freebsd-nq/sys/kern/uipc_syscalls.c
Gleb Smirnoff 255c1caae3 - Create kern.ipc.sendfile namespace, and put the new "readhead" OID
there as "kern.ipc.sendfile.readahead".
- Push all nsfbuf related tunables into MD code. Don't move them
  to new namespace in favor of POLA.

Reviewed by:	scottl
Approved by:	re (gjb)
2013-09-22 13:36:52 +00:00

3053 lines
66 KiB
C

/*-
* Copyright (c) 1982, 1986, 1989, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* sendfile(2) and related extensions:
* Copyright (c) 1998, David Greenman. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_capsicum.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_sctp.h"
#include "opt_compat.h"
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/capability.h>
#include <sys/condvar.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysproto.h>
#include <sys/malloc.h>
#include <sys/filedesc.h>
#include <sys/event.h>
#include <sys/proc.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/filio.h>
#include <sys/jail.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/rwlock.h>
#include <sys/sf_buf.h>
#include <sys/sysent.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/signalvar.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <sys/vnode.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#ifdef COMPAT_FREEBSD32
#include <compat/freebsd32/freebsd32_util.h>
#endif
#include <net/vnet.h>
#include <security/audit/audit.h>
#include <security/mac/mac_framework.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#if defined(INET) || defined(INET6)
#ifdef SCTP
#include <netinet/sctp.h>
#include <netinet/sctp_peeloff.h>
#endif /* SCTP */
#endif /* INET || INET6 */
/*
* Flags for accept1() and kern_accept4(), in addition to SOCK_CLOEXEC
* and SOCK_NONBLOCK.
*/
#define ACCEPT4_INHERIT 0x1
#define ACCEPT4_COMPAT 0x2
static int sendit(struct thread *td, int s, struct msghdr *mp, int flags);
static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp);
static int accept1(struct thread *td, int s, struct sockaddr *uname,
socklen_t *anamelen, int flags);
static int do_sendfile(struct thread *td, struct sendfile_args *uap,
int compat);
static int getsockname1(struct thread *td, struct getsockname_args *uap,
int compat);
static int getpeername1(struct thread *td, struct getpeername_args *uap,
int compat);
counter_u64_t sfstat[sizeof(struct sfstat) / sizeof(uint64_t)];
/*
* sendfile(2)-related variables and associated sysctls
*/
static SYSCTL_NODE(_kern_ipc, OID_AUTO, sendfile, CTLFLAG_RW, 0,
"sendfile(2) tunables");
static int sfreadahead = 1;
SYSCTL_INT(_kern_ipc_sendfile, OID_AUTO, readahead, CTLFLAG_RW,
&sfreadahead, 0, "Number of sendfile(2) read-ahead MAXBSIZE blocks");
static void
sfstat_init(const void *unused)
{
COUNTER_ARRAY_ALLOC(sfstat, sizeof(struct sfstat) / sizeof(uint64_t),
M_WAITOK);
}
SYSINIT(sfstat, SI_SUB_MBUF, SI_ORDER_FIRST, sfstat_init, NULL);
static int
sfstat_sysctl(SYSCTL_HANDLER_ARGS)
{
struct sfstat s;
COUNTER_ARRAY_COPY(sfstat, &s, sizeof(s) / sizeof(uint64_t));
if (req->newptr)
COUNTER_ARRAY_ZERO(sfstat, sizeof(s) / sizeof(uint64_t));
return (SYSCTL_OUT(req, &s, sizeof(s)));
}
SYSCTL_PROC(_kern_ipc, OID_AUTO, sfstat, CTLTYPE_OPAQUE | CTLFLAG_RW,
NULL, 0, sfstat_sysctl, "I", "sendfile statistics");
/*
* Convert a user file descriptor to a kernel file entry and check if required
* capability rights are present.
* A reference on the file entry is held upon returning.
*/
static int
getsock_cap(struct filedesc *fdp, int fd, cap_rights_t *rightsp,
struct file **fpp, u_int *fflagp)
{
struct file *fp;
int error;
error = fget_unlocked(fdp, fd, rightsp, 0, &fp, NULL);
if (error != 0)
return (error);
if (fp->f_type != DTYPE_SOCKET) {
fdrop(fp, curthread);
return (ENOTSOCK);
}
if (fflagp != NULL)
*fflagp = fp->f_flag;
*fpp = fp;
return (0);
}
/*
* System call interface to the socket abstraction.
*/
#if defined(COMPAT_43)
#define COMPAT_OLDSOCK
#endif
int
sys_socket(td, uap)
struct thread *td;
struct socket_args /* {
int domain;
int type;
int protocol;
} */ *uap;
{
struct socket *so;
struct file *fp;
int fd, error, type, oflag, fflag;
AUDIT_ARG_SOCKET(uap->domain, uap->type, uap->protocol);
type = uap->type;
oflag = 0;
fflag = 0;
if ((type & SOCK_CLOEXEC) != 0) {
type &= ~SOCK_CLOEXEC;
oflag |= O_CLOEXEC;
}
if ((type & SOCK_NONBLOCK) != 0) {
type &= ~SOCK_NONBLOCK;
fflag |= FNONBLOCK;
}
#ifdef MAC
error = mac_socket_check_create(td->td_ucred, uap->domain, type,
uap->protocol);
if (error != 0)
return (error);
#endif
error = falloc(td, &fp, &fd, oflag);
if (error != 0)
return (error);
/* An extra reference on `fp' has been held for us by falloc(). */
error = socreate(uap->domain, &so, type, uap->protocol,
td->td_ucred, td);
if (error != 0) {
fdclose(td->td_proc->p_fd, fp, fd, td);
} else {
finit(fp, FREAD | FWRITE | fflag, DTYPE_SOCKET, so, &socketops);
if ((fflag & FNONBLOCK) != 0)
(void) fo_ioctl(fp, FIONBIO, &fflag, td->td_ucred, td);
td->td_retval[0] = fd;
}
fdrop(fp, td);
return (error);
}
/* ARGSUSED */
int
sys_bind(td, uap)
struct thread *td;
struct bind_args /* {
int s;
caddr_t name;
int namelen;
} */ *uap;
{
struct sockaddr *sa;
int error;
error = getsockaddr(&sa, uap->name, uap->namelen);
if (error == 0) {
error = kern_bind(td, uap->s, sa);
free(sa, M_SONAME);
}
return (error);
}
static int
kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa)
{
struct socket *so;
struct file *fp;
cap_rights_t rights;
int error;
AUDIT_ARG_FD(fd);
AUDIT_ARG_SOCKADDR(td, dirfd, sa);
error = getsock_cap(td->td_proc->p_fd, fd,
cap_rights_init(&rights, CAP_BIND), &fp, NULL);
if (error != 0)
return (error);
so = fp->f_data;
#ifdef KTRACE
if (KTRPOINT(td, KTR_STRUCT))
ktrsockaddr(sa);
#endif
#ifdef MAC
error = mac_socket_check_bind(td->td_ucred, so, sa);
if (error == 0) {
#endif
if (dirfd == AT_FDCWD)
error = sobind(so, sa, td);
else
error = sobindat(dirfd, so, sa, td);
#ifdef MAC
}
#endif
fdrop(fp, td);
return (error);
}
int
kern_bind(struct thread *td, int fd, struct sockaddr *sa)
{
return (kern_bindat(td, AT_FDCWD, fd, sa));
}
/* ARGSUSED */
int
sys_bindat(td, uap)
struct thread *td;
struct bindat_args /* {
int fd;
int s;
caddr_t name;
int namelen;
} */ *uap;
{
struct sockaddr *sa;
int error;
error = getsockaddr(&sa, uap->name, uap->namelen);
if (error == 0) {
error = kern_bindat(td, uap->fd, uap->s, sa);
free(sa, M_SONAME);
}
return (error);
}
/* ARGSUSED */
int
sys_listen(td, uap)
struct thread *td;
struct listen_args /* {
int s;
int backlog;
} */ *uap;
{
struct socket *so;
struct file *fp;
cap_rights_t rights;
int error;
AUDIT_ARG_FD(uap->s);
error = getsock_cap(td->td_proc->p_fd, uap->s,
cap_rights_init(&rights, CAP_LISTEN), &fp, NULL);
if (error == 0) {
so = fp->f_data;
#ifdef MAC
error = mac_socket_check_listen(td->td_ucred, so);
if (error == 0)
#endif
error = solisten(so, uap->backlog, td);
fdrop(fp, td);
}
return(error);
}
/*
* accept1()
*/
static int
accept1(td, s, uname, anamelen, flags)
struct thread *td;
int s;
struct sockaddr *uname;
socklen_t *anamelen;
int flags;
{
struct sockaddr *name;
socklen_t namelen;
struct file *fp;
int error;
if (uname == NULL)
return (kern_accept4(td, s, NULL, NULL, flags, NULL));
error = copyin(anamelen, &namelen, sizeof (namelen));
if (error != 0)
return (error);
error = kern_accept4(td, s, &name, &namelen, flags, &fp);
/*
* return a namelen of zero for older code which might
* ignore the return value from accept.
