freebsd-nq/sys/sparc64/sparc64/pmap.c
Jason A. Harmening 713841afb2 Add two new pmap functions:
vm_offset_t pmap_quick_enter_page(vm_page_t m)
void pmap_quick_remove_page(vm_offset_t kva)

These will create and destroy a temporary, CPU-local KVA mapping of a specified page.

Guarantees:
--Will not sleep and will not fail.
--Safe to call under a non-sleepable lock or from an ithread

Restrictions:
--Not guaranteed to be safe to call from an interrupt filter or under a spin mutex on all platforms
--Current implementation does not guarantee more than one page of mapping space across all platforms. MI code should not make nested calls to pmap_quick_enter_page.
--MI code should not perform locking while holding onto a mapping created by pmap_quick_enter_page

The idea is to use this in busdma, for bounce buffer copies as well as virtually-indexed cache maintenance on mips and arm.

NOTE: the non-i386, non-amd64 implementations of these functions still need review and testing.

Reviewed by:	kib
Approved by:	kib (mentor)
Differential Revision:	http://reviews.freebsd.org/D3013
2015-08-04 19:46:13 +00:00

2348 lines
63 KiB
C

/*-
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps.
*
* Since the information managed by this module is also stored by the
* logical address mapping module, this module may throw away valid virtual
* to physical mappings at almost any time. However, invalidations of
* mappings must be done as requested.
*
* In order to cope with hardware architectures which make virtual to
* physical map invalidates expensive, this module may delay invalidate
* reduced protection operations until such time as they are actually
* necessary. This module is given full information as to which processors
* are currently using which maps, and to when physical maps must be made
* correct.
*/
#include "opt_kstack_pages.h"
#include "opt_pmap.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_phys.h>
#include <machine/cache.h>
#include <machine/frame.h>
#include <machine/instr.h>
#include <machine/md_var.h>
#include <machine/metadata.h>
#include <machine/ofw_mem.h>
#include <machine/smp.h>
#include <machine/tlb.h>
#include <machine/tte.h>
#include <machine/tsb.h>
#include <machine/ver.h>
/*
* Virtual address of message buffer
*/
struct msgbuf *msgbufp;
/*
* Map of physical memory reagions
*/
vm_paddr_t phys_avail[128];
static struct ofw_mem_region mra[128];
struct ofw_mem_region sparc64_memreg[128];
int sparc64_nmemreg;
static struct ofw_map translations[128];
static int translations_size;
static vm_offset_t pmap_idle_map;
static vm_offset_t pmap_temp_map_1;
static vm_offset_t pmap_temp_map_2;
/*
* First and last available kernel virtual addresses
*/
vm_offset_t virtual_avail;
vm_offset_t virtual_end;
vm_offset_t kernel_vm_end;
vm_offset_t vm_max_kernel_address;
/*
* Kernel pmap
*/
struct pmap kernel_pmap_store;
struct rwlock_padalign tte_list_global_lock;
/*
* Allocate physical memory for use in pmap_bootstrap.
*/
static vm_paddr_t pmap_bootstrap_alloc(vm_size_t size, uint32_t colors);
static void pmap_bootstrap_set_tte(struct tte *tp, u_long vpn, u_long data);
static void pmap_cache_remove(vm_page_t m, vm_offset_t va);
static int pmap_protect_tte(struct pmap *pm1, struct pmap *pm2,
struct tte *tp, vm_offset_t va);
static int pmap_unwire_tte(pmap_t pm, pmap_t pm2, struct tte *tp,
vm_offset_t va);
static void pmap_init_qpages(void);
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*
* The page queues and pmap must be locked.
