freebsd-nq/sys/cam/cam_iosched.c
Warner Losh d900ade516 NVME trim clocking
Add the ability to set two goals for trims in the I/O scheduler. The
first goal is the number of BIO_DELETEs to accumulate
(kern.cam.XX.U.trim_goal). When non-zero, this many trims will be
accumulated before we start to transfer them to lower layers. This is
useful for devices that like to get lots of trims all at once in one
transaction (not all devices are like this, and some vary by workload).

The second is a number of ticks to defer trims. If you've set a trim
goal, then kern.cam.XX.U.trim_ticks controls how long the system will
defer those trims before timing out and sending them anyway. It has no
effect when trim_goal is 0.

In any event, a BIO_FLUSH will cause all the TRIMs to be released to
the periph drivers. This may be a minor overloading of what BIO_FLUSH
is supposed to mean, but it's useful to preserve other ordering
semantics that users of BIO_FLUSH reply on.

Sponsored by: Netflix, Inc
2018-11-27 00:36:35 +00:00

1890 lines
53 KiB
C

/*-
* CAM IO Scheduler Interface
*
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2015 Netflix, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_cam.h"
#include "opt_ddb.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bio.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h>
#include <cam/cam_iosched.h>
#include <ddb/ddb.h>
static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
"CAM I/O Scheduler buffers");
/*
* Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
* over the bioq_* interface, with notions of separate calls for normal I/O and
* for trims.
*
* When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
* steer the rate of one type of traffic to help other types of traffic (eg
* limit writes when read latency deteriorates on SSDs).
*/
#ifdef CAM_IOSCHED_DYNAMIC
static int do_dynamic_iosched = 1;
TUNABLE_INT("kern.cam.do_dynamic_iosched", &do_dynamic_iosched);
SYSCTL_INT(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD,
&do_dynamic_iosched, 1,
"Enable Dynamic I/O scheduler optimizations.");
/*
* For an EMA, with an alpha of alpha, we know
* alpha = 2 / (N + 1)
* or
* N = 1 + (2 / alpha)
* where N is the number of samples that 86% of the current
* EMA is derived from.
*
* So we invent[*] alpha_bits:
* alpha_bits = -log_2(alpha)
* alpha = 2^-alpha_bits
* So
* N = 1 + 2^(alpha_bits + 1)
*
* The default 9 gives a 1025 lookback for 86% of the data.
* For a brief intro: https://en.wikipedia.org/wiki/Moving_average
*
* [*] Steal from the load average code and many other places.
* Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
*/
static int alpha_bits = 9;
TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
&alpha_bits, 1,
"Bits in EMA's alpha.");
struct iop_stats;
struct cam_iosched_softc;
int iosched_debug = 0;
typedef enum {
none = 0, /* No limits */
queue_depth, /* Limit how many ops we queue to SIM */
iops, /* Limit # of IOPS to the drive */
bandwidth, /* Limit bandwidth to the drive */
limiter_max
} io_limiter;
static const char *cam_iosched_limiter_names[] =
{ "none", "queue_depth", "iops", "bandwidth" };
/*
* Called to initialize the bits of the iop_stats structure relevant to the
* limiter. Called just after the limiter is set.
*/
typedef int l_init_t(struct iop_stats *);
/*
* Called every tick.
*/
typedef int l_tick_t(struct iop_stats *);
/*
* Called to see if the limiter thinks this IOP can be allowed to
* proceed. If so, the limiter assumes that the IOP proceeded
* and makes any accounting of it that's needed.
*/
typedef int l_iop_t(struct iop_stats *, struct bio *);
/*
* Called when an I/O completes so the limiter can update its
* accounting. Pending I/Os may complete in any order (even when
* sent to the hardware at the same time), so the limiter may not
* make any assumptions other than this I/O has completed. If it
* returns 1, then xpt_schedule() needs to be called again.
*/
typedef int l_iodone_t(struct iop_stats *, struct bio *);
static l_iop_t cam_iosched_qd_iop;
static l_iop_t cam_iosched_qd_caniop;
static l_iodone_t cam_iosched_qd_iodone;
static l_init_t cam_iosched_iops_init;
static l_tick_t cam_iosched_iops_tick;
static l_iop_t cam_iosched_iops_caniop;
static l_iop_t cam_iosched_iops_iop;
static l_init_t cam_iosched_bw_init;
static l_tick_t cam_iosched_bw_tick;
static l_iop_t cam_iosched_bw_caniop;
static l_iop_t cam_iosched_bw_iop;
struct limswitch {
l_init_t *l_init;
l_tick_t *l_tick;
l_iop_t *l_iop;
l_iop_t *l_caniop;
l_iodone_t *l_iodone;
} limsw[] =
{
{ /* none */
.l_init = NULL,
.l_tick = NULL,
.l_iop = NULL,
.l_iodone= NULL,
},
{ /* queue_depth */
.l_init = NULL,
.l_tick = NULL,
.l_caniop = cam_iosched_qd_caniop,
.l_iop = cam_iosched_qd_iop,
.l_iodone= cam_iosched_qd_iodone,
},
{ /* iops */
.l_init = cam_iosched_iops_init,
.l_tick = cam_iosched_iops_tick,
.l_caniop = cam_iosched_iops_caniop,
.l_iop = cam_iosched_iops_iop,
.l_iodone= NULL,
},
{ /* bandwidth */
.l_init = cam_iosched_bw_init,
.l_tick = cam_iosched_bw_tick,
.l_caniop = cam_iosched_bw_caniop,
.l_iop = cam_iosched_bw_iop,
.l_iodone= NULL,
},
};
struct iop_stats {
/*
* sysctl state for this subnode.
*/
struct sysctl_ctx_list sysctl_ctx;
struct sysctl_oid *sysctl_tree;
/*
* Information about the current rate limiters, if any
*/
io_limiter limiter; /* How are I/Os being limited */
int min; /* Low range of limit */
int max; /* High range of limit */
int current; /* Current rate limiter */
int l_value1; /* per-limiter scratch value 1. */
int l_value2; /* per-limiter scratch value 2. */
/*
* Debug information about counts of I/Os that have gone through the
* scheduler.
