freebsd-nq/sys/dev/et/if_et.c
Warner Losh 6ea57aa23b Add PNP info to PCI attachment of et driver
Reviewed by: imp, chuck
Submitted by: Lakhan Shiva Kamireddy <lakhanshiva@gmail.com>
Sponsored by: Google, Inc. (GSoC 2018)
Differential Revision: https://reviews.freebsd.org/D15979
2018-07-08 20:40:28 +00:00

2752 lines
72 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2007 Sepherosa Ziehau. All rights reserved.
*
* This code is derived from software contributed to The DragonFly Project
* by Sepherosa Ziehau <sepherosa@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of The DragonFly Project nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific, prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.10 2008/05/18 07:47:14 sephe Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/if_arp.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <machine/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/et/if_etreg.h>
#include <dev/et/if_etvar.h>
#include "miibus_if.h"
MODULE_DEPEND(et, pci, 1, 1, 1);
MODULE_DEPEND(et, ether, 1, 1, 1);
MODULE_DEPEND(et, miibus, 1, 1, 1);
/* Tunables. */
static int msi_disable = 0;
TUNABLE_INT("hw.et.msi_disable", &msi_disable);
#define ET_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
static int et_probe(device_t);
static int et_attach(device_t);
static int et_detach(device_t);
static int et_shutdown(device_t);
static int et_suspend(device_t);
static int et_resume(device_t);
static int et_miibus_readreg(device_t, int, int);
static int et_miibus_writereg(device_t, int, int, int);
static void et_miibus_statchg(device_t);
static void et_init_locked(struct et_softc *);
static void et_init(void *);
static int et_ioctl(struct ifnet *, u_long, caddr_t);
static void et_start_locked(struct ifnet *);
static void et_start(struct ifnet *);
static int et_watchdog(struct et_softc *);
static int et_ifmedia_upd_locked(struct ifnet *);
static int et_ifmedia_upd(struct ifnet *);
static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static uint64_t et_get_counter(struct ifnet *, ift_counter);
static void et_add_sysctls(struct et_softc *);
static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
static void et_intr(void *);
static void et_rxeof(struct et_softc *);
static void et_txeof(struct et_softc *);
static int et_dma_alloc(struct et_softc *);
static void et_dma_free(struct et_softc *);
static void et_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int et_dma_ring_alloc(struct et_softc *, bus_size_t, bus_size_t,
bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *,
const char *);
static void et_dma_ring_free(struct et_softc *, bus_dma_tag_t *, uint8_t **,
bus_dmamap_t, bus_addr_t *);
static void et_init_tx_ring(struct et_softc *);
static int et_init_rx_ring(struct et_softc *);
static void et_free_tx_ring(struct et_softc *);
static void et_free_rx_ring(struct et_softc *);
static int et_encap(struct et_softc *, struct mbuf **);
static int et_newbuf_cluster(struct et_rxbuf_data *, int);
static int et_newbuf_hdr(struct et_rxbuf_data *, int);
static void et_rxbuf_discard(struct et_rxbuf_data *, int);
static void et_stop(struct et_softc *);
static int et_chip_init(struct et_softc *);
static void et_chip_attach(struct et_softc *);
static void et_init_mac(struct et_softc *);
static void et_init_rxmac(struct et_softc *);
static void et_init_txmac(struct et_softc *);
static int et_init_rxdma(struct et_softc *);
static int et_init_txdma(struct et_softc *);
static int et_start_rxdma(struct et_softc *);
static int et_start_txdma(struct et_softc *);
static int et_stop_rxdma(struct et_softc *);
static int et_stop_txdma(struct et_softc *);
static void et_reset(struct et_softc *);
static int et_bus_config(struct et_softc *);
static void et_get_eaddr(device_t, uint8_t[]);
static void et_setmulti(struct et_softc *);
static void et_tick(void *);
static void et_stats_update(struct et_softc *);
static const struct et_dev {
uint16_t vid;
uint16_t did;
const char *desc;
} et_devices[] = {
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
"Agere ET1310 Gigabit Ethernet" },
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
"Agere ET1310 Fast Ethernet" },
{ 0, 0, NULL }
};
static device_method_t et_methods[] = {
DEVMETHOD(device_probe, et_probe),
DEVMETHOD(device_attach, et_attach),
DEVMETHOD(device_detach, et_detach),
DEVMETHOD(device_shutdown, et_shutdown),
DEVMETHOD(device_suspend, et_suspend),
DEVMETHOD(device_resume, et_resume),
DEVMETHOD(miibus_readreg, et_miibus_readreg),
DEVMETHOD(miibus_writereg, et_miibus_writereg),
DEVMETHOD(miibus_statchg, et_miibus_statchg),
DEVMETHOD_END
};
static driver_t et_driver = {
"et",
et_methods,
sizeof(struct et_softc)
};
static devclass_t et_devclass;
DRIVER_MODULE(et, pci, et_driver, et_devclass, 0, 0);
MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, et, et_devices,
sizeof(et_devices[0]), nitems(et_devices) - 1);
DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0);
static int et_rx_intr_npkts = 32;
static int et_rx_intr_delay = 20; /* x10 usec */
static int et_tx_intr_nsegs = 126;
static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
TUNABLE_INT("hw.et.timer", &et_timer);
TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay);
TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs);
static int
et_probe(device_t dev)
{
const struct et_dev *d;
uint16_t did, vid;
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
for (d = et_devices; d->desc != NULL; ++d) {
if (vid == d->vid && did == d->did) {
device_set_desc(dev, d->desc);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
et_attach(device_t dev)
{
struct et_softc *sc;
struct ifnet *ifp;
uint8_t eaddr[ETHER_ADDR_LEN];
uint32_t pmcfg;
int cap, error, msic;
sc = device_get_softc(dev);
sc->dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sc_tick, &sc->sc_mtx, 0);
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
/*
* Initialize tunables
*/
sc->sc_rx_intr_npkts = et_rx_intr_npkts;
sc->sc_rx_intr_delay = et_rx_intr_delay;
sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
sc->sc_timer = et_timer;
/* Enable bus mastering */
pci_enable_busmaster(dev);
/*
* Allocate IO memory
*/
sc->sc_mem_rid = PCIR_BAR(0);
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_mem_rid, RF_ACTIVE);
if (sc->sc_mem_res == NULL) {
device_printf(dev, "can't allocate IO memory\n");
return (ENXIO);
}
msic = 0;
if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
sc->sc_expcap = cap;
sc->sc_flags |= ET_FLAG_PCIE;
msic = pci_msi_count(dev);
if (bootverbose)
device_printf(dev, "MSI count: %d\n", msic);
}
if (msic > 0 && msi_disable == 0) {
msic = 1;
if (pci_alloc_msi(dev, &msic) == 0) {
if (msic == 1) {
device_printf(dev, "Using %d MSI message\n",
msic);
sc->sc_flags |= ET_FLAG_MSI;
} else
pci_release_msi(dev);
}
}
/*
* Allocate IRQ
*/
if ((sc->sc_flags & ET_FLAG_MSI) == 0) {
sc->sc_irq_rid = 0;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_irq_rid, RF_SHAREABLE | RF_ACTIVE);
} else {
sc->sc_irq_rid = 1;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_irq_rid, RF_ACTIVE);
}
if (sc->sc_irq_res == NULL) {
device_printf(dev, "can't allocate irq\n");
error = ENXIO;
goto fail;
}
if (pci_get_device(dev) == PCI_PRODUCT_LUCENT_ET1310_FAST)
sc->sc_flags |= ET_FLAG_FASTETHER;
error = et_bus_config(sc);
if (error)
goto fail;
et_get_eaddr(dev, eaddr);
/* Take PHY out of COMA and enable clocks. */
pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE;
if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
pmcfg |= EM_PM_GIGEPHY_ENB;
CSR_WRITE_4(sc, ET_PM, pmcfg);
et_reset(sc);
error = et_dma_alloc(sc);
if (error)
goto fail;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = et_init;
ifp->if_ioctl = et_ioctl;