*/
static int pmap_enter_locked(pmap_t pm, vm_offset_t va, vm_page_t m,
vm_prot_t prot, u_int flags, int8_t psind);
extern int tl1_dmmu_miss_direct_patch_tsb_phys_1[];
extern int tl1_dmmu_miss_direct_patch_tsb_phys_end_1[];
extern int tl1_dmmu_miss_patch_asi_1[];
extern int tl1_dmmu_miss_patch_quad_ldd_1[];
extern int tl1_dmmu_miss_patch_tsb_1[];
extern int tl1_dmmu_miss_patch_tsb_2[];
extern int tl1_dmmu_miss_patch_tsb_mask_1[];
extern int tl1_dmmu_miss_patch_tsb_mask_2[];
extern int tl1_dmmu_prot_patch_asi_1[];
extern int tl1_dmmu_prot_patch_quad_ldd_1[];
extern int tl1_dmmu_prot_patch_tsb_1[];
extern int tl1_dmmu_prot_patch_tsb_2[];
extern int tl1_dmmu_prot_patch_tsb_mask_1[];
extern int tl1_dmmu_prot_patch_tsb_mask_2[];
extern int tl1_immu_miss_patch_asi_1[];
extern int tl1_immu_miss_patch_quad_ldd_1[];
extern int tl1_immu_miss_patch_tsb_1[];
extern int tl1_immu_miss_patch_tsb_2[];
extern int tl1_immu_miss_patch_tsb_mask_1[];
extern int tl1_immu_miss_patch_tsb_mask_2[];
/*
* If user pmap is processed with pmap_remove and with pmap_remove and the
* resident count drops to 0, there are no more pages to remove, so we
* need not continue.
*/
#define PMAP_REMOVE_DONE(pm) \
((pm) != kernel_pmap && (pm)->pm_stats.resident_count == 0)
/*
* The threshold (in bytes) above which tsb_foreach() is used in pmap_remove()
* and pmap_protect() instead of trying each virtual address.
*/
#define PMAP_TSB_THRESH ((TSB_SIZE / 2) * PAGE_SIZE)
SYSCTL_NODE(_debug, OID_AUTO, pmap_stats, CTLFLAG_RD, 0, "");
PMAP_STATS_VAR(pmap_nenter);
PMAP_STATS_VAR(pmap_nenter_update);
PMAP_STATS_VAR(pmap_nenter_replace);
PMAP_STATS_VAR(pmap_nenter_new);
PMAP_STATS_VAR(pmap_nkenter);
PMAP_STATS_VAR(pmap_nkenter_oc);
PMAP_STATS_VAR(pmap_nkenter_stupid);
PMAP_STATS_VAR(pmap_nkremove);
PMAP_STATS_VAR(pmap_nqenter);
PMAP_STATS_VAR(pmap_nqremove);
PMAP_STATS_VAR(pmap_ncache_enter);
PMAP_STATS_VAR(pmap_ncache_enter_c);
PMAP_STATS_VAR(pmap_ncache_enter_oc);
PMAP_STATS_VAR(pmap_ncache_enter_cc);
PMAP_STATS_VAR(pmap_ncache_enter_coc);
PMAP_STATS_VAR(pmap_ncache_enter_nc);
PMAP_STATS_VAR(pmap_ncache_enter_cnc);
PMAP_STATS_VAR(pmap_ncache_remove);
PMAP_STATS_VAR(pmap_ncache_remove_c);
PMAP_STATS_VAR(pmap_ncache_remove_oc);
PMAP_STATS_VAR(pmap_ncache_remove_cc);
PMAP_STATS_VAR(pmap_ncache_remove_coc);
PMAP_STATS_VAR(pmap_ncache_remove_nc);
PMAP_STATS_VAR(pmap_nzero_page);
PMAP_STATS_VAR(pmap_nzero_page_c);
PMAP_STATS_VAR(pmap_nzero_page_oc);
PMAP_STATS_VAR(pmap_nzero_page_nc);
PMAP_STATS_VAR(pmap_nzero_page_area);
PMAP_STATS_VAR(pmap_nzero_page_area_c);
PMAP_STATS_VAR(pmap_nzero_page_area_oc);
PMAP_STATS_VAR(pmap_nzero_page_area_nc);
PMAP_STATS_VAR(pmap_nzero_page_idle);
PMAP_STATS_VAR(pmap_nzero_page_idle_c);
PMAP_STATS_VAR(pmap_nzero_page_idle_oc);
PMAP_STATS_VAR(pmap_nzero_page_idle_nc);
PMAP_STATS_VAR(pmap_ncopy_page);
PMAP_STATS_VAR(pmap_ncopy_page_c);
PMAP_STATS_VAR(pmap_ncopy_page_oc);
PMAP_STATS_VAR(pmap_ncopy_page_nc);
PMAP_STATS_VAR(pmap_ncopy_page_dc);
PMAP_STATS_VAR(pmap_ncopy_page_doc);
PMAP_STATS_VAR(pmap_ncopy_page_sc);
PMAP_STATS_VAR(pmap_ncopy_page_soc);
PMAP_STATS_VAR(pmap_nnew_thread);
PMAP_STATS_VAR(pmap_nnew_thread_oc);
static inline u_long dtlb_get_data(u_int tlb, u_int slot);
/*
* Quick sort callout for comparing memory regions
*/
static int mr_cmp(const void *a, const void *b);
static int om_cmp(const void *a, const void *b);
static int
mr_cmp(const void *a, const void *b)
{
const struct ofw_mem_region *mra;
const struct ofw_mem_region *mrb;
mra = a;
mrb = b;
if (mra->mr_start < mrb->mr_start)
return (-1);
else if (mra->mr_start > mrb->mr_start)
return (1);
else
return (0);
}
static int
om_cmp(const void *a, const void *b)
{
const struct ofw_map *oma;
const struct ofw_map *omb;
oma = a;
omb = b;
if (oma->om_start < omb->om_start)
return (-1);
else if (oma->om_start > omb->om_start)
return (1);
else
return (0);
}
static inline u_long
dtlb_get_data(u_int tlb, u_int slot)
{
u_long data;
register_t s;
slot = TLB_DAR_SLOT(tlb, slot);
/*
* We read ASI_DTLB_DATA_ACCESS_REG twice back-to-back in order to
* work around errata of USIII and beyond.