*/
int pending; /* I/Os pending in the hardware */
int queued; /* number currently in the queue */
int total; /* Total for all time -- wraps */
int in; /* number queued all time -- wraps */
int out; /* number completed all time -- wraps */
int errs; /* Number of I/Os completed with error -- wraps */
/*
* Statistics on different bits of the process.
*/
/* Exp Moving Average, see alpha_bits for more details */
sbintime_t ema;
sbintime_t emvar;
sbintime_t sd; /* Last computed sd */
uint32_t state_flags;
#define IOP_RATE_LIMITED 1u
#define LAT_BUCKETS 15 /* < 1ms < 2ms ... < 2^(n-1)ms >= 2^(n-1)ms*/
uint64_t latencies[LAT_BUCKETS];
struct cam_iosched_softc *softc;
};
typedef enum {
set_max = 0, /* current = max */
read_latency, /* Steer read latency by throttling writes */
cl_max /* Keep last */
} control_type;
static const char *cam_iosched_control_type_names[] =
{ "set_max", "read_latency" };
struct control_loop {
/*
* sysctl state for this subnode.
*/
struct sysctl_ctx_list sysctl_ctx;
struct sysctl_oid *sysctl_tree;
sbintime_t next_steer; /* Time of next steer */
sbintime_t steer_interval; /* How often do we steer? */
sbintime_t lolat;
sbintime_t hilat;
int alpha;
control_type type; /* What type of control? */
int last_count; /* Last I/O count */
struct cam_iosched_softc *softc;
};
#endif
struct cam_iosched_softc {
struct bio_queue_head bio_queue;
struct bio_queue_head trim_queue;
/* scheduler flags < 16, user flags >= 16 */
uint32_t flags;
int sort_io_queue;
int trim_goal; /* # of trims to queue before sending */
int trim_ticks; /* Max ticks to hold trims */
int last_trim_tick; /* Last 'tick' time ld a trim */
int queued_trims; /* Number of trims in the queue */
#ifdef CAM_IOSCHED_DYNAMIC
int read_bias; /* Read bias setting */
int current_read_bias; /* Current read bias state */
int total_ticks;
int load; /* EMA of 'load average' of disk / 2^16 */
struct bio_queue_head write_queue;
struct iop_stats read_stats, write_stats, trim_stats;
struct sysctl_ctx_list sysctl_ctx;
struct sysctl_oid *sysctl_tree;
int quanta; /* Number of quanta per second */
struct callout ticker; /* Callout for our quota system */
struct cam_periph *periph; /* cam periph associated with this device */
uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */
sbintime_t last_time; /* Last time we ticked */
struct control_loop cl;
sbintime_t max_lat; /* when != 0, if iop latency > max_lat, call max_lat_fcn */
cam_iosched_latfcn_t latfcn;
void *latarg;
#endif
};
#ifdef CAM_IOSCHED_DYNAMIC
/*
* helper functions to call the limsw functions.
*/
static int
cam_iosched_limiter_init(struct iop_stats *ios)
{
int lim = ios->limiter;
/* maybe this should be a kassert */
if (lim < none || lim >= limiter_max)
return EINVAL;
if (limsw[lim].l_init)
return limsw[lim].l_init(ios);
return 0;
}
static int
cam_iosched_limiter_tick(struct iop_stats *ios)
{
int lim = ios->limiter;
/* maybe this should be a kassert */
if (lim < none || lim >= limiter_max)
return EINVAL;
if (limsw[lim].l_tick)
return limsw[lim].l_tick(ios);
return 0;
}
static int
cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
{
int lim = ios->limiter;
/* maybe this should be a kassert */
if (lim < none || lim >= limiter_max)
return EINVAL;
if (limsw[lim].l_iop)
return limsw[lim].l_iop(ios, bp);
return 0;
}
static int
cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
{
int lim = ios->limiter;
/* maybe this should be a kassert */
if (lim < none || lim >= limiter_max)
return EINVAL;
if (limsw[lim].l_caniop)
return limsw[lim].l_caniop(ios, bp);
return 0;
}
static int
cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
{
int lim = ios->limiter;
/* maybe this should be a kassert */
if (lim < none || lim >= limiter_max)
return 0;
if (limsw[lim].l_iodone)
return limsw[lim].l_iodone(ios, bp);
return 0;
}
/*
* Functions to implement the different kinds of limiters
*/
static int
cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
{
if (ios->current <= 0 || ios->pending < ios->current)
return 0;
return EAGAIN;
}
static int
cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
{
if (ios->current <= 0 || ios->pending < ios->current)
return 0;
return EAGAIN;
}
static int
cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
{
if (ios->current <= 0 || ios->pending != ios->current)
return 0;
return 1;
}
static int
cam_iosched_iops_init(struct iop_stats *ios)
{
ios->l_value1 = ios->current / ios->softc->quanta;
if (ios->l_value1 <= 0)
ios->l_value1 = 1;
ios->l_value2 = 0;
return 0;
}
static int
cam_iosched_iops_tick(struct iop_stats *ios)
{
int new_ios;
/*
* Allow at least one IO per tick until all
* the IOs for this interval have been spent.
*/
new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
if (new_ios < 1 && ios->l_value2 < ios->current) {
new_ios = 1;
ios->l_value2++;
}
/*
* If this a new accounting interval, discard any "unspent" ios
* granted in the previous interval. Otherwise add the new ios to
* the previously granted ones that haven't been spent yet.
*/
if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
ios->l_value1 = new_ios;
ios->l_value2 = 1;
} else {
ios->l_value1 += new_ios;
}
return 0;
}
static int
cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
{
/*
* So if we have any more IOPs left, allow it,
* otherwise wait. If current iops is 0, treat that
* as unlimited as a failsafe.
*/
if (ios->current > 0 && ios->l_value1 <= 0)
return EAGAIN;
return 0;
}
static int
cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
{
int rv;
rv = cam_iosched_limiter_caniop(ios, bp);
if (rv == 0)
ios->l_value1--;
return rv;
}
static int
cam_iosched_bw_init(struct iop_stats *ios)
{
/* ios->current is in kB/s, so scale to bytes */
ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
return 0;
}
static int
cam_iosched_bw_tick(struct iop_stats *ios)
{
int bw;
/*
* If we're in the hole for available quota from
* the last time, then add the quantum for this.