ifp->if_start = et_start;
ifp->if_get_counter = et_get_counter;
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_snd.ifq_drv_maxlen = ET_TX_NDESC - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC - 1);
IFQ_SET_READY(&ifp->if_snd);
et_chip_attach(sc);
error = mii_attach(dev, &sc->sc_miibus, ifp, et_ifmedia_upd,
et_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
MIIF_DOPAUSE);
if (error) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ether_ifattach(ifp, eaddr);
/* Tell the upper layer(s) we support long frames. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
error = bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_NET | INTR_MPSAFE,
NULL, et_intr, sc, &sc->sc_irq_handle);
if (error) {
ether_ifdetach(ifp);
device_printf(dev, "can't setup intr\n");
goto fail;
}
et_add_sysctls(sc);
return (0);
fail:
et_detach(dev);
return (error);
}
static int
et_detach(device_t dev)
{
struct et_softc *sc;
sc = device_get_softc(dev);
if (device_is_attached(dev)) {
ether_ifdetach(sc->ifp);
ET_LOCK(sc);
et_stop(sc);
ET_UNLOCK(sc);
callout_drain(&sc->sc_tick);
}
if (sc->sc_miibus != NULL)
device_delete_child(dev, sc->sc_miibus);
bus_generic_detach(dev);
if (sc->sc_irq_handle != NULL)
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
if (sc->sc_irq_res != NULL)
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->sc_irq_res), sc->sc_irq_res);
if ((sc->sc_flags & ET_FLAG_MSI) != 0)
pci_release_msi(dev);
if (sc->sc_mem_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->sc_mem_res), sc->sc_mem_res);
if (sc->ifp != NULL)
if_free(sc->ifp);
et_dma_free(sc);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static int
et_shutdown(device_t dev)
{
struct et_softc *sc;
sc = device_get_softc(dev);
ET_LOCK(sc);
et_stop(sc);
ET_UNLOCK(sc);
return (0);
}
static int
et_miibus_readreg(device_t dev, int phy, int reg)
{
struct et_softc *sc;
uint32_t val;
int i, ret;
sc = device_get_softc(dev);
/* Stop any pending operations */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK;
val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK;
CSR_WRITE_4(sc, ET_MII_ADDR, val);
/* Start reading */
CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
#define NRETRY 50
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, ET_MII_IND);
if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
break;
DELAY(50);
}
if (i == NRETRY) {
if_printf(sc->ifp,
"read phy %d, reg %d timed out\n", phy, reg);
ret = 0;
goto back;
}
#undef NRETRY
val = CSR_READ_4(sc, ET_MII_STAT);
ret = val & ET_MII_STAT_VALUE_MASK;
back:
/* Make sure that the current operation is stopped */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
return (ret);
}
static int
et_miibus_writereg(device_t dev, int phy, int reg, int val0)
{
struct et_softc *sc;
uint32_t val;
int i;
sc = device_get_softc(dev);
/* Stop any pending operations */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK;
val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK;
CSR_WRITE_4(sc, ET_MII_ADDR, val);
/* Start writing */
CSR_WRITE_4(sc, ET_MII_CTRL,
(val0 << ET_MII_CTRL_VALUE_SHIFT) & ET_MII_CTRL_VALUE_MASK);
#define NRETRY 100
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, ET_MII_IND);
if ((val & ET_MII_IND_BUSY) == 0)
break;
DELAY(50);
}
if (i == NRETRY) {
if_printf(sc->ifp,
"write phy %d, reg %d timed out\n", phy, reg);
et_miibus_readreg(dev, phy, reg);
}
#undef NRETRY
/* Make sure that the current operation is stopped */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
return (0);
}
static void
et_miibus_statchg(device_t dev)
{
struct et_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t cfg1, cfg2, ctrl;
int i;
sc = device_get_softc(dev);
mii = device_get_softc(sc->sc_miibus);
ifp = sc->ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->sc_flags &= ~ET_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->sc_flags |= ET_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
sc->sc_flags |= ET_FLAG_LINK;
break;
}
}
/* XXX Stop TX/RX MAC? */
if ((sc->sc_flags & ET_FLAG_LINK) == 0)
return;
/* Program MACs with resolved speed/duplex/flow-control. */
ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
cfg1 &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
ET_MAC_CFG1_LOOPBACK);
cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
((7 << ET_MAC_CFG2_PREAMBLE_LEN_SHIFT) &
ET_MAC_CFG2_PREAMBLE_LEN_MASK);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
cfg2 |= ET_MAC_CFG2_MODE_GMII;
else {
cfg2 |= ET_MAC_CFG2_MODE_MII;
ctrl |= ET_MAC_CTRL_MODE_MII;
}
if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
cfg2 |= ET_MAC_CFG2_FDX;
/*
* Controller lacks automatic TX pause frame
* generation so it should be handled by driver.
* Even though driver can send pause frame with
* arbitrary pause time, controller does not
* provide a way that tells how many free RX
* buffers are available in controller. This
* limitation makes it hard to generate XON frame
* in time on driver side so don't enable TX flow
* control.
*/
#ifdef notyet
if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
cfg1 |= ET_MAC_CFG1_TXFLOW;
#endif
if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
cfg1 |= ET_MAC_CFG1_RXFLOW;
} else
ctrl |= ET_MAC_CTRL_GHDX;
CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
cfg1 |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
CSR_WRITE_4(sc, ET_MAC_CFG1, cfg1);
#define NRETRY 50
for (i = 0; i < NRETRY; ++i) {
cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
if ((cfg1 & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
(ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
break;
DELAY(100);
}
if (i == NRETRY)
if_printf(ifp, "can't enable RX/TX\n");
sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
#undef NRETRY
}
static int
et_ifmedia_upd_locked(struct ifnet *ifp)
{
struct et_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
sc = ifp->if_softc;
mii = device_get_softc(sc->sc_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
return (mii_mediachg(mii));
}
static int
et_ifmedia_upd(struct ifnet *ifp)
{
struct et_softc *sc;
int res;
sc = ifp->if_softc;
ET_LOCK(sc);
res = et_ifmedia_upd_locked(ifp);
ET_UNLOCK(sc);
return (res);
}
static void
et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct et_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
ET_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
ET_UNLOCK(sc);
return;
}
mii = device_get_softc(sc->sc_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
ET_UNLOCK(sc);
}
static void
et_stop(struct et_softc *sc)
{
struct ifnet *ifp;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
callout_stop(&sc->sc_tick);
/* Disable interrupts. */
CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
CSR_WRITE_4(sc, ET_MAC_CFG1, CSR_READ_4(sc, ET_MAC_CFG1) & ~(
ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN));
DELAY(100);
et_stop_rxdma(sc);
et_stop_txdma(sc);
et_stats_update(sc);
et_free_tx_ring(sc);
et_free_rx_ring(sc);
sc->sc_tx = 0;
sc->sc_tx_intr = 0;
sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
sc->watchdog_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
static int
et_bus_config(struct et_softc *sc)
{
uint32_t val, max_plsz;
uint16_t ack_latency, replay_timer;
/*
* Test whether EEPROM is valid
* NOTE: Read twice to get the correct value
*/
pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1);
val = pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1);
if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
device_printf(sc->dev, "EEPROM status error 0x%02x\n", val);
return (ENXIO);
}
/* TODO: LED */
if ((sc->sc_flags & ET_FLAG_PCIE) == 0)
return (0);
/*
* Configure ACK latency and replay timer according to
* max playload size
*/
val = pci_read_config(sc->dev,
