freebsd-nq/sys/powerpc/booke/pmap_64.c
2020-09-01 21:20:08 +00:00

792 lines
20 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2020 Justin Hibbits
* Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
* Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Some hw specific parts of this pmap were derived or influenced
* by NetBSD's ibm4xx pmap module. More generic code is shared with
* a few other pmap modules from the FreeBSD tree.
*/
/*
* VM layout notes:
*
* Kernel and user threads run within one common virtual address space
* defined by AS=0.
*
* 64-bit pmap:
* Virtual address space layout:
* -----------------------------
* 0x0000_0000_0000_0000 - 0x3fff_ffff_ffff_ffff : user process
* 0x4000_0000_0000_0000 - 0x7fff_ffff_ffff_ffff : unused
* 0x8000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : mmio region
* 0xc000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff : direct map
* 0xe000_0000_0000_0000 - 0xffff_ffff_ffff_ffff : KVA
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <sys/ktr.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kerneldump.h>
#include <sys/linker.h>
#include <sys/msgbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_kern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_param.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>
#include <vm/uma.h>
#include <machine/_inttypes.h>
#include <machine/cpu.h>
#include <machine/pcb.h>
#include <machine/platform.h>
#include <machine/tlb.h>
#include <machine/spr.h>
#include <machine/md_var.h>
#include <machine/mmuvar.h>
#include <machine/pmap.h>
#include <machine/pte.h>
#include <ddb/ddb.h>
#ifdef DEBUG
#define debugf(fmt, args...) printf(fmt, ##args)
#else
#define debugf(fmt, args...)
#endif
#define PRI0ptrX "016lx"
/**************************************************************************/
/* PMAP */
/**************************************************************************/
unsigned int kernel_pdirs;
static uma_zone_t ptbl_root_zone;
static pte_t ****kernel_ptbl_root;
/*
* Base of the pmap_mapdev() region. On 32-bit it immediately follows the
* userspace address range. On On 64-bit it's far above, at (1 << 63), and
* ranges up to the DMAP, giving 62 bits of PA allowed. This is far larger than
* the widest Book-E address bus, the e6500 has a 40-bit PA space. This allows
* us to map akin to the DMAP, with addresses identical to the PA, offset by the
* base.
*/
#define VM_MAPDEV_BASE 0x8000000000000000
#define VM_MAPDEV_PA_MAX 0x4000000000000000 /* Don't encroach on DMAP */
static void tid_flush(tlbtid_t tid);
static unsigned long ilog2(unsigned long);
/**************************************************************************/
/* Page table management */
/**************************************************************************/
#define PMAP_ROOT_SIZE (sizeof(pte_t****) * PG_ROOT_NENTRIES)
static pte_t *ptbl_alloc(pmap_t pmap, vm_offset_t va,
bool nosleep, bool *is_new);
static void ptbl_hold(pmap_t, pte_t *);
static int ptbl_unhold(pmap_t, vm_offset_t);
static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
static int pte_remove(pmap_t, vm_offset_t, uint8_t);
static pte_t *pte_find(pmap_t, vm_offset_t);
static pte_t *pte_find_next(pmap_t, vm_offset_t *);
static void kernel_pte_alloc(vm_offset_t, vm_offset_t);
/**************************************************************************/
/* Page table related */
/**************************************************************************/
/* Allocate a page, to be used in a page table. */
static vm_offset_t
mmu_booke_alloc_page(pmap_t pmap, unsigned int idx, bool nosleep)