* If we have any left over from last quantum,
* then too bad, that's lost. Also, ios->current
* is in kB/s, so scale.
*
* We also allow up to 4 quanta of credits to
* accumulate to deal with burstiness. 4 is extremely
* arbitrary.
*/
bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
if (ios->l_value1 < bw * 4)
ios->l_value1 += bw;
return 0;
}
static int
cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
{
/*
* So if we have any more bw quota left, allow it,
* otherwise wait. Note, we'll go negative and that's
* OK. We'll just get a little less next quota.
*
* Note on going negative: that allows us to process
* requests in order better, since we won't allow
* shorter reads to get around the long one that we
* don't have the quota to do just yet. It also prevents
* starvation by being a little more permissive about
* what we let through this quantum (to prevent the
* starvation), at the cost of getting a little less
* next quantum.
*
* Also note that if the current limit is <= 0,
* we treat it as unlimited as a failsafe.
*/
if (ios->current > 0 && ios->l_value1 <= 0)
return EAGAIN;
return 0;
}
static int
cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
{
int rv;
rv = cam_iosched_limiter_caniop(ios, bp);
if (rv == 0)
ios->l_value1 -= bp->bio_length;
return rv;
}
static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
static void
cam_iosched_ticker(void *arg)
{
struct cam_iosched_softc *isc = arg;
sbintime_t now, delta;
int pending;
callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
now = sbinuptime();
delta = now - isc->last_time;
isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */
isc->last_time = now;
cam_iosched_cl_maybe_steer(&isc->cl);
cam_iosched_limiter_tick(&isc->read_stats);
cam_iosched_limiter_tick(&isc->write_stats);
cam_iosched_limiter_tick(&isc->trim_stats);
cam_iosched_schedule(isc, isc->periph);
/*
* isc->load is an EMA of the pending I/Os at each tick. The number of
* pending I/Os is the sum of the I/Os queued to the hardware, and those
* in the software queue that could be queued to the hardware if there
* were slots.
*
* ios_stats.pending is a count of requests in the SIM right now for
* each of these types of I/O. So the total pending count is the sum of
* these I/Os and the sum of the queued I/Os still in the software queue
* for those operations that aren't being rate limited at the moment.
*
* The reason for the rate limiting bit is because those I/Os
* aren't part of the software queued load (since we could
* give them to hardware, but choose not to).
*
* Note: due to a bug in counting pending TRIM in the device, we
* don't include them in this count. We count each BIO_DELETE in
* the pending count, but the periph drivers collapse them down
* into one TRIM command. That one trim command gets the completion
* so the counts get off.
*/
pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
!!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
!!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
pending <<= 16;
pending /= isc->periph->path->device->ccbq.total_openings;
isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
isc->total_ticks++;
}
static void
cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
{
clp->next_steer = sbinuptime();
clp->softc = isc;
clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */
clp->lolat = 5 * SBT_1MS;
clp->hilat = 15 * SBT_1MS;
clp->alpha = 20; /* Alpha == gain. 20 = .2 */
clp->type = set_max;
}
static void
cam_iosched_cl_maybe_steer(struct control_loop *clp)
{
struct cam_iosched_softc *isc;
sbintime_t now, lat;
int old;
isc = clp->softc;
now = isc->last_time;
if (now < clp->next_steer)
return;
clp->next_steer = now + clp->steer_interval;
switch (clp->type) {
case set_max:
if (isc->write_stats.current != isc->write_stats.max)
printf("Steering write from %d kBps to %d kBps\n",
isc->write_stats.current, isc->write_stats.max);
isc->read_stats.current = isc->read_stats.max;
isc->write_stats.current = isc->write_stats.max;
isc->trim_stats.current = isc->trim_stats.max;
break;
case read_latency:
old = isc->write_stats.current;
lat = isc->read_stats.ema;
/*
* Simple PLL-like engine. Since we're steering to a range for
* the SP (set point) that makes things a little more
* complicated. In addition, we're not directly controlling our
* PV (process variable), the read latency, but instead are
* manipulating the write bandwidth limit for our MV
* (manipulation variable), analysis of this code gets a bit
* messy. Also, the MV is a very noisy control surface for read
* latency since it is affected by many hidden processes inside
* the device which change how responsive read latency will be
* in reaction to changes in write bandwidth. Unlike the classic
* boiler control PLL. this may result in over-steering while
* the SSD takes its time to react to the new, lower load. This
* is why we use a relatively low alpha of between .1 and .25 to
* compensate for this effect. At .1, it takes ~22 steering
* intervals to back off by a factor of 10. At .2 it only takes
* ~10. At .25 it only takes ~8. However some preliminary data
* from the SSD drives suggests a reasponse time in 10's of
* seconds before latency drops regardless of the new write
* rate. Careful observation will be required to tune this
* effectively.
*
* Also, when there's no read traffic, we jack up the write
* limit too regardless of the last read latency. 10 is
* somewhat arbitrary.
*/
if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
isc->write_stats.current = isc->write_stats.current *
(100 + clp->alpha) / 100; /* Scale up */
else if (lat > clp->hilat)
isc->write_stats.current = isc->write_stats.current *
(100 - clp->alpha) / 100; /* Scale down */
clp->last_count = isc->read_stats.total;
/*
* Even if we don't steer, per se, enforce the min/max limits as
* those may have changed.
*/
if (isc->write_stats.current < isc->write_stats.min)
isc->write_stats.current = isc->write_stats.min;
if (isc->write_stats.current > isc->write_stats.max)
isc->write_stats.current = isc->write_stats.max;
if (old != isc->write_stats.current && iosched_debug)
printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
old, isc->write_stats.current,
(uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
break;
case cl_max:
break;
}
}
#endif
/*
* Trim or similar currently pending completion. Should only be set for
* those drivers wishing only one Trim active at a time.