sc->sc_expcap + PCIER_DEVICE_CAP, 4);
max_plsz = val & PCIEM_CAP_MAX_PAYLOAD;
switch (max_plsz) {
case ET_PCIV_DEVICE_CAPS_PLSZ_128:
ack_latency = ET_PCIV_ACK_LATENCY_128;
replay_timer = ET_PCIV_REPLAY_TIMER_128;
break;
case ET_PCIV_DEVICE_CAPS_PLSZ_256:
ack_latency = ET_PCIV_ACK_LATENCY_256;
replay_timer = ET_PCIV_REPLAY_TIMER_256;
break;
default:
ack_latency = pci_read_config(sc->dev, ET_PCIR_ACK_LATENCY, 2);
replay_timer = pci_read_config(sc->dev,
ET_PCIR_REPLAY_TIMER, 2);
device_printf(sc->dev, "ack latency %u, replay timer %u\n",
ack_latency, replay_timer);
break;
}
if (ack_latency != 0) {
pci_write_config(sc->dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
pci_write_config(sc->dev, ET_PCIR_REPLAY_TIMER, replay_timer,
2);
}
/*
* Set L0s and L1 latency timer to 2us
*/
val = pci_read_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, 4);
val &= ~(PCIEM_LINK_CAP_L0S_EXIT | PCIEM_LINK_CAP_L1_EXIT);
/* L0s exit latency : 2us */
val |= 0x00005000;
/* L1 exit latency : 2us */
val |= 0x00028000;
pci_write_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, val, 4);
/*
* Set max read request size to 2048 bytes
*/
pci_set_max_read_req(sc->dev, 2048);
return (0);
}
static void
et_get_eaddr(device_t dev, uint8_t eaddr[])
{
uint32_t val;
int i;
val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
for (i = 0; i < 4; ++i)
eaddr[i] = (val >> (8 * i)) & 0xff;
val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
for (; i < ETHER_ADDR_LEN; ++i)
eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
}
static void
et_reset(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
CSR_WRITE_4(sc, ET_SWRST,
ET_SWRST_TXDMA | ET_SWRST_RXDMA |
ET_SWRST_TXMAC | ET_SWRST_RXMAC |
ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
/* Disable interrupts. */
CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
}
struct et_dmamap_arg {
bus_addr_t et_busaddr;
};
static void
et_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct et_dmamap_arg *ctx;
if (error)
return;
KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
ctx = arg;
ctx->et_busaddr = segs->ds_addr;
}
static int
et_dma_ring_alloc(struct et_softc *sc, bus_size_t alignment, bus_size_t maxsize,
bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
const char *msg)
{
struct et_dmamap_arg ctx;
int error;
error = bus_dma_tag_create(sc->sc_dtag, alignment, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1, maxsize, 0, NULL, NULL,
tag);
if (error != 0) {
device_printf(sc->dev, "could not create %s dma tag\n", msg);
return (error);
}
/* Allocate DMA'able memory for ring. */
error = bus_dmamem_alloc(*tag, (void **)ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate DMA'able memory for %s\n", msg);
return (error);
}
/* Load the address of the ring. */
ctx.et_busaddr = 0;
error = bus_dmamap_load(*tag, *map, *ring, maxsize, et_dma_map_addr,
&ctx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->dev,
"could not load DMA'able memory for %s\n", msg);
return (error);
}
*paddr = ctx.et_busaddr;
return (0);
}
static void
et_dma_ring_free(struct et_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
bus_dmamap_t map, bus_addr_t *paddr)
{
if (*paddr != 0) {
bus_dmamap_unload(*tag, map);
*paddr = 0;
}
if (*ring != NULL) {
bus_dmamem_free(*tag, *ring, map);
*ring = NULL;
}
if (*tag) {
bus_dma_tag_destroy(*tag);
*tag = NULL;
}
}
static int
et_dma_alloc(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring;
struct et_rxdesc_ring *rx_ring;
struct et_rxstat_ring *rxst_ring;
struct et_rxstatus_data *rxsd;
struct et_rxbuf_data *rbd;
struct et_txbuf_data *tbd;
struct et_txstatus_data *txsd;
int i, error;
error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
&sc->sc_dtag);
if (error != 0) {
device_printf(sc->dev, "could not allocate parent dma tag\n");
return (error);
}
/* TX ring. */
tx_ring = &sc->sc_tx_ring;
error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_TX_RING_SIZE,
&tx_ring->tr_dtag, (uint8_t **)&tx_ring->tr_desc, &tx_ring->tr_dmap,
&tx_ring->tr_paddr, "TX ring");
if (error)
return (error);
/* TX status block. */
txsd = &sc->sc_tx_status;
error = et_dma_ring_alloc(sc, ET_STATUS_ALIGN, sizeof(uint32_t),
&txsd->txsd_dtag, (uint8_t **)&txsd->txsd_status, &txsd->txsd_dmap,
&txsd->txsd_paddr, "TX status block");
if (error)
return (error);
/* RX ring 0, used as to recive small sized frames. */
rx_ring = &sc->sc_rx_ring[0];
error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RX_RING_SIZE,
&rx_ring->rr_dtag, (uint8_t **)&rx_ring->rr_desc, &rx_ring->rr_dmap,
&rx_ring->rr_paddr, "RX ring 0");
rx_ring->rr_posreg = ET_RX_RING0_POS;
if (error)
return (error);
/* RX ring 1, used as to store normal sized frames. */
rx_ring = &sc->sc_rx_ring[1];
error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RX_RING_SIZE,
&rx_ring->rr_dtag, (uint8_t **)&rx_ring->rr_desc, &rx_ring->rr_dmap,
&rx_ring->rr_paddr, "RX ring 1");
rx_ring->rr_posreg = ET_RX_RING1_POS;
if (error)
return (error);
/* RX stat ring. */
rxst_ring = &sc->sc_rxstat_ring;
error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RXSTAT_RING_SIZE,
&rxst_ring->rsr_dtag, (uint8_t **)&rxst_ring->rsr_stat,
&rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr, "RX stat ring");
if (error)
return (error);
/* RX status block. */
rxsd = &sc->sc_rx_status;
error = et_dma_ring_alloc(sc, ET_STATUS_ALIGN,
sizeof(struct et_rxstatus), &rxsd->rxsd_dtag,
(uint8_t **)&rxsd->rxsd_status, &rxsd->rxsd_dmap,
&rxsd->rxsd_paddr, "RX status block");
if (error)
return (error);
/* Create parent DMA tag for mbufs. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
&sc->sc_mbuf_dtag);
if (error != 0) {
device_printf(sc->dev,
"could not allocate parent dma tag for mbuf\n");
return (error);
}
/* Create DMA tag for mini RX mbufs to use RX ring 0. */
error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
MHLEN, 0, NULL, NULL, &sc->sc_rx_mini_tag);
if (error) {
device_printf(sc->dev, "could not create mini RX dma tag\n");
return (error);
}
/* Create DMA tag for standard RX mbufs to use RX ring 1. */
error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
MCLBYTES, 0, NULL, NULL, &sc->sc_rx_tag);
if (error) {
device_printf(sc->dev, "could not create RX dma tag\n");
return (error);
}
/* Create DMA tag for TX mbufs. */
error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * ET_NSEG_MAX, ET_NSEG_MAX, MCLBYTES, 0, NULL, NULL,
&sc->sc_tx_tag);
if (error) {
device_printf(sc->dev, "could not create TX dma tag\n");
return (error);
}
/* Initialize RX ring 0. */
rbd = &sc->sc_rx_data[0];
rbd->rbd_bufsize = ET_RXDMA_CTRL_RING0_128;
rbd->rbd_newbuf = et_newbuf_hdr;
rbd->rbd_discard = et_rxbuf_discard;
rbd->rbd_softc = sc;
rbd->rbd_ring = &sc->sc_rx_ring[0];
/* Create DMA maps for mini RX buffers, ring 0. */
for (i = 0; i < ET_RX_NDESC; i++) {
error = bus_dmamap_create(sc->sc_rx_mini_tag, 0,
&rbd->rbd_buf[i].rb_dmap);
if (error) {
device_printf(sc->dev,
"could not create DMA map for mini RX mbufs\n");
return (error);
}
}
/* Create a spare DMA map for mini RX buffers, ring 0. */
error = bus_dmamap_create(sc->sc_rx_mini_tag, 0,
&sc->sc_rx_mini_sparemap);
if (error) {
device_printf(sc->dev,
"could not create spare DMA map for mini RX mbuf\n");
return (error);
}
/* Initialize RX ring 1. */
rbd = &sc->sc_rx_data[1];
rbd->rbd_bufsize = ET_RXDMA_CTRL_RING1_2048;
rbd->rbd_newbuf = et_newbuf_cluster;
rbd->rbd_discard = et_rxbuf_discard;
rbd->rbd_softc = sc;
rbd->rbd_ring = &sc->sc_rx_ring[1];
/* Create DMA maps for standard RX buffers, ring 1. */
for (i = 0; i < ET_RX_NDESC; i++) {
error = bus_dmamap_create(sc->sc_rx_tag, 0,
&rbd->rbd_buf[i].rb_dmap);
if (error) {
device_printf(sc->dev,
"could not create DMA map for mini RX mbufs\n");