*/
if (error != 0) {
(void) copyout(&namelen, anamelen, sizeof(*anamelen));
return (error);
}
if (error == 0 && uname != NULL) {
#ifdef COMPAT_OLDSOCK
if (flags & ACCEPT4_COMPAT)
((struct osockaddr *)name)->sa_family =
name->sa_family;
#endif
error = copyout(name, uname, namelen);
}
if (error == 0)
error = copyout(&namelen, anamelen,
sizeof(namelen));
if (error != 0)
fdclose(td->td_proc->p_fd, fp, td->td_retval[0], td);
fdrop(fp, td);
free(name, M_SONAME);
return (error);
}
int
kern_accept(struct thread *td, int s, struct sockaddr **name,
socklen_t *namelen, struct file **fp)
{
return (kern_accept4(td, s, name, namelen, ACCEPT4_INHERIT, fp));
}
int
kern_accept4(struct thread *td, int s, struct sockaddr **name,
socklen_t *namelen, int flags, struct file **fp)
{
struct filedesc *fdp;
struct file *headfp, *nfp = NULL;
struct sockaddr *sa = NULL;
struct socket *head, *so;
cap_rights_t rights;
u_int fflag;
pid_t pgid;
int error, fd, tmp;
if (name != NULL)
*name = NULL;
AUDIT_ARG_FD(s);
fdp = td->td_proc->p_fd;
error = getsock_cap(fdp, s, cap_rights_init(&rights, CAP_ACCEPT),
&headfp, &fflag);
if (error != 0)
return (error);
head = headfp->f_data;
if ((head->so_options & SO_ACCEPTCONN) == 0) {
error = EINVAL;
goto done;
}
#ifdef MAC
error = mac_socket_check_accept(td->td_ucred, head);
if (error != 0)
goto done;
#endif
error = falloc(td, &nfp, &fd, (flags & SOCK_CLOEXEC) ? O_CLOEXEC : 0);
if (error != 0)
goto done;
ACCEPT_LOCK();
if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->so_comp)) {
ACCEPT_UNLOCK();
error = EWOULDBLOCK;
goto noconnection;
}
while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) {
if (head->so_rcv.sb_state & SBS_CANTRCVMORE) {
head->so_error = ECONNABORTED;
break;
}
error = msleep(&head->so_timeo, &accept_mtx, PSOCK | PCATCH,
"accept", 0);
if (error != 0) {
ACCEPT_UNLOCK();
goto noconnection;
}
}
if (head->so_error) {
error = head->so_error;
head->so_error = 0;
ACCEPT_UNLOCK();
goto noconnection;
}
so = TAILQ_FIRST(&head->so_comp);
KASSERT(!(so->so_qstate & SQ_INCOMP), ("accept1: so SQ_INCOMP"));
KASSERT(so->so_qstate & SQ_COMP, ("accept1: so not SQ_COMP"));
/*
* Before changing the flags on the socket, we have to bump the
* reference count. Otherwise, if the protocol calls sofree(),
* the socket will be released due to a zero refcount.
*/
SOCK_LOCK(so); /* soref() and so_state update */
soref(so); /* file descriptor reference */
TAILQ_REMOVE(&head->so_comp, so, so_list);
head->so_qlen--;
if (flags & ACCEPT4_INHERIT)
so->so_state |= (head->so_state & SS_NBIO);
else
so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
so->so_qstate &= ~SQ_COMP;
so->so_head = NULL;
SOCK_UNLOCK(so);
ACCEPT_UNLOCK();
/* An extra reference on `nfp' has been held for us by falloc(). */
td->td_retval[0] = fd;
/* connection has been removed from the listen queue */
KNOTE_UNLOCKED(&head->so_rcv.sb_sel.si_note, 0);
if (flags & ACCEPT4_INHERIT) {
pgid = fgetown(&head->so_sigio);
if (pgid != 0)
fsetown(pgid, &so->so_sigio);
} else {
fflag &= ~(FNONBLOCK | FASYNC);
if (flags & SOCK_NONBLOCK)
fflag |= FNONBLOCK;
}
finit(nfp, fflag, DTYPE_SOCKET, so, &socketops);
/* Sync socket nonblocking/async state with file flags */
tmp = fflag & FNONBLOCK;
(void) fo_ioctl(nfp, FIONBIO, &tmp, td->td_ucred, td);
tmp = fflag & FASYNC;
(void) fo_ioctl(nfp, FIOASYNC, &tmp, td->td_ucred, td);
sa = 0;
error = soaccept(so, &sa);
if (error != 0) {
/*
* return a namelen of zero for older code which might
* ignore the return value from accept.
*/
if (name)
*namelen = 0;
goto noconnection;
}
if (sa == NULL) {
if (name)
*namelen = 0;
goto done;
}
AUDIT_ARG_SOCKADDR(td, AT_FDCWD, sa);
if (name) {
/* check sa_len before it is destroyed */
if (*namelen > sa->sa_len)
*namelen = sa->sa_len;
#ifdef KTRACE
if (KTRPOINT(td, KTR_STRUCT))
ktrsockaddr(sa);
#endif
*name = sa;
sa = NULL;
}
noconnection:
free(sa, M_SONAME);
/*
* close the new descriptor, assuming someone hasn't ripped it
* out from under us.
*/
if (error != 0)
fdclose(fdp, nfp, fd, td);
/*
* Release explicitly held references before returning. We return
* a reference on nfp to the caller on success if they request it.
*/
done:
if (fp != NULL) {
if (error == 0) {
*fp = nfp;
nfp = NULL;
} else
*fp = NULL;
}
if (nfp != NULL)
fdrop(nfp, td);
fdrop(headfp, td);
return (error);
}
int
sys_accept(td, uap)
struct thread *td;
struct accept_args *uap;
{
return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT));
}
int
sys_accept4(td, uap)
struct thread *td;
struct accept4_args *uap;
{
if (uap->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return (EINVAL);
return (accept1(td, uap->s, uap->name, uap->anamelen, uap->flags));
}
#ifdef COMPAT_OLDSOCK
int
oaccept(td, uap)
struct thread *td;
struct accept_args *uap;
{
return (accept1(td, uap->s, uap->name, uap->anamelen,
ACCEPT4_INHERIT | ACCEPT4_COMPAT));
}
#endif /* COMPAT_OLDSOCK */
/* ARGSUSED */
int
sys_connect(td, uap)
struct thread *td;
struct connect_args /* {
int s;
caddr_t name;
int namelen;
} */ *uap;
{
struct sockaddr *sa;
int error;
error = getsockaddr(&sa, uap->name, uap->namelen);
if (error == 0) {
error = kern_connect(td, uap->s, sa);
free(sa, M_SONAME);
}
return (error);
}
static int
kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa)
{
struct socket *so;
struct file *fp;
cap_rights_t rights;
int error, interrupted = 0;
AUDIT_ARG_FD(fd);
AUDIT_ARG_SOCKADDR(td, dirfd, sa);
error = getsock_cap(td->td_proc->p_fd, fd,
cap_rights_init(&rights, CAP_CONNECT), &fp, NULL);
if (error != 0)
return (error);
so = fp->f_data;
if (so->so_state & SS_ISCONNECTING) {
error = EALREADY;
goto done1;
}
#ifdef KTRACE
if (KTRPOINT(td, KTR_STRUCT))
ktrsockaddr(sa);
#endif
#ifdef MAC
error = mac_socket_check_connect(td->td_ucred, so, sa);
if (error != 0)
goto bad;
#endif
if (dirfd == AT_FDCWD)
error = soconnect(so, sa, td);
else
error = soconnectat(dirfd, so, sa, td);
if (error != 0)
goto bad;
if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
error = EINPROGRESS;
goto done1;
}
SOCK_LOCK(so);
while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
error = msleep(&so->so_timeo, SOCK_MTX(so), PSOCK | PCATCH,
"connec", 0);
if (error != 0) {
if (error == EINTR || error == ERESTART)
interrupted = 1;
break;
}
}
if (error == 0) {
error = so->so_error;
so->so_error = 0;
}
SOCK_UNLOCK(so);
bad:
if (!interrupted)
so->so_state &= ~SS_ISCONNECTING;
if (error == ERESTART)
error = EINTR;
done1:
fdrop(fp, td);
return (error);
}
int
kern_connect(struct thread *td, int fd, struct sockaddr *sa)
{
return (kern_connectat(td, AT_FDCWD, fd, sa));
}
/* ARGSUSED */
int
sys_connectat(td, uap)
struct thread *td;
struct connectat_args /* {
int fd;
int s;
caddr_t name;
int namelen;
} */ *uap;
{
struct sockaddr *sa;
int error;
error = getsockaddr(&sa, uap->name, uap->namelen);
if (error == 0) {
error = kern_connectat(td, uap->fd, uap->s, sa);
free(sa, M_SONAME);
}
return (error);
}
int
kern_socketpair(struct thread *td, int domain, int type, int protocol,
int *rsv)
{
struct filedesc *fdp = td->td_proc->p_fd;
struct file *fp1, *fp2;
struct socket *so1, *so2;
int fd, error, oflag, fflag;
AUDIT_ARG_SOCKET(domain, type, protocol);
oflag = 0;
fflag = 0;
if ((type & SOCK_CLOEXEC) != 0) {
type &= ~SOCK_CLOEXEC;
oflag |= O_CLOEXEC;
}
if ((type & SOCK_NONBLOCK) != 0) {
type &= ~SOCK_NONBLOCK;
fflag |= FNONBLOCK;
}
#ifdef MAC
/* We might want to have a separate check for socket pairs. */
error = mac_socket_check_create(td->td_ucred, domain, type,
protocol);
if (error != 0)
return (error);
#endif
error = socreate(domain, &so1, type, protocol, td->td_ucred, td);
if (error != 0)
return (error);
error = socreate(domain, &so2, type, protocol, td->td_ucred, td);
if (error != 0)
goto free1;
/* On success extra reference to `fp1' and 'fp2' is set by falloc. */
error = falloc(td, &fp1, &fd, oflag);
if (error != 0)
goto free2;
rsv[0] = fd;
fp1->f_data = so1; /* so1 already has ref count */
error = falloc(td, &fp2, &fd, oflag);
if (error != 0)
goto free3;
fp2->f_data = so2; /* so2 already has ref count */
rsv[1] = fd;
error = soconnect2(so1, so2);
if (error != 0)
goto free4;
if (type == SOCK_DGRAM) {
/*
* Datagram socket connection is asymmetric.