{
vm_page_t m;
int req;
req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO;
while ((m = vm_page_alloc(NULL, idx, req)) == NULL) {
if (nosleep)
return (0);
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
vm_wait(NULL);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
}
if (!(m->flags & PG_ZERO))
/* Zero whole ptbl. */
mmu_booke_zero_page(m);
return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
}
/* Initialize pool of kva ptbl buffers. */
static void
ptbl_init(void)
{
}
/* Get a pointer to a PTE in a page table. */
static __inline pte_t *
pte_find(pmap_t pmap, vm_offset_t va)
{
pte_t ***pdir_l1;
pte_t **pdir;
pte_t *ptbl;
KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
pdir_l1 = pmap->pm_root[PG_ROOT_IDX(va)];
if (pdir_l1 == NULL)
return (NULL);
pdir = pdir_l1[PDIR_L1_IDX(va)];
if (pdir == NULL)
return (NULL);
ptbl = pdir[PDIR_IDX(va)];
return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL);
}
/* Get a pointer to a PTE in a page table, or the next closest (greater) one. */
static __inline pte_t *
pte_find_next(pmap_t pmap, vm_offset_t *pva)
{
vm_offset_t va;
pte_t ****pm_root;
pte_t *pte;
unsigned long i, j, k, l;
KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
va = *pva;
i = PG_ROOT_IDX(va);
j = PDIR_L1_IDX(va);
k = PDIR_IDX(va);
l = PTBL_IDX(va);
pm_root = pmap->pm_root;
/* truncate the VA for later. */
va &= ~((1UL << (PG_ROOT_H + 1)) - 1);
for (; i < PG_ROOT_NENTRIES; i++, j = 0, k = 0, l = 0) {
if (pm_root[i] == 0)
continue;
for (; j < PDIR_L1_NENTRIES; j++, k = 0, l = 0) {
if (pm_root[i][j] == 0)
continue;
for (; k < PDIR_NENTRIES; k++, l = 0) {
if (pm_root[i][j][k] == NULL)
continue;
for (; l < PTBL_NENTRIES; l++) {
pte = &pm_root[i][j][k][l];
if (!PTE_ISVALID(pte))
continue;
*pva = va + PG_ROOT_SIZE * i +
PDIR_L1_SIZE * j +
PDIR_SIZE * k +
PAGE_SIZE * l;
return (pte);
}
}
}
}
return (NULL);
}
static bool
unhold_free_page(pmap_t pmap, vm_page_t m)
{
if (vm_page_unwire_noq(m)) {
vm_page_free_zero(m);
return (true);
}
return (false);
}
static vm_offset_t
get_pgtbl_page(pmap_t pmap, vm_offset_t *ptr_tbl, uint32_t index,
bool nosleep, bool hold_parent, bool *isnew)
{
vm_offset_t page;
vm_page_t m;
page = ptr_tbl[index];
KASSERT(page != 0 || pmap != kernel_pmap,
("NULL page table page found in kernel pmap!"));
if (page == 0) {
page = mmu_booke_alloc_page(pmap, index, nosleep);
if (ptr_tbl[index] == 0) {
*isnew = true;
ptr_tbl[index] = page;
if (hold_parent) {
m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)ptr_tbl));
m->ref_count++;
}
return (page);
}
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS(page));
page = ptr_tbl[index];
vm_page_unwire_noq(m);
vm_page_free_zero(m);
}
*isnew = false;
return (page);
}
/* Allocate page table. */
static pte_t*
ptbl_alloc(pmap_t pmap, vm_offset_t va, bool nosleep, bool *is_new)
{
unsigned int pg_root_idx = PG_ROOT_IDX(va);
unsigned int pdir_l1_idx = PDIR_L1_IDX(va);
unsigned int pdir_idx = PDIR_IDX(va);
vm_offset_t pdir_l1, pdir, ptbl;
/* When holding a parent, no need to hold the root index pages. */
pdir_l1 = get_pgtbl_page(pmap, (vm_offset_t *)pmap->pm_root,
pg_root_idx, nosleep, false, is_new);
if (pdir_l1 == 0)
return (NULL);
pdir = get_pgtbl_page(pmap, (vm_offset_t *)pdir_l1, pdir_l1_idx,
nosleep, !*is_new, is_new);
if (pdir == 0)
return (NULL);
ptbl = get_pgtbl_page(pmap, (vm_offset_t *)pdir, pdir_idx,
nosleep, !*is_new, is_new);
return ((pte_t *)ptbl);
}
/*
* Decrement ptbl pages hold count and attempt to free ptbl pages. Called
* when removing pte entry from ptbl.
*
* Return 1 if ptbl pages were freed.