return (error);
}
}
/* Create a spare DMA map for standard RX buffers, ring 1. */
error = bus_dmamap_create(sc->sc_rx_tag, 0, &sc->sc_rx_sparemap);
if (error) {
device_printf(sc->dev,
"could not create spare DMA map for RX mbuf\n");
return (error);
}
/* Create DMA maps for TX buffers. */
tbd = &sc->sc_tx_data;
for (i = 0; i < ET_TX_NDESC; i++) {
error = bus_dmamap_create(sc->sc_tx_tag, 0,
&tbd->tbd_buf[i].tb_dmap);
if (error) {
device_printf(sc->dev,
"could not create DMA map for TX mbufs\n");
return (error);
}
}
return (0);
}
static void
et_dma_free(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring;
struct et_rxdesc_ring *rx_ring;
struct et_txstatus_data *txsd;
struct et_rxstat_ring *rxst_ring;
struct et_rxstatus_data *rxsd;
struct et_rxbuf_data *rbd;
struct et_txbuf_data *tbd;
int i;
/* Destroy DMA maps for mini RX buffers, ring 0. */
rbd = &sc->sc_rx_data[0];
for (i = 0; i < ET_RX_NDESC; i++) {
if (rbd->rbd_buf[i].rb_dmap) {
bus_dmamap_destroy(sc->sc_rx_mini_tag,
rbd->rbd_buf[i].rb_dmap);
rbd->rbd_buf[i].rb_dmap = NULL;
}
}
if (sc->sc_rx_mini_sparemap) {
bus_dmamap_destroy(sc->sc_rx_mini_tag, sc->sc_rx_mini_sparemap);
sc->sc_rx_mini_sparemap = NULL;
}
if (sc->sc_rx_mini_tag) {
bus_dma_tag_destroy(sc->sc_rx_mini_tag);
sc->sc_rx_mini_tag = NULL;
}
/* Destroy DMA maps for standard RX buffers, ring 1. */
rbd = &sc->sc_rx_data[1];
for (i = 0; i < ET_RX_NDESC; i++) {
if (rbd->rbd_buf[i].rb_dmap) {
bus_dmamap_destroy(sc->sc_rx_tag,
rbd->rbd_buf[i].rb_dmap);
rbd->rbd_buf[i].rb_dmap = NULL;
}
}
if (sc->sc_rx_sparemap) {
bus_dmamap_destroy(sc->sc_rx_tag, sc->sc_rx_sparemap);
sc->sc_rx_sparemap = NULL;
}
if (sc->sc_rx_tag) {
bus_dma_tag_destroy(sc->sc_rx_tag);
sc->sc_rx_tag = NULL;
}
/* Destroy DMA maps for TX buffers. */
tbd = &sc->sc_tx_data;
for (i = 0; i < ET_TX_NDESC; i++) {
if (tbd->tbd_buf[i].tb_dmap) {
bus_dmamap_destroy(sc->sc_tx_tag,
tbd->tbd_buf[i].tb_dmap);
tbd->tbd_buf[i].tb_dmap = NULL;
}
}
if (sc->sc_tx_tag) {
bus_dma_tag_destroy(sc->sc_tx_tag);
sc->sc_tx_tag = NULL;
}
/* Destroy mini RX ring, ring 0. */
rx_ring = &sc->sc_rx_ring[0];
et_dma_ring_free(sc, &rx_ring->rr_dtag, (void *)&rx_ring->rr_desc,
rx_ring->rr_dmap, &rx_ring->rr_paddr);
/* Destroy standard RX ring, ring 1. */
rx_ring = &sc->sc_rx_ring[1];
et_dma_ring_free(sc, &rx_ring->rr_dtag, (void *)&rx_ring->rr_desc,
rx_ring->rr_dmap, &rx_ring->rr_paddr);
/* Destroy RX stat ring. */
rxst_ring = &sc->sc_rxstat_ring;
et_dma_ring_free(sc, &rxst_ring->rsr_dtag, (void *)&rxst_ring->rsr_stat,
rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr);
/* Destroy RX status block. */
rxsd = &sc->sc_rx_status;
et_dma_ring_free(sc, &rxst_ring->rsr_dtag, (void *)&rxst_ring->rsr_stat,
rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr);
/* Destroy TX ring. */
tx_ring = &sc->sc_tx_ring;
et_dma_ring_free(sc, &tx_ring->tr_dtag, (void *)&tx_ring->tr_desc,
tx_ring->tr_dmap, &tx_ring->tr_paddr);
/* Destroy TX status block. */
txsd = &sc->sc_tx_status;
et_dma_ring_free(sc, &txsd->txsd_dtag, (void *)&txsd->txsd_status,
txsd->txsd_dmap, &txsd->txsd_paddr);
/* Destroy the parent tag. */
if (sc->sc_dtag) {
bus_dma_tag_destroy(sc->sc_dtag);
sc->sc_dtag = NULL;
}
}
static void
et_chip_attach(struct et_softc *sc)
{
uint32_t val;
/*
* Perform minimal initialization
*/
/* Disable loopback */
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
/* Reset MAC */
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
/*
* Setup half duplex mode
*/
val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) |
(15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) |
(55 << ET_MAC_HDX_COLLWIN_SHIFT) |
ET_MAC_HDX_EXC_DEFER;
CSR_WRITE_4(sc, ET_MAC_HDX, val);
/* Clear MAC control */
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
/* Reset MII */
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
/* Bring MAC out of reset state */
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
/* Enable memory controllers */
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
}
static void
et_intr(void *xsc)
{
struct et_softc *sc;
struct ifnet *ifp;
uint32_t status;
sc = xsc;
ET_LOCK(sc);
ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto done;
status = CSR_READ_4(sc, ET_INTR_STATUS);
if ((status & ET_INTRS) == 0)
goto done;
/* Disable further interrupts. */
CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
if (status & (ET_INTR_RXDMA_ERROR | ET_INTR_TXDMA_ERROR)) {
device_printf(sc->dev, "DMA error(0x%08x) -- resetting\n",
status);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
et_init_locked(sc);
ET_UNLOCK(sc);
return;
}
if (status & ET_INTR_RXDMA)
et_rxeof(sc);
if (status & (ET_INTR_TXDMA | ET_INTR_TIMER))
et_txeof(sc);
if (status & ET_INTR_TIMER)
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
CSR_WRITE_4(sc, ET_INTR_MASK, ~ET_INTRS);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
et_start_locked(ifp);
}
done:
ET_UNLOCK(sc);
}
static void
et_init_locked(struct et_softc *sc)
{
struct ifnet *ifp;
int error;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
et_stop(sc);
et_reset(sc);
et_init_tx_ring(sc);
error = et_init_rx_ring(sc);
if (error)
return;
error = et_chip_init(sc);
if (error)
goto fail;
/*
* Start TX/RX DMA engine
*/
error = et_start_rxdma(sc);
if (error)
return;
error = et_start_txdma(sc);
if (error)
return;
/* Enable interrupts. */
CSR_WRITE_4(sc, ET_INTR_MASK, ~ET_INTRS);
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->sc_flags &= ~ET_FLAG_LINK;
et_ifmedia_upd_locked(ifp);
callout_reset(&sc->sc_tick, hz, et_tick, sc);
fail:
if (error)
et_stop(sc);
}
static void
et_init(void *xsc)
{
struct et_softc *sc = xsc;
ET_LOCK(sc);
et_init_locked(sc);
ET_UNLOCK(sc);
}
static int
et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct et_softc *sc;
struct mii_data *mii;
struct ifreq *ifr;
int error, mask, max_framelen;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
/* XXX LOCKSUSED */
switch (cmd) {
case SIOCSIFFLAGS:
ET_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->sc_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC | IFF_BROADCAST))
et_setmulti(sc);
} else {
et_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
et_stop(sc);
}
sc->sc_if_flags = ifp->if_flags;
ET_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->sc_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ET_LOCK(sc);
et_setmulti(sc);
ET_UNLOCK(sc);
}
break;
case SIOCSIFMTU:
ET_LOCK(sc);
#if 0
if (sc->sc_flags & ET_FLAG_JUMBO)
max_framelen = ET_JUMBO_FRAMELEN;
else
#endif
max_framelen = MCLBYTES - 1;
if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) {
error = EOPNOTSUPP;
ET_UNLOCK(sc);
break;
}
if (ifp->if_mtu != ifr->ifr_mtu) {
ifp->if_mtu = ifr->ifr_mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
et_init_locked(sc);
}
}
ET_UNLOCK(sc);
break;
case SIOCSIFCAP:
ET_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
ifp->if_hwassist |= ET_CSUM_FEATURES;
else
ifp->if_hwassist &= ~ET_CSUM_FEATURES;
}
ET_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
et_start_locked(struct ifnet *ifp)
{
struct et_softc *sc;
struct mbuf *m_head = NULL;
struct et_txdesc_ring *tx_ring;
struct et_txbuf_data *tbd;
uint32_t tx_ready_pos;
int enq;
sc = ifp->if_softc;
ET_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING ||
(sc->sc_flags & (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) !=
(ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED))
return;
/*
* Driver does not request TX completion interrupt for every
* queued frames to prevent generating excessive interrupts.
* This means driver may wait for TX completion interrupt even
* though some frames were successfully transmitted. Reclaiming
* transmitted frames will ensure driver see all available
* descriptors.