*/
error = soconnect2(so2, so1);
if (error != 0)
goto free4;
}
finit(fp1, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp1->f_data,
&socketops);
finit(fp2, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp2->f_data,
&socketops);
if ((fflag & FNONBLOCK) != 0) {
(void) fo_ioctl(fp1, FIONBIO, &fflag, td->td_ucred, td);
(void) fo_ioctl(fp2, FIONBIO, &fflag, td->td_ucred, td);
}
fdrop(fp1, td);
fdrop(fp2, td);
return (0);
free4:
fdclose(fdp, fp2, rsv[1], td);
fdrop(fp2, td);
free3:
fdclose(fdp, fp1, rsv[0], td);
fdrop(fp1, td);
free2:
if (so2 != NULL)
(void)soclose(so2);
free1:
if (so1 != NULL)
(void)soclose(so1);
return (error);
}
int
sys_socketpair(struct thread *td, struct socketpair_args *uap)
{
int error, sv[2];
error = kern_socketpair(td, uap->domain, uap->type,
uap->protocol, sv);
if (error != 0)
return (error);
error = copyout(sv, uap->rsv, 2 * sizeof(int));
if (error != 0) {
(void)kern_close(td, sv[0]);
(void)kern_close(td, sv[1]);
}
return (error);
}
static int
sendit(td, s, mp, flags)
struct thread *td;
int s;
struct msghdr *mp;
int flags;
{
struct mbuf *control;
struct sockaddr *to;
int error;
#ifdef CAPABILITY_MODE
if (IN_CAPABILITY_MODE(td) && (mp->msg_name != NULL))
return (ECAPMODE);
#endif
if (mp->msg_name != NULL) {
error = getsockaddr(&to, mp->msg_name, mp->msg_namelen);
if (error != 0) {
to = NULL;
goto bad;
}
mp->msg_name = to;
} else {
to = NULL;
}
if (mp->msg_control) {
if (mp->msg_controllen < sizeof(struct cmsghdr)
#ifdef COMPAT_OLDSOCK
&& mp->msg_flags != MSG_COMPAT
#endif
) {
error = EINVAL;
goto bad;
}
error = sockargs(&control, mp->msg_control,
mp->msg_controllen, MT_CONTROL);
if (error != 0)
goto bad;
#ifdef COMPAT_OLDSOCK
if (mp->msg_flags == MSG_COMPAT) {
struct cmsghdr *cm;
M_PREPEND(control, sizeof(*cm), M_WAITOK);
cm = mtod(control, struct cmsghdr *);
cm->cmsg_len = control->m_len;
cm->cmsg_level = SOL_SOCKET;
cm->cmsg_type = SCM_RIGHTS;
}
#endif
} else {
control = NULL;
}
error = kern_sendit(td, s, mp, flags, control, UIO_USERSPACE);
bad:
free(to, M_SONAME);
return (error);
}
int
kern_sendit(td, s, mp, flags, control, segflg)
struct thread *td;
int s;
struct msghdr *mp;
int flags;
struct mbuf *control;
enum uio_seg segflg;
{
struct file *fp;
struct uio auio;
struct iovec *iov;
struct socket *so;
cap_rights_t rights;
#ifdef KTRACE
struct uio *ktruio = NULL;
#endif
ssize_t len;
int i, error;
AUDIT_ARG_FD(s);
cap_rights_init(&rights, CAP_SEND);
if (mp->msg_name != NULL) {
AUDIT_ARG_SOCKADDR(td, AT_FDCWD, mp->msg_name);
cap_rights_set(&rights, CAP_CONNECT);
}
error = getsock_cap(td->td_proc->p_fd, s, &rights, &fp, NULL);
if (error != 0)
return (error);
so = (struct socket *)fp->f_data;
#ifdef KTRACE
if (mp->msg_name != NULL && KTRPOINT(td, KTR_STRUCT))
ktrsockaddr(mp->msg_name);
#endif
#ifdef MAC
if (mp->msg_name != NULL) {
error = mac_socket_check_connect(td->td_ucred, so,
mp->msg_name);
if (error != 0)
goto bad;
}
error = mac_socket_check_send(td->td_ucred, so);
if (error != 0)
goto bad;
#endif
auio.uio_iov = mp->msg_iov;
auio.uio_iovcnt = mp->msg_iovlen;
auio.uio_segflg = segflg;
auio.uio_rw = UIO_WRITE;
auio.uio_td = td;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
iov = mp->msg_iov;
for (i = 0; i < mp->msg_iovlen; i++, iov++) {
if ((auio.uio_resid += iov->iov_len) < 0) {
error = EINVAL;
goto bad;
}
}
#ifdef KTRACE
if (KTRPOINT(td, KTR_GENIO))
ktruio = cloneuio(&auio);
#endif
len = auio.uio_resid;
error = sosend(so, mp->msg_name, &auio, 0, control, flags, td);
if (error != 0) {
if (auio.uio_resid != len && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK))
error = 0;
/* Generation of SIGPIPE can be controlled per socket */
if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) &&
!(flags & MSG_NOSIGNAL)) {
PROC_LOCK(td->td_proc);
tdsignal(td, SIGPIPE);
PROC_UNLOCK(td->td_proc);
}
}
if (error == 0)
td->td_retval[0] = len - auio.uio_resid;
#ifdef KTRACE
if (ktruio != NULL) {
ktruio->uio_resid = td->td_retval[0];
ktrgenio(s, UIO_WRITE, ktruio, error);
}
#endif
bad:
fdrop(fp, td);
return (error);
}
int
sys_sendto(td, uap)
struct thread *td;
struct sendto_args /* {
int s;
caddr_t buf;
size_t len;
int flags;
caddr_t to;
int tolen;
} */ *uap;
{
struct msghdr msg;
struct iovec aiov;
msg.msg_name = uap->to;
msg.msg_namelen = uap->tolen;
msg.msg_iov = &aiov;
msg.msg_iovlen = 1;
msg.msg_control = 0;
#ifdef COMPAT_OLDSOCK
msg.msg_flags = 0;
#endif
aiov.iov_base = uap->buf;
aiov.iov_len = uap->len;
return (sendit(td, uap->s, &msg, uap->flags));
}
#ifdef COMPAT_OLDSOCK
int
osend(td, uap)
struct thread *td;
struct osend_args /* {
int s;
caddr_t buf;
int len;
int flags;
} */ *uap;
{
struct msghdr msg;
struct iovec aiov;
msg.msg_name = 0;
msg.msg_namelen = 0;
msg.msg_iov = &aiov;
msg.msg_iovlen = 1;
aiov.iov_base = uap->buf;
aiov.iov_len = uap->len;
msg.msg_control = 0;
msg.msg_flags = 0;
return (sendit(td, uap->s, &msg, uap->flags));
}
int
osendmsg(td, uap)
struct thread *td;
struct osendmsg_args /* {
int s;
caddr_t msg;
int flags;
} */ *uap;
{
struct msghdr msg;
struct iovec *iov;
int error;
error = copyin(uap->msg, &msg, sizeof (struct omsghdr));
if (error != 0)
return (error);
error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
if (error != 0)
return (error);
msg.msg_iov = iov;
msg.msg_flags = MSG_COMPAT;
error = sendit(td, uap->s, &msg, uap->flags);
free(iov, M_IOV);
return (error);
}
#endif
int
sys_sendmsg(td, uap)
struct thread *td;
struct sendmsg_args /* {
int s;
caddr_t msg;
int flags;
} */ *uap;
{
struct msghdr msg;
struct iovec *iov;
int error;
error = copyin(uap->msg, &msg, sizeof (msg));
if (error != 0)
return (error);
error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
if (error != 0)
return (error);
msg.msg_iov = iov;
#ifdef COMPAT_OLDSOCK
msg.msg_flags = 0;
#endif
error = sendit(td, uap->s, &msg, uap->flags);
free(iov, M_IOV);
return (error);
}
int
kern_recvit(td, s, mp, fromseg, controlp)
struct thread *td;
int s;
struct msghdr *mp;
enum uio_seg fromseg;
struct mbuf **controlp;
{
struct uio auio;
struct iovec *iov;
struct mbuf *m, *control = NULL;
caddr_t ctlbuf;
struct file *fp;
struct socket *so;
struct sockaddr *fromsa = NULL;
cap_rights_t rights;
#ifdef KTRACE
struct uio *ktruio = NULL;
#endif
ssize_t len;
int error, i;
if (controlp != NULL)
*controlp = NULL;
AUDIT_ARG_FD(s);
error = getsock_cap(td->td_proc->p_fd, s,
cap_rights_init(&rights, CAP_RECV), &fp, NULL);
if (error != 0)
return (error);
so = fp->f_data;
#ifdef MAC
error = mac_socket_check_receive(td->td_ucred, so);
if (error != 0) {
fdrop(fp, td);
return (error);
}
#endif
auio.uio_iov = mp->msg_iov;
auio.uio_iovcnt = mp->msg_iovlen;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_READ;
auio.uio_td = td;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
iov = mp->msg_iov;
for (i = 0; i < mp->msg_iovlen; i++, iov++) {
if ((auio.uio_resid += iov->iov_len) < 0) {
fdrop(fp, td);
return (EINVAL);
}
}
#ifdef KTRACE
if (KTRPOINT(td, KTR_GENIO))
ktruio = cloneuio(&auio);
#endif
len = auio.uio_resid;
error = soreceive(so, &fromsa, &auio, NULL,
(mp->msg_control || controlp) ? &control : NULL,
&mp->msg_flags);
if (error != 0) {
if (auio.uio_resid != len && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK))
error = 0;
}
if (fromsa != NULL)
AUDIT_ARG_SOCKADDR(td, AT_FDCWD, fromsa);
#ifdef KTRACE
if (ktruio != NULL) {
ktruio->uio_resid = len - auio.uio_resid;
ktrgenio(s, UIO_READ, ktruio, error);
}
#endif
if (error != 0)
goto out;
td->td_retval[0] = len - auio.uio_resid;
if (mp->msg_name) {
len = mp->msg_namelen;
if (len <= 0 || fromsa == NULL)
len = 0;
else {
/* save sa_len before it is destroyed by MSG_COMPAT */
len = MIN(len, fromsa->sa_len);
#ifdef COMPAT_OLDSOCK
if (mp->msg_flags & MSG_COMPAT)
((struct osockaddr *)fromsa)->sa_family =
fromsa->sa_family;
#endif
if (fromseg == UIO_USERSPACE) {
error = copyout(fromsa, mp->msg_name,
(unsigned)len);
if (error != 0)
goto out;
} else
bcopy(fromsa, mp->msg_name, len);
}
mp->msg_namelen = len;
}
if (mp->msg_control && controlp == NULL) {
#ifdef COMPAT_OLDSOCK
/*
* We assume that old recvmsg calls won't receive access
* rights and other control info, esp. as control info
* is always optional and those options didn't exist in 4.3.
