freebsd-nq/sys/amd64/include/pmap.h
Mark Johnston 6e6d41f20d Introduce pmap_change_prot() for amd64.
This updates the protection attributes of subranges of the kernel map.
Unlike pmap_protect(), which is typically used for user mappings,
pmap_change_prot() does not perform lazy upgrades of protections.
pmap_change_prot() also updates the aliasing range of the direct map.

Reviewed by:	kib
MFC after:	1 month
Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D21758
2019-10-16 22:12:34 +00:00

506 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2003 Peter Wemm.
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Derived from hp300 version by Mike Hibler, this version by William
* Jolitz uses a recursive map [a pde points to the page directory] to
* map the page tables using the pagetables themselves. This is done to
* reduce the impact on kernel virtual memory for lots of sparse address
* space, and to reduce the cost of memory to each process.
*
* from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
* from: @(#)pmap.h 7.4 (Berkeley) 5/12/91
* $FreeBSD$
*/
#ifndef _MACHINE_PMAP_H_
#define _MACHINE_PMAP_H_
/*
* Page-directory and page-table entries follow this format, with a few
* of the fields not present here and there, depending on a lot of things.
*/
/* ---- Intel Nomenclature ---- */
#define X86_PG_V 0x001 /* P Valid */
#define X86_PG_RW 0x002 /* R/W Read/Write */
#define X86_PG_U 0x004 /* U/S User/Supervisor */
#define X86_PG_NC_PWT 0x008 /* PWT Write through */
#define X86_PG_NC_PCD 0x010 /* PCD Cache disable */
#define X86_PG_A 0x020 /* A Accessed */
#define X86_PG_M 0x040 /* D Dirty */
#define X86_PG_PS 0x080 /* PS Page size (0=4k,1=2M) */
#define X86_PG_PTE_PAT 0x080 /* PAT PAT index */
#define X86_PG_G 0x100 /* G Global */
#define X86_PG_AVAIL1 0x200 /* / Available for system */
#define X86_PG_AVAIL2 0x400 /* < programmers use */
#define X86_PG_AVAIL3 0x800 /* \ */
#define X86_PG_PDE_PAT 0x1000 /* PAT PAT index */
#define X86_PG_PKU(idx) ((pt_entry_t)idx << 59)
#define X86_PG_NX (1ul<<63) /* No-execute */
#define X86_PG_AVAIL(x) (1ul << (x))
/* Page level cache control fields used to determine the PAT type */
#define X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
#define X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
/* Protection keys indexes */
#define PMAP_MAX_PKRU_IDX 0xf
#define X86_PG_PKU_MASK X86_PG_PKU(PMAP_MAX_PKRU_IDX)
/*
* Intel extended page table (EPT) bit definitions.
*/
#define EPT_PG_READ 0x001 /* R Read */
#define EPT_PG_WRITE 0x002 /* W Write */
#define EPT_PG_EXECUTE 0x004 /* X Execute */
#define EPT_PG_IGNORE_PAT 0x040 /* IPAT Ignore PAT */
#define EPT_PG_PS 0x080 /* PS Page size */
#define EPT_PG_A 0x100 /* A Accessed */
#define EPT_PG_M 0x200 /* D Dirty */
#define EPT_PG_MEMORY_TYPE(x) ((x) << 3) /* MT Memory Type */
/*
* Define the PG_xx macros in terms of the bits on x86 PTEs.