*/
#define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0)
/* Callout active, and needs to be torn down */
#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
/* Periph drivers set these flags to indicate work */
#define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16)
#ifdef CAM_IOSCHED_DYNAMIC
static void
cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
sbintime_t sim_latency, int cmd, size_t size);
#endif
static inline bool
cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
{
return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
}
static inline bool
cam_iosched_has_io(struct cam_iosched_softc *isc)
{
#ifdef CAM_IOSCHED_DYNAMIC
if (do_dynamic_iosched) {
struct bio *rbp = bioq_first(&isc->bio_queue);
struct bio *wbp = bioq_first(&isc->write_queue);
bool can_write = wbp != NULL &&
cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
bool can_read = rbp != NULL &&
cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
if (iosched_debug > 2) {
printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
}
return can_read || can_write;
}
#endif
return bioq_first(&isc->bio_queue) != NULL;
}
static inline bool
cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
{
/*
* If we've set a trim_goal, then if we exceed that allow trims
* to be passed back to the driver. If we've also set a tick timeout
* allow trims back to the driver. Otherwise, don't allow trims yet.
*/
if (isc->trim_goal > 0) {
if (isc->queued_trims >= isc->trim_goal)
return true;
if (isc->queued_trims > 0 &&
isc->trim_ticks > 0 &&
ticks - isc->last_trim_tick > isc->trim_ticks)
return true;
return false;
}
return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) &&
bioq_first(&isc->trim_queue);
}
#define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \
(isc)->sort_io_queue : cam_sort_io_queues)
static inline bool
cam_iosched_has_work(struct cam_iosched_softc *isc)
{
#ifdef CAM_IOSCHED_DYNAMIC
if (iosched_debug > 2)
printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
cam_iosched_has_more_trim(isc),
cam_iosched_has_flagged_work(isc));
#endif
return cam_iosched_has_io(isc) ||
cam_iosched_has_more_trim(isc) ||
cam_iosched_has_flagged_work(isc);
}
#ifdef CAM_IOSCHED_DYNAMIC
static void
cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
{
ios->limiter = none;
ios->in = 0;
ios->max = ios->current = 300000;
ios->min = 1;
ios->out = 0;
ios->errs = 0;
ios->pending = 0;
ios->queued = 0;
ios->total = 0;
ios->ema = 0;
ios->emvar = 0;
ios->softc = isc;
cam_iosched_limiter_init(ios);
}
static int
cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
{
char buf[16];
struct iop_stats *ios;
struct cam_iosched_softc *isc;
int value, i, error;
const char *p;
ios = arg1;
isc = ios->softc;
value = ios->limiter;
if (value < none || value >= limiter_max)
p = "UNKNOWN";
else
p = cam_iosched_limiter_names[value];
strlcpy(buf, p, sizeof(buf));
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return error;
cam_periph_lock(isc->periph);
for (i = none; i < limiter_max; i++) {
if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
continue;
ios->limiter = i;
error = cam_iosched_limiter_init(ios);
if (error != 0) {
ios->limiter = value;
cam_periph_unlock(isc->periph);
return error;
}
/* Note: disk load averate requires ticker to be always running */
callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
cam_periph_unlock(isc->periph);
return 0;
}
cam_periph_unlock(isc->periph);
return EINVAL;
}
static int
cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
{
char buf[16];
struct control_loop *clp;
struct cam_iosched_softc *isc;
int value, i, error;
const char *p;
clp = arg1;
isc = clp->softc;
value = clp->type;
if (value < none || value >= cl_max)
p = "UNKNOWN";
else
p = cam_iosched_control_type_names[value];
strlcpy(buf, p, sizeof(buf));
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return error;
for (i = set_max; i < cl_max; i++) {
if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
continue;
cam_periph_lock(isc->periph);
clp->type = i;
cam_periph_unlock(isc->periph);
return 0;
}
return EINVAL;
}
static int
cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
{
char buf[16];
sbintime_t value;
int error;
uint64_t us;
value = *(sbintime_t *)arg1;
us = (uint64_t)value / SBT_1US;
snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return error;
us = strtoul(buf, NULL, 10);
if (us == 0)
return EINVAL;
*(sbintime_t *)arg1 = us * SBT_1US;
return 0;
}
static int
cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
{
int i, error;
struct sbuf sb;
uint64_t *latencies;
latencies = arg1;
sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
for (i = 0; i < LAT_BUCKETS - 1; i++)
sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
error = sbuf_finish(&sb);
sbuf_delete(&sb);
return (error);
}
static int
cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
{
int *quanta;
int error, value;
quanta = (unsigned *)arg1;
value = *quanta;
error = sysctl_handle_int(oidp, (int *)&value, 0, req);
if ((error != 0) || (req->newptr == NULL))
return (error);
if (value < 1 || value > hz)
return (EINVAL);
*quanta = value;
return (0);
}
static void
cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
{
struct sysctl_oid_list *n;
struct sysctl_ctx_list *ctx;
ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
CTLFLAG_RD, 0, name);
n = SYSCTL_CHILDREN(ios->sysctl_tree);
ctx = &ios->sysctl_ctx;
SYSCTL_ADD_UQUAD(ctx, n,
OID_AUTO, "ema", CTLFLAG_RD,
&ios->ema,
"Fast Exponentially Weighted Moving Average");
SYSCTL_ADD_UQUAD(ctx, n,
OID_AUTO, "emvar", CTLFLAG_RD,
&ios->emvar,
"Fast Exponentially Weighted Moving Variance");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "pending", CTLFLAG_RD,
&ios->pending, 0,
"Instantaneous # of pending transactions");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "count", CTLFLAG_RD,
&ios->total, 0,
"# of transactions submitted to hardware");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "queued", CTLFLAG_RD,
&ios->queued, 0,
"# of transactions in the queue");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "in", CTLFLAG_RD,
&ios->in, 0,
"# of transactions queued to driver");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "out", CTLFLAG_RD,
&ios->out, 0,
"# of transactions completed (including with error)");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "errs", CTLFLAG_RD,
&ios->errs, 0,
"# of transactions completed with an error");
SYSCTL_ADD_PROC(ctx, n,
OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW,