*/
s = intr_disable();
(void)ldxa(slot, ASI_DTLB_DATA_ACCESS_REG);
data = ldxa(slot, ASI_DTLB_DATA_ACCESS_REG);
intr_restore(s);
return (data);
}
/*
* Bootstrap the system enough to run with virtual memory.
*/
void
pmap_bootstrap(u_int cpu_impl)
{
struct pmap *pm;
struct tte *tp;
vm_offset_t off;
vm_offset_t va;
vm_paddr_t pa;
vm_size_t physsz;
vm_size_t virtsz;
u_long data;
u_long vpn;
phandle_t pmem;
phandle_t vmem;
u_int dtlb_slots_avail;
int i;
int j;
int sz;
uint32_t asi;
uint32_t colors;
uint32_t ldd;
/*
* Set the kernel context.
*/
pmap_set_kctx();
colors = dcache_color_ignore != 0 ? 1 : DCACHE_COLORS;
/*
* Find out what physical memory is available from the PROM and
* initialize the phys_avail array. This must be done before
* pmap_bootstrap_alloc is called.
*/
if ((pmem = OF_finddevice("/memory")) == -1)
OF_panic("%s: finddevice /memory", __func__);
if ((sz = OF_getproplen(pmem, "available")) == -1)
OF_panic("%s: getproplen /memory/available", __func__);
if (sizeof(phys_avail) < sz)
OF_panic("%s: phys_avail too small", __func__);
if (sizeof(mra) < sz)
OF_panic("%s: mra too small", __func__);
bzero(mra, sz);
if (OF_getprop(pmem, "available", mra, sz) == -1)
OF_panic("%s: getprop /memory/available", __func__);
sz /= sizeof(*mra);
CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
qsort(mra, sz, sizeof (*mra), mr_cmp);
physsz = 0;
getenv_quad("hw.physmem", &physmem);
physmem = btoc(physmem);
for (i = 0, j = 0; i < sz; i++, j += 2) {
CTR2(KTR_PMAP, "start=%#lx size=%#lx", mra[i].mr_start,
mra[i].mr_size);
if (physmem != 0 && btoc(physsz + mra[i].mr_size) >= physmem) {
if (btoc(physsz) < physmem) {
phys_avail[j] = mra[i].mr_start;
phys_avail[j + 1] = mra[i].mr_start +
(ctob(physmem) - physsz);
physsz = ctob(physmem);
}
break;
}
phys_avail[j] = mra[i].mr_start;
phys_avail[j + 1] = mra[i].mr_start + mra[i].mr_size;
physsz += mra[i].mr_size;
}
physmem = btoc(physsz);
/*
* Calculate the size of kernel virtual memory, and the size and mask
* for the kernel TSB based on the phsyical memory size but limited
* by the amount of dTLB slots available for locked entries if we have
* to lock the TSB in the TLB (given that for spitfire-class CPUs all
* of the dt64 slots can hold locked entries but there is no large
* dTLB for unlocked ones, we don't use more than half of it for the
* TSB).
* Note that for reasons unknown OpenSolaris doesn't take advantage of
* ASI_ATOMIC_QUAD_LDD_PHYS on UltraSPARC-III. However, given that no
* public documentation is available for these, the latter just might
* not support it, yet.