*/
#define PG_V X86_PG_V
#define PG_RW X86_PG_RW
#define PG_U X86_PG_U
#define PG_NC_PWT X86_PG_NC_PWT
#define PG_NC_PCD X86_PG_NC_PCD
#define PG_A X86_PG_A
#define PG_M X86_PG_M
#define PG_PS X86_PG_PS
#define PG_PTE_PAT X86_PG_PTE_PAT
#define PG_G X86_PG_G
#define PG_AVAIL1 X86_PG_AVAIL1
#define PG_AVAIL2 X86_PG_AVAIL2
#define PG_AVAIL3 X86_PG_AVAIL3
#define PG_PDE_PAT X86_PG_PDE_PAT
#define PG_NX X86_PG_NX
#define PG_PDE_CACHE X86_PG_PDE_CACHE
#define PG_PTE_CACHE X86_PG_PTE_CACHE
/* Our various interpretations of the above */
#define PG_W X86_PG_AVAIL3 /* "Wired" pseudoflag */
#define PG_MANAGED X86_PG_AVAIL2
#define EPT_PG_EMUL_V X86_PG_AVAIL(52)
#define EPT_PG_EMUL_RW X86_PG_AVAIL(53)
#define PG_PROMOTED X86_PG_AVAIL(54) /* PDE only */
#define PG_FRAME (0x000ffffffffff000ul)
#define PG_PS_FRAME (0x000fffffffe00000ul)
#define PG_PS_PDP_FRAME (0x000fffffc0000000ul)
/*
* Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
* (PTE) page mappings have identical settings for the following fields:
*/
#define PG_PTE_PROMOTE (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
PG_M | PG_A | PG_U | PG_RW | PG_V | PG_PKU_MASK)
/*
* Page Protection Exception bits
*/
#define PGEX_P 0x01 /* Protection violation vs. not present */
#define PGEX_W 0x02 /* during a Write cycle */
#define PGEX_U 0x04 /* access from User mode (UPL) */
#define PGEX_RSV 0x08 /* reserved PTE field is non-zero */
#define PGEX_I 0x10 /* during an instruction fetch */
#define PGEX_PK 0x20 /* protection key violation */
#define PGEX_SGX 0x8000 /* SGX-related */
/*
* undef the PG_xx macros that define bits in the regular x86 PTEs that
* have a different position in nested PTEs. This is done when compiling
* code that needs to be aware of the differences between regular x86 and
* nested PTEs.
*
* The appropriate bitmask will be calculated at runtime based on the pmap
* type.
*/
#ifdef AMD64_NPT_AWARE
#undef PG_AVAIL1 /* X86_PG_AVAIL1 aliases with EPT_PG_M */
#undef PG_G
#undef PG_A
#undef PG_M
#undef PG_PDE_PAT
#undef PG_PDE_CACHE
#undef PG_PTE_PAT
#undef PG_PTE_CACHE
#undef PG_RW
#undef PG_V
#endif
/*
* Pte related macros. This is complicated by having to deal with
* the sign extension of the 48th bit.
*/
#define KVADDR(l4, l3, l2, l1) ( \
((unsigned long)-1 << 47) | \
((unsigned long)(l4) << PML4SHIFT) | \
((unsigned long)(l3) << PDPSHIFT) | \
((unsigned long)(l2) << PDRSHIFT) | \
((unsigned long)(l1) << PAGE_SHIFT))
#define UVADDR(l4, l3, l2, l1) ( \
((unsigned long)(l4) << PML4SHIFT) | \
((unsigned long)(l3) << PDPSHIFT) | \
((unsigned long)(l2) << PDRSHIFT) | \
((unsigned long)(l1) << PAGE_SHIFT))
/*
* Number of kernel PML4 slots. Can be anywhere from 1 to 64 or so,
* but setting it larger than NDMPML4E makes no sense.
*
* Each slot provides .5 TB of kernel virtual space.
*/
#define NKPML4E 4
#define NUPML4E (NPML4EPG/2) /* number of userland PML4 pages */
#define NUPDPE (NUPML4E*NPDPEPG)/* number of userland PDP pages */
#define NUPDE (NUPDPE*NPDEPG) /* number of userland PD entries */
/*
* NDMPML4E is the maximum number of PML4 entries that will be
* used to implement the direct map. It must be a power of two,
* and should generally exceed NKPML4E. The maximum possible
* value is 64; using 128 will make the direct map intrude into
* the recursive page table map.
*/
#define NDMPML4E 8
/*
* These values control the layout of virtual memory. The starting address
* of the direct map, which is controlled by DMPML4I, must be a multiple of
* its size. (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
*
* Note: KPML4I is the index of the (single) level 4 page that maps
* the KVA that holds KERNBASE, while KPML4BASE is the index of the
* first level 4 page that maps VM_MIN_KERNEL_ADDRESS. If NKPML4E
* is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
* level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
* KERNBASE.
*
* (KPML4I combines with KPDPI to choose where KERNBASE starts.
* Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
* and KPDPI provides bits 30..38.)
*/
#define PML4PML4I (NPML4EPG/2) /* Index of recursive pml4 mapping */
#define KPML4BASE (NPML4EPG-NKPML4E) /* KVM at highest addresses */
#define DMPML4I rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
#define KPML4I (NPML4EPG-1)
#define KPDPI (NPDPEPG-2) /* kernbase at -2GB */
/* Large map: index of the first and max last pml4 entry */
#define LMSPML4I (PML4PML4I + 1)
#define LMEPML4I (DMPML4I - 1)
/*
* XXX doesn't really belong here I guess...