*/
tbd = &sc->sc_tx_data;
if (tbd->tbd_used > (ET_TX_NDESC * 2) / 3)
et_txeof(sc);
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
if (tbd->tbd_used + ET_NSEG_SPARE >= ET_TX_NDESC) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (et_encap(sc, &m_head)) {
if (m_head == NULL) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
break;
}
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
if (tbd->tbd_used > 0)
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
tx_ring = &sc->sc_tx_ring;
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
BUS_DMASYNC_PREWRITE);
tx_ready_pos = tx_ring->tr_ready_index &
ET_TX_READY_POS_INDEX_MASK;
if (tx_ring->tr_ready_wrap)
tx_ready_pos |= ET_TX_READY_POS_WRAP;
CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
sc->watchdog_timer = 5;
}
}
static void
et_start(struct ifnet *ifp)
{
struct et_softc *sc;
sc = ifp->if_softc;
ET_LOCK(sc);
et_start_locked(ifp);
ET_UNLOCK(sc);
}
static int
et_watchdog(struct et_softc *sc)
{
uint32_t status;
ET_LOCK_ASSERT(sc);
if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
return (0);
bus_dmamap_sync(sc->sc_tx_status.txsd_dtag, sc->sc_tx_status.txsd_dmap,
BUS_DMASYNC_POSTREAD);
status = le32toh(*(sc->sc_tx_status.txsd_status));
if_printf(sc->ifp, "watchdog timed out (0x%08x) -- resetting\n",
status);
if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1);
sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
et_init_locked(sc);
return (EJUSTRETURN);
}
static int
et_stop_rxdma(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_RXDMA_CTRL,
ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
DELAY(5);
if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
if_printf(sc->ifp, "can't stop RX DMA engine\n");
return (ETIMEDOUT);
}
return (0);
}
static int
et_stop_txdma(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_TXDMA_CTRL,
ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
return (0);
}
static void
et_free_tx_ring(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring;
struct et_txbuf_data *tbd;
struct et_txbuf *tb;
int i;
tbd = &sc->sc_tx_data;
tx_ring = &sc->sc_tx_ring;
for (i = 0; i < ET_TX_NDESC; ++i) {
tb = &tbd->tbd_buf[i];
if (tb->tb_mbuf != NULL) {
bus_dmamap_sync(sc->sc_tx_tag, tb->tb_dmap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
m_freem(tb->tb_mbuf);
tb->tb_mbuf = NULL;
}
}
}
static void
et_free_rx_ring(struct et_softc *sc)
{
struct et_rxbuf_data *rbd;
struct et_rxdesc_ring *rx_ring;
struct et_rxbuf *rb;
int i;
/* Ring 0 */
rx_ring = &sc->sc_rx_ring[0];
rbd = &sc->sc_rx_data[0];
for (i = 0; i < ET_RX_NDESC; ++i) {
rb = &rbd->rbd_buf[i];
if (rb->rb_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rx_mini_tag, rx_ring->rr_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rx_mini_tag, rb->rb_dmap);
m_freem(rb->rb_mbuf);
rb->rb_mbuf = NULL;
}
}
/* Ring 1 */
rx_ring = &sc->sc_rx_ring[1];
rbd = &sc->sc_rx_data[1];
for (i = 0; i < ET_RX_NDESC; ++i) {
rb = &rbd->rbd_buf[i];
if (rb->rb_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rx_tag, rx_ring->rr_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rx_tag, rb->rb_dmap);
m_freem(rb->rb_mbuf);
rb->rb_mbuf = NULL;
}
}
}
static void
et_setmulti(struct et_softc *sc)
{
struct ifnet *ifp;
uint32_t hash[4] = { 0, 0, 0, 0 };
uint32_t rxmac_ctrl, pktfilt;
struct ifmultiaddr *ifma;
int i, count;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
pktfilt = CSR_READ_4(sc, ET_PKTFILT);
rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
goto back;
}
count = 0;
if_maddr_rlock(ifp);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
uint32_t *hp, h;
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
h = (h & 0x3f800000) >> 23;
hp = &hash[0];
if (h >= 32 && h < 64) {
h -= 32;
hp = &hash[1];
} else if (h >= 64 && h < 96) {
h -= 64;
hp = &hash[2];
} else if (h >= 96) {
h -= 96;
hp = &hash[3];
}
*hp |= (1 << h);
++count;
}
if_maddr_runlock(ifp);
for (i = 0; i < 4; ++i)
CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
if (count > 0)
pktfilt |= ET_PKTFILT_MCAST;
rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
back:
CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
}
static int
et_chip_init(struct et_softc *sc)
{
struct ifnet *ifp;
uint32_t rxq_end;
int error, frame_len, rxmem_size;
ifp = sc->ifp;
/*
* Split 16Kbytes internal memory between TX and RX
* according to frame length.
*/
frame_len = ET_FRAMELEN(ifp->if_mtu);
if (frame_len < 2048) {
rxmem_size = ET_MEM_RXSIZE_DEFAULT;
} else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) {
rxmem_size = ET_MEM_SIZE / 2;
} else {
rxmem_size = ET_MEM_SIZE -
roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT);
}
rxq_end = ET_QUEUE_ADDR(rxmem_size);
CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START);
CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end);
CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1);
CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END);
/* No loopback */
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
/* Clear MSI configure */
if ((sc->sc_flags & ET_FLAG_MSI) == 0)
CSR_WRITE_4(sc, ET_MSI_CFG, 0);
/* Disable timer */
CSR_WRITE_4(sc, ET_TIMER, 0);
/* Initialize MAC */
et_init_mac(sc);
/* Enable memory controllers */
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
/* Initialize RX MAC */
et_init_rxmac(sc);
/* Initialize TX MAC */
et_init_txmac(sc);
/* Initialize RX DMA engine */
error = et_init_rxdma(sc);
if (error)
return (error);
/* Initialize TX DMA engine */
error = et_init_txdma(sc);
if (error)
return (error);
return (0);
}
static void
et_init_tx_ring(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring;
struct et_txbuf_data *tbd;
struct et_txstatus_data *txsd;
tx_ring = &sc->sc_tx_ring;
bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
BUS_DMASYNC_PREWRITE);
tbd = &sc->sc_tx_data;
tbd->tbd_start_index = 0;
tbd->tbd_start_wrap = 0;
tbd->tbd_used = 0;
txsd = &sc->sc_tx_status;
bzero(txsd->txsd_status, sizeof(uint32_t));
bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
et_init_rx_ring(struct et_softc *sc)
{
struct et_rxstatus_data *rxsd;
struct et_rxstat_ring *rxst_ring;
struct et_rxbuf_data *rbd;
int i, error, n;
for (n = 0; n < ET_RX_NRING; ++n) {
rbd = &sc->sc_rx_data[n];
for (i = 0; i < ET_RX_NDESC; ++i) {
error = rbd->rbd_newbuf(rbd, i);
if (error) {
if_printf(sc->ifp, "%d ring %d buf, "
"newbuf failed: %d\n", n, i, error);
return (error);
}
}
}
rxsd = &sc->sc_rx_status;
bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
rxst_ring = &sc->sc_rxstat_ring;
bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
et_init_rxdma(struct et_softc *sc)
{
struct et_rxstatus_data *rxsd;
struct et_rxstat_ring *rxst_ring;
struct et_rxdesc_ring *rx_ring;
int error;
error = et_stop_rxdma(sc);
if (error) {
if_printf(sc->ifp, "can't init RX DMA engine\n");
return (error);
}
/*
* Install RX status
*/
rxsd = &sc->sc_rx_status;
CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
/*
* Install RX stat ring
*/
rxst_ring = &sc->sc_rxstat_ring;
CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
/* Match ET_RXSTAT_POS */
rxst_ring->rsr_index = 0;
rxst_ring->rsr_wrap = 0;
/*
* Install the 2nd RX descriptor ring
*/
rx_ring = &sc->sc_rx_ring[1];
CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
/* Match ET_RX_RING1_POS */
rx_ring->rr_index = 0;
rx_ring->rr_wrap = 1;
/*
* Install the 1st RX descriptor ring
*/
rx_ring = &sc->sc_rx_ring[0];
CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
/* Match ET_RX_RING0_POS */
rx_ring->rr_index = 0;
rx_ring->rr_wrap = 1;
/*
* RX intr moderation
*/
CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
return (0);
}
static int
et_init_txdma(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring;
struct et_txstatus_data *txsd;
int error;
error = et_stop_txdma(sc);
if (error) {
if_printf(sc->ifp, "can't init TX DMA engine\n");
return (error);
}
/*
* Install TX descriptor ring
*/
tx_ring = &sc->sc_tx_ring;
CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
/*
* Install TX status
*/
txsd = &sc->sc_tx_status;
CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
/* Match ET_TX_READY_POS */
tx_ring->tr_ready_index = 0;
tx_ring->tr_ready_wrap = 0;
return (0);
}
static void
et_init_mac(struct et_softc *sc)
{
struct ifnet *ifp;
const uint8_t *eaddr;
uint32_t val;
/* Reset MAC */
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
/*
* Setup inter packet gap
*/
val = (56 << ET_IPG_NONB2B_1_SHIFT) |
(88 << ET_IPG_NONB2B_2_SHIFT) |
(80 << ET_IPG_MINIFG_SHIFT) |
(96 << ET_IPG_B2B_SHIFT);
CSR_WRITE_4(sc, ET_IPG, val);
/*
* Setup half duplex mode
*/
val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) |
(15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) |
(55 << ET_MAC_HDX_COLLWIN_SHIFT) |
ET_MAC_HDX_EXC_DEFER;
CSR_WRITE_4(sc, ET_MAC_HDX, val);
/* Clear MAC control */
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
/* Reset MII */
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
/*
* Set MAC address
*/
ifp = sc->ifp;
eaddr = IF_LLADDR(ifp);
val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
val = (eaddr[0] << 16) | (eaddr[1] << 24);
CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
/* Set max frame length */
CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu));
/* Bring MAC out of reset state */
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
}
static void
et_init_rxmac(struct et_softc *sc)
{
struct ifnet *ifp;
const uint8_t *eaddr;
uint32_t val;
int i;
/* Disable RX MAC and WOL */
CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
/*
* Clear all WOL related registers
*/
for (i = 0; i < 3; ++i)
CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
for (i = 0; i < 20; ++i)
CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
/*
* Set WOL source address. XXX is this necessary?
*/
ifp = sc->ifp;
eaddr = IF_LLADDR(ifp);
val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
val = (eaddr[0] << 8) | eaddr[1];
CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
/* Clear packet filters */
CSR_WRITE_4(sc, ET_PKTFILT, 0);
/* No ucast filtering */
CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) {
/*
* In order to transmit jumbo packets greater than
* ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between
* RX MAC and RX DMA needs to be reduced in size to
* (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen). In
* order to implement this, we must use "cut through"
* mode in the RX MAC, which chops packets down into
* segments. In this case we selected 256 bytes,
* since this is the size of the PCI-Express TLP's
* that the ET1310 uses.