*/
static int
ptbl_unhold(pmap_t pmap, vm_offset_t va)
{
pte_t *ptbl;
vm_page_t m;
u_int pg_root_idx;
pte_t ***pdir_l1;
u_int pdir_l1_idx;
pte_t **pdir;
u_int pdir_idx;
pg_root_idx = PG_ROOT_IDX(va);
pdir_l1_idx = PDIR_L1_IDX(va);
pdir_idx = PDIR_IDX(va);
KASSERT((pmap != kernel_pmap),
("ptbl_unhold: unholding kernel ptbl!"));
pdir_l1 = pmap->pm_root[pg_root_idx];
pdir = pdir_l1[pdir_l1_idx];
ptbl = pdir[pdir_idx];
/* decrement hold count */
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
if (!unhold_free_page(pmap, m))
return (0);
pdir[pdir_idx] = NULL;
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) pdir));
if (!unhold_free_page(pmap, m))
return (1);
pdir_l1[pdir_l1_idx] = NULL;
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) pdir_l1));
if (!unhold_free_page(pmap, m))
return (1);
pmap->pm_root[pg_root_idx] = NULL;
return (1);
}
/*
* Increment hold count for ptbl pages. This routine is used when new pte
* entry is being inserted into ptbl.
*/
static void
ptbl_hold(pmap_t pmap, pte_t *ptbl)
{
vm_page_t m;
KASSERT((pmap != kernel_pmap),
("ptbl_hold: holding kernel ptbl!"));
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
m->ref_count++;
}
/*
* Clean pte entry, try to free page table page if requested.
*
* Return 1 if ptbl pages were freed, otherwise return 0.
*/
static int
pte_remove(pmap_t pmap, vm_offset_t va, u_int8_t flags)
{
vm_page_t m;
pte_t *pte;
pte = pte_find(pmap, va);
KASSERT(pte != NULL, ("%s: NULL pte for va %#jx, pmap %p",
__func__, (uintmax_t)va, pmap));
if (!PTE_ISVALID(pte))
return (0);
/* Get vm_page_t for mapped pte. */
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
if (PTE_ISWIRED(pte))
pmap->pm_stats.wired_count--;
/* Handle managed entry. */
if (PTE_ISMANAGED(pte)) {
/* Handle modified pages. */
if (PTE_ISMODIFIED(pte))
vm_page_dirty(m);
/* Referenced pages. */
if (PTE_ISREFERENCED(pte))
vm_page_aflag_set(m, PGA_REFERENCED);
/* Remove pv_entry from pv_list. */
pv_remove(pmap, va, m);
} else if (pmap == kernel_pmap && m && m->md.pv_tracked) {
pv_remove(pmap, va, m);
if (TAILQ_EMPTY(&m->md.pv_list))
m->md.pv_tracked = false;
}
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
*pte = 0;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
pmap->pm_stats.resident_count--;
if (flags & PTBL_UNHOLD) {
return (ptbl_unhold(pmap, va));
}
return (0);
}
/*
* Insert PTE for a given page and virtual address.
*/
static int
pte_enter(pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
boolean_t nosleep)
{
unsigned int ptbl_idx = PTBL_IDX(va);
pte_t *ptbl, *pte, pte_tmp;
bool is_new;
/* Get the page directory pointer. */
ptbl = ptbl_alloc(pmap, va, nosleep, &is_new);
if (ptbl == NULL) {
KASSERT(nosleep, ("nosleep and NULL ptbl"));
return (ENOMEM);
}
if (is_new) {
pte = &ptbl[ptbl_idx];
} else {
/*
* Check if there is valid mapping for requested va, if there
* is, remove it.
*/
pte = &ptbl[ptbl_idx];
if (PTE_ISVALID(pte)) {
pte_remove(pmap, va, PTBL_HOLD);
} else {
/*
* pte is not used, increment hold count for ptbl
* pages.
*/
if (pmap != kernel_pmap)
ptbl_hold(pmap, ptbl);
}
}
/*
* Insert pv_entry into pv_list for mapped page if part of managed
* memory.
