freebsd-nq/sys/dev/owi/if_owi.c
Warner Losh 53e655ce37 Check in the known good version of the wi driver, with prism/symbol
support stripped out and minimally renamed to owi.  This driver
attaches to lucent cards only.  This is designed to aid in the testing
of fixes to the wi driver for lucent cards.  It is supported only as a
module (you cannot compile it into your kernel).  You cannot have the
wi driver in your kernel (or loaded as a moudle) to use the owi
module.

I've not connected it to build, as this module is currently for
debugging purposes.  This is for developers only at the present time.
If we can't get lucent support fixed by 5.2 code freeze, then we'll
re-evaulate this support level.  Please use this to fix the lucent
support in dev/wi.  This will be removed from the system when lucent
support has been fixed in dev/wi.

Note to developers: Do not connect this to the build, make it possible
to build into the kernel or otherwise 'integrate' this into system
without checking with me first.  This is for debugging purposes only.

If this doesn't work for you, I don't want to hear about it unless you
are fixing the wi driver :-)
2003-08-24 05:42:49 +00:00

2422 lines
59 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The WaveLAN/IEEE adapter is the second generation of the WaveLAN
* from Lucent. Unlike the older cards, the new ones are programmed
* entirely via a firmware-driven controller called the Hermes.
* Unfortunately, Lucent will not release the Hermes programming manual
* without an NDA (if at all). What they do release is an API library
* called the HCF (Hardware Control Functions) which is supposed to
* do the device-specific operations of a device driver for you. The
* publically available version of the HCF library (the 'HCF Light') is
* a) extremely gross, b) lacks certain features, particularly support
* for 802.11 frames, and c) is contaminated by the GNU Public License.
*
* This driver does not use the HCF or HCF Light at all. Instead, it
* programs the Hermes controller directly, using information gleaned
* from the HCF Light code and corresponding documentation.
*
* This driver supports the ISA, PCMCIA and PCI versions of the Lucent
* WaveLan cards (based on the Hermes chipset), as well as the newer
* Prism 2 chipsets with firmware from Intersil and Symbol.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/random.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h>
#include <sys/rman.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <dev/owi/if_ieee80211.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <net/bpf.h>
#include <dev/wi/if_wavelan_ieee.h>
#include <dev/owi/if_wivar.h>
#include <dev/owi/if_wireg.h>
#if !defined(lint)
static const char rcsid[] =
"$FreeBSD$";
#endif
static void wi_intr(void *);
static void wi_reset(struct wi_softc *);
static int wi_ioctl(struct ifnet *, u_long, caddr_t);
static void wi_init(void *);
static void wi_start(struct ifnet *);
static void wi_watchdog(struct ifnet *);
static void wi_rxeof(struct wi_softc *);
static void wi_txeof(struct wi_softc *, int);
static void wi_update_stats(struct wi_softc *);
static void wi_setmulti(struct wi_softc *);
static int wi_cmd(struct wi_softc *, int, int, int, int);
static int wi_read_record(struct wi_softc *, struct wi_ltv_gen *);
static int wi_write_record(struct wi_softc *, struct wi_ltv_gen *);
static int wi_read_data(struct wi_softc *, int, int, caddr_t, int);
static int wi_write_data(struct wi_softc *, int, int, caddr_t, int);
static int wi_seek(struct wi_softc *, int, int, int);
static int wi_alloc_nicmem(struct wi_softc *, int, int *);
static void wi_inquire(void *);
static void wi_setdef(struct wi_softc *, struct wi_req *);
#ifdef WICACHE
static
void wi_cache_store(struct wi_softc *, struct ether_header *,
struct mbuf *, unsigned short);
#endif
static int wi_get_cur_ssid(struct wi_softc *, char *, int *);
static int wi_media_change(struct ifnet *);
static void wi_media_status(struct ifnet *, struct ifmediareq *);
devclass_t owi_devclass;
struct wi_card_ident wi_card_ident[] = {
/* CARD_ID CARD_NAME FIRM_TYPE */
{ WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
{ WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
{ WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
{ 0, NULL, 0 },
};
int
owi_generic_detach(dev)
device_t dev;
{
struct wi_softc *sc;
struct ifnet *ifp;
int s;
sc = device_get_softc(dev);
WI_LOCK(sc, s);
ifp = &sc->arpcom.ac_if;
if (sc->wi_gone) {
device_printf(dev, "already unloaded\n");
WI_UNLOCK(sc, s);
return(ENODEV);
}
sc->wi_gone = !bus_child_present(dev);
owi_stop(sc);
/* Delete all remaining media. */
ifmedia_removeall(&sc->ifmedia);
ether_ifdetach(ifp);
bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
owi_free(dev);
sc->wi_gone = 1;
WI_UNLOCK(sc, s);
mtx_destroy(&sc->wi_mtx);
return(0);
}
int
owi_generic_attach(device_t dev)
{
struct wi_softc *sc;
struct wi_ltv_macaddr mac;
struct wi_ltv_gen gen;
struct ifnet *ifp;
int error;
int s;
/* XXX maybe we need the splimp stuff here XXX */
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
wi_intr, sc, &sc->wi_intrhand);
if (error) {
device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
owi_free(dev);
return (error);
}
mtx_init(&sc->wi_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
WI_LOCK(sc, s);
/* Reset the NIC. */
wi_reset(sc);
/*
* Read the station address.
* And do it twice. I've seen PRISM-based cards that return
* an error when trying to read it the first time, which causes
* the probe to fail.
*/
mac.wi_type = WI_RID_MAC_NODE;
mac.wi_len = 4;
wi_read_record(sc, (struct wi_ltv_gen *)&mac);
if ((error = wi_read_record(sc, (struct wi_ltv_gen *)&mac)) != 0) {
device_printf(dev, "mac read failed %d\n", error);
owi_free(dev);
return (error);
}
bcopy((char *)&mac.wi_mac_addr,
(char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
device_printf(dev, "802.11 address: %6D\n", sc->arpcom.ac_enaddr, ":");
owi_get_id(sc);
ifp->if_softc = sc;
ifp->if_unit = sc->wi_unit;
ifp->if_name = "owi";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = wi_ioctl;
ifp->if_output = ether_output;
ifp->if_start = wi_start;
ifp->if_watchdog = wi_watchdog;
ifp->if_init = wi_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name,
sizeof(WI_DEFAULT_NODENAME) - 1);
bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name,
sizeof(WI_DEFAULT_NETNAME) - 1);
bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name,
sizeof(WI_DEFAULT_IBSS) - 1);
sc->wi_portnum = WI_DEFAULT_PORT;
sc->wi_ptype = WI_PORTTYPE_BSS;
sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
sc->wi_max_data_len = WI_DEFAULT_DATALEN;
sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
sc->wi_roaming = WI_DEFAULT_ROAMING;
sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
sc->wi_authmode = IEEE80211_AUTH_OPEN;
/*
* Read the default channel from the NIC. This may vary
* depending on the country where the NIC was purchased, so
* we can't hard-code a default and expect it to work for
* everyone.
*/
gen.wi_type = WI_RID_OWN_CHNL;
gen.wi_len = 2;
wi_read_record(sc, &gen);
sc->wi_channel = gen.wi_val;
/*
* Set flags based on firmware version.