ios, 0, cam_iosched_limiter_sysctl, "A",
"Current limiting type.");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "min", CTLFLAG_RW,
&ios->min, 0,
"min resource");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "max", CTLFLAG_RW,
&ios->max, 0,
"max resource");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "current", CTLFLAG_RW,
&ios->current, 0,
"current resource");
SYSCTL_ADD_PROC(ctx, n,
OID_AUTO, "latencies", CTLTYPE_STRING | CTLFLAG_RD,
&ios->latencies, 0,
cam_iosched_sysctl_latencies, "A",
"Array of power of 2 latency from 1ms to 1.024s");
}
static void
cam_iosched_iop_stats_fini(struct iop_stats *ios)
{
if (ios->sysctl_tree)
if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
printf("can't remove iosched sysctl stats context\n");
}
static void
cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
{
struct sysctl_oid_list *n;
struct sysctl_ctx_list *ctx;
struct control_loop *clp;
clp = &isc->cl;
clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
CTLFLAG_RD, 0, "Control loop info");
n = SYSCTL_CHILDREN(clp->sysctl_tree);
ctx = &clp->sysctl_ctx;
SYSCTL_ADD_PROC(ctx, n,
OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW,
clp, 0, cam_iosched_control_type_sysctl, "A",
"Control loop algorithm");
SYSCTL_ADD_PROC(ctx, n,
OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW,
&clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
"How often to steer (in us)");
SYSCTL_ADD_PROC(ctx, n,
OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW,
&clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
"Low water mark for Latency (in us)");
SYSCTL_ADD_PROC(ctx, n,
OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW,
&clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
"Hi water mark for Latency (in us)");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "alpha", CTLFLAG_RW,
&clp->alpha, 0,
"Alpha for PLL (x100) aka gain");
}
static void
cam_iosched_cl_sysctl_fini(struct control_loop *clp)
{
if (clp->sysctl_tree)
if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
printf("can't remove iosched sysctl control loop context\n");
}
#endif
/*
* Allocate the iosched structure. This also insulates callers from knowing
* sizeof struct cam_iosched_softc.
*/
int
cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
{
*iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
if (*iscp == NULL)
return ENOMEM;
#ifdef CAM_IOSCHED_DYNAMIC
if (iosched_debug)
printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
#endif
(*iscp)->sort_io_queue = -1;
bioq_init(&(*iscp)->bio_queue);
bioq_init(&(*iscp)->trim_queue);
#ifdef CAM_IOSCHED_DYNAMIC
if (do_dynamic_iosched) {
bioq_init(&(*iscp)->write_queue);
(*iscp)->read_bias = 100;
(*iscp)->current_read_bias = 100;
(*iscp)->quanta = min(hz, 200);
cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
(*iscp)->trim_stats.max = 1; /* Trims are special: one at a time for now */
(*iscp)->last_time = sbinuptime();
callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
(*iscp)->periph = periph;
cam_iosched_cl_init(&(*iscp)->cl, *iscp);
callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
(*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
}
#endif
return 0;
}
/*
* Reclaim all used resources. This assumes that other folks have
* drained the requests in the hardware. Maybe an unwise assumption.
*/
void
cam_iosched_fini(struct cam_iosched_softc *isc)
{
if (isc) {
cam_iosched_flush(isc, NULL, ENXIO);
#ifdef CAM_IOSCHED_DYNAMIC
cam_iosched_iop_stats_fini(&isc->read_stats);
cam_iosched_iop_stats_fini(&isc->write_stats);
cam_iosched_iop_stats_fini(&isc->trim_stats);
cam_iosched_cl_sysctl_fini(&isc->cl);
if (isc->sysctl_tree)
if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
printf("can't remove iosched sysctl stats context\n");
if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
callout_drain(&isc->ticker);
isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
}
#endif
free(isc, M_CAMSCHED);
}
}
/*
* After we're sure we're attaching a device, go ahead and add
* hooks for any sysctl we may wish to honor.
*/
void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
{
struct sysctl_oid_list *n;
n = SYSCTL_CHILDREN(node);
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
&isc->sort_io_queue, 0,
"Sort IO queue to try and optimise disk access patterns");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "trim_goal", CTLFLAG_RW,
&isc->trim_goal, 0,
"Number of trims to try to accumulate before sending to hardware");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "trim_ticks", CTLFLAG_RW,
&isc->trim_goal, 0,
"IO Schedul qaunta to hold back trims for when accumulating");
#ifdef CAM_IOSCHED_DYNAMIC
if (!do_dynamic_iosched)
return;
isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
CTLFLAG_RD, 0, "I/O scheduler statistics");
n = SYSCTL_CHILDREN(isc->sysctl_tree);
ctx = &isc->sysctl_ctx;
cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
cam_iosched_cl_sysctl_init(isc);
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "read_bias", CTLFLAG_RW,
&isc->read_bias, 100,
"How biased towards read should we be independent of limits");
SYSCTL_ADD_PROC(ctx, n,
OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW,
&isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
"How many quanta per second do we slice the I/O up into");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "total_ticks", CTLFLAG_RD,
&isc->total_ticks, 0,
"Total number of ticks we've done");
SYSCTL_ADD_INT(ctx, n,
OID_AUTO, "load", CTLFLAG_RD,
&isc->load, 0,
"scaled load average / 100");
SYSCTL_ADD_U64(ctx, n,
OID_AUTO, "latency_trigger", CTLFLAG_RW,
&isc->max_lat, 0,
"Latency treshold to trigger callbacks");
#endif
}
void
cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
cam_iosched_latfcn_t fnp, void *argp)
{
#ifdef CAM_IOSCHED_DYNAMIC
isc->latfcn = fnp;
isc->latarg = argp;
#endif
}
/*
* Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
* that will be queued up before iosched will "release" the trims to the client
* driver to wo with what they will (usually combine as many as possible). If we
* don't get this many, after trim_ticks we'll submit the I/O anyway with
* whatever we have. We do need an I/O of some kind of to clock the deferred
* trims out to disk. Since we will eventually get a write for the super block
* or something before we shutdown, the trims will complete. To be safe, when a
* BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
* enough in the past so we'll present the BIO_DELETEs to the client driver.