* If we receive rights, trim the cmsghdr; anything else
* is tossed.
*/
if (control && mp->msg_flags & MSG_COMPAT) {
if (mtod(control, struct cmsghdr *)->cmsg_level !=
SOL_SOCKET ||
mtod(control, struct cmsghdr *)->cmsg_type !=
SCM_RIGHTS) {
mp->msg_controllen = 0;
goto out;
}
control->m_len -= sizeof (struct cmsghdr);
control->m_data += sizeof (struct cmsghdr);
}
#endif
len = mp->msg_controllen;
m = control;
mp->msg_controllen = 0;
ctlbuf = mp->msg_control;
while (m && len > 0) {
unsigned int tocopy;
if (len >= m->m_len)
tocopy = m->m_len;
else {
mp->msg_flags |= MSG_CTRUNC;
tocopy = len;
}
if ((error = copyout(mtod(m, caddr_t),
ctlbuf, tocopy)) != 0)
goto out;
ctlbuf += tocopy;
len -= tocopy;
m = m->m_next;
}
mp->msg_controllen = ctlbuf - (caddr_t)mp->msg_control;
}
out:
fdrop(fp, td);
#ifdef KTRACE
if (fromsa && KTRPOINT(td, KTR_STRUCT))
ktrsockaddr(fromsa);
#endif
free(fromsa, M_SONAME);
if (error == 0 && controlp != NULL)
*controlp = control;
else if (control)
m_freem(control);
return (error);
}
static int
recvit(td, s, mp, namelenp)
struct thread *td;
int s;
struct msghdr *mp;
void *namelenp;
{
int error;
error = kern_recvit(td, s, mp, UIO_USERSPACE, NULL);
if (error != 0)
return (error);
if (namelenp != NULL) {
error = copyout(&mp->msg_namelen, namelenp, sizeof (socklen_t));
#ifdef COMPAT_OLDSOCK
if (mp->msg_flags & MSG_COMPAT)
error = 0; /* old recvfrom didn't check */
#endif
}
return (error);
}
int
sys_recvfrom(td, uap)
struct thread *td;
struct recvfrom_args /* {
int s;
caddr_t buf;
size_t len;
int flags;
struct sockaddr * __restrict from;
socklen_t * __restrict fromlenaddr;
} */ *uap;
{
struct msghdr msg;
struct iovec aiov;
int error;
if (uap->fromlenaddr) {
error = copyin(uap->fromlenaddr,
&msg.msg_namelen, sizeof (msg.msg_namelen));
if (error != 0)
goto done2;
} else {
msg.msg_namelen = 0;
}
msg.msg_name = uap->from;
msg.msg_iov = &aiov;
msg.msg_iovlen = 1;
aiov.iov_base = uap->buf;
aiov.iov_len = uap->len;
msg.msg_control = 0;
msg.msg_flags = uap->flags;
error = recvit(td, uap->s, &msg, uap->fromlenaddr);
done2:
return (error);
}
#ifdef COMPAT_OLDSOCK
int
orecvfrom(td, uap)
struct thread *td;
struct recvfrom_args *uap;
{
uap->flags |= MSG_COMPAT;
return (sys_recvfrom(td, uap));
}
#endif
#ifdef COMPAT_OLDSOCK
int
orecv(td, uap)
struct thread *td;
struct orecv_args /* {
int s;
caddr_t buf;
int len;
int flags;
} */ *uap;
{
struct msghdr msg;
struct iovec aiov;
msg.msg_name = 0;
msg.msg_namelen = 0;
msg.msg_iov = &aiov;
msg.msg_iovlen = 1;
aiov.iov_base = uap->buf;
aiov.iov_len = uap->len;
msg.msg_control = 0;
msg.msg_flags = uap->flags;
return (recvit(td, uap->s, &msg, NULL));
}
/*
* Old recvmsg. This code takes advantage of the fact that the old msghdr
* overlays the new one, missing only the flags, and with the (old) access
* rights where the control fields are now.
*/
int
orecvmsg(td, uap)
struct thread *td;
struct orecvmsg_args /* {
int s;
struct omsghdr *msg;
int flags;
} */ *uap;
{
struct msghdr msg;
struct iovec *iov;
int error;
error = copyin(uap->msg, &msg, sizeof (struct omsghdr));
if (error != 0)
return (error);
error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
if (error != 0)
return (error);
msg.msg_flags = uap->flags | MSG_COMPAT;
msg.msg_iov = iov;
error = recvit(td, uap->s, &msg, &uap->msg->msg_namelen);
if (msg.msg_controllen && error == 0)
error = copyout(&msg.msg_controllen,
&uap->msg->msg_accrightslen, sizeof (int));
free(iov, M_IOV);
return (error);
}
#endif
int
sys_recvmsg(td, uap)
struct thread *td;
struct recvmsg_args /* {
int s;
struct msghdr *msg;
int flags;
} */ *uap;
{
struct msghdr msg;
struct iovec *uiov, *iov;
int error;
error = copyin(uap->msg, &msg, sizeof (msg));
if (error != 0)
return (error);
error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
if (error != 0)
return (error);
msg.msg_flags = uap->flags;
#ifdef COMPAT_OLDSOCK
msg.msg_flags &= ~MSG_COMPAT;
#endif
uiov = msg.msg_iov;
msg.msg_iov = iov;
error = recvit(td, uap->s, &msg, NULL);
if (error == 0) {
msg.msg_iov = uiov;
error = copyout(&msg, uap->msg, sizeof(msg));
}
free(iov, M_IOV);
return (error);
}
/* ARGSUSED */
int
sys_shutdown(td, uap)
struct thread *td;
struct shutdown_args /* {
int s;
int how;
} */ *uap;
{
struct socket *so;
struct file *fp;
cap_rights_t rights;
int error;
AUDIT_ARG_FD(uap->s);
error = getsock_cap(td->td_proc->p_fd, uap->s,
cap_rights_init(&rights, CAP_SHUTDOWN), &fp, NULL);
if (error == 0) {
so = fp->f_data;
error = soshutdown(so, uap->how);
fdrop(fp, td);
}
return (error);
}
/* ARGSUSED */
int
sys_setsockopt(td, uap)
struct thread *td;
struct setsockopt_args /* {
int s;
int level;
int name;
caddr_t val;
int valsize;
} */ *uap;
{
return (kern_setsockopt(td, uap->s, uap->level, uap->name,
uap->val, UIO_USERSPACE, uap->valsize));
}
int
kern_setsockopt(td, s, level, name, val, valseg, valsize)
struct thread *td;
int s;
int level;
int name;
void *val;
enum uio_seg valseg;
socklen_t valsize;
{
struct socket *so;
struct file *fp;
struct sockopt sopt;
cap_rights_t rights;
int error;
if (val == NULL && valsize != 0)
return (EFAULT);
if ((int)valsize < 0)
return (EINVAL);
sopt.sopt_dir = SOPT_SET;
sopt.sopt_level = level;
sopt.sopt_name = name;
sopt.sopt_val = val;
sopt.sopt_valsize = valsize;
switch (valseg) {
case UIO_USERSPACE:
sopt.sopt_td = td;
break;
case UIO_SYSSPACE:
sopt.sopt_td = NULL;
break;
default:
panic("kern_setsockopt called with bad valseg");
}
AUDIT_ARG_FD(s);
error = getsock_cap(td->td_proc->p_fd, s,
cap_rights_init(&rights, CAP_SETSOCKOPT), &fp, NULL);
if (error == 0) {
so = fp->f_data;
error = sosetopt(so, &sopt);
fdrop(fp, td);
}
return(error);
}
/* ARGSUSED */
int
sys_getsockopt(td, uap)
struct thread *td;
struct getsockopt_args /* {
int s;
int level;
int name;
void * __restrict val;
socklen_t * __restrict avalsize;
} */ *uap;
{
socklen_t valsize;
int error;
if (uap->val) {
error = copyin(uap->avalsize, &valsize, sizeof (valsize));
if (error != 0)
return (error);
}
error = kern_getsockopt(td, uap->s, uap->level, uap->name,
uap->val, UIO_USERSPACE, &valsize);
if (error == 0)
error = copyout(&valsize, uap->avalsize, sizeof (valsize));
return (error);
}
/*
* Kernel version of getsockopt.
* optval can be a userland or userspace. optlen is always a kernel pointer.
*/
int
kern_getsockopt(td, s, level, name, val, valseg, valsize)
struct thread *td;
int s;
int level;
int name;
void *val;
enum uio_seg valseg;
socklen_t *valsize;
{
struct socket *so;
struct file *fp;
struct sockopt sopt;
cap_rights_t rights;
int error;
if (val == NULL)
*valsize = 0;
if ((int)*valsize < 0)
return (EINVAL);
sopt.sopt_dir = SOPT_GET;
sopt.sopt_level = level;
sopt.sopt_name = name;
sopt.sopt_val = val;
sopt.sopt_valsize = (size_t)*valsize; /* checked non-negative above */
switch (valseg) {
case UIO_USERSPACE:
sopt.sopt_td = td;
break;
case UIO_SYSSPACE:
sopt.sopt_td = NULL;
break;
default:
panic("kern_getsockopt called with bad valseg");
}
AUDIT_ARG_FD(s);
error = getsock_cap(td->td_proc->p_fd, s,
cap_rights_init(&rights, CAP_GETSOCKOPT), &fp, NULL);
if (error == 0) {
so = fp->f_data;
error = sogetopt(so, &sopt);
*valsize = sopt.sopt_valsize;
fdrop(fp, td);
}
return (error);
}
/*
* getsockname1() - Get socket name.