*/
if ((m->oflags & VPO_UNMANAGED) == 0) {
flags |= PTE_MANAGED;
/* Create and insert pv entry. */
pv_insert(pmap, va, m);
}
pmap->pm_stats.resident_count++;
pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
pte_tmp |= (PTE_VALID | flags);
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
*pte = pte_tmp;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
return (0);
}
/* Return the pa for the given pmap/va. */
static vm_paddr_t
pte_vatopa(pmap_t pmap, vm_offset_t va)
{
vm_paddr_t pa = 0;
pte_t *pte;
pte = pte_find(pmap, va);
if ((pte != NULL) && PTE_ISVALID(pte))
pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
return (pa);
}
/* allocate pte entries to manage (addr & mask) to (addr & mask) + size */
static void
kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr)
{
pte_t *pte;
vm_size_t kva_size;
int kernel_pdirs, kernel_pgtbls, pdir_l1s;
vm_offset_t va, l1_va, pdir_va, ptbl_va;
int i, j, k;
kva_size = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
kernel_pmap->pm_root = kernel_ptbl_root;
pdir_l1s = howmany(kva_size, PG_ROOT_SIZE);
kernel_pdirs = howmany(kva_size, PDIR_L1_SIZE);
kernel_pgtbls = howmany(kva_size, PDIR_SIZE);
/* Initialize kernel pdir */
l1_va = (vm_offset_t)kernel_ptbl_root +
round_page(PG_ROOT_NENTRIES * sizeof(pte_t ***));
pdir_va = l1_va + pdir_l1s * PAGE_SIZE;
ptbl_va = pdir_va + kernel_pdirs * PAGE_SIZE;
if (bootverbose) {
printf("ptbl_root_va: %#lx\n", (vm_offset_t)kernel_ptbl_root);
printf("l1_va: %#lx (%d entries)\n", l1_va, pdir_l1s);
printf("pdir_va: %#lx(%d entries)\n", pdir_va, kernel_pdirs);
printf("ptbl_va: %#lx(%d entries)\n", ptbl_va, kernel_pgtbls);
}
va = VM_MIN_KERNEL_ADDRESS;
for (i = PG_ROOT_IDX(va); i < PG_ROOT_IDX(va) + pdir_l1s;
i++, l1_va += PAGE_SIZE) {
kernel_pmap->pm_root[i] = (pte_t ***)l1_va;
for (j = 0;
j < PDIR_L1_NENTRIES && va < VM_MAX_KERNEL_ADDRESS;
j++, pdir_va += PAGE_SIZE) {
kernel_pmap->pm_root[i][j] = (pte_t **)pdir_va;
for (k = 0;
k < PDIR_NENTRIES && va < VM_MAX_KERNEL_ADDRESS;
k++, va += PDIR_SIZE, ptbl_va += PAGE_SIZE)
kernel_pmap->pm_root[i][j][k] = (pte_t *)ptbl_va;
}
}
/*
* Fill in PTEs covering kernel code and data. They are not required
* for address translation, as this area is covered by static TLB1
* entries, but for pte_vatopa() to work correctly with kernel area
* addresses.
*/
for (va = addr; va < data_end; va += PAGE_SIZE) {
pte = &(kernel_pmap->pm_root[PG_ROOT_IDX(va)][PDIR_L1_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]);
*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
PTE_VALID | PTE_PS_4KB;
}
}
static vm_offset_t
mmu_booke_alloc_kernel_pgtables(vm_offset_t data_end)
{
vm_size_t kva_size = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
kernel_ptbl_root = (pte_t ****)data_end;
data_end += round_page(PG_ROOT_NENTRIES * sizeof(pte_t ***));
data_end += howmany(kva_size, PG_ROOT_SIZE) * PAGE_SIZE;
data_end += howmany(kva_size, PDIR_L1_SIZE) * PAGE_SIZE;
data_end += howmany(kva_size, PDIR_SIZE) * PAGE_SIZE;
return (data_end);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
static int
mmu_booke_pinit(pmap_t pmap)
{
int i;
CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
curthread->td_proc->p_pid, curthread->td_proc->p_comm);
KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
for (i = 0; i < MAXCPU; i++)
pmap->pm_tid[i] = TID_NONE;
CPU_ZERO(&kernel_pmap->pm_active);
bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
pmap->pm_root = uma_zalloc(ptbl_root_zone, M_WAITOK);
bzero(pmap->pm_root, sizeof(pte_t **) * PG_ROOT_NENTRIES);
return (1);
}
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by mmu_booke_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
static void
mmu_booke_release(pmap_t pmap)
{
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
#ifdef INVARIANTS
/*
* Verify that all page directories are gone.