* There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
* and then a BIO_DELETE is sent down. No know client does this, and there's
* already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
* but no client depends on the ordering being honored.
*
* XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
* flushing on shutdown. I think there's bufs that would be dependent on the BIO
* finishing to write out at least metadata, so we'll be fine. To be safe, keep
* the number of ticks low (less than maybe 10s) to avoid shutdown races.
*/
void
cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
{
isc->trim_goal = goal;
}
void
cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
{
isc->trim_ticks = trim_ticks;
}
/*
* Flush outstanding I/O. Consumers of this library don't know all the
* queues we may keep, so this allows all I/O to be flushed in one
* convenient call.
*/
void
cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
{
bioq_flush(&isc->bio_queue, stp, err);
bioq_flush(&isc->trim_queue, stp, err);
#ifdef CAM_IOSCHED_DYNAMIC
if (do_dynamic_iosched)
bioq_flush(&isc->write_queue, stp, err);
#endif
}
#ifdef CAM_IOSCHED_DYNAMIC
static struct bio *
cam_iosched_get_write(struct cam_iosched_softc *isc)
{
struct bio *bp;
/*
* We control the write rate by controlling how many requests we send
* down to the drive at any one time. Fewer requests limits the
* effects of both starvation when the requests take a while and write
* amplification when each request is causing more than one write to
* the NAND media. Limiting the queue depth like this will also limit
* the write throughput and give and reads that want to compete to
* compete unfairly.
*/
bp = bioq_first(&isc->write_queue);
if (bp == NULL) {
if (iosched_debug > 3)
printf("No writes present in write_queue\n");
return NULL;
}
/*
* If pending read, prefer that based on current read bias
* setting.
*/
if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
if (iosched_debug)
printf(
"Reads present and current_read_bias is %d queued "
"writes %d queued reads %d\n",
isc->current_read_bias, isc->write_stats.queued,
isc->read_stats.queued);
isc->current_read_bias--;
/* We're not limiting writes, per se, just doing reads first */
return NULL;
}
/*
* See if our current limiter allows this I/O.
*/
if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
if (iosched_debug)
printf("Can't write because limiter says no.\n");
isc->write_stats.state_flags |= IOP_RATE_LIMITED;
return NULL;
}
/*
* Let's do this: We've passed all the gates and we're a go
* to schedule the I/O in the SIM.
*/
isc->current_read_bias = isc->read_bias;
bioq_remove(&isc->write_queue, bp);
if (bp->bio_cmd == BIO_WRITE) {
isc->write_stats.queued--;
isc->write_stats.total++;
isc->write_stats.pending++;
}
if (iosched_debug > 9)
printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
return bp;
}
#endif
/*
* Put back a trim that you weren't able to actually schedule this time.
*/
void
cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
{
bioq_insert_head(&isc->trim_queue, bp);
if (isc->queued_trims == 0)
isc->last_trim_tick = ticks;
isc->queued_trims++;
#ifdef CAM_IOSCHED_DYNAMIC
isc->trim_stats.queued++;
isc->trim_stats.total--; /* since we put it back, don't double count */
isc->trim_stats.pending--;
#endif
}
/*
* gets the next trim from the trim queue.
*
* Assumes we're called with the periph lock held. It removes this
* trim from the queue and the device must explicitly reinsert it
* should the need arise.
*/
struct bio *
cam_iosched_next_trim(struct cam_iosched_softc *isc)
{
struct bio *bp;
bp = bioq_first(&isc->trim_queue);
if (bp == NULL)
return NULL;
bioq_remove(&isc->trim_queue, bp);
isc->queued_trims--;
isc->last_trim_tick = ticks; /* Reset the tick timer when we take trims */
#ifdef CAM_IOSCHED_DYNAMIC
isc->trim_stats.queued--;
isc->trim_stats.total++;
isc->trim_stats.pending++;
#endif
return bp;
}
/*
* gets an available trim from the trim queue, if there's no trim
* already pending. It removes this trim from the queue and the device
* must explicitly reinsert it should the need arise.
*
* Assumes we're called with the periph lock held.
*/
struct bio *
cam_iosched_get_trim(struct cam_iosched_softc *isc)
{
if (!cam_iosched_has_more_trim(isc))
return NULL;
#ifdef CAM_IOSCHED_DYNAMIC
/*
* If pending read, prefer that based on current read bias setting. The
* read bias is shared for both writes and TRIMs, but on TRIMs the bias
* is for a combined TRIM not a single TRIM request that's come in.
*/
if (do_dynamic_iosched) {
if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
if (iosched_debug)
printf("Reads present and current_read_bias is %d"
" queued trims %d queued reads %d\n",
isc->current_read_bias, isc->trim_stats.queued,
isc->read_stats.queued);
isc->current_read_bias--;
/* We're not limiting TRIMS, per se, just doing reads first */
return NULL;
}
/*
* We're going to do a trim, so reset the bias.
*/
isc->current_read_bias = isc->read_bias;
}
#endif
return cam_iosched_next_trim(isc);
}
/*
* Determine what the next bit of work to do is for the periph. The
* default implementation looks to see if we have trims to do, but no
* trims outstanding. If so, we do that. Otherwise we see if we have
* other work. If we do, then we do that. Otherwise why were we called?
*/
struct bio *
cam_iosched_next_bio(struct cam_iosched_softc *isc)
{
struct bio *bp;
/*
* See if we have a trim that can be scheduled. We can only send one
* at a time down, so this takes that into account.
*
* XXX newer TRIM commands are queueable. Revisit this when we
* implement them.
*/
if ((bp = cam_iosched_get_trim(isc)) != NULL)
return bp;
#ifdef CAM_IOSCHED_DYNAMIC
/*
* See if we have any pending writes, and room in the queue for them,
* and if so, those are next.
*/
if (do_dynamic_iosched) {
if ((bp = cam_iosched_get_write(isc)) != NULL)
return bp;
}
#endif
/*
* next, see if there's other, normal I/O waiting. If so return that.