*/
switch (sc->sc_firmware_type) {
case WI_LUCENT:
sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
if (sc->sc_sta_firmware_ver >= 60000)
sc->wi_flags |= WI_FLAGS_HAS_MOR;
if (sc->sc_sta_firmware_ver >= 60006) {
sc->wi_flags |= WI_FLAGS_HAS_IBSS;
sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
}
sc->wi_ibss_port = htole16(1);
break;
}
/*
* Find out if we support WEP on this card.
*/
gen.wi_type = WI_RID_WEP_AVAIL;
gen.wi_len = 2;
wi_read_record(sc, &gen);
sc->wi_has_wep = gen.wi_val;
if (bootverbose)
device_printf(sc->dev, "owi_has_wep = %d\n", sc->wi_has_wep);
/*
* Find supported rates.
*/
gen.wi_type = WI_RID_DATA_RATES;
gen.wi_len = 2;
if (wi_read_record(sc, &gen))
sc->wi_supprates = WI_SUPPRATES_1M | WI_SUPPRATES_2M |
WI_SUPPRATES_5M | WI_SUPPRATES_11M;
else
sc->wi_supprates = gen.wi_val;
bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats));
wi_init(sc);
owi_stop(sc);
ifmedia_init(&sc->ifmedia, 0, wi_media_change, wi_media_status);
#define ADD(m, c) ifmedia_add(&sc->ifmedia, (m), (c), NULL)
if (sc->wi_supprates & WI_SUPPRATES_1M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_IBSSMASTER, 0), 0);
}
if (sc->wi_supprates & WI_SUPPRATES_2M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_IBSSMASTER, 0), 0);
}
if (sc->wi_supprates & WI_SUPPRATES_5M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_IBSSMASTER, 0), 0);
}
if (sc->wi_supprates & WI_SUPPRATES_11M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_IBSSMASTER, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
}
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_IBSS,
0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
IFM_IEEE80211_IBSSMASTER, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
#undef ADD
ifmedia_set(&sc->ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, sc->arpcom.ac_enaddr);
callout_handle_init(&sc->wi_stat_ch);
WI_UNLOCK(sc, s);
return(0);
}
void
owi_get_id(sc)
struct wi_softc *sc;
{
struct wi_ltv_ver ver;
struct wi_card_ident *id;
/* getting chip identity */
memset(&ver, 0, sizeof(ver));
ver.wi_type = WI_RID_CARD_ID;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
device_printf(sc->dev, "using ");
sc->sc_firmware_type = WI_NOTYPE;
for (id = wi_card_ident; id->card_name != NULL; id++) {
if (le16toh(ver.wi_ver[0]) == id->card_id) {
printf("%s", id->card_name);
sc->sc_firmware_type = id->firm_type;
break;
}
}
if (sc->sc_firmware_type == WI_NOTYPE) {
if ((le16toh(ver.wi_ver[0]) & 0x8000) == 0) {
printf("Unknown Lucent chip");
sc->sc_firmware_type = WI_LUCENT;
}
}
if (sc->sc_firmware_type != WI_LUCENT)
return;
/* get station firmware version */
memset(&ver, 0, sizeof(ver));
ver.wi_type = WI_RID_STA_IDENTITY;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
ver.wi_ver[3] * 100 + ver.wi_ver[1];
printf("\n");
device_printf(sc->dev, "Lucent Firmware: ");
printf("Station %u.%02u.%02u\n",
sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
sc->sc_sta_firmware_ver % 100);
return;
}
static void
wi_rxeof(sc)
struct wi_softc *sc;
{
struct ifnet *ifp;
struct ether_header *eh;
struct mbuf *m;
int id;
ifp = &sc->arpcom.ac_if;
id = CSR_READ_2(sc, WI_RX_FID);
/*
* if we have the procframe flag set, disregard all this and just
* read the data from the device.
*/
if (sc->wi_procframe || sc->wi_debug.wi_monitor) {
struct wi_frame *rx_frame;
int datlen, hdrlen;
/* first allocate mbuf for packet storage */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.rcvif = ifp;
/* now read wi_frame first so we know how much data to read */
if (wi_read_data(sc, id, 0, mtod(m, caddr_t),
sizeof(struct wi_frame))) {
m_freem(m);
ifp->if_ierrors++;
return;
}
rx_frame = mtod(m, struct wi_frame *);
switch ((rx_frame->wi_status & WI_STAT_MAC_PORT) >> 8) {
case 7:
switch (rx_frame->wi_frame_ctl & WI_FCTL_FTYPE) {
case WI_FTYPE_DATA:
hdrlen = WI_DATA_HDRLEN;
datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
break;
case WI_FTYPE_MGMT:
hdrlen = WI_MGMT_HDRLEN;
datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
break;
case WI_FTYPE_CTL:
/*
* prism2 cards don't pass control packets
* down properly or consistently, so we'll only
* pass down the header.
*/
hdrlen = WI_CTL_HDRLEN;
datlen = 0;
break;
default:
device_printf(sc->dev, "received packet of "
"unknown type on port 7\n");
m_freem(m);
ifp->if_ierrors++;
return;
}
break;
case 0:
hdrlen = WI_DATA_HDRLEN;
datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
break;
default:
device_printf(sc->dev, "received packet on invalid "
"port (wi_status=0x%x)\n", rx_frame->wi_status);
m_freem(m);
ifp->if_ierrors++;
return;
}
if ((hdrlen + datlen + 2) > MCLBYTES) {
device_printf(sc->dev, "oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
datlen, rx_frame->wi_status);
m_freem(m);
ifp->if_ierrors++;
return;
}
if (wi_read_data(sc, id, hdrlen, mtod(m, caddr_t) + hdrlen,
datlen + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len = hdrlen + datlen;
ifp->if_ipackets++;
/* Handle BPF listeners. */
BPF_MTAP(ifp, m);
m_freem(m);
} else {
struct wi_frame rx_frame;
/* First read in the frame header */
if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame,
sizeof(rx_frame))) {
ifp->if_ierrors++;
return;
}
if (rx_frame.wi_status & WI_STAT_ERRSTAT) {
ifp->if_ierrors++;
return;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
if (rx_frame.wi_status == WI_STAT_1042 ||
rx_frame.wi_status == WI_STAT_TUNNEL ||
rx_frame.wi_status == WI_STAT_WMP_MSG) {
if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) {
device_printf(sc->dev,
"oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
rx_frame.wi_dat_len, rx_frame.wi_status);
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
rx_frame.wi_dat_len + WI_SNAPHDR_LEN;
#if 0
bcopy((char *)&rx_frame.wi_addr1,
(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
if (sc->wi_ptype == WI_PORTTYPE_ADHOC) {
bcopy((char *)&rx_frame.wi_addr2,
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
} else {
bcopy((char *)&rx_frame.wi_addr3,
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
}
#else
bcopy((char *)&rx_frame.wi_dst_addr,
(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
bcopy((char *)&rx_frame.wi_src_addr,
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
#endif
bcopy((char *)&rx_frame.wi_type,