*/
/* ARGSUSED */
static int
getsockname1(td, uap, compat)
struct thread *td;
struct getsockname_args /* {
int fdes;
struct sockaddr * __restrict asa;
socklen_t * __restrict alen;
} */ *uap;
int compat;
{
struct sockaddr *sa;
socklen_t len;
int error;
error = copyin(uap->alen, &len, sizeof(len));
if (error != 0)
return (error);
error = kern_getsockname(td, uap->fdes, &sa, &len);
if (error != 0)
return (error);
if (len != 0) {
#ifdef COMPAT_OLDSOCK
if (compat)
((struct osockaddr *)sa)->sa_family = sa->sa_family;
#endif
error = copyout(sa, uap->asa, (u_int)len);
}
free(sa, M_SONAME);
if (error == 0)
error = copyout(&len, uap->alen, sizeof(len));
return (error);
}
int
kern_getsockname(struct thread *td, int fd, struct sockaddr **sa,
socklen_t *alen)
{
struct socket *so;
struct file *fp;
cap_rights_t rights;
socklen_t len;
int error;
AUDIT_ARG_FD(fd);
error = getsock_cap(td->td_proc->p_fd, fd,
cap_rights_init(&rights, CAP_GETSOCKNAME), &fp, NULL);
if (error != 0)
return (error);
so = fp->f_data;
*sa = NULL;
CURVNET_SET(so->so_vnet);
error = (*so->so_proto->pr_usrreqs->pru_sockaddr)(so, sa);
CURVNET_RESTORE();
if (error != 0)
goto bad;
if (*sa == NULL)
len = 0;
else
len = MIN(*alen, (*sa)->sa_len);
*alen = len;
#ifdef KTRACE
if (KTRPOINT(td, KTR_STRUCT))
ktrsockaddr(*sa);
#endif
bad:
fdrop(fp, td);
if (error != 0 && *sa != NULL) {
free(*sa, M_SONAME);
*sa = NULL;
}
return (error);
}
int
sys_getsockname(td, uap)
struct thread *td;
struct getsockname_args *uap;
{
return (getsockname1(td, uap, 0));
}
#ifdef COMPAT_OLDSOCK
int
ogetsockname(td, uap)
struct thread *td;
struct getsockname_args *uap;
{
return (getsockname1(td, uap, 1));
}
#endif /* COMPAT_OLDSOCK */
/*
* getpeername1() - Get name of peer for connected socket.
*/
/* ARGSUSED */
static int
getpeername1(td, uap, compat)
struct thread *td;
struct getpeername_args /* {
int fdes;
struct sockaddr * __restrict asa;
socklen_t * __restrict alen;
} */ *uap;
int compat;
{
struct sockaddr *sa;
socklen_t len;
int error;
error = copyin(uap->alen, &len, sizeof (len));
if (error != 0)
return (error);
error = kern_getpeername(td, uap->fdes, &sa, &len);
if (error != 0)
return (error);
if (len != 0) {
#ifdef COMPAT_OLDSOCK
if (compat)
((struct osockaddr *)sa)->sa_family = sa->sa_family;
#endif
error = copyout(sa, uap->asa, (u_int)len);
}
free(sa, M_SONAME);
if (error == 0)
error = copyout(&len, uap->alen, sizeof(len));
return (error);
}
int
kern_getpeername(struct thread *td, int fd, struct sockaddr **sa,
socklen_t *alen)
{
struct socket *so;
struct file *fp;
cap_rights_t rights;
socklen_t len;
int error;
AUDIT_ARG_FD(fd);
error = getsock_cap(td->td_proc->p_fd, fd,
cap_rights_init(&rights, CAP_GETPEERNAME), &fp, NULL);
if (error != 0)
return (error);
so = fp->f_data;
if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
error = ENOTCONN;
goto done;
}
*sa = NULL;
CURVNET_SET(so->so_vnet);
error = (*so->so_proto->pr_usrreqs->pru_peeraddr)(so, sa);
CURVNET_RESTORE();
if (error != 0)
goto bad;
if (*sa == NULL)
len = 0;
else
len = MIN(*alen, (*sa)->sa_len);
*alen = len;
#ifdef KTRACE
if (KTRPOINT(td, KTR_STRUCT))
ktrsockaddr(*sa);
#endif
bad:
if (error != 0 && *sa != NULL) {
free(*sa, M_SONAME);
*sa = NULL;
}
done:
fdrop(fp, td);
return (error);
}
int
sys_getpeername(td, uap)
struct thread *td;
struct getpeername_args *uap;
{
return (getpeername1(td, uap, 0));
}
#ifdef COMPAT_OLDSOCK
int
ogetpeername(td, uap)
struct thread *td;
struct ogetpeername_args *uap;
{
/* XXX uap should have type `getpeername_args *' to begin with. */
return (getpeername1(td, (struct getpeername_args *)uap, 1));
}
#endif /* COMPAT_OLDSOCK */
int
sockargs(mp, buf, buflen, type)
struct mbuf **mp;
caddr_t buf;
int buflen, type;
{
struct sockaddr *sa;
struct mbuf *m;
int error;
if (buflen > MLEN) {
#ifdef COMPAT_OLDSOCK
if (type == MT_SONAME && buflen <= 112)
buflen = MLEN; /* unix domain compat. hack */
else
#endif
if (buflen > MCLBYTES)
return (EINVAL);
}
m = m_get2(buflen, M_WAITOK, type, 0);
m->m_len = buflen;
error = copyin(buf, mtod(m, caddr_t), (u_int)buflen);
if (error != 0)
(void) m_free(m);
else {
*mp = m;
if (type == MT_SONAME) {
sa = mtod(m, struct sockaddr *);
#if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN
if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
sa->sa_family = sa->sa_len;
#endif
sa->sa_len = buflen;
}
}
return (error);
}
int
getsockaddr(namp, uaddr, len)
struct sockaddr **namp;
caddr_t uaddr;
size_t len;
{
struct sockaddr *sa;
int error;
if (len > SOCK_MAXADDRLEN)
return (ENAMETOOLONG);
if (len < offsetof(struct sockaddr, sa_data[0]))
return (EINVAL);
sa = malloc(len, M_SONAME, M_WAITOK);
error = copyin(uaddr, sa, len);
if (error != 0) {
free(sa, M_SONAME);
} else {
#if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN
if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
sa->sa_family = sa->sa_len;
#endif
sa->sa_len = len;
*namp = sa;
}
return (error);
}
struct sendfile_sync {
struct mtx mtx;
struct cv cv;
unsigned count;
};
/*
* Detach mapped page and release resources back to the system.
*/
int
sf_buf_mext(struct mbuf *mb, void *addr, void *args)
{
vm_page_t m;
struct sendfile_sync *sfs;
m = sf_buf_page(args);
sf_buf_free(args);
vm_page_lock(m);
vm_page_unwire(m, 0);
/*
* Check for the object going away on us. This can
* happen since we don't hold a reference to it.
* If so, we're responsible for freeing the page.
*/
if (m->wire_count == 0 && m->object == NULL)
vm_page_free(m);
vm_page_unlock(m);
if (addr == NULL)
return (EXT_FREE_OK);
sfs = addr;
mtx_lock(&sfs->mtx);
KASSERT(sfs->count> 0, ("Sendfile sync botchup count == 0"));
if (--sfs->count == 0)
cv_signal(&sfs->cv);
mtx_unlock(&sfs->mtx);
return (EXT_FREE_OK);
}
/*
* sendfile(2)
*
* int sendfile(int fd, int s, off_t offset, size_t nbytes,
* struct sf_hdtr *hdtr, off_t *sbytes, int flags)
*
* Send a file specified by 'fd' and starting at 'offset' to a socket
* specified by 's'. Send only 'nbytes' of the file or until EOF if nbytes ==
* 0. Optionally add a header and/or trailer to the socket output. If
* specified, write the total number of bytes sent into *sbytes.
*/
int
sys_sendfile(struct thread *td, struct sendfile_args *uap)
{
return (do_sendfile(td, uap, 0));
}
static int
do_sendfile(struct thread *td, struct sendfile_args *uap, int compat)
{
struct sf_hdtr hdtr;
struct uio *hdr_uio, *trl_uio;
struct file *fp;
cap_rights_t rights;
int error;
/*
* File offset must be positive. If it goes beyond EOF
* we send only the header/trailer and no payload data.
*/
if (uap->offset < 0)
return (EINVAL);
hdr_uio = trl_uio = NULL;
if (uap->hdtr != NULL) {
error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
if (error != 0)
goto out;
if (hdtr.headers != NULL) {
error = copyinuio(hdtr.headers, hdtr.hdr_cnt, &hdr_uio);
if (error != 0)
goto out;
}
if (hdtr.trailers != NULL) {
error = copyinuio(hdtr.trailers, hdtr.trl_cnt, &trl_uio);
if (error != 0)
goto out;
}
}
AUDIT_ARG_FD(uap->fd);
/*
* sendfile(2) can start at any offset within a file so we require
* CAP_READ+CAP_SEEK = CAP_PREAD.
*/
if ((error = fget_read(td, uap->fd,
cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) {
goto out;
}
error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, uap->offset,
uap->nbytes, uap->sbytes, uap->flags, compat ? SFK_COMPAT : 0, td);
fdrop(fp, td);
out:
free(hdr_uio, M_IOV);
free(trl_uio, M_IOV);
return (error);
}
#ifdef COMPAT_FREEBSD4
int
freebsd4_sendfile(struct thread *td, struct freebsd4_sendfile_args *uap)
{
struct sendfile_args args;
args.fd = uap->fd;
args.s = uap->s;
args.offset = uap->offset;
args.nbytes = uap->nbytes;
args.hdtr = uap->hdtr;
args.sbytes = uap->sbytes;
args.flags = uap->flags;
return (do_sendfile(td, &args, 1));
}
#endif /* COMPAT_FREEBSD4 */
static int
sendfile_readpage(vm_object_t obj, struct vnode *vp, int nd,
off_t off, int xfsize, int bsize, struct thread *td, vm_page_t *res)
{
vm_page_t m;
vm_pindex_t pindex;
ssize_t resid;
int error, readahead, rv;
pindex = OFF_TO_IDX(off);
VM_OBJECT_WLOCK(obj);
m = vm_page_grab(obj, pindex, (vp != NULL ? VM_ALLOC_NOBUSY |
VM_ALLOC_IGN_SBUSY : 0) | VM_ALLOC_WIRED | VM_ALLOC_NORMAL);
/*
* Check if page is valid for what we need, otherwise initiate I/O.
*
* The non-zero nd argument prevents disk I/O, instead we
* return the caller what he specified in nd. In particular,
* if we already turned some pages into mbufs, nd == EAGAIN
* and the main function send them the pages before we come
* here again and block.