* Protects against reference count leakage.
*/
for (int i = 0; i < PG_ROOT_NENTRIES; i++)
KASSERT(pmap->pm_root[i] == 0,
("Index %d on root page %p is non-zero!\n", i, pmap->pm_root));
#endif
uma_zfree(ptbl_root_zone, pmap->pm_root);
}
static void
mmu_booke_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
{
pte_t *pte;
vm_paddr_t pa = 0;
int sync_sz, valid;
while (sz > 0) {
PMAP_LOCK(pm);
pte = pte_find(pm, va);
valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
if (valid)
pa = PTE_PA(pte);
PMAP_UNLOCK(pm);
sync_sz = PAGE_SIZE - (va & PAGE_MASK);
sync_sz = min(sync_sz, sz);
if (valid) {
pa += (va & PAGE_MASK);
__syncicache((void *)PHYS_TO_DMAP(pa), sync_sz);
}
va += sync_sz;
sz -= sync_sz;
}
}
/*
* mmu_booke_zero_page_area zeros the specified hardware page by
* mapping it into virtual memory and using bzero to clear
* its contents.
*
* off and size must reside within a single page.
*/
static void
mmu_booke_zero_page_area(vm_page_t m, int off, int size)
{
vm_offset_t va;
/* XXX KASSERT off and size are within a single page? */
va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
bzero((caddr_t)va + off, size);
}
/*
* mmu_booke_zero_page zeros the specified hardware page.
*/
static void
mmu_booke_zero_page(vm_page_t m)
{
vm_offset_t off, va;
va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
__asm __volatile("dcbz 0,%0" :: "r"(va + off));
}
/*
* mmu_booke_copy_page copies the specified (machine independent) page by
* mapping the page into virtual memory and using memcopy to copy the page,
* one machine dependent page at a time.
*/
static void
mmu_booke_copy_page(vm_page_t sm, vm_page_t dm)
{
vm_offset_t sva, dva;
sva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(sm));
dva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dm));
memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
}
static inline void
mmu_booke_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
vm_page_t pa, pb;
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
pa = ma[a_offset >> PAGE_SHIFT];
b_pg_offset = b_offset & PAGE_MASK;
pb = mb[b_offset >> PAGE_SHIFT];
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
a_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pa)) +
a_pg_offset);
b_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pb)) +
b_pg_offset);
bcopy(a_cp, b_cp, cnt);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
}
static vm_offset_t
mmu_booke_quick_enter_page(vm_page_t m)
{
return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
}
static void
mmu_booke_quick_remove_page(vm_offset_t addr)
{
}
/**************************************************************************/
/* TID handling */
/**************************************************************************/
/*
* Return the largest uint value log such that 2^log <= num.
*/
static unsigned long
ilog2(unsigned long num)
{
long lz;
__asm ("cntlzd %0, %1" : "=r" (lz) : "r" (num));
return (63 - lz);
}
/*
* Invalidate all TLB0 entries which match the given TID. Note this is
* dedicated for cases when invalidations should NOT be propagated to other
* CPUs.
*/
static void
tid_flush(tlbtid_t tid)
{
register_t msr;
/* Don't evict kernel translations */
if (tid == TID_KERNEL)
return;
msr = mfmsr();
__asm __volatile("wrteei 0");
/*
* Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use
* it for PID invalidation.
*/
mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT);
__asm __volatile("isync; .long 0x7c200024; isync; msync");
__asm __volatile("wrtee %0" :: "r"(msr));
}