(char *)&eh->ether_type, ETHER_TYPE_LEN);
if (wi_read_data(sc, id, WI_802_11_OFFSET,
mtod(m, caddr_t) + sizeof(struct ether_header),
m->m_len + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
} else {
if((rx_frame.wi_dat_len +
sizeof(struct ether_header)) > MCLBYTES) {
device_printf(sc->dev,
"oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
rx_frame.wi_dat_len, rx_frame.wi_status);
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
rx_frame.wi_dat_len + sizeof(struct ether_header);
if (wi_read_data(sc, id, WI_802_3_OFFSET,
mtod(m, caddr_t), m->m_len + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
}
ifp->if_ipackets++;
/* Receive packet. */
#ifdef WICACHE
wi_cache_store(sc, eh, m, rx_frame.wi_q_info);
#endif
(*ifp->if_input)(ifp, m);
}
}
static void
wi_txeof(sc, status)
struct wi_softc *sc;
int status;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (status & WI_EV_TX_EXC)
ifp->if_oerrors++;
else
ifp->if_opackets++;
return;
}
static void
wi_inquire(xsc)
void *xsc;
{
struct wi_softc *sc;
struct ifnet *ifp;
int s;
sc = xsc;
ifp = &sc->arpcom.ac_if;
sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
/* Don't do this while we're transmitting */
if (ifp->if_flags & IFF_OACTIVE)
return;
WI_LOCK(sc, s);
wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS, 0, 0);
WI_UNLOCK(sc, s);
return;
}
static void
wi_update_stats(sc)
struct wi_softc *sc;
{
struct wi_ltv_gen gen;
u_int16_t id;
struct ifnet *ifp;
u_int32_t *ptr;
int len, i;
u_int16_t t;
ifp = &sc->arpcom.ac_if;
id = CSR_READ_2(sc, WI_INFO_FID);
wi_read_data(sc, id, 0, (char *)&gen, 4);
/*
* if we just got our scan results, copy it over into the scan buffer
* so we can return it to anyone that asks for it. (add a little
* compatibility with the prism2 scanning mechanism)
*/
if (gen.wi_type == WI_INFO_SCAN_RESULTS)
{
sc->wi_scanbuf_len = gen.wi_len;
wi_read_data(sc, id, 4, (char *)sc->wi_scanbuf,
sc->wi_scanbuf_len * 2);
return;
}
else if (gen.wi_type != WI_INFO_COUNTERS)
return;
len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
ptr = (u_int32_t *)&sc->wi_stats;
for (i = 0; i < len - 1; i++) {
t = CSR_READ_2(sc, WI_DATA1);
#ifdef WI_HERMES_STATS_WAR
if (t > 0xF000)
t = ~t & 0xFFFF;
#endif
ptr[i] += t;
}
ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
sc->wi_stats.wi_tx_multi_retries +
sc->wi_stats.wi_tx_retry_limit;
return;
}
static void
wi_intr(xsc)
void *xsc;
{
struct wi_softc *sc = xsc;
struct ifnet *ifp;
u_int16_t status;
int s;
WI_LOCK(sc, s);
ifp = &sc->arpcom.ac_if;
if (sc->wi_gone || !(ifp->if_flags & IFF_UP)) {
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
CSR_WRITE_2(sc, WI_INT_EN, 0);
WI_UNLOCK(sc, s);
return;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, 0);
status = CSR_READ_2(sc, WI_EVENT_STAT);
CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
if (status & WI_EV_RX) {
wi_rxeof(sc);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
}
if (status & WI_EV_TX) {
wi_txeof(sc, status);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
}
if (status & WI_EV_ALLOC) {
int id;
id = CSR_READ_2(sc, WI_ALLOC_FID);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
if (id == sc->wi_tx_data_id)
wi_txeof(sc, status);
}
if (status & WI_EV_INFO) {
wi_update_stats(sc);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
}
if (status & WI_EV_TX_EXC) {
wi_txeof(sc, status);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
}
if (status & WI_EV_INFO_DROP) {
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
wi_start(ifp);
}
WI_UNLOCK(sc, s);
return;
}
static int
wi_cmd(sc, cmd, val0, val1, val2)
struct wi_softc *sc;
int cmd;
int val0;
int val1;
int val2;
{
int i, s = 0;
static volatile int count = 0;
if (count > 1)
panic("Hey partner, hold on there!");
count++;
/* wait for the busy bit to clear */
for (i = 500; i > 0; i--) { /* 5s */
if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) {
break;
}
DELAY(10*1000); /* 10 m sec */
}
if (i == 0) {
device_printf(sc->dev, "owi_cmd: busy bit won't clear.\n" );
count--;
return(ETIMEDOUT);
}
CSR_WRITE_2(sc, WI_PARAM0, val0);
CSR_WRITE_2(sc, WI_PARAM1, val1);
CSR_WRITE_2(sc, WI_PARAM2, val2);
CSR_WRITE_2(sc, WI_COMMAND, cmd);
for (i = 0; i < WI_TIMEOUT; i++) {
/*
* Wait for 'command complete' bit to be
* set in the event status register.
*/
s = CSR_READ_2(sc, WI_EVENT_STAT);
if (s & WI_EV_CMD) {
/* Ack the event and read result code. */
s = CSR_READ_2(sc, WI_STATUS);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
#ifdef foo
if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK))
return(EIO);
#endif
if (s & WI_STAT_CMD_RESULT) {
count--;
return(EIO);
}
break;
}
DELAY(WI_DELAY);
}
count--;
if (i == WI_TIMEOUT) {
device_printf(sc->dev,
"timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s);
return(ETIMEDOUT);
}
return(0);
}
static void
wi_reset(sc)
struct wi_softc *sc;
{
#define WI_INIT_TRIES 3
int i;
int tries;
tries = WI_INIT_TRIES;
for (i = 0; i < tries; i++) {
if (wi_cmd(sc, WI_CMD_INI, 0, 0, 0) == 0)
break;
DELAY(WI_DELAY * 1000);
}
sc->sc_enabled = 1;
if (i == tries) {
device_printf(sc->dev, "init failed\n");
return;
}
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
/* Calibrate timer. */
WI_SETVAL(WI_RID_TICK_TIME, 8);
return;
}
/*
* Read an LTV record from the NIC.
*/
static int
wi_read_record(sc, ltv)
struct wi_softc *sc;
struct wi_ltv_gen *ltv;
{
u_int16_t *ptr;
int i, len, code;
struct wi_ltv_gen *oltv;
oltv = ltv;
/* Tell the NIC to enter record read mode. */
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type, 0, 0))
return(EIO);
/* Seek to the record. */
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
return(EIO);
/*
* Read the length and record type and make sure they
* match what we expect (this verifies that we have enough
* room to hold all of the returned data).
*/
len = CSR_READ_2(sc, WI_DATA1);
if (len > ltv->wi_len)
return(ENOSPC);
code = CSR_READ_2(sc, WI_DATA1);
if (code != ltv->wi_type)
return(EIO);
ltv->wi_len = len;
ltv->wi_type = code;
/* Now read the data. */
ptr = &ltv->wi_val;
for (i = 0; i < ltv->wi_len - 1; i++)
ptr[i] = CSR_READ_2(sc, WI_DATA1);
if (ltv->wi_type == WI_RID_PORTTYPE && sc->wi_ptype == WI_PORTTYPE_IBSS
&& ltv->wi_val == sc->wi_ibss_port) {
/*
* Convert vendor IBSS port type to WI_PORTTYPE_IBSS.