*/
if (m->valid != 0 && vm_page_is_valid(m, off & PAGE_MASK, xfsize)) {
if (vp == NULL)
vm_page_xunbusy(m);
VM_OBJECT_WUNLOCK(obj);
*res = m;
return (0);
} else if (nd != 0) {
if (vp == NULL)
vm_page_xunbusy(m);
error = nd;
goto free_page;
}
/*
* Get the page from backing store.
*/
error = 0;
if (vp != NULL) {
VM_OBJECT_WUNLOCK(obj);
readahead = sfreadahead * MAXBSIZE;
/*
* Use vn_rdwr() instead of the pager interface for
* the vnode, to allow the read-ahead.
*
* XXXMAC: Because we don't have fp->f_cred here, we
* pass in NOCRED. This is probably wrong, but is
* consistent with our original implementation.
*/
error = vn_rdwr(UIO_READ, vp, NULL, readahead, trunc_page(off),
UIO_NOCOPY, IO_NODELOCKED | IO_VMIO | ((readahead /
bsize) << IO_SEQSHIFT), td->td_ucred, NOCRED, &resid, td);
SFSTAT_INC(sf_iocnt);
VM_OBJECT_WLOCK(obj);
} else {
if (vm_pager_has_page(obj, pindex, NULL, NULL)) {
rv = vm_pager_get_pages(obj, &m, 1, 0);
SFSTAT_INC(sf_iocnt);
m = vm_page_lookup(obj, pindex);
if (m == NULL)
error = EIO;
else if (rv != VM_PAGER_OK) {
vm_page_lock(m);
vm_page_free(m);
vm_page_unlock(m);
m = NULL;
error = EIO;
}
} else {
pmap_zero_page(m);
m->valid = VM_PAGE_BITS_ALL;
m->dirty = 0;
}
if (m != NULL)
vm_page_xunbusy(m);
}
if (error == 0) {
*res = m;
} else if (m != NULL) {
free_page:
vm_page_lock(m);
vm_page_unwire(m, 0);
/*
* See if anyone else might know about this page. If
* not and it is not valid, then free it.
*/
if (m->wire_count == 0 && m->valid == 0 && !vm_page_busied(m))
vm_page_free(m);
vm_page_unlock(m);
}
KASSERT(error != 0 || (m->wire_count > 0 &&
vm_page_is_valid(m, off & PAGE_MASK, xfsize)),
("wrong page state m %p", m));
VM_OBJECT_WUNLOCK(obj);
return (error);
}
static int
sendfile_getobj(struct thread *td, struct file *fp, vm_object_t *obj_res,
struct vnode **vp_res, struct shmfd **shmfd_res, off_t *obj_size,
int *bsize)
{
struct vattr va;
vm_object_t obj;
struct vnode *vp;
struct shmfd *shmfd;
int error;
vp = *vp_res = NULL;
obj = NULL;
shmfd = *shmfd_res = NULL;
*bsize = 0;
/*
* The file descriptor must be a regular file and have a
* backing VM object.
*/
if (fp->f_type == DTYPE_VNODE) {
vp = fp->f_vnode;
vn_lock(vp, LK_SHARED | LK_RETRY);
if (vp->v_type != VREG) {
error = EINVAL;
goto out;
}
*bsize = vp->v_mount->mnt_stat.f_iosize;
error = VOP_GETATTR(vp, &va, td->td_ucred);
if (error != 0)
goto out;
*obj_size = va.va_size;
obj = vp->v_object;
if (obj == NULL) {
error = EINVAL;
goto out;
}
} else if (fp->f_type == DTYPE_SHM) {
shmfd = fp->f_data;
obj = shmfd->shm_object;
*obj_size = shmfd->shm_size;
} else {
error = EINVAL;
goto out;
}
VM_OBJECT_WLOCK(obj);
if ((obj->flags & OBJ_DEAD) != 0) {
VM_OBJECT_WUNLOCK(obj);
error = EBADF;
goto out;
}
/*
* Temporarily increase the backing VM object's reference
* count so that a forced reclamation of its vnode does not
* immediately destroy it.
*/
vm_object_reference_locked(obj);
VM_OBJECT_WUNLOCK(obj);
*obj_res = obj;
*vp_res = vp;
*shmfd_res = shmfd;
out:
if (vp != NULL)
VOP_UNLOCK(vp, 0);
return (error);
}
static int
kern_sendfile_getsock(struct thread *td, int s, struct file **sock_fp,
struct socket **so)
{
cap_rights_t rights;
int error;
*sock_fp = NULL;
*so = NULL;
/*
* The socket must be a stream socket and connected.
*/
error = getsock_cap(td->td_proc->p_fd, s, cap_rights_init(&rights,
CAP_SEND), sock_fp, NULL);
if (error != 0)
return (error);
*so = (*sock_fp)->f_data;
if ((*so)->so_type != SOCK_STREAM)
return (EINVAL);
if (((*so)->so_state & SS_ISCONNECTED) == 0)
return (ENOTCONN);
return (0);
}
int
vn_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
int kflags, struct thread *td)
{
struct file *sock_fp;
struct vnode *vp;
struct vm_object *obj;
struct socket *so;
struct mbuf *m;
struct sf_buf *sf;
struct vm_page *pg;
struct shmfd *shmfd;
struct sendfile_sync *sfs;
struct vattr va;
off_t off, xfsize, fsbytes, sbytes, rem, obj_size;
int error, bsize, nd, hdrlen, mnw;
bool inflight_called;
pg = NULL;
obj = NULL;
so = NULL;
m = NULL;
sfs = NULL;
fsbytes = sbytes = 0;
hdrlen = mnw = 0;
rem = nbytes;
obj_size = 0;
inflight_called = false;
error = sendfile_getobj(td, fp, &obj, &vp, &shmfd, &obj_size, &bsize);
if (error != 0)
return (error);
if (rem == 0)
rem = obj_size;
error = kern_sendfile_getsock(td, sockfd, &sock_fp, &so);
if (error != 0)
goto out;
/*
* Do not wait on memory allocations but return ENOMEM for
* caller to retry later.
* XXX: Experimental.
*/
if (flags & SF_MNOWAIT)
mnw = 1;
if (flags & SF_SYNC) {
sfs = malloc(sizeof *sfs, M_TEMP, M_WAITOK | M_ZERO);
mtx_init(&sfs->mtx, "sendfile", NULL, MTX_DEF);
cv_init(&sfs->cv, "sendfile");
}
#ifdef MAC
error = mac_socket_check_send(td->td_ucred, so);
if (error != 0)
goto out;
#endif
/* If headers are specified copy them into mbufs. */
if (hdr_uio != NULL) {
hdr_uio->uio_td = td;
hdr_uio->uio_rw = UIO_WRITE;
if (hdr_uio->uio_resid > 0) {
/*
* In FBSD < 5.0 the nbytes to send also included
* the header. If compat is specified subtract the
* header size from nbytes.
*/
if (kflags & SFK_COMPAT) {
if (nbytes > hdr_uio->uio_resid)
nbytes -= hdr_uio->uio_resid;
else
nbytes = 0;
}
m = m_uiotombuf(hdr_uio, (mnw ? M_NOWAIT : M_WAITOK),
0, 0, 0);
if (m == NULL) {
error = mnw ? EAGAIN : ENOBUFS;
goto out;
}
hdrlen = m_length(m, NULL);
}
}
/*
* Protect against multiple writers to the socket.
*
* XXXRW: Historically this has assumed non-interruptibility, so now
* we implement that, but possibly shouldn't.
*/
(void)sblock(&so->so_snd, SBL_WAIT | SBL_NOINTR);
/*
* Loop through the pages of the file, starting with the requested
* offset. Get a file page (do I/O if necessary), map the file page
* into an sf_buf, attach an mbuf header to the sf_buf, and queue
* it on the socket.
* This is done in two loops. The inner loop turns as many pages
* as it can, up to available socket buffer space, without blocking
* into mbufs to have it bulk delivered into the socket send buffer.
* The outer loop checks the state and available space of the socket
* and takes care of the overall progress.
*/
for (off = offset; ; ) {
struct mbuf *mtail;
int loopbytes;
int space;
int done;
if ((nbytes != 0 && nbytes == fsbytes) ||
(nbytes == 0 && obj_size == fsbytes))
break;
mtail = NULL;
loopbytes = 0;
space = 0;
done = 0;
/*
* Check the socket state for ongoing connection,
* no errors and space in socket buffer.
* If space is low allow for the remainder of the
* file to be processed if it fits the socket buffer.
* Otherwise block in waiting for sufficient space
* to proceed, or if the socket is nonblocking, return
* to userland with EAGAIN while reporting how far
* we've come.
* We wait until the socket buffer has significant free
* space to do bulk sends. This makes good use of file
* system read ahead and allows packet segmentation
* offloading hardware to take over lots of work. If
* we were not careful here we would send off only one
* sfbuf at a time.
*/
SOCKBUF_LOCK(&so->so_snd);
if (so->so_snd.sb_lowat < so->so_snd.sb_hiwat / 2)
so->so_snd.sb_lowat = so->so_snd.sb_hiwat / 2;
retry_space:
if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
error = EPIPE;
SOCKBUF_UNLOCK(&so->so_snd);
goto done;
} else if (so->so_error) {
error = so->so_error;
so->so_error = 0;
SOCKBUF_UNLOCK(&so->so_snd);
goto done;
}
space = sbspace(&so->so_snd);
if (space < rem &&
(space <= 0 ||
space < so->so_snd.sb_lowat)) {
if (so->so_state & SS_NBIO) {
SOCKBUF_UNLOCK(&so->so_snd);
error = EAGAIN;
goto done;
}
/*
* sbwait drops the lock while sleeping.
* When we loop back to retry_space the
* state may have changed and we retest
* for it.
*/
error = sbwait(&so->so_snd);
/*
* An error from sbwait usually indicates that we've
* been interrupted by a signal. If we've sent anything
* then return bytes sent, otherwise return the error.