*/
#define ISA_HOLE_START 0xa0000
#define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
#define PMAP_PCID_NONE 0xffffffff
#define PMAP_PCID_KERN 0
#define PMAP_PCID_OVERMAX 0x1000
#define PMAP_PCID_OVERMAX_KERN 0x800
#define PMAP_PCID_USER_PT 0x800
#define PMAP_NO_CR3 (~0UL)
#ifndef LOCORE
#include <sys/queue.h>
#include <sys/_cpuset.h>
#include <sys/_lock.h>
#include <sys/_mutex.h>
#include <sys/_pctrie.h>
#include <sys/_rangeset.h>
#include <vm/_vm_radix.h>
typedef u_int64_t pd_entry_t;
typedef u_int64_t pt_entry_t;
typedef u_int64_t pdp_entry_t;
typedef u_int64_t pml4_entry_t;
/*
* Address of current address space page table maps and directories.
*/
#ifdef _KERNEL
#define addr_PTmap (KVADDR(PML4PML4I, 0, 0, 0))
#define addr_PDmap (KVADDR(PML4PML4I, PML4PML4I, 0, 0))
#define addr_PDPmap (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
#define addr_PML4map (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
#define addr_PML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
#define PTmap ((pt_entry_t *)(addr_PTmap))
#define PDmap ((pd_entry_t *)(addr_PDmap))
#define PDPmap ((pd_entry_t *)(addr_PDPmap))
#define PML4map ((pd_entry_t *)(addr_PML4map))
#define PML4pml4e ((pd_entry_t *)(addr_PML4pml4e))
extern int nkpt; /* Initial number of kernel page tables */
extern u_int64_t KPDPphys; /* physical address of kernel level 3 */
extern u_int64_t KPML4phys; /* physical address of kernel level 4 */
/*
* virtual address to page table entry and
* to physical address.
* Note: these work recursively, thus vtopte of a pte will give
* the corresponding pde that in turn maps it.
*/
pt_entry_t *vtopte(vm_offset_t);
#define vtophys(va) pmap_kextract(((vm_offset_t) (va)))
#define pte_load_store(ptep, pte) atomic_swap_long(ptep, pte)
#define pte_load_clear(ptep) atomic_swap_long(ptep, 0)
#define pte_store(ptep, pte) do { \
*(u_long *)(ptep) = (u_long)(pte); \
} while (0)
#define pte_clear(ptep) pte_store(ptep, 0)
#define pde_store(pdep, pde) pte_store(pdep, pde)
extern pt_entry_t pg_nx;
#endif /* _KERNEL */
/*
* Pmap stuff
*/
struct pv_entry;
struct pv_chunk;
/*
* Locks
* (p) PV list lock
*/
struct md_page {
TAILQ_HEAD(, pv_entry) pv_list; /* (p) */
int pv_gen; /* (p) */
int pat_mode;
};
enum pmap_type {
PT_X86, /* regular x86 page tables */
PT_EPT, /* Intel's nested page tables */
PT_RVI, /* AMD's nested page tables */
};
struct pmap_pcids {
uint32_t pm_pcid;
uint32_t pm_gen;
};
/*
* The kernel virtual address (KVA) of the level 4 page table page is always
* within the direct map (DMAP) region.
*/
struct pmap {
struct mtx pm_mtx;
pml4_entry_t *pm_pml4; /* KVA of level 4 page table */
pml4_entry_t *pm_pml4u; /* KVA of user l4 page table */
uint64_t pm_cr3;
uint64_t pm_ucr3;
TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */
cpuset_t pm_active; /* active on cpus */
enum pmap_type pm_type; /* regular or nested tables */
struct pmap_statistics pm_stats; /* pmap statistics */
struct vm_radix pm_root; /* spare page table pages */
long pm_eptgen; /* EPT pmap generation id */
int pm_flags;
struct pmap_pcids pm_pcids[MAXCPU];
struct rangeset pm_pkru;
};
/* flags */
#define PMAP_NESTED_IPIMASK 0xff
#define PMAP_PDE_SUPERPAGE (1 << 8) /* supports 2MB superpages */
#define PMAP_EMULATE_AD_BITS (1 << 9) /* needs A/D bits emulation */
#define PMAP_SUPPORTS_EXEC_ONLY (1 << 10) /* execute only mappings ok */
typedef struct pmap *pmap_t;
#ifdef _KERNEL
extern struct pmap kernel_pmap_store;
#define kernel_pmap (&kernel_pmap_store)
#define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx)
#define PMAP_LOCK_ASSERT(pmap, type) \
mtx_assert(&(pmap)->pm_mtx, (type))
#define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx)
#define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \
NULL, MTX_DEF | MTX_DUPOK)
#define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx)
#define PMAP_MTX(pmap) (&(pmap)->pm_mtx)
#define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx)
#define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx)
int pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
int pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
#endif
/*
* For each vm_page_t, there is a list of all currently valid virtual
* mappings of that page. An entry is a pv_entry_t, the list is pv_list.