* Since Lucent uses port type 1 for BSS *and* IBSS we
* have to rely on wi_ptype to distinguish this for us.
*/
ltv->wi_val = htole16(WI_PORTTYPE_IBSS);
}
return(0);
}
/*
* Same as read, except we inject data instead of reading it.
*/
static int
wi_write_record(sc, ltv)
struct wi_softc *sc;
struct wi_ltv_gen *ltv;
{
uint16_t *ptr;
int i;
struct wi_ltv_gen p2ltv;
if (ltv->wi_type == WI_RID_PORTTYPE &&
le16toh(ltv->wi_val) == WI_PORTTYPE_IBSS) {
/* Convert WI_PORTTYPE_IBSS to vendor IBSS port type. */
p2ltv.wi_type = WI_RID_PORTTYPE;
p2ltv.wi_len = 2;
p2ltv.wi_val = sc->wi_ibss_port;
ltv = &p2ltv;
} else {
/* LUCENT */
switch (ltv->wi_type) {
case WI_RID_TX_RATE:
switch (ltv->wi_val) {
case 1: ltv->wi_val = 1; break; /* 1Mb/s fixed */
case 2: ltv->wi_val = 2; break; /* 2Mb/s fixed */
case 3: ltv->wi_val = 3; break; /* 11Mb/s auto */
case 5: ltv->wi_val = 4; break; /* 5.5Mb/s fixed */
case 6: ltv->wi_val = 6; break; /* 2Mb/s auto */
case 7: ltv->wi_val = 7; break; /* 5.5Mb/s auto */
case 11: ltv->wi_val = 5; break; /* 11Mb/s fixed */
default: return EINVAL;
}
case WI_RID_TX_CRYPT_KEY:
if (ltv->wi_val > WI_NLTV_KEYS)
return (EINVAL);
break;
}
}
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
return(EIO);
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
ptr = &ltv->wi_val;
for (i = 0; i < ltv->wi_len - 1; i++)
CSR_WRITE_2(sc, WI_DATA1, ptr[i]);
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type, 0, 0))
return(EIO);
return(0);
}
static int
wi_seek(sc, id, off, chan)
struct wi_softc *sc;
int id, off, chan;
{
int i;
int selreg, offreg;
int status;
switch (chan) {
case WI_BAP0:
selreg = WI_SEL0;
offreg = WI_OFF0;
break;
case WI_BAP1:
selreg = WI_SEL1;
offreg = WI_OFF1;
break;
default:
device_printf(sc->dev, "invalid data path: %x\n", chan);
return(EIO);
}
CSR_WRITE_2(sc, selreg, id);
CSR_WRITE_2(sc, offreg, off);
for (i = 0; i < WI_TIMEOUT; i++) {
status = CSR_READ_2(sc, offreg);
if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
break;
DELAY(WI_DELAY);
}
if (i == WI_TIMEOUT) {
device_printf(sc->dev, "timeout in wi_seek to %x/%x; last status %x\n",
id, off, status);
return(ETIMEDOUT);
}
return(0);
}
static int
wi_read_data(sc, id, off, buf, len)
struct wi_softc *sc;
int id, off;
caddr_t buf;
int len;
{
int i;
u_int16_t *ptr;
if (wi_seek(sc, id, off, WI_BAP1))
return(EIO);
ptr = (u_int16_t *)buf;
for (i = 0; i < len / 2; i++)
ptr[i] = CSR_READ_2(sc, WI_DATA1);
return(0);
}
/*
* According to the comments in the HCF Light code, there is a bug in
* the Hermes (or possibly in certain Hermes firmware revisions) where
* the chip's internal autoincrement counter gets thrown off during
* data writes: the autoincrement is missed, causing one data word to
* be overwritten and subsequent words to be written to the wrong memory
* locations. The end result is that we could end up transmitting bogus
* frames without realizing it. The workaround for this is to write a
* couple of extra guard words after the end of the transfer, then
* attempt to read then back. If we fail to locate the guard words where
* we expect them, we preform the transfer over again.
*/
static int
wi_write_data(sc, id, off, buf, len)
struct wi_softc *sc;
int id, off;
caddr_t buf;
int len;
{
int i;
u_int16_t *ptr;
#ifdef WI_HERMES_AUTOINC_WAR
int retries;
retries = 512;
again:
#endif
if (wi_seek(sc, id, off, WI_BAP0))
return(EIO);
ptr = (u_int16_t *)buf;
for (i = 0; i < (len / 2); i++)
CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
#ifdef WI_HERMES_AUTOINC_WAR
CSR_WRITE_2(sc, WI_DATA0, 0x1234);
CSR_WRITE_2(sc, WI_DATA0, 0x5678);
if (wi_seek(sc, id, off + len, WI_BAP0))
return(EIO);
if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
CSR_READ_2(sc, WI_DATA0) != 0x5678) {
if (--retries >= 0)
goto again;
device_printf(sc->dev, "owi_write_data device timeout\n");
return (EIO);
}
#endif
return(0);
}
/*
* Allocate a region of memory inside the NIC and zero
* it out.
*/
static int
wi_alloc_nicmem(sc, len, id)
struct wi_softc *sc;
int len;
int *id;
{
int i;
if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
device_printf(sc->dev,
"failed to allocate %d bytes on NIC\n", len);
return(ENOMEM);
}
for (i = 0; i < WI_TIMEOUT; i++) {
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
break;
DELAY(WI_DELAY);
}
if (i == WI_TIMEOUT) {
device_printf(sc->dev, "time out allocating memory on card\n");
return(ETIMEDOUT);
}
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
*id = CSR_READ_2(sc, WI_ALLOC_FID);
if (wi_seek(sc, *id, 0, WI_BAP0)) {
device_printf(sc->dev, "seek failed while allocating memory on card\n");
return(EIO);
}
for (i = 0; i < len / 2; i++)
CSR_WRITE_2(sc, WI_DATA0, 0);
return(0);
}
static void
wi_setmulti(sc)
struct wi_softc *sc;
{
struct ifnet *ifp;
int i = 0;
struct ifmultiaddr *ifma;
struct wi_ltv_mcast mcast;
ifp = &sc->arpcom.ac_if;
bzero((char *)&mcast, sizeof(mcast));
mcast.wi_type = WI_RID_MCAST_LIST;
mcast.wi_len = (3 * 16) + 1;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
return;
}
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (i < 16) {
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
(char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN);
i++;
} else {
bzero((char *)&mcast, sizeof(mcast));
break;
}
}
mcast.wi_len = (i * 3) + 1;
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