*/
if (cpu_impl == CPU_IMPL_SPARC64V ||
cpu_impl >= CPU_IMPL_ULTRASPARCIIIp) {
tsb_kernel_ldd_phys = 1;
virtsz = roundup(5 / 3 * physsz, PAGE_SIZE_4M <<
(PAGE_SHIFT - TTE_SHIFT));
} else {
dtlb_slots_avail = 0;
for (i = 0; i < dtlb_slots; i++) {
data = dtlb_get_data(cpu_impl ==
CPU_IMPL_ULTRASPARCIII ? TLB_DAR_T16 :
TLB_DAR_T32, i);
if ((data & (TD_V | TD_L)) != (TD_V | TD_L))
dtlb_slots_avail++;
}
#ifdef SMP
dtlb_slots_avail -= PCPU_PAGES;
#endif
if (cpu_impl >= CPU_IMPL_ULTRASPARCI &&
cpu_impl < CPU_IMPL_ULTRASPARCIII)
dtlb_slots_avail /= 2;
virtsz = roundup(physsz, PAGE_SIZE_4M <<
(PAGE_SHIFT - TTE_SHIFT));
virtsz = MIN(virtsz, (dtlb_slots_avail * PAGE_SIZE_4M) <<
(PAGE_SHIFT - TTE_SHIFT));
}
vm_max_kernel_address = VM_MIN_KERNEL_ADDRESS + virtsz;
tsb_kernel_size = virtsz >> (PAGE_SHIFT - TTE_SHIFT);
tsb_kernel_mask = (tsb_kernel_size >> TTE_SHIFT) - 1;
/*
* Allocate the kernel TSB and lock it in the TLB if necessary.
*/
pa = pmap_bootstrap_alloc(tsb_kernel_size, colors);
if (pa & PAGE_MASK_4M)
OF_panic("%s: TSB unaligned", __func__);
tsb_kernel_phys = pa;
if (tsb_kernel_ldd_phys == 0) {
tsb_kernel =
(struct tte *)(VM_MIN_KERNEL_ADDRESS - tsb_kernel_size);
pmap_map_tsb();
bzero(tsb_kernel, tsb_kernel_size);
} else {
tsb_kernel =
(struct tte *)TLB_PHYS_TO_DIRECT(tsb_kernel_phys);
aszero(ASI_PHYS_USE_EC, tsb_kernel_phys, tsb_kernel_size);
}
/*
* Allocate and map the dynamic per-CPU area for the BSP.
*/
pa = pmap_bootstrap_alloc(DPCPU_SIZE, colors);
dpcpu0 = (void *)TLB_PHYS_TO_DIRECT(pa);
/*
* Allocate and map the message buffer.
*/
pa = pmap_bootstrap_alloc(msgbufsize, colors);
msgbufp = (struct msgbuf *)TLB_PHYS_TO_DIRECT(pa);
/*
* Patch the TSB addresses and mask as well as the ASIs used to load
* it into the trap table.
*/
#define LDDA_R_I_R(rd, imm_asi, rs1, rs2) \
(EIF_OP(IOP_LDST) | EIF_F3_RD(rd) | EIF_F3_OP3(INS3_LDDA) | \
EIF_F3_RS1(rs1) | EIF_F3_I(0) | EIF_F3_IMM_ASI(imm_asi) | \
EIF_F3_RS2(rs2))
#define OR_R_I_R(rd, imm13, rs1) \
(EIF_OP(IOP_MISC) | EIF_F3_RD(rd) | EIF_F3_OP3(INS2_OR) | \
EIF_F3_RS1(rs1) | EIF_F3_I(1) | EIF_IMM(imm13, 13))
#define SETHI(rd, imm22) \
(EIF_OP(IOP_FORM2) | EIF_F2_RD(rd) | EIF_F2_OP2(INS0_SETHI) | \
EIF_IMM((imm22) >> 10, 22))
#define WR_R_I(rd, imm13, rs1) \
(EIF_OP(IOP_MISC) | EIF_F3_RD(rd) | EIF_F3_OP3(INS2_WR) | \
EIF_F3_RS1(rs1) | EIF_F3_I(1) | EIF_IMM(imm13, 13))
#define PATCH_ASI(addr, asi) do { \
if (addr[0] != WR_R_I(IF_F3_RD(addr[0]), 0x0, \
IF_F3_RS1(addr[0]))) \
OF_panic("%s: patched instructions have changed", \
__func__); \
addr[0] |= EIF_IMM((asi), 13); \