*/
val = (ET_RXMAC_SEGSZ(256) & ET_RXMAC_MC_SEGSZ_MAX_MASK) |
ET_RXMAC_MC_SEGSZ_ENABLE;
} else {
val = 0;
}
CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
/* Initialize RX MAC management register */
CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
CSR_WRITE_4(sc, ET_RXMAC_MGT,
ET_RXMAC_MGT_PASS_ECRC |
ET_RXMAC_MGT_PASS_ELEN |
ET_RXMAC_MGT_PASS_ETRUNC |
ET_RXMAC_MGT_CHECK_PKT);
/*
* Configure runt filtering (may not work on certain chip generation)
*/
val = (ETHER_MIN_LEN << ET_PKTFILT_MINLEN_SHIFT) &
ET_PKTFILT_MINLEN_MASK;
val |= ET_PKTFILT_FRAG;
CSR_WRITE_4(sc, ET_PKTFILT, val);
/* Enable RX MAC but leave WOL disabled */
CSR_WRITE_4(sc, ET_RXMAC_CTRL,
ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
/*
* Setup multicast hash and allmulti/promisc mode
*/
et_setmulti(sc);
}
static void
et_init_txmac(struct et_softc *sc)
{
/* Disable TX MAC and FC(?) */
CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
/*
* Initialize pause time.
* This register should be set before XON/XOFF frame is
* sent by driver.
*/
CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0 << ET_TXMAC_FLOWCTRL_CFPT_SHIFT);
/* Enable TX MAC but leave FC(?) diabled */
CSR_WRITE_4(sc, ET_TXMAC_CTRL,
ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
}
static int
et_start_rxdma(struct et_softc *sc)
{
uint32_t val;
val = (sc->sc_rx_data[0].rbd_bufsize & ET_RXDMA_CTRL_RING0_SIZE_MASK) |
ET_RXDMA_CTRL_RING0_ENABLE;
val |= (sc->sc_rx_data[1].rbd_bufsize & ET_RXDMA_CTRL_RING1_SIZE_MASK) |
ET_RXDMA_CTRL_RING1_ENABLE;
CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
DELAY(5);
if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
if_printf(sc->ifp, "can't start RX DMA engine\n");
return (ETIMEDOUT);
}
return (0);
}
static int
et_start_txdma(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
return (0);
}
static void
et_rxeof(struct et_softc *sc)
{
struct et_rxstatus_data *rxsd;
struct et_rxstat_ring *rxst_ring;
struct et_rxbuf_data *rbd;
struct et_rxdesc_ring *rx_ring;
struct et_rxstat *st;
struct ifnet *ifp;
struct mbuf *m;
uint32_t rxstat_pos, rxring_pos;
uint32_t rxst_info1, rxst_info2, rxs_stat_ring;
int buflen, buf_idx, npost[2], ring_idx;
int rxst_index, rxst_wrap;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
rxsd = &sc->sc_rx_status;
rxst_ring = &sc->sc_rxstat_ring;
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
return;
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
BUS_DMASYNC_POSTREAD);
npost[0] = npost[1] = 0;
rxs_stat_ring = le32toh(rxsd->rxsd_status->rxs_stat_ring);
rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
rxst_index = (rxs_stat_ring & ET_RXS_STATRING_INDEX_MASK) >>
ET_RXS_STATRING_INDEX_SHIFT;
while (rxst_index != rxst_ring->rsr_index ||
rxst_wrap != rxst_ring->rsr_wrap) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
MPASS(rxst_ring->rsr_index < ET_RX_NSTAT);
st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
rxst_info1 = le32toh(st->rxst_info1);
rxst_info2 = le32toh(st->rxst_info2);
buflen = (rxst_info2 & ET_RXST_INFO2_LEN_MASK) >>
ET_RXST_INFO2_LEN_SHIFT;
buf_idx = (rxst_info2 & ET_RXST_INFO2_BUFIDX_MASK) >>
ET_RXST_INFO2_BUFIDX_SHIFT;
ring_idx = (rxst_info2 & ET_RXST_INFO2_RINGIDX_MASK) >>
ET_RXST_INFO2_RINGIDX_SHIFT;
if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
rxst_ring->rsr_index = 0;
rxst_ring->rsr_wrap ^= 1;
}
rxstat_pos = rxst_ring->rsr_index & ET_RXSTAT_POS_INDEX_MASK;
if (rxst_ring->rsr_wrap)
rxstat_pos |= ET_RXSTAT_POS_WRAP;
CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
if (ring_idx >= ET_RX_NRING) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
if_printf(ifp, "invalid ring index %d\n", ring_idx);
continue;
}
if (buf_idx >= ET_RX_NDESC) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
if_printf(ifp, "invalid buf index %d\n", buf_idx);
continue;
}
rbd = &sc->sc_rx_data[ring_idx];
m = rbd->rbd_buf[buf_idx].rb_mbuf;
if ((rxst_info1 & ET_RXST_INFO1_OK) == 0){
/* Discard errored frame. */
rbd->rbd_discard(rbd, buf_idx);
} else if (rbd->rbd_newbuf(rbd, buf_idx) != 0) {
/* No available mbufs, discard it. */
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
rbd->rbd_discard(rbd, buf_idx);
} else {
buflen -= ETHER_CRC_LEN;
if (buflen < ETHER_HDR_LEN) {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
} else {
m->m_pkthdr.len = m->m_len = buflen;
m->m_pkthdr.rcvif = ifp;
ET_UNLOCK(sc);
ifp->if_input(ifp, m);
ET_LOCK(sc);
}
}
rx_ring = &sc->sc_rx_ring[ring_idx];
if (buf_idx != rx_ring->rr_index) {
if_printf(ifp,
"WARNING!! ring %d, buf_idx %d, rr_idx %d\n",
ring_idx, buf_idx, rx_ring->rr_index);
}
MPASS(rx_ring->rr_index < ET_RX_NDESC);
if (++rx_ring->rr_index == ET_RX_NDESC) {
rx_ring->rr_index = 0;
rx_ring->rr_wrap ^= 1;
}
rxring_pos = rx_ring->rr_index & ET_RX_RING_POS_INDEX_MASK;
if (rx_ring->rr_wrap)
rxring_pos |= ET_RX_RING_POS_WRAP;
CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
}
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
BUS_DMASYNC_PREREAD);
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
BUS_DMASYNC_PREREAD);
}
static int
et_encap(struct et_softc *sc, struct mbuf **m0)
{
struct et_txdesc_ring *tx_ring;
struct et_txbuf_data *tbd;
struct et_txdesc *td;
struct mbuf *m;
bus_dma_segment_t segs[ET_NSEG_MAX];
bus_dmamap_t map;
uint32_t csum_flags, last_td_ctrl2;
int error, i, idx, first_idx, last_idx, nsegs;
tx_ring = &sc->sc_tx_ring;
MPASS(tx_ring->tr_ready_index < ET_TX_NDESC);
tbd = &sc->sc_tx_data;
first_idx = tx_ring->tr_ready_index;
map = tbd->tbd_buf[first_idx].tb_dmap;
error = bus_dmamap_load_mbuf_sg(sc->sc_tx_tag, map, *m0, segs, &nsegs,
0);
if (error == EFBIG) {
m = m_collapse(*m0, M_NOWAIT, ET_NSEG_MAX);
if (m == NULL) {
m_freem(*m0);
*m0 = NULL;
return (ENOMEM);
}
*m0 = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_tx_tag, map, *m0, segs,
&nsegs, 0);
if (error != 0) {
m_freem(*m0);
*m0 = NULL;
return (error);
}
} else if (error != 0)
return (error);
/* Check for descriptor overruns. */
if (tbd->tbd_used + nsegs > ET_TX_NDESC - 1) {
bus_dmamap_unload(sc->sc_tx_tag, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_tx_tag, map, BUS_DMASYNC_PREWRITE);
last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
sc->sc_tx += nsegs;
if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
last_td_ctrl2 |= ET_TDCTRL2_INTR;
}
m = *m0;
csum_flags = 0;
if ((m->m_pkthdr.csum_flags & ET_CSUM_FEATURES) != 0) {
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
csum_flags |= ET_TDCTRL2_CSUM_IP;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
csum_flags |= ET_TDCTRL2_CSUM_UDP;
else if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
csum_flags |= ET_TDCTRL2_CSUM_TCP;
}
last_idx = -1;
for (i = 0; i < nsegs; ++i) {
idx = (first_idx + i) % ET_TX_NDESC;
td = &tx_ring->tr_desc[idx];
td->td_addr_hi = htole32(ET_ADDR_HI(segs[i].ds_addr));
td->td_addr_lo = htole32(ET_ADDR_LO(segs[i].ds_addr));
td->td_ctrl1 = htole32(segs[i].ds_len & ET_TDCTRL1_LEN_MASK);
if (i == nsegs - 1) {
/* Last frag */
td->td_ctrl2 = htole32(last_td_ctrl2 | csum_flags);
last_idx = idx;
} else
td->td_ctrl2 = htole32(csum_flags);
MPASS(tx_ring->tr_ready_index < ET_TX_NDESC);
if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
tx_ring->tr_ready_index = 0;
tx_ring->tr_ready_wrap ^= 1;
}
}
td = &tx_ring->tr_desc[first_idx];
/* First frag */
td->td_ctrl2 |= htole32(ET_TDCTRL2_FIRST_FRAG);
MPASS(last_idx >= 0);
tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
tbd->tbd_buf[last_idx].tb_dmap = map;