return;
}
static void
wi_setdef(sc, wreq)
struct wi_softc *sc;
struct wi_req *wreq;
{
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
switch(wreq->wi_type) {
case WI_RID_MAC_NODE:
ifa = ifaddr_byindex(ifp->if_index);
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN);
bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
break;
case WI_RID_PORTTYPE:
sc->wi_ptype = le16toh(wreq->wi_val[0]);
break;
case WI_RID_TX_RATE:
sc->wi_tx_rate = le16toh(wreq->wi_val[0]);
break;
case WI_RID_MAX_DATALEN:
sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
break;
case WI_RID_RTS_THRESH:
sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
break;
case WI_RID_SYSTEM_SCALE:
sc->wi_ap_density = le16toh(wreq->wi_val[0]);
break;
case WI_RID_CREATE_IBSS:
sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
break;
case WI_RID_OWN_CHNL:
sc->wi_channel = le16toh(wreq->wi_val[0]);
break;
case WI_RID_NODENAME:
bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30);
break;
case WI_RID_DESIRED_SSID:
bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30);
break;
case WI_RID_OWN_SSID:
bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30);
break;
case WI_RID_PM_ENABLED:
sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
break;
case WI_RID_MICROWAVE_OVEN:
sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
break;
case WI_RID_MAX_SLEEP:
sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
break;
case WI_RID_CNFAUTHMODE:
sc->wi_authtype = le16toh(wreq->wi_val[0]);
break;
case WI_RID_ROAMING_MODE:
sc->wi_roaming = le16toh(wreq->wi_val[0]);
break;
case WI_RID_ENCRYPTION:
sc->wi_use_wep = le16toh(wreq->wi_val[0]);
break;
case WI_RID_TX_CRYPT_KEY:
sc->wi_tx_key = le16toh(wreq->wi_val[0]);
break;
case WI_RID_DEFLT_CRYPT_KEYS:
bcopy((char *)wreq, (char *)&sc->wi_keys,
sizeof(struct wi_ltv_keys));
break;
default:
break;
}
/* Reinitialize WaveLAN. */
wi_init(sc);
return;
}
static int
wi_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
int error = 0;
int len;
int s;
uint16_t mif;
uint16_t val;
u_int8_t tmpkey[14];
char tmpssid[IEEE80211_NWID_LEN];
struct wi_softc *sc;
struct wi_req wreq;
struct ifreq *ifr;
struct ieee80211req *ireq;
struct thread *td = curthread;
sc = ifp->if_softc;
WI_LOCK(sc, s);
ifr = (struct ifreq *)data;
ireq = (struct ieee80211req *)data;
if (sc->wi_gone) {
error = ENODEV;
goto out;
}
switch(command) {
case SIOCSIFFLAGS:
/*
* Can't do promisc and hostap at the same time. If all that's
* changing is the promisc flag, try to short-circuit a call to
* wi_init() by just setting PROMISC in the hardware.
*/
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING) {
if (ifp->if_flags & IFF_PROMISC &&
!(sc->wi_if_flags & IFF_PROMISC)) {
WI_SETVAL(WI_RID_PROMISC, 1);
} else if (!(ifp->if_flags & IFF_PROMISC) &&
sc->wi_if_flags & IFF_PROMISC) {
WI_SETVAL(WI_RID_PROMISC, 0);
} else {
wi_init(sc);
}
} else {
wi_init(sc);
}
} else {
if (ifp->if_flags & IFF_RUNNING) {
owi_stop(sc);
}
}
sc->wi_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
wi_setmulti(sc);
error = 0;
break;
case SIOCGWAVELAN:
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
if (wreq.wi_len > WI_MAX_DATALEN) {
error = EINVAL;
break;
}
/* Don't show WEP keys to non-root users. */
if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS && suser(td))
break;
if (wreq.wi_type == WI_RID_IFACE_STATS) {
bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val,
sizeof(sc->wi_stats));
wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
} else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
bcopy((char *)&sc->wi_keys, (char *)&wreq,
sizeof(struct wi_ltv_keys));
}
#ifdef WICACHE
else if (wreq.wi_type == WI_RID_ZERO_CACHE) {
error = suser(td);
if (error)
break;
sc->wi_sigitems = sc->wi_nextitem = 0;
} else if (wreq.wi_type == WI_RID_READ_CACHE) {
char *pt = (char *)&wreq.wi_val;
bcopy((char *)&sc->wi_sigitems,
(char *)pt, sizeof(int));
pt += (sizeof (int));
wreq.wi_len = sizeof(int) / 2;
bcopy((char *)&sc->wi_sigcache, (char *)pt,
sizeof(struct wi_sigcache) * sc->wi_sigitems);
wreq.wi_len += ((sizeof(struct wi_sigcache) *
sc->wi_sigitems) / 2) + 1;
}
#endif
else if (wreq.wi_type == WI_RID_PROCFRAME) {
wreq.wi_len = 2;
wreq.wi_val[0] = sc->wi_procframe;
} else if (wreq.wi_type == WI_RID_SCAN_RES) {
memcpy((char *)wreq.wi_val, (char *)sc->wi_scanbuf,
sc->wi_scanbuf_len * 2);
wreq.wi_len = sc->wi_scanbuf_len;
} else if (wreq.wi_type == WI_RID_MIF) {
mif = wreq.wi_val[0];
error = wi_cmd(sc, WI_CMD_READMIF, mif, 0, 0);
val = CSR_READ_2(sc, WI_RESP0);
wreq.wi_len = 2;
wreq.wi_val[0] = val;
} else {
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) {
error = EINVAL;
break;
}
}
error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
break;
case SIOCSWAVELAN:
if ((error = suser(td)))
goto out;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
if (wreq.wi_len > WI_MAX_DATALEN) {
error = EINVAL;
break;
}
if (wreq.wi_type == WI_RID_IFACE_STATS) {
error = EINVAL;
break;
} else if (wreq.wi_type == WI_RID_PROCFRAME) {
sc->wi_procframe = wreq.wi_val[0];
/*
* if we're getting a scan request from a wavelan card
* (non-prism2), send out a cmd_inquire to the card to scan
* results for the scan will be received through the info
* interrupt handler. otherwise the scan request can be
* directly handled by a prism2 card's rid interface.