*/
if ((bp = bioq_first(&isc->bio_queue)) == NULL)
return NULL;
#ifdef CAM_IOSCHED_DYNAMIC
/*
* For the dynamic scheduler, bio_queue is only for reads, so enforce
* the limits here. Enforce only for reads.
*/
if (do_dynamic_iosched) {
if (bp->bio_cmd == BIO_READ &&
cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
isc->read_stats.state_flags |= IOP_RATE_LIMITED;
return NULL;
}
}
isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
#endif
bioq_remove(&isc->bio_queue, bp);
#ifdef CAM_IOSCHED_DYNAMIC
if (do_dynamic_iosched) {
if (bp->bio_cmd == BIO_READ) {
isc->read_stats.queued--;
isc->read_stats.total++;
isc->read_stats.pending++;
} else
printf("Found bio_cmd = %#x\n", bp->bio_cmd);
}
if (iosched_debug > 9)
printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
#endif
return bp;
}
/*
* Driver has been given some work to do by the block layer. Tell the
* scheduler about it and have it queue the work up. The scheduler module
* will then return the currently most useful bit of work later, possibly
* deferring work for various reasons.
*/
void
cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
{
/*
* If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
* set the last tick time to one less than the current ticks minus the
* delay to force the BIO_DELETEs to be presented to the client driver.
*/
if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
isc->last_trim_tick = ticks - isc->trim_ticks - 1;
/*
* Put all trims on the trim queue. Otherwise put the work on the bio
* queue.
*/
if (bp->bio_cmd == BIO_DELETE) {
bioq_insert_tail(&isc->trim_queue, bp);
if (isc->queued_trims == 0)
isc->last_trim_tick = ticks;
isc->queued_trims++;
#ifdef CAM_IOSCHED_DYNAMIC
isc->trim_stats.in++;
isc->trim_stats.queued++;
#endif
}
#ifdef CAM_IOSCHED_DYNAMIC
else if (do_dynamic_iosched && (bp->bio_cmd != BIO_READ)) {
if (cam_iosched_sort_queue(isc))
bioq_disksort(&isc->write_queue, bp);
else
bioq_insert_tail(&isc->write_queue, bp);
if (iosched_debug > 9)
printf("Qw : %p %#x\n", bp, bp->bio_cmd);
if (bp->bio_cmd == BIO_WRITE) {
isc->write_stats.in++;
isc->write_stats.queued++;
}
}
#endif
else {
if (cam_iosched_sort_queue(isc))
bioq_disksort(&isc->bio_queue, bp);
else
bioq_insert_tail(&isc->bio_queue, bp);
#ifdef CAM_IOSCHED_DYNAMIC
if (iosched_debug > 9)
printf("Qr : %p %#x\n", bp, bp->bio_cmd);
if (bp->bio_cmd == BIO_READ) {
isc->read_stats.in++;
isc->read_stats.queued++;
} else if (bp->bio_cmd == BIO_WRITE) {
isc->write_stats.in++;
isc->write_stats.queued++;
}
#endif
}
}
/*
* If we have work, get it scheduled. Called with the periph lock held.
*/
void
cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
{
if (cam_iosched_has_work(isc))
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
}
/*
* Complete a trim request. Mark that we no longer have one in flight.
*/
void
cam_iosched_trim_done(struct cam_iosched_softc *isc)
{
isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
}
/*
* Complete a bio. Called before we release the ccb with xpt_release_ccb so we
* might use notes in the ccb for statistics.
*/
int
cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
union ccb *done_ccb)
{
int retval = 0;
#ifdef CAM_IOSCHED_DYNAMIC
if (!do_dynamic_iosched)
return retval;
if (iosched_debug > 10)
printf("done: %p %#x\n", bp, bp->bio_cmd);
if (bp->bio_cmd == BIO_WRITE) {
retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
if ((bp->bio_flags & BIO_ERROR) != 0)
isc->write_stats.errs++;
isc->write_stats.out++;
isc->write_stats.pending--;
} else if (bp->bio_cmd == BIO_READ) {
retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
if ((bp->bio_flags & BIO_ERROR) != 0)
isc->read_stats.errs++;
isc->read_stats.out++;
isc->read_stats.pending--;
} else if (bp->bio_cmd == BIO_DELETE) {
if ((bp->bio_flags & BIO_ERROR) != 0)
isc->trim_stats.errs++;
isc->trim_stats.out++;
isc->trim_stats.pending--;
} else if (bp->bio_cmd != BIO_FLUSH) {
if (iosched_debug)
printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
}
if (!(bp->bio_flags & BIO_ERROR) && done_ccb != NULL) {
sbintime_t sim_latency;
sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
cam_iosched_io_metric_update(isc, sim_latency,
bp->bio_cmd, bp->bio_bcount);
/*
* Debugging code: allow callbacks to the periph driver when latency max
* is exceeded. This can be useful for triggering external debugging actions.
*/
if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
isc->latfcn(isc->latarg, sim_latency, bp);
}
#endif
return retval;
}
/*
* Tell the io scheduler that you've pushed a trim down into the sim.
* This also tells the I/O scheduler not to push any more trims down, so
* some periphs do not call it if they can cope with multiple trims in flight.
*/
void
cam_iosched_submit_trim(struct cam_iosched_softc *isc)
{
isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
}
/*
* Change the sorting policy hint for I/O transactions for this device.
*/
void
cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
{
isc->sort_io_queue = val;
}
int
cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
{
return isc->flags & flags;
}
void
cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
{
isc->flags |= flags;
}
void
cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
{
isc->flags &= ~flags;
}
#ifdef CAM_IOSCHED_DYNAMIC
/*
* After the method presented in Jack Crenshaw's 1998 article "Integer
* Square Roots," reprinted at
* http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
* and well worth the read. Briefly, we find the power of 4 that's the
* largest smaller than val. We then check each smaller power of 4 to
* see if val is still bigger. The right shifts at each step divide
* the result by 2 which after successive application winds up
* accumulating the right answer. It could also have been accumulated
* using a separate root counter, but this code is smaller and faster
* than that method. This method is also integer size invariant.
* It returns floor(sqrt((float)val)), or the largest integer less than
* or equal to the square root.