*/
if (error != 0) {
SOCKBUF_UNLOCK(&so->so_snd);
goto done;
}
goto retry_space;
}
SOCKBUF_UNLOCK(&so->so_snd);
/*
* Reduce space in the socket buffer by the size of
* the header mbuf chain.
* hdrlen is set to 0 after the first loop.
*/
space -= hdrlen;
if (vp != NULL) {
error = vn_lock(vp, LK_SHARED);
if (error != 0)
goto done;
error = VOP_GETATTR(vp, &va, td->td_ucred);
if (error != 0 || off >= va.va_size) {
VOP_UNLOCK(vp, 0);
goto done;
}
obj_size = va.va_size;
}
/*
* Loop and construct maximum sized mbuf chain to be bulk
* dumped into socket buffer.
*/
while (space > loopbytes) {
vm_offset_t pgoff;
struct mbuf *m0;
/*
* Calculate the amount to transfer.
* Not to exceed a page, the EOF,
* or the passed in nbytes.
*/
pgoff = (vm_offset_t)(off & PAGE_MASK);
rem = obj_size - offset;
if (nbytes != 0)
rem = omin(rem, nbytes);
rem -= fsbytes + loopbytes;
xfsize = omin(PAGE_SIZE - pgoff, rem);
xfsize = omin(space - loopbytes, xfsize);
if (xfsize <= 0) {
done = 1; /* all data sent */
break;
}
/*
* Attempt to look up the page. Allocate
* if not found or wait and loop if busy.
*/
if (m != NULL)
nd = EAGAIN; /* send what we already got */
else if ((flags & SF_NODISKIO) != 0)
nd = EBUSY;
else
nd = 0;
error = sendfile_readpage(obj, vp, nd, off,
xfsize, bsize, td, &pg);
if (error != 0) {
if (error == EAGAIN)
error = 0; /* not a real error */
break;
}
/*
* Get a sendfile buf. When allocating the
* first buffer for mbuf chain, we usually
* wait as long as necessary, but this wait
* can be interrupted. For consequent
* buffers, do not sleep, since several
* threads might exhaust the buffers and then
* deadlock.
*/
sf = sf_buf_alloc(pg, (mnw || m != NULL) ? SFB_NOWAIT :
SFB_CATCH);
if (sf == NULL) {
SFSTAT_INC(sf_allocfail);
vm_page_lock(pg);
vm_page_unwire(pg, 0);
KASSERT(pg->object != NULL,
("%s: object disappeared", __func__));
vm_page_unlock(pg);
if (m == NULL)
error = (mnw ? EAGAIN : EINTR);
break;
}
/*
* Get an mbuf and set it up as having
* external storage.
*/
m0 = m_get((mnw ? M_NOWAIT : M_WAITOK), MT_DATA);
if (m0 == NULL) {
error = (mnw ? EAGAIN : ENOBUFS);
(void)sf_buf_mext(NULL, NULL, sf);
break;
}
if (m_extadd(m0, (caddr_t )sf_buf_kva(sf), PAGE_SIZE,
sf_buf_mext, sfs, sf, M_RDONLY, EXT_SFBUF,
(mnw ? M_NOWAIT : M_WAITOK)) != 0) {
error = (mnw ? EAGAIN : ENOBUFS);
(void)sf_buf_mext(NULL, NULL, sf);
m_freem(m0);
break;
}
m0->m_data = (char *)sf_buf_kva(sf) + pgoff;
m0->m_len = xfsize;
/* Append to mbuf chain. */
if (mtail != NULL)
mtail->m_next = m0;
else if (m != NULL)
m_last(m)->m_next = m0;
else
m = m0;
mtail = m0;
/* Keep track of bits processed. */
loopbytes += xfsize;
off += xfsize;
if (sfs != NULL) {
mtx_lock(&sfs->mtx);
sfs->count++;
mtx_unlock(&sfs->mtx);
}
}
if (vp != NULL)
VOP_UNLOCK(vp, 0);
/* Add the buffer chain to the socket buffer. */
if (m != NULL) {
int mlen, err;
mlen = m_length(m, NULL);
SOCKBUF_LOCK(&so->so_snd);
if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
error = EPIPE;
SOCKBUF_UNLOCK(&so->so_snd);
goto done;
}
SOCKBUF_UNLOCK(&so->so_snd);
CURVNET_SET(so->so_vnet);
/* Avoid error aliasing. */
err = (*so->so_proto->pr_usrreqs->pru_send)
(so, 0, m, NULL, NULL, td);
CURVNET_RESTORE();
if (err == 0) {
/*
* We need two counters to get the
* file offset and nbytes to send
* right:
* - sbytes contains the total amount
* of bytes sent, including headers.
* - fsbytes contains the total amount
* of bytes sent from the file.
*/
sbytes += mlen;
fsbytes += mlen;
if (hdrlen) {
fsbytes -= hdrlen;
hdrlen = 0;
}
} else if (error == 0)
error = err;
m = NULL; /* pru_send always consumes */
}
/* Quit outer loop on error or when we're done. */
if (done)
break;
if (error != 0)
goto done;
}
/*
* Send trailers. Wimp out and use writev(2).
*/
if (trl_uio != NULL) {
sbunlock(&so->so_snd);
error = kern_writev(td, sockfd, trl_uio);
if (error == 0)
sbytes += td->td_retval[0];
goto out;
}
done:
sbunlock(&so->so_snd);
out:
/*
* If there was no error we have to clear td->td_retval[0]
* because it may have been set by writev.
*/
if (error == 0) {
td->td_retval[0] = 0;
}
if (sent != NULL) {
copyout(&sbytes, sent, sizeof(off_t));
}
if (obj != NULL)
vm_object_deallocate(obj);
if (so)
fdrop(sock_fp, td);
if (m)
m_freem(m);
if (sfs != NULL) {
mtx_lock(&sfs->mtx);
if (sfs->count != 0)
cv_wait(&sfs->cv, &sfs->mtx);
KASSERT(sfs->count == 0, ("sendfile sync still busy"));
cv_destroy(&sfs->cv);
mtx_destroy(&sfs->mtx);
free(sfs, M_TEMP);
}
if (error == ERESTART)
error = EINTR;
return (error);
}
/*
* SCTP syscalls.
* Functionality only compiled in if SCTP is defined in the kernel Makefile,
* otherwise all return EOPNOTSUPP.
* XXX: We should make this loadable one day.
*/
int
sys_sctp_peeloff(td, uap)
struct thread *td;
struct sctp_peeloff_args /* {
int sd;
caddr_t name;
} */ *uap;
{
#if (defined(INET) || defined(INET6)) && defined(SCTP)
struct file *nfp = NULL;
struct socket *head, *so;
cap_rights_t rights;
u_int fflag;
int error, fd;
AUDIT_ARG_FD(uap->sd);
error = fgetsock(td, uap->sd, cap_rights_init(&rights, CAP_PEELOFF),
&head, &fflag);
if (error != 0)
goto done2;
if (head->so_proto->pr_protocol != IPPROTO_SCTP) {
error = EOPNOTSUPP;
goto done;
}
error = sctp_can_peel_off(head, (sctp_assoc_t)uap->name);
if (error != 0)
goto done;
/*
* At this point we know we do have a assoc to pull
* we proceed to get the fd setup. This may block
* but that is ok.
*/
error = falloc(td, &nfp, &fd, 0);
if (error != 0)
goto done;
td->td_retval[0] = fd;
CURVNET_SET(head->so_vnet);
so = sonewconn(head, SS_ISCONNECTED);
if (so == NULL) {
error = ENOMEM;
goto noconnection;
}
/*
* Before changing the flags on the socket, we have to bump the
* reference count. Otherwise, if the protocol calls sofree(),
* the socket will be released due to a zero refcount.
*/
SOCK_LOCK(so);
soref(so); /* file descriptor reference */
SOCK_UNLOCK(so);
ACCEPT_LOCK();
TAILQ_REMOVE(&head->so_comp, so, so_list);
head->so_qlen--;
so->so_state |= (head->so_state & SS_NBIO);
so->so_state &= ~SS_NOFDREF;
so->so_qstate &= ~SQ_COMP;
so->so_head = NULL;
ACCEPT_UNLOCK();
finit(nfp, fflag, DTYPE_SOCKET, so, &socketops);
error = sctp_do_peeloff(head, so, (sctp_assoc_t)uap->name);
if (error != 0)
goto noconnection;
if (head->so_sigio != NULL)
fsetown(fgetown(&head->so_sigio), &so->so_sigio);
noconnection:
/*
* close the new descriptor, assuming someone hasn't ripped it
* out from under us.
*/
if (error != 0)
fdclose(td->td_proc->p_fd, nfp, fd, td);
/*
* Release explicitly held references before returning.