*/
} else if (wreq.wi_type == WI_RID_SCAN_REQ) {
wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
} else if (wreq.wi_type == WI_RID_MIF) {
mif = wreq.wi_val[0];
val = wreq.wi_val[1];
error = wi_cmd(sc, WI_CMD_WRITEMIF, mif, val, 0);
} else {
error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
if (!error)
wi_setdef(sc, &wreq);
}
break;
case SIOCG80211:
switch(ireq->i_type) {
case IEEE80211_IOC_SSID:
if(ireq->i_val == -1) {
bzero(tmpssid, IEEE80211_NWID_LEN);
error = wi_get_cur_ssid(sc, tmpssid, &len);
if (error != 0)
break;
error = copyout(tmpssid, ireq->i_data,
IEEE80211_NWID_LEN);
ireq->i_len = len;
} else if (ireq->i_val == 0) {
error = copyout(sc->wi_net_name,
ireq->i_data,
IEEE80211_NWID_LEN);
ireq->i_len = IEEE80211_NWID_LEN;
} else
error = EINVAL;
break;
case IEEE80211_IOC_NUMSSIDS:
ireq->i_val = 1;
break;
case IEEE80211_IOC_WEP:
if(!sc->wi_has_wep) {
ireq->i_val = IEEE80211_WEP_NOSUP;
} else {
if(sc->wi_use_wep) {
ireq->i_val =
IEEE80211_WEP_MIXED;
} else {
ireq->i_val =
IEEE80211_WEP_OFF;
}
}
break;
case IEEE80211_IOC_WEPKEY:
if(!sc->wi_has_wep ||
ireq->i_val < 0 || ireq->i_val > 3) {
error = EINVAL;
break;
}
len = sc->wi_keys.wi_keys[ireq->i_val].wi_keylen;
if (suser(td))
bcopy(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
tmpkey, len);
else
bzero(tmpkey, len);
ireq->i_len = len;
error = copyout(tmpkey, ireq->i_data, len);
break;
case IEEE80211_IOC_NUMWEPKEYS:
if(!sc->wi_has_wep)
error = EINVAL;
else
ireq->i_val = 4;
break;
case IEEE80211_IOC_WEPTXKEY:
if(!sc->wi_has_wep)
error = EINVAL;
else
ireq->i_val = sc->wi_tx_key;
break;
case IEEE80211_IOC_AUTHMODE:
ireq->i_val = sc->wi_authmode;
break;
case IEEE80211_IOC_STATIONNAME:
error = copyout(sc->wi_node_name,
ireq->i_data, IEEE80211_NWID_LEN);
ireq->i_len = IEEE80211_NWID_LEN;
break;
case IEEE80211_IOC_CHANNEL:
wreq.wi_type = WI_RID_CURRENT_CHAN;
wreq.wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
error = EINVAL;
else {
ireq->i_val = wreq.wi_val[0];
}
break;
case IEEE80211_IOC_POWERSAVE:
if(sc->wi_pm_enabled)
ireq->i_val = IEEE80211_POWERSAVE_ON;
else
ireq->i_val = IEEE80211_POWERSAVE_OFF;
break;
case IEEE80211_IOC_POWERSAVESLEEP:
ireq->i_val = sc->wi_max_sleep;
break;
default:
error = EINVAL;
}
break;
case SIOCS80211:
if ((error = suser(td)))
goto out;
switch(ireq->i_type) {
case IEEE80211_IOC_SSID:
if (ireq->i_val != 0 ||
ireq->i_len > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
/* We set both of them */
bzero(sc->wi_net_name, IEEE80211_NWID_LEN);
error = copyin(ireq->i_data,
sc->wi_net_name, ireq->i_len);
bcopy(sc->wi_net_name, sc->wi_ibss_name, IEEE80211_NWID_LEN);
break;
case IEEE80211_IOC_WEP:
/*
* These cards only support one mode so
* we just turn wep on what ever is
* passed in if it's not OFF.
*/
if (ireq->i_val == IEEE80211_WEP_OFF) {
sc->wi_use_wep = 0;
} else {
sc->wi_use_wep = 1;
}
break;
case IEEE80211_IOC_WEPKEY:
if (ireq->i_val < 0 || ireq->i_val > 3 ||
ireq->i_len > 13) {
error = EINVAL;
break;
}
bzero(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, 13);
error = copyin(ireq->i_data,
sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
ireq->i_len);
if(error)
break;
sc->wi_keys.wi_keys[ireq->i_val].wi_keylen =
ireq->i_len;
break;
case IEEE80211_IOC_WEPTXKEY:
if (ireq->i_val < 0 || ireq->i_val > 3) {
error = EINVAL;
break;
}
sc->wi_tx_key = ireq->i_val;
break;
case IEEE80211_IOC_AUTHMODE:
sc->wi_authmode = ireq->i_val;
break;
case IEEE80211_IOC_STATIONNAME:
if (ireq->i_len > 32) {
error = EINVAL;
break;
}
bzero(sc->wi_node_name, 32);
error = copyin(ireq->i_data,
sc->wi_node_name, ireq->i_len);
break;
case IEEE80211_IOC_CHANNEL:
/*
* The actual range is 1-14, but if you
* set it to 0 you get the default. So
* we let that work too.
*/
if (ireq->i_val < 0 || ireq->i_val > 14) {
error = EINVAL;
break;
}
sc->wi_channel = ireq->i_val;
break;
case IEEE80211_IOC_POWERSAVE:
switch (ireq->i_val) {
case IEEE80211_POWERSAVE_OFF:
sc->wi_pm_enabled = 0;
break;
case IEEE80211_POWERSAVE_ON:
sc->wi_pm_enabled = 1;
break;
default:
error = EINVAL;
break;
}
break;
case IEEE80211_IOC_POWERSAVESLEEP:
if (ireq->i_val < 0) {
error = EINVAL;
break;
}
sc->wi_max_sleep = ireq->i_val;
break;
default:
error = EINVAL;
break;
}
/* Reinitialize WaveLAN. */
wi_init(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
out:
WI_UNLOCK(sc, s);
return(error);
}
static void
wi_init(xsc)
void *xsc;
{
struct wi_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct wi_ltv_macaddr mac;
int id = 0;
int s;
WI_LOCK(sc, s);
if (sc->wi_gone) {
WI_UNLOCK(sc, s);
return;
}
if (ifp->if_flags & IFF_RUNNING)
owi_stop(sc);
wi_reset(sc);
/* Program max data length. */
WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
/* Set the port type. */
WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
/* Enable/disable IBSS creation. */
WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
/* Program the RTS/CTS threshold. */
WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
/* Program the TX rate */
WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
/* Access point density */
WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
/* Power Management Enabled */
WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
/* Power Managment Max Sleep */
WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
/* Roaming type */
WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
/* Specify the IBSS name */
WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name);
/* Specify the network name */
WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
/* Specify the frequency to use */
WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
/* Program the nodename. */
WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name);
/* Specify the authentication mode. */
WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authmode);
/* Set our MAC address. */
mac.wi_len = 4;
mac.wi_type = WI_RID_MAC_NODE;
bcopy((char *)&sc->arpcom.ac_enaddr,
(char *)&mac.wi_mac_addr, ETHER_ADDR_LEN);
wi_write_record(sc, (struct wi_ltv_gen *)&mac);
/*
* Initialize promisc mode.
*/
if (ifp->if_flags & IFF_PROMISC)
WI_SETVAL(WI_RID_PROMISC, 1);
else
WI_SETVAL(WI_RID_PROMISC, 0);
/* Configure WEP. */
if (sc->wi_has_wep) {
WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
}
/* Set multicast filter. */
wi_setmulti(sc);
/* Enable desired port */
wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0, 0, 0);
if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
device_printf(sc->dev, "tx buffer allocation failed\n");
sc->wi_tx_data_id = id;
if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
device_printf(sc->dev, "mgmt. buffer allocation failed\n");
sc->wi_tx_mgmt_id = id;
/* enable interrupts */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
WI_UNLOCK(sc, s);
return;
}
static void
wi_start(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc;
struct mbuf *m0;
struct wi_frame tx_frame;
struct ether_header *eh;
int id;
int s;
sc = ifp->if_softc;
WI_LOCK(sc, s);
if (sc->wi_gone) {
WI_UNLOCK(sc, s);
return;
}
if (ifp->if_flags & IFF_OACTIVE) {
WI_UNLOCK(sc, s);
return;
}
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL) {
WI_UNLOCK(sc, s);
return;
}
bzero((char *)&tx_frame, sizeof(tx_frame));
tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
id = sc->wi_tx_data_id;
eh = mtod(m0, struct ether_header *);
/*
* Use RFC1042 encoding for IP and ARP datagrams,
* 802.3 for anything else.
