0; i < intr_nirq; i++) {
isrc = irq_sources[i];
if (isrc == NULL)
continue;
num = isrc->isrc_count != NULL ? isrc->isrc_count[0] : 0;
db_printf("irq%-3u <%s>: cpu %02lx%s cnt %lu\n", i,
isrc->isrc_name, isrc->isrc_cpu.__bits[0],
isrc->isrc_flags & INTR_ISRCF_BOUND ? " (bound)" : "", num);
irqsum += num;
}
db_printf("irq total %u\n", irqsum);
}
#endif
/*
* Interrupt mapping table functions.
*
* Please, keep this part separately, it can be transformed to
* extension of standard resources.
*/
struct intr_map_entry
{
device_t dev;
intptr_t xref;
struct intr_map_data *map_data;
struct intr_irqsrc *isrc;
/* XXX TODO DISCONECTED PICs */
/*int flags */
};
/* XXX Convert irq_map[] to dynamicaly expandable one. */
static struct intr_map_entry **irq_map;
static u_int irq_map_count;
static u_int irq_map_first_free_idx;
static struct mtx irq_map_lock;
static struct intr_irqsrc *
intr_map_get_isrc(u_int res_id)
{
struct intr_irqsrc *isrc;
isrc = NULL;
mtx_lock(&irq_map_lock);
if (res_id < irq_map_count && irq_map[res_id] != NULL)
isrc = irq_map[res_id]->isrc;
mtx_unlock(&irq_map_lock);
return (isrc);
}
static void
intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc)
{
mtx_lock(&irq_map_lock);
if (res_id < irq_map_count && irq_map[res_id] != NULL)
irq_map[res_id]->isrc = isrc;
mtx_unlock(&irq_map_lock);
}
/*
* Get a copy of intr_map_entry data
*/
static struct intr_map_data *
intr_map_get_map_data(u_int res_id)
{
struct intr_map_data *data;
data = NULL;
mtx_lock(&irq_map_lock);
if (res_id >= irq_map_count || irq_map[res_id] == NULL)
panic("Attempt to copy invalid resource id: %u\n", res_id);
data = irq_map[res_id]->map_data;
mtx_unlock(&irq_map_lock);
return (data);
}
/*
* Get a copy of intr_map_entry data
*/
static void
intr_map_copy_map_data(u_int res_id, device_t *map_dev, intptr_t *map_xref,
struct intr_map_data **data)
{
size_t len;
len = 0;
mtx_lock(&irq_map_lock);
if (res_id >= irq_map_count || irq_map[res_id] == NULL)
panic("Attempt to copy invalid resource id: %u\n", res_id);
if (irq_map[res_id]->map_data != NULL)
len = irq_map[res_id]->map_data->len;
mtx_unlock(&irq_map_lock);
if (len == 0)
*data = NULL;
else
*data = malloc(len, M_INTRNG, M_WAITOK | M_ZERO);
mtx_lock(&irq_map_lock);
if (irq_map[res_id] == NULL)
panic("Attempt to copy invalid resource id: %u\n", res_id);
if (len != 0) {
if (len != irq_map[res_id]->map_data->len)
panic("Resource id: %u has changed.\n", res_id);
memcpy(*data, irq_map[res_id]->map_data, len);
}
*map_dev = irq_map[res_id]->dev;
*map_xref = irq_map[res_id]->xref;
mtx_unlock(&irq_map_lock);
}
/*
* Allocate and fill new entry in irq_map table.
*/
u_int
intr_map_irq(device_t dev, intptr_t xref, struct intr_map_data *data)
{
u_int i;
struct intr_map_entry *entry;
/* Prepare new entry first. */
entry = malloc(sizeof(*entry), M_INTRNG, M_WAITOK | M_ZERO);
entry->dev = dev;
entry->xref = xref;
entry->map_data = data;
entry->isrc = NULL;
mtx_lock(&irq_map_lock);
for (i = irq_map_first_free_idx; i < irq_map_count; i++) {
if (irq_map[i] == NULL) {
irq_map[i] = entry;
irq_map_first_free_idx = i + 1;
mtx_unlock(&irq_map_lock);
return (i);
}
}
mtx_unlock(&irq_map_lock);
/* XXX Expand irq_map table */
panic("IRQ mapping table is full.");
}
/*
* Remove and free mapping entry.
*/
void
intr_unmap_irq(u_int res_id)
{
struct intr_map_entry *entry;
mtx_lock(&irq_map_lock);
if ((res_id >= irq_map_count) || (irq_map[res_id] == NULL))
panic("Attempt to unmap invalid resource id: %u\n", res_id);
entry = irq_map[res_id];
irq_map[res_id] = NULL;
irq_map_first_free_idx = res_id;
mtx_unlock(&irq_map_lock);
intr_free_intr_map_data(entry->map_data);
free(entry, M_INTRNG);
}
/*
* Clone mapping entry.
*/
u_int
intr_map_clone_irq(u_int old_res_id)
{
device_t map_dev;
intptr_t map_xref;
struct intr_map_data *data;
intr_map_copy_map_data(old_res_id, &map_dev, &map_xref, &data);
return (intr_map_irq(map_dev, map_xref, data));
}
static void
intr_map_init(void *dummy __unused)
{
mtx_init(&irq_map_lock, "intr map table", NULL, MTX_DEF);
irq_map_count = 2 * intr_nirq;
irq_map = mallocarray(irq_map_count, sizeof(struct intr_map_entry*),
M_INTRNG, M_WAITOK | M_ZERO);
}
SYSINIT(intr_map_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_map_init, NULL);