*/
static uint64_t
isqrt64(uint64_t val)
{
uint64_t res = 0;
uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
/*
* Find the largest power of 4 smaller than val.
*/
while (bit > val)
bit >>= 2;
/*
* Accumulate the answer, one bit at a time (we keep moving
* them over since 2 is the square root of 4 and we test
* powers of 4). We accumulate where we find the bit, but
* the successive shifts land the bit in the right place
* by the end.
*/
while (bit != 0) {
if (val >= res + bit) {
val -= res + bit;
res = (res >> 1) + bit;
} else
res >>= 1;
bit >>= 2;
}
return res;
}
static sbintime_t latencies[LAT_BUCKETS - 1] = {
SBT_1MS << 0,
SBT_1MS << 1,
SBT_1MS << 2,
SBT_1MS << 3,
SBT_1MS << 4,
SBT_1MS << 5,
SBT_1MS << 6,
SBT_1MS << 7,
SBT_1MS << 8,
SBT_1MS << 9,
SBT_1MS << 10,
SBT_1MS << 11,
SBT_1MS << 12,
SBT_1MS << 13 /* 8.192s */
};
static void
cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
{
sbintime_t y, deltasq, delta;
int i;
/*
* Keep counts for latency. We do it by power of two buckets.
* This helps us spot outlier behavior obscured by averages.
*/
for (i = 0; i < LAT_BUCKETS - 1; i++) {
if (sim_latency < latencies[i]) {
iop->latencies[i]++;
break;
}
}
if (i == LAT_BUCKETS - 1)
iop->latencies[i]++; /* Put all > 1024ms values into the last bucket. */
/*
* Classic exponentially decaying average with a tiny alpha
* (2 ^ -alpha_bits). For more info see the NIST statistical
* handbook.
*
* ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist]
* ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
* ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
* alpha = 1 / (1 << alpha_bits)
* sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
* = y_t/b - e/b + be/b
* = (y_t - e + be) / b
* = (e + d) / b
*
* Since alpha is a power of two, we can compute this w/o any mult or
* division.
*
* Variance can also be computed. Usually, it would be expressed as follows:
* diff_t = y_t - ema_t-1
* emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
* = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
* sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
* = e - e/b + dd/b + dd/bb
* = (bbe - be + bdd + dd) / bb
* = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
*/
/*
* XXX possible numeric issues
* o We assume right shifted integers do the right thing, since that's
* implementation defined. You can change the right shifts to / (1LL << alpha).
* o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
* for emvar. This puts a ceiling of 13 bits on alpha since we need a
* few tens of seconds of representation.
* o We mitigate alpha issues by never setting it too high.
*/
y = sim_latency;
delta = (y - iop->ema); /* d */
iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
/*
* Were we to naively plow ahead at this point, we wind up with many numerical
* issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
* us with microsecond level precision in the input, so the same in the
* output. It means we can't overflow deltasq unless delta > 4k seconds. It
* also means that emvar can be up 46 bits 40 of which are fraction, which
* gives us a way to measure up to ~8s in the SD before the computation goes
* unstable. Even the worst hard disk rarely has > 1s service time in the
* drive. It does mean we have to shift left 12 bits after taking the
* square root to compute the actual standard deviation estimate. This loss of
* precision is preferable to needing int128 types to work. The above numbers
* assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
* so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
*/
delta >>= 12;
deltasq = delta * delta; /* dd */
iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */
((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */
deltasq) /* dd */
>> (2 * alpha_bits); /* div bb */
iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
}
static void
cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
sbintime_t sim_latency, int cmd, size_t size)
{
/* xxx Do we need to scale based on the size of the I/O ? */
switch (cmd) {
case BIO_READ:
cam_iosched_update(&isc->read_stats, sim_latency);
break;
case BIO_WRITE:
cam_iosched_update(&isc->write_stats, sim_latency);
break;
case BIO_DELETE:
cam_iosched_update(&isc->trim_stats, sim_latency);
break;
default:
break;
}
}
#ifdef DDB
static int biolen(struct bio_queue_head *bq)
{
int i = 0;
struct bio *bp;
TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
i++;
}
return i;
}
/*
* Show the internal state of the I/O scheduler.
*/
DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
{
struct cam_iosched_softc *isc;
if (!have_addr) {
db_printf("Need addr\n");
return;
}
isc = (struct cam_iosched_softc *)addr;
db_printf("pending_reads: %d\n", isc->read_stats.pending);
db_printf("min_reads: %d\n", isc->read_stats.min);
db_printf("max_reads: %d\n", isc->read_stats.max);
db_printf("reads: %d\n", isc->read_stats.total);
db_printf("in_reads: %d\n", isc->read_stats.in);
db_printf("out_reads: %d\n", isc->read_stats.out);
db_printf("queued_reads: %d\n", isc->read_stats.queued);
db_printf("Current Q len %d\n", biolen(&isc->bio_queue));
db_printf("pending_writes: %d\n", isc->write_stats.pending);
db_printf("min_writes: %d\n", isc->write_stats.min);
db_printf("max_writes: %d\n", isc->write_stats.max);
db_printf("writes: %d\n", isc->write_stats.total);
db_printf("in_writes: %d\n", isc->write_stats.in);
db_printf("out_writes: %d\n", isc->write_stats.out);
db_printf("queued_writes: %d\n", isc->write_stats.queued);
db_printf("Current Q len %d\n", biolen(&isc->write_queue));
db_printf("pending_trims: %d\n", isc->trim_stats.pending);
db_printf("min_trims: %d\n", isc->trim_stats.min);
db_printf("max_trims: %d\n", isc->trim_stats.max);
db_printf("trims: %d\n", isc->trim_stats.total);
db_printf("in_trims: %d\n", isc->trim_stats.in);
db_printf("out_trims: %d\n", isc->trim_stats.out);
db_printf("queued_trims: %d\n", isc->trim_stats.queued);
db_printf("Current Q len %d\n", biolen(&isc->trim_queue));
db_printf("read_bias: %d\n", isc->read_bias);
db_printf("current_read_bias: %d\n", isc->current_read_bias);
db_printf("Trim active? %s\n",
(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
}
#endif
#endif