*/
if (ntohs(eh->ether_type) > ETHER_MAX_LEN) {
bcopy((char *)&eh->ether_dhost,
(char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_shost,
(char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_dhost,
(char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_shost,
(char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN);
tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN;
tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
tx_frame.wi_type = eh->ether_type;
m_copydata(m0, sizeof(struct ether_header),
m0->m_pkthdr.len - sizeof(struct ether_header),
(caddr_t)&sc->wi_txbuf);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_11_OFFSET,
(caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
sizeof(struct ether_header)) + 2);
} else {
tx_frame.wi_dat_len = m0->m_pkthdr.len;
eh->ether_type = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_3_OFFSET,
(caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2);
}
/*
* If there's a BPF listner, bounce a copy of
* this frame to him. Also, don't send this to the bpf sniffer
* if we're in procframe or monitor sniffing mode.
*/
if (!(sc->wi_procframe || sc->wi_debug.wi_monitor))
BPF_MTAP(ifp, m0);
m_freem(m0);
if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0))
device_printf(sc->dev, "xmit failed\n");
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
WI_UNLOCK(sc, s);
return;
}
void
owi_stop(sc)
struct wi_softc *sc;
{
struct ifnet *ifp;
int s;
WI_LOCK(sc, s);
if (sc->wi_gone) {
WI_UNLOCK(sc, s);
return;
}
ifp = &sc->arpcom.ac_if;
/*
* If the card is gone and the memory port isn't mapped, we will
* (hopefully) get 0xffff back from the status read, which is not
* a valid status value.
*/
if (CSR_READ_2(sc, WI_STATUS) != 0xffff) {
CSR_WRITE_2(sc, WI_INT_EN, 0);
wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0, 0, 0);
}
untimeout(wi_inquire, sc, sc->wi_stat_ch);
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
WI_UNLOCK(sc, s);
return;
}
static void
wi_watchdog(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc;
sc = ifp->if_softc;
device_printf(sc->dev, "watchdog timeout\n");
wi_init(sc);
ifp->if_oerrors++;
return;
}
int
owi_alloc(dev, rid)
device_t dev;
int rid;
{
struct wi_softc *sc = device_get_softc(dev);
if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
sc->iobase_rid = rid;
sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
&sc->iobase_rid, 0, ~0, (1 << 6),
rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
if (!sc->iobase) {
device_printf(dev, "No I/O space?!\n");
return (ENXIO);
}
sc->wi_io_addr = rman_get_start(sc->iobase);
sc->wi_btag = rman_get_bustag(sc->iobase);
sc->wi_bhandle = rman_get_bushandle(sc->iobase);
} else {
sc->mem_rid = rid;
sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY,
&sc->mem_rid, 0, ~0, 1, RF_ACTIVE);
if (!sc->mem) {
device_printf(dev, "No Mem space on prism2.5?\n");
return (ENXIO);
}
sc->wi_btag = rman_get_bustag(sc->mem);
sc->wi_bhandle = rman_get_bushandle(sc->mem);
}
sc->irq_rid = 0;
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
0, ~0, 1, RF_ACTIVE |
((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
if (!sc->irq) {
owi_free(dev);
device_printf(dev, "No irq?!\n");
return (ENXIO);
}
sc->dev = dev;
sc->wi_unit = device_get_unit(dev);
return (0);
}
void
owi_free(dev)
device_t dev;
{
struct wi_softc *sc = device_get_softc(dev);
if (sc->iobase != NULL) {
bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
sc->iobase = NULL;
}
if (sc->irq != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
sc->irq = NULL;
}
if (sc->mem != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
sc->mem = NULL;
}
return;
}
void
owi_shutdown(dev)
device_t dev;
{
struct wi_softc *sc;
sc = device_get_softc(dev);
owi_stop(sc);
return;
}
#ifdef WICACHE
/* wavelan signal strength cache code.
* store signal/noise/quality on per MAC src basis in
* a small fixed cache. The cache wraps if > MAX slots
* used. The cache may be zeroed out to start over.
* Two simple filters exist to reduce computation:
* 1. ip only (literally 0x800) which may be used
* to ignore some packets. It defaults to ip only.
* it could be used to focus on broadcast, non-IP 802.11 beacons.
* 2. multicast/broadcast only. This may be used to
* ignore unicast packets and only cache signal strength
* for multicast/broadcast packets (beacons); e.g., Mobile-IP
* beacons and not unicast traffic.
*
* The cache stores (MAC src(index), IP src (major clue), signal,
* quality, noise)
*
* No apologies for storing IP src here. It's easy and saves much
* trouble elsewhere. The cache is assumed to be INET dependent,
* although it need not be.
*/
#ifdef documentation
int wi_sigitems; /* number of cached entries */
struct wi_sigcache wi_sigcache[MAXWICACHE]; /* array of cache entries */
int wi_nextitem; /* index/# of entries */
#endif
/* control variables for cache filtering. Basic idea is
* to reduce cost (e.g., to only Mobile-IP agent beacons
* which are broadcast or multicast). Still you might
* want to measure signal strength with unicast ping packets
* on a pt. to pt. ant. setup.
*/
/* set true if you want to limit cache items to broadcast/mcast
* only packets (not unicast). Useful for mobile-ip beacons which
* are broadcast/multicast at network layer. Default is all packets
* so ping/unicast will work say with pt. to pt. antennae setup.
*/
static int wi_cache_mcastonly = 0;
SYSCTL_INT(_machdep, OID_AUTO, wi_cache_mcastonly, CTLFLAG_RW,
&wi_cache_mcastonly, 0, "");
/* set true if you want to limit cache items to IP packets only
*/
static int wi_cache_iponly = 1;
SYSCTL_INT(_machdep, OID_AUTO, wi_cache_iponly, CTLFLAG_RW,
&wi_cache_iponly, 0, "");
/*
* Original comments:
* -----------------
* wi_cache_store, per rx packet store signal
* strength in MAC (src) indexed cache.
*
* follows linux driver in how signal strength is computed.
* In ad hoc mode, we use the rx_quality field.
* signal and noise are trimmed to fit in the range from 47..138.
* rx_quality field MSB is signal strength.
* rx_quality field LSB is noise.
* "quality" is (signal - noise) as is log value.
* note: quality CAN be negative.
*
* In BSS mode, we use the RID for communication quality.
* TBD: BSS mode is currently untested.
*
* Bill's comments:
* ---------------
* Actually, we use the rx_quality field all the time for both "ad-hoc"
* and BSS modes. Why? Because reading an RID is really, really expensive:
* there's a bunch of PIO operations that have to be done to read a record
* from the NIC, and reading the comms quality RID each time a packet is
* received can really hurt performance. We don't have to do this anyway:
* the comms quality field only reflects the values in the rx_quality field
* anyway. The comms quality RID is only meaningful in infrastructure mode,
* but the values it contains are updated based on the rx_quality from
* frames received from the access point.
*
* Also, according to Lucent, the signal strength and noise level values
* can be converted to dBms by subtracting 149, so I've modified the code
* to do that instead of the scaling it did originally.
*/
static void
wi_cache_store(struct wi_softc *sc, struct ether_header *eh,
struct mbuf *m, unsigned short rx_quality)
{
struct ip *ip = 0;
int i;
static int cache_slot = 0; /* use this cache entry */
static int wrapindex = 0; /* next "free" cache entry */
int sig, noise;
int sawip=0;
/*
* filters:
* 1. ip only
* 2. configurable filter to throw out unicast packets,
* keep multicast only.