*/
CURVNET_RESTORE();
done:
if (nfp != NULL)
fdrop(nfp, td);
fputsock(head);
done2:
return (error);
#else /* SCTP */
return (EOPNOTSUPP);
#endif /* SCTP */
}
int
sys_sctp_generic_sendmsg (td, uap)
struct thread *td;
struct sctp_generic_sendmsg_args /* {
int sd,
caddr_t msg,
int mlen,
caddr_t to,
__socklen_t tolen,
struct sctp_sndrcvinfo *sinfo,
int flags
} */ *uap;
{
#if (defined(INET) || defined(INET6)) && defined(SCTP)
struct sctp_sndrcvinfo sinfo, *u_sinfo = NULL;
struct socket *so;
struct file *fp = NULL;
struct sockaddr *to = NULL;
#ifdef KTRACE
struct uio *ktruio = NULL;
#endif
struct uio auio;
struct iovec iov[1];
cap_rights_t rights;
int error = 0, len;
if (uap->sinfo != NULL) {
error = copyin(uap->sinfo, &sinfo, sizeof (sinfo));
if (error != 0)
return (error);
u_sinfo = &sinfo;
}
cap_rights_init(&rights, CAP_SEND);
if (uap->tolen != 0) {
error = getsockaddr(&to, uap->to, uap->tolen);
if (error != 0) {
to = NULL;
goto sctp_bad2;
}
cap_rights_set(&rights, CAP_CONNECT);
}
AUDIT_ARG_FD(uap->sd);
error = getsock_cap(td->td_proc->p_fd, uap->sd, &rights, &fp, NULL);
if (error != 0)
goto sctp_bad;
#ifdef KTRACE
if (to && (KTRPOINT(td, KTR_STRUCT)))
ktrsockaddr(to);
#endif
iov[0].iov_base = uap->msg;
iov[0].iov_len = uap->mlen;
so = (struct socket *)fp->f_data;
if (so->so_proto->pr_protocol != IPPROTO_SCTP) {
error = EOPNOTSUPP;
goto sctp_bad;
}
#ifdef MAC
error = mac_socket_check_send(td->td_ucred, so);
if (error != 0)
goto sctp_bad;
#endif /* MAC */
auio.uio_iov = iov;
auio.uio_iovcnt = 1;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_WRITE;
auio.uio_td = td;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
len = auio.uio_resid = uap->mlen;
CURVNET_SET(so->so_vnet);
error = sctp_lower_sosend(so, to, &auio, (struct mbuf *)NULL,
(struct mbuf *)NULL, uap->flags, u_sinfo, td);
CURVNET_RESTORE();
if (error != 0) {
if (auio.uio_resid != len && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK))
error = 0;
/* Generation of SIGPIPE can be controlled per socket. */
if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) &&
!(uap->flags & MSG_NOSIGNAL)) {
PROC_LOCK(td->td_proc);
tdsignal(td, SIGPIPE);
PROC_UNLOCK(td->td_proc);
}
}
if (error == 0)
td->td_retval[0] = len - auio.uio_resid;
#ifdef KTRACE
if (ktruio != NULL) {
ktruio->uio_resid = td->td_retval[0];
ktrgenio(uap->sd, UIO_WRITE, ktruio, error);
}
#endif /* KTRACE */
sctp_bad:
if (fp != NULL)
fdrop(fp, td);
sctp_bad2:
free(to, M_SONAME);
return (error);
#else /* SCTP */
return (EOPNOTSUPP);
#endif /* SCTP */
}
int
sys_sctp_generic_sendmsg_iov(td, uap)
struct thread *td;
struct sctp_generic_sendmsg_iov_args /* {
int sd,
struct iovec *iov,
int iovlen,
caddr_t to,
__socklen_t tolen,
struct sctp_sndrcvinfo *sinfo,
int flags
} */ *uap;
{
#if (defined(INET) || defined(INET6)) && defined(SCTP)
struct sctp_sndrcvinfo sinfo, *u_sinfo = NULL;
struct socket *so;
struct file *fp = NULL;
struct sockaddr *to = NULL;
#ifdef KTRACE
struct uio *ktruio = NULL;
#endif
struct uio auio;
struct iovec *iov, *tiov;
cap_rights_t rights;
ssize_t len;
int error, i;
if (uap->sinfo != NULL) {
error = copyin(uap->sinfo, &sinfo, sizeof (sinfo));
if (error != 0)
return (error);
u_sinfo = &sinfo;
}
cap_rights_init(&rights, CAP_SEND);
if (uap->tolen != 0) {
error = getsockaddr(&to, uap->to, uap->tolen);
if (error != 0) {
to = NULL;
goto sctp_bad2;
}
cap_rights_set(&rights, CAP_CONNECT);
}
AUDIT_ARG_FD(uap->sd);
error = getsock_cap(td->td_proc->p_fd, uap->sd, &rights, &fp, NULL);
if (error != 0)
goto sctp_bad1;
#ifdef COMPAT_FREEBSD32
if (SV_CURPROC_FLAG(SV_ILP32))
error = freebsd32_copyiniov((struct iovec32 *)uap->iov,
uap->iovlen, &iov, EMSGSIZE);
else
#endif
error = copyiniov(uap->iov, uap->iovlen, &iov, EMSGSIZE);
if (error != 0)
goto sctp_bad1;
#ifdef KTRACE
if (to && (KTRPOINT(td, KTR_STRUCT)))
ktrsockaddr(to);
#endif
so = (struct socket *)fp->f_data;
if (so->so_proto->pr_protocol != IPPROTO_SCTP) {
error = EOPNOTSUPP;
goto sctp_bad;
}
#ifdef MAC
error = mac_socket_check_send(td->td_ucred, so);
if (error != 0)
goto sctp_bad;
#endif /* MAC */
auio.uio_iov = iov;
auio.uio_iovcnt = uap->iovlen;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_WRITE;
auio.uio_td = td;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
tiov = iov;
for (i = 0; i <uap->iovlen; i++, tiov++) {
if ((auio.uio_resid += tiov->iov_len) < 0) {
error = EINVAL;
goto sctp_bad;
}
}
len = auio.uio_resid;
CURVNET_SET(so->so_vnet);
error = sctp_lower_sosend(so, to, &auio,
(struct mbuf *)NULL, (struct mbuf *)NULL,
uap->flags, u_sinfo, td);
CURVNET_RESTORE();
if (error != 0) {
if (auio.uio_resid != len && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK))
error = 0;
/* Generation of SIGPIPE can be controlled per socket */
if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) &&
!(uap->flags & MSG_NOSIGNAL)) {
PROC_LOCK(td->td_proc);
tdsignal(td, SIGPIPE);
PROC_UNLOCK(td->td_proc);
}
}
if (error == 0)
td->td_retval[0] = len - auio.uio_resid;
#ifdef KTRACE
if (ktruio != NULL) {
ktruio->uio_resid = td->td_retval[0];
ktrgenio(uap->sd, UIO_WRITE, ktruio, error);
}
#endif /* KTRACE */
sctp_bad:
free(iov, M_IOV);
sctp_bad1:
if (fp != NULL)
fdrop(fp, td);
sctp_bad2:
free(to, M_SONAME);
return (error);
#else /* SCTP */
return (EOPNOTSUPP);
#endif /* SCTP */
}
int
sys_sctp_generic_recvmsg(td, uap)
struct thread *td;
struct sctp_generic_recvmsg_args /* {
int sd,
struct iovec *iov,
int iovlen,
struct sockaddr *from,
__socklen_t *fromlenaddr,
struct sctp_sndrcvinfo *sinfo,
int *msg_flags
} */ *uap;
{
#if (defined(INET) || defined(INET6)) && defined(SCTP)
uint8_t sockbufstore[256];
struct uio auio;
struct iovec *iov, *tiov;
struct sctp_sndrcvinfo sinfo;
struct socket *so;
struct file *fp = NULL;
struct sockaddr *fromsa;
cap_rights_t rights;
#ifdef KTRACE
struct uio *ktruio = NULL;
#endif
ssize_t len;
int error, fromlen, i, msg_flags;
AUDIT_ARG_FD(uap->sd);
error = getsock_cap(td->td_proc->p_fd, uap->sd,
cap_rights_init(&rights, CAP_RECV), &fp, NULL);
if (error != 0)
return (error);
#ifdef COMPAT_FREEBSD32
if (SV_CURPROC_FLAG(SV_ILP32))
error = freebsd32_copyiniov((struct iovec32 *)uap->iov,
uap->iovlen, &iov, EMSGSIZE);
else
#endif
error = copyiniov(uap->iov, uap->iovlen, &iov, EMSGSIZE);
if (error != 0)
goto out1;
so = fp->f_data;
if (so->so_proto->pr_protocol != IPPROTO_SCTP) {
error = EOPNOTSUPP;
goto out;
}
#ifdef MAC
error = mac_socket_check_receive(td->td_ucred, so);
if (error != 0)
goto out;
#endif /* MAC */
if (uap->fromlenaddr != NULL) {
error = copyin(uap->fromlenaddr, &fromlen, sizeof (fromlen));
if (error != 0)
goto out;
} else {
fromlen = 0;
}
if (uap->msg_flags) {
error = copyin(uap->msg_flags, &msg_flags, sizeof (int));
if (error != 0)
goto out;
} else {
msg_flags = 0;
}
auio.uio_iov = iov;
auio.uio_iovcnt = uap->iovlen;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_READ;
auio.uio_td = td;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
tiov = iov;
for (i = 0; i <uap->iovlen; i++, tiov++) {
if ((auio.uio_resid += tiov->iov_len) < 0) {
error = EINVAL;
goto out;
}
}
len = auio.uio_resid;
fromsa = (struct sockaddr *)sockbufstore;
#ifdef KTRACE
if (KTRPOINT(td, KTR_GENIO))
ktruio = cloneuio(&auio);
#endif /* KTRACE */
memset(&sinfo, 0, sizeof(struct sctp_sndrcvinfo));
CURVNET_SET(so->so_vnet);
error = sctp_sorecvmsg(so, &auio, (struct mbuf **)NULL,
fromsa, fromlen, &msg_flags,
(struct sctp_sndrcvinfo *)&sinfo, 1);
CURVNET_RESTORE();
if (error != 0) {
if (auio.uio_resid != len && (error == ERESTART ||
error == EINTR || error == EWOULDBLOCK))
error = 0;
} else {
if (uap->sinfo)
error = copyout(&sinfo, uap->sinfo, sizeof (sinfo));
}
#ifdef KTRACE
if (ktruio != NULL) {
ktruio->uio_resid = len - auio.uio_resid;
ktrgenio(uap->sd, UIO_READ, ktruio, error);
}
#endif /* KTRACE */
if (error != 0)
goto out;
td->td_retval[0] = len - auio.uio_resid;
if (fromlen && uap->from) {
len = fromlen;
if (len <= 0 || fromsa == 0)
len = 0;
else {
len = MIN(len, fromsa->sa_len);
error = copyout(fromsa, uap->from, (size_t)len);
if (error != 0)
goto out;
}
error = copyout(&len, uap->fromlenaddr, sizeof (socklen_t));
if (error != 0)
goto out;
}
#ifdef KTRACE
if (KTRPOINT(td, KTR_STRUCT))
ktrsockaddr(fromsa);
#endif
if (uap->msg_flags) {
error = copyout(&msg_flags, uap->msg_flags, sizeof (int));
if (error != 0)
goto out;
}
out:
free(iov, M_IOV);
out1:
if (fp != NULL)
fdrop(fp, td);
return (error);
#else /* SCTP */
return (EOPNOTSUPP);
#endif /* SCTP */
}