tbd->tbd_buf[last_idx].tb_mbuf = m;
tbd->tbd_used += nsegs;
MPASS(tbd->tbd_used <= ET_TX_NDESC);
return (0);
}
static void
et_txeof(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring;
struct et_txbuf_data *tbd;
struct et_txbuf *tb;
struct ifnet *ifp;
uint32_t tx_done;
int end, wrap;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
tx_ring = &sc->sc_tx_ring;
tbd = &sc->sc_tx_data;
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
return;
if (tbd->tbd_used == 0)
return;
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
BUS_DMASYNC_POSTWRITE);
tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
end = tx_done & ET_TX_DONE_POS_INDEX_MASK;
wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
MPASS(tbd->tbd_start_index < ET_TX_NDESC);
tb = &tbd->tbd_buf[tbd->tbd_start_index];
if (tb->tb_mbuf != NULL) {
bus_dmamap_sync(sc->sc_tx_tag, tb->tb_dmap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tx_tag, tb->tb_dmap);
m_freem(tb->tb_mbuf);
tb->tb_mbuf = NULL;
}
if (++tbd->tbd_start_index == ET_TX_NDESC) {
tbd->tbd_start_index = 0;
tbd->tbd_start_wrap ^= 1;
}
MPASS(tbd->tbd_used > 0);
tbd->tbd_used--;
}
if (tbd->tbd_used == 0)
sc->watchdog_timer = 0;
if (tbd->tbd_used + ET_NSEG_SPARE < ET_TX_NDESC)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
et_tick(void *xsc)
{
struct et_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
sc = xsc;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
mii = device_get_softc(sc->sc_miibus);
mii_tick(mii);
et_stats_update(sc);
if (et_watchdog(sc) == EJUSTRETURN)
return;
callout_reset(&sc->sc_tick, hz, et_tick, sc);
}
static int
et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx)
{
struct et_softc *sc;
struct et_rxdesc *desc;
struct et_rxbuf *rb;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t dmap;
int nsegs;
MPASS(buf_idx < ET_RX_NDESC);
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
sc = rbd->rbd_softc;
rb = &rbd->rbd_buf[buf_idx];
if (bus_dmamap_load_mbuf_sg(sc->sc_rx_tag, sc->sc_rx_sparemap, m,
segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rb->rb_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rx_tag, rb->rb_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rx_tag, rb->rb_dmap);
}
dmap = rb->rb_dmap;
rb->rb_dmap = sc->sc_rx_sparemap;
sc->sc_rx_sparemap = dmap;
bus_dmamap_sync(sc->sc_rx_tag, rb->rb_dmap, BUS_DMASYNC_PREREAD);
rb->rb_mbuf = m;
desc = &rbd->rbd_ring->rr_desc[buf_idx];
desc->rd_addr_hi = htole32(ET_ADDR_HI(segs[0].ds_addr));
desc->rd_addr_lo = htole32(ET_ADDR_LO(segs[0].ds_addr));
desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK);
bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap,
BUS_DMASYNC_PREWRITE);
return (0);
}
static void
et_rxbuf_discard(struct et_rxbuf_data *rbd, int buf_idx)
{
struct et_rxdesc *desc;
desc = &rbd->rbd_ring->rr_desc[buf_idx];
desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK);
bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap,
BUS_DMASYNC_PREWRITE);
}
static int
et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx)
{
struct et_softc *sc;
struct et_rxdesc *desc;
struct et_rxbuf *rb;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t dmap;
int nsegs;
MPASS(buf_idx < ET_RX_NDESC);
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MHLEN;
m_adj(m, ETHER_ALIGN);
sc = rbd->rbd_softc;
rb = &rbd->rbd_buf[buf_idx];
if (bus_dmamap_load_mbuf_sg(sc->sc_rx_mini_tag, sc->sc_rx_mini_sparemap,
m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rb->rb_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rx_mini_tag, rb->rb_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rx_mini_tag, rb->rb_dmap);
}
dmap = rb->rb_dmap;
rb->rb_dmap = sc->sc_rx_mini_sparemap;
sc->sc_rx_mini_sparemap = dmap;
bus_dmamap_sync(sc->sc_rx_mini_tag, rb->rb_dmap, BUS_DMASYNC_PREREAD);
rb->rb_mbuf = m;
desc = &rbd->rbd_ring->rr_desc[buf_idx];
desc->rd_addr_hi = htole32(ET_ADDR_HI(segs[0].ds_addr));
desc->rd_addr_lo = htole32(ET_ADDR_LO(segs[0].ds_addr));
desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK);
bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap,
BUS_DMASYNC_PREWRITE);
return (0);
}
#define ET_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
#define ET_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
/*
* Create sysctl tree
*/
static void
et_add_sysctls(struct et_softc * sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children, *parent;
struct sysctl_oid *tree;
struct et_hw_stats *stats;
ctx = device_get_sysctl_ctx(sc->dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_npkts",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_npkts, "I",
"RX IM, # packets per RX interrupt");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_delay",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_delay, "I",
"RX IM, RX interrupt delay (x10 usec)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_intr_nsegs",
CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
"TX IM, # segments per TX interrupt");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "timer",
CTLFLAG_RW, &sc->sc_timer, 0, "TX timer");
tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "ET statistics");
parent = SYSCTL_CHILDREN(tree);
/* TX/RX statistics. */
stats = &sc->sc_stats;
ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_64", &stats->pkts_64,
"0 to 64 bytes frames");
ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_65_127", &stats->pkts_65,
"65 to 127 bytes frames");
ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_128_255", &stats->pkts_128,
"128 to 255 bytes frames");
ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_256_511", &stats->pkts_256,
"256 to 511 bytes frames");
ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_512_1023", &stats->pkts_512,
"512 to 1023 bytes frames");
ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_1024_1518", &stats->pkts_1024,
"1024 to 1518 bytes frames");
ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_1519_1522", &stats->pkts_1519,
"1519 to 1522 bytes frames");
/* RX statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "RX MAC statistics");
children = SYSCTL_CHILDREN(tree);
ET_SYSCTL_STAT_ADD64(ctx, children, "bytes",
&stats->rx_bytes, "Good bytes");
ET_SYSCTL_STAT_ADD64(ctx, children, "frames",
&stats->rx_frames, "Good frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "crc_errs",
&stats->rx_crcerrs, "CRC errors");
ET_SYSCTL_STAT_ADD64(ctx, children, "mcast_frames",
&stats->rx_mcast, "Multicast frames");
ET_SYSCTL_STAT_ADD64(ctx, children, "bcast_frames",
&stats->rx_bcast, "Broadcast frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "control",
&stats->rx_control, "Control frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "pause",
&stats->rx_pause, "Pause frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "unknown_control",
&stats->rx_unknown_control, "Unknown control frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "align_errs",
&stats->rx_alignerrs, "Alignment errors");
ET_SYSCTL_STAT_ADD32(ctx, children, "len_errs",
&stats->rx_lenerrs, "Frames with length mismatched");
ET_SYSCTL_STAT_ADD32(ctx, children, "code_errs",
&stats->rx_codeerrs, "Frames with code error");
ET_SYSCTL_STAT_ADD32(ctx, children, "cs_errs",
&stats->rx_cserrs, "Frames with carrier sense error");
ET_SYSCTL_STAT_ADD32(ctx, children, "runts",
&stats->rx_runts, "Too short frames");
ET_SYSCTL_STAT_ADD64(ctx, children, "oversize",
&stats->rx_oversize, "Oversized frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "fragments",