*/
if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
sawip = 1;
}
/*
* filter for ip packets only
*/
if (wi_cache_iponly && !sawip) {
return;
}
/*
* filter for broadcast/multicast only
*/
if (wi_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
return;
}
#ifdef SIGDEBUG
printf("owi%d: q value %x (MSB=0x%x, LSB=0x%x) \n", sc->wi_unit,
rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
#endif
/*
* find the ip header. we want to store the ip_src
* address.
*/
if (sawip)
ip = mtod(m, struct ip *);
/*
* do a linear search for a matching MAC address
* in the cache table
* . MAC address is 6 bytes,
* . var w_nextitem holds total number of entries already cached
*/
for(i = 0; i < sc->wi_nextitem; i++) {
if (! bcmp(eh->ether_shost , sc->wi_sigcache[i].macsrc, 6 )) {
/*
* Match!,
* so we already have this entry,
* update the data
*/
break;
}
}
/*
* did we find a matching mac address?
* if yes, then overwrite a previously existing cache entry
*/
if (i < sc->wi_nextitem ) {
cache_slot = i;
}
/*
* else, have a new address entry,so
* add this new entry,
* if table full, then we need to replace LRU entry
*/
else {
/*
* check for space in cache table
* note: wi_nextitem also holds number of entries
* added in the cache table
*/
if ( sc->wi_nextitem < MAXWICACHE ) {
cache_slot = sc->wi_nextitem;
sc->wi_nextitem++;
sc->wi_sigitems = sc->wi_nextitem;
}
/* no space found, so simply wrap with wrap index
* and "zap" the next entry
*/
else {
if (wrapindex == MAXWICACHE) {
wrapindex = 0;
}
cache_slot = wrapindex++;
}
}
/*
* invariant: cache_slot now points at some slot
* in cache.
*/
if (cache_slot < 0 || cache_slot >= MAXWICACHE) {
log(LOG_ERR, "owi_cache_store, bad index: %d of "
"[0..%d], gross cache error\n",
cache_slot, MAXWICACHE);
return;
}
/*
* store items in cache
* .ip source address
* .mac src
* .signal, etc.
*/
if (sawip)
sc->wi_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
bcopy( eh->ether_shost, sc->wi_sigcache[cache_slot].macsrc, 6);
sig = (rx_quality >> 8) & 0xFF;
noise = rx_quality & 0xFF;
/*
* -149 is Lucent specific to convert to dBm. Prism2 cards do
* things differently, sometimes don't have a noise measurement,
* and is firmware dependent :-(
*/
sc->wi_sigcache[cache_slot].signal = sig - 149;
sc->wi_sigcache[cache_slot].noise = noise - 149;
sc->wi_sigcache[cache_slot].quality = sig - noise;
return;
}
#endif
static int
wi_get_cur_ssid(sc, ssid, len)
struct wi_softc *sc;
char *ssid;
int *len;
{
int error = 0;
struct wi_req wreq;
wreq.wi_len = WI_MAX_DATALEN;
switch (sc->wi_ptype) {
case WI_PORTTYPE_IBSS:
case WI_PORTTYPE_ADHOC:
wreq.wi_type = WI_RID_CURRENT_SSID;
error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
if (error != 0)
break;
if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
*len = wreq.wi_val[0];
bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
break;
case WI_PORTTYPE_BSS:
wreq.wi_type = WI_RID_COMMQUAL;
error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
if (error != 0)
break;
if (wreq.wi_val[0] != 0) /* associated */ {
wreq.wi_type = WI_RID_CURRENT_SSID;
wreq.wi_len = WI_MAX_DATALEN;
error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
if (error != 0)
break;
if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
*len = wreq.wi_val[0];
bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
} else {
*len = IEEE80211_NWID_LEN;
bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
}
break;
default:
error = EINVAL;
break;
}
return error;
}
static int
wi_media_change(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc = ifp->if_softc;
int otype = sc->wi_ptype;
int orate = sc->wi_tx_rate;
int ocreate_ibss = sc->wi_create_ibss;
sc->wi_create_ibss = 0;
switch (sc->ifmedia.ifm_cur->ifm_media & IFM_OMASK) {
case 0:
sc->wi_ptype = WI_PORTTYPE_BSS;
break;
case IFM_IEEE80211_ADHOC:
sc->wi_ptype = WI_PORTTYPE_ADHOC;
break;
case IFM_IEEE80211_IBSSMASTER:
case IFM_IEEE80211_IBSSMASTER|IFM_IEEE80211_IBSS:
if (!(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS))
return (EINVAL);
sc->wi_create_ibss = 1;
/* FALLTHROUGH */
case IFM_IEEE80211_IBSS:
sc->wi_ptype = WI_PORTTYPE_IBSS;
break;
default:
/* Invalid combination. */
return (EINVAL);
}
switch (IFM_SUBTYPE(sc->ifmedia.ifm_cur->ifm_media)) {
case IFM_IEEE80211_DS1:
sc->wi_tx_rate = 1;
break;
case IFM_IEEE80211_DS2:
sc->wi_tx_rate = 2;
break;
case IFM_IEEE80211_DS5:
sc->wi_tx_rate = 5;
break;
case IFM_IEEE80211_DS11:
sc->wi_tx_rate = 11;
break;
case IFM_AUTO:
sc->wi_tx_rate = 3;
break;
}
if (ocreate_ibss != sc->wi_create_ibss || otype != sc->wi_ptype ||
orate != sc->wi_tx_rate)
wi_init(sc);
return(0);
}
static void
wi_media_status(ifp, imr)
struct ifnet *ifp;
struct ifmediareq *imr;
{
struct wi_req wreq;
struct wi_softc *sc = ifp->if_softc;
if (sc->wi_tx_rate == 3) {
imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
imr->ifm_active |= IFM_IEEE80211_ADHOC;
else if (sc->wi_ptype == WI_PORTTYPE_IBSS) {
if (sc->wi_create_ibss)
imr->ifm_active |= IFM_IEEE80211_IBSSMASTER;
else
imr->ifm_active |= IFM_IEEE80211_IBSS;
}
wreq.wi_type = WI_RID_CUR_TX_RATE;
wreq.wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) {
switch(wreq.wi_val[0]) {
case 1:
imr->ifm_active |= IFM_IEEE80211_DS1;
break;
case 2:
imr->ifm_active |= IFM_IEEE80211_DS2;
break;
case 6:
imr->ifm_active |= IFM_IEEE80211_DS5;
break;
case 11:
imr->ifm_active |= IFM_IEEE80211_DS11;
break;
}
}
} else {
imr->ifm_active = sc->ifmedia.ifm_cur->ifm_media;
}
imr->ifm_status = IFM_AVALID;
if (sc->wi_ptype == WI_PORTTYPE_ADHOC ||
sc->wi_ptype == WI_PORTTYPE_IBSS)
/*
* XXX: It would be nice if we could give some actually
* useful status like whether we joined another IBSS or
* created one ourselves.
*/
imr->ifm_status |= IFM_ACTIVE;
else {
wreq.wi_type = WI_RID_COMMQUAL;
wreq.wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
wreq.wi_val[0] != 0)
imr->ifm_status |= IFM_ACTIVE;
}
}