*/
typedef struct pv_entry {
vm_offset_t pv_va; /* virtual address for mapping */
TAILQ_ENTRY(pv_entry) pv_next;
} *pv_entry_t;
/*
* pv_entries are allocated in chunks per-process. This avoids the
* need to track per-pmap assignments.
*/
#define _NPCM 3
#define _NPCPV 168
#define PV_CHUNK_HEADER \
pmap_t pc_pmap; \
TAILQ_ENTRY(pv_chunk) pc_list; \
uint64_t pc_map[_NPCM]; /* bitmap; 1 = free */ \
TAILQ_ENTRY(pv_chunk) pc_lru;
struct pv_chunk_header {
PV_CHUNK_HEADER
};
struct pv_chunk {
PV_CHUNK_HEADER
struct pv_entry pc_pventry[_NPCPV];
};
#ifdef _KERNEL
extern caddr_t CADDR1;
extern pt_entry_t *CMAP1;
extern vm_offset_t virtual_avail;
extern vm_offset_t virtual_end;
extern vm_paddr_t dmaplimit;
extern int pmap_pcid_enabled;
extern int invpcid_works;
#define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode)
#define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0)
#define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz))
struct thread;
void pmap_activate_boot(pmap_t pmap);
void pmap_activate_sw(struct thread *);
void pmap_bootstrap(vm_paddr_t *);
int pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde);
int pmap_change_attr(vm_offset_t, vm_size_t, int);
int pmap_change_prot(vm_offset_t, vm_size_t, vm_prot_t);
void pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
void pmap_flush_cache_range(vm_offset_t, vm_offset_t);
void pmap_flush_cache_phys_range(vm_paddr_t, vm_paddr_t, vm_memattr_t);
void pmap_init_pat(void);
void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
void *pmap_kenter_temporary(vm_paddr_t pa, int i);
vm_paddr_t pmap_kextract(vm_offset_t);
void pmap_kremove(vm_offset_t);
int pmap_large_map(vm_paddr_t, vm_size_t, void **, vm_memattr_t);
void pmap_large_map_wb(void *sva, vm_size_t len);
void pmap_large_unmap(void *sva, vm_size_t len);
void *pmap_mapbios(vm_paddr_t, vm_size_t);
void *pmap_mapdev(vm_paddr_t, vm_size_t);
void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
void *pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size);
bool pmap_not_in_di(void);
boolean_t pmap_page_is_mapped(vm_page_t m);
void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
void pmap_pinit_pml4(vm_page_t);
bool pmap_ps_enabled(pmap_t pmap);
void pmap_unmapdev(vm_offset_t, vm_size_t);
void pmap_invalidate_page(pmap_t, vm_offset_t);
void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
void pmap_invalidate_all(pmap_t);
void pmap_invalidate_cache(void);
void pmap_invalidate_cache_pages(vm_page_t *pages, int count);
void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
void pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
void pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
void pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
void pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec);
void pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva);
void pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3);
void pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va);
void pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva,
vm_offset_t eva);
int pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
int pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
u_int keyidx, int flags);
void pmap_thread_init_invl_gen(struct thread *td);
int pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap);
void pmap_page_array_startup(long count);
#endif /* _KERNEL */
/* Return various clipped indexes for a given VA */
static __inline vm_pindex_t
pmap_pte_index(vm_offset_t va)
{
return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
}
static __inline vm_pindex_t
pmap_pde_index(vm_offset_t va)
{
return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
}
static __inline vm_pindex_t
pmap_pdpe_index(vm_offset_t va)
{
return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
}
static __inline vm_pindex_t
pmap_pml4e_index(vm_offset_t va)
{
return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
}
#endif /* !LOCORE */
#endif /* !_MACHINE_PMAP_H_ */