&stats->rx_fragments, "Fragmented frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "jabbers",
&stats->rx_jabbers, "Frames with jabber error");
ET_SYSCTL_STAT_ADD32(ctx, children, "drop",
&stats->rx_drop, "Dropped frames");
/* TX statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "TX MAC statistics");
children = SYSCTL_CHILDREN(tree);
ET_SYSCTL_STAT_ADD64(ctx, children, "bytes",
&stats->tx_bytes, "Good bytes");
ET_SYSCTL_STAT_ADD64(ctx, children, "frames",
&stats->tx_frames, "Good frames");
ET_SYSCTL_STAT_ADD64(ctx, children, "mcast_frames",
&stats->tx_mcast, "Multicast frames");
ET_SYSCTL_STAT_ADD64(ctx, children, "bcast_frames",
&stats->tx_bcast, "Broadcast frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "pause",
&stats->tx_pause, "Pause frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "deferred",
&stats->tx_deferred, "Deferred frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "excess_deferred",
&stats->tx_excess_deferred, "Excessively deferred frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "single_colls",
&stats->tx_single_colls, "Single collisions");
ET_SYSCTL_STAT_ADD32(ctx, children, "multi_colls",
&stats->tx_multi_colls, "Multiple collisions");
ET_SYSCTL_STAT_ADD32(ctx, children, "late_colls",
&stats->tx_late_colls, "Late collisions");
ET_SYSCTL_STAT_ADD32(ctx, children, "excess_colls",
&stats->tx_excess_colls, "Excess collisions");
ET_SYSCTL_STAT_ADD32(ctx, children, "total_colls",
&stats->tx_total_colls, "Total collisions");
ET_SYSCTL_STAT_ADD32(ctx, children, "pause_honored",
&stats->tx_pause_honored, "Honored pause frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "drop",
&stats->tx_drop, "Dropped frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "jabbers",
&stats->tx_jabbers, "Frames with jabber errors");
ET_SYSCTL_STAT_ADD32(ctx, children, "crc_errs",
&stats->tx_crcerrs, "Frames with CRC errors");
ET_SYSCTL_STAT_ADD32(ctx, children, "control",
&stats->tx_control, "Control frames");
ET_SYSCTL_STAT_ADD64(ctx, children, "oversize",
&stats->tx_oversize, "Oversized frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "undersize",
&stats->tx_undersize, "Undersized frames");
ET_SYSCTL_STAT_ADD32(ctx, children, "fragments",
&stats->tx_fragments, "Fragmented frames");
}
#undef ET_SYSCTL_STAT_ADD32
#undef ET_SYSCTL_STAT_ADD64
static int
et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
{
struct et_softc *sc;
struct ifnet *ifp;
int error, v;
sc = arg1;
ifp = sc->ifp;
v = sc->sc_rx_intr_npkts;
error = sysctl_handle_int(oidp, &v, 0, req);
if (error || req->newptr == NULL)
goto back;
if (v <= 0) {
error = EINVAL;
goto back;
}
if (sc->sc_rx_intr_npkts != v) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
sc->sc_rx_intr_npkts = v;
}
back:
return (error);
}
static int
et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
{
struct et_softc *sc;
struct ifnet *ifp;
int error, v;
sc = arg1;
ifp = sc->ifp;
v = sc->sc_rx_intr_delay;
error = sysctl_handle_int(oidp, &v, 0, req);
if (error || req->newptr == NULL)
goto back;
if (v <= 0) {
error = EINVAL;
goto back;
}
if (sc->sc_rx_intr_delay != v) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
sc->sc_rx_intr_delay = v;
}
back:
return (error);
}
static void
et_stats_update(struct et_softc *sc)
{
struct et_hw_stats *stats;
stats = &sc->sc_stats;
stats->pkts_64 += CSR_READ_4(sc, ET_STAT_PKTS_64);
stats->pkts_65 += CSR_READ_4(sc, ET_STAT_PKTS_65_127);
stats->pkts_128 += CSR_READ_4(sc, ET_STAT_PKTS_128_255);
stats->pkts_256 += CSR_READ_4(sc, ET_STAT_PKTS_256_511);
stats->pkts_512 += CSR_READ_4(sc, ET_STAT_PKTS_512_1023);
stats->pkts_1024 += CSR_READ_4(sc, ET_STAT_PKTS_1024_1518);
stats->pkts_1519 += CSR_READ_4(sc, ET_STAT_PKTS_1519_1522);
stats->rx_bytes += CSR_READ_4(sc, ET_STAT_RX_BYTES);
stats->rx_frames += CSR_READ_4(sc, ET_STAT_RX_FRAMES);
stats->rx_crcerrs += CSR_READ_4(sc, ET_STAT_RX_CRC_ERR);
stats->rx_mcast += CSR_READ_4(sc, ET_STAT_RX_MCAST);
stats->rx_bcast += CSR_READ_4(sc, ET_STAT_RX_BCAST);
stats->rx_control += CSR_READ_4(sc, ET_STAT_RX_CTL);
stats->rx_pause += CSR_READ_4(sc, ET_STAT_RX_PAUSE);
stats->rx_unknown_control += CSR_READ_4(sc, ET_STAT_RX_UNKNOWN_CTL);
stats->rx_alignerrs += CSR_READ_4(sc, ET_STAT_RX_ALIGN_ERR);
stats->rx_lenerrs += CSR_READ_4(sc, ET_STAT_RX_LEN_ERR);
stats->rx_codeerrs += CSR_READ_4(sc, ET_STAT_RX_CODE_ERR);
stats->rx_cserrs += CSR_READ_4(sc, ET_STAT_RX_CS_ERR);
stats->rx_runts += CSR_READ_4(sc, ET_STAT_RX_RUNT);
stats->rx_oversize += CSR_READ_4(sc, ET_STAT_RX_OVERSIZE);
stats->rx_fragments += CSR_READ_4(sc, ET_STAT_RX_FRAG);
stats->rx_jabbers += CSR_READ_4(sc, ET_STAT_RX_JABBER);
stats->rx_drop += CSR_READ_4(sc, ET_STAT_RX_DROP);
stats->tx_bytes += CSR_READ_4(sc, ET_STAT_TX_BYTES);
stats->tx_frames += CSR_READ_4(sc, ET_STAT_TX_FRAMES);
stats->tx_mcast += CSR_READ_4(sc, ET_STAT_TX_MCAST);
stats->tx_bcast += CSR_READ_4(sc, ET_STAT_TX_BCAST);
stats->tx_pause += CSR_READ_4(sc, ET_STAT_TX_PAUSE);
stats->tx_deferred += CSR_READ_4(sc, ET_STAT_TX_DEFER);
stats->tx_excess_deferred += CSR_READ_4(sc, ET_STAT_TX_EXCESS_DEFER);
stats->tx_single_colls += CSR_READ_4(sc, ET_STAT_TX_SINGLE_COL);
stats->tx_multi_colls += CSR_READ_4(sc, ET_STAT_TX_MULTI_COL);
stats->tx_late_colls += CSR_READ_4(sc, ET_STAT_TX_LATE_COL);
stats->tx_excess_colls += CSR_READ_4(sc, ET_STAT_TX_EXCESS_COL);
stats->tx_total_colls += CSR_READ_4(sc, ET_STAT_TX_TOTAL_COL);
stats->tx_pause_honored += CSR_READ_4(sc, ET_STAT_TX_PAUSE_HONOR);
stats->tx_drop += CSR_READ_4(sc, ET_STAT_TX_DROP);
stats->tx_jabbers += CSR_READ_4(sc, ET_STAT_TX_JABBER);
stats->tx_crcerrs += CSR_READ_4(sc, ET_STAT_TX_CRC_ERR);
stats->tx_control += CSR_READ_4(sc, ET_STAT_TX_CTL);
stats->tx_oversize += CSR_READ_4(sc, ET_STAT_TX_OVERSIZE);
stats->tx_undersize += CSR_READ_4(sc, ET_STAT_TX_UNDERSIZE);
stats->tx_fragments += CSR_READ_4(sc, ET_STAT_TX_FRAG);
}
static uint64_t
et_get_counter(struct ifnet *ifp, ift_counter cnt)
{
struct et_softc *sc;
struct et_hw_stats *stats;
sc = if_getsoftc(ifp);
stats = &sc->sc_stats;
switch (cnt) {
case IFCOUNTER_OPACKETS:
return (stats->tx_frames);
case IFCOUNTER_COLLISIONS:
return (stats->tx_total_colls);
case IFCOUNTER_OERRORS:
return (stats->tx_drop + stats->tx_jabbers +
stats->tx_crcerrs + stats->tx_excess_deferred +
stats->tx_late_colls);
case IFCOUNTER_IPACKETS:
return (stats->rx_frames);
case IFCOUNTER_IERRORS:
return (stats->rx_crcerrs + stats->rx_alignerrs +
stats->rx_lenerrs + stats->rx_codeerrs + stats->rx_cserrs +
stats->rx_runts + stats->rx_jabbers + stats->rx_drop);
default:
return (if_get_counter_default(ifp, cnt));
}
}
static int
et_suspend(device_t dev)
{
struct et_softc *sc;
uint32_t pmcfg;
sc = device_get_softc(dev);
ET_LOCK(sc);
if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
et_stop(sc);
/* Diable all clocks and put PHY into COMA. */
pmcfg = CSR_READ_4(sc, ET_PM);
pmcfg &= ~(EM_PM_GIGEPHY_ENB | ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE |
ET_PM_RXCLK_GATE);
pmcfg |= ET_PM_PHY_SW_COMA;
CSR_WRITE_4(sc, ET_PM, pmcfg);
ET_UNLOCK(sc);
return (0);
}
static int
et_resume(device_t dev)
{
struct et_softc *sc;
uint32_t pmcfg;
sc = device_get_softc(dev);
ET_LOCK(sc);
/* Take PHY out of COMA and enable clocks. */
pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE;
if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
pmcfg |= EM_PM_GIGEPHY_ENB;
CSR_WRITE_4(sc, ET_PM, pmcfg);
if ((sc->ifp->if_flags & IFF_UP) != 0)
et_init_locked(sc);
ET_UNLOCK(sc);
return (0);
}