flush(addr); \
} while (0)
#define PATCH_LDD(addr, asi) do { \
if (addr[0] != LDDA_R_I_R(IF_F3_RD(addr[0]), 0x0, \
IF_F3_RS1(addr[0]), IF_F3_RS2(addr[0]))) \
OF_panic("%s: patched instructions have changed", \
__func__); \
addr[0] |= EIF_F3_IMM_ASI(asi); \
flush(addr); \
} while (0)
#define PATCH_TSB(addr, val) do { \
if (addr[0] != SETHI(IF_F2_RD(addr[0]), 0x0) || \
addr[1] != OR_R_I_R(IF_F3_RD(addr[1]), 0x0, \
IF_F3_RS1(addr[1])) || \
addr[3] != SETHI(IF_F2_RD(addr[3]), 0x0)) \
OF_panic("%s: patched instructions have changed", \
__func__); \
addr[0] |= EIF_IMM((val) >> 42, 22); \
addr[1] |= EIF_IMM((val) >> 32, 10); \
addr[3] |= EIF_IMM((val) >> 10, 22); \
flush(addr); \
flush(addr + 1); \
flush(addr + 3); \
} while (0)
#define PATCH_TSB_MASK(addr, val) do { \
if (addr[0] != SETHI(IF_F2_RD(addr[0]), 0x0) || \
addr[1] != OR_R_I_R(IF_F3_RD(addr[1]), 0x0, \
IF_F3_RS1(addr[1]))) \
OF_panic("%s: patched instructions have changed", \
__func__); \
addr[0] |= EIF_IMM((val) >> 10, 22); \
addr[1] |= EIF_IMM((val), 10); \
flush(addr); \
flush(addr + 1); \
} while (0)
if (tsb_kernel_ldd_phys == 0) {
asi = ASI_N;
ldd = ASI_NUCLEUS_QUAD_LDD;
off = (vm_offset_t)tsb_kernel;
} else {
asi = ASI_PHYS_USE_EC;
ldd = ASI_ATOMIC_QUAD_LDD_PHYS;
off = (vm_offset_t)tsb_kernel_phys;
}
PATCH_TSB(tl1_dmmu_miss_direct_patch_tsb_phys_1, tsb_kernel_phys);
PATCH_TSB(tl1_dmmu_miss_direct_patch_tsb_phys_end_1,
tsb_kernel_phys + tsb_kernel_size - 1);
PATCH_ASI(tl1_dmmu_miss_patch_asi_1, asi);
PATCH_LDD(tl1_dmmu_miss_patch_quad_ldd_1, ldd);
PATCH_TSB(tl1_dmmu_miss_patch_tsb_1, off);
PATCH_TSB(tl1_dmmu_miss_patch_tsb_2, off);
PATCH_TSB_MASK(tl1_dmmu_miss_patch_tsb_mask_1, tsb_kernel_mask);
PATCH_TSB_MASK(tl1_dmmu_miss_patch_tsb_mask_2, tsb_kernel_mask);
PATCH_ASI(tl1_dmmu_prot_patch_asi_1, asi);
PATCH_LDD(tl1_dmmu_prot_patch_quad_ldd_1, ldd);
PATCH_TSB(tl1_dmmu_prot_patch_tsb_1, off);
PATCH_TSB(tl1_dmmu_prot_patch_tsb_2, off);
PATCH_TSB_MASK(tl1_dmmu_prot_patch_tsb_mask_1, tsb_kernel_mask);
PATCH_TSB_MASK(tl1_dmmu_prot_patch_tsb_mask_2, tsb_kernel_mask);
PATCH_ASI(tl1_immu_miss_patch_asi_1, asi);
PATCH_LDD(tl1_immu_miss_patch_quad_ldd_1, ldd);
PATCH_TSB(tl1_immu_miss_patch_tsb_1, off);
PATCH_TSB(tl1_immu_miss_patch_tsb_2, off);
PATCH_TSB_MASK(tl1_immu_miss_patch_tsb_mask_1, tsb_kernel_mask);
PATCH_TSB_MASK(tl1_immu_miss_patch_tsb_mask_2, tsb_kernel_mask);
/*
* Enter fake 8k pages for the 4MB kernel pages, so that
* pmap_kextract() will work for them.
*/
for (i = 0; i < kernel_tlb_slots; i++) {
pa = kernel_tlbs[i].te_pa;
va = kernel_tlbs[i].te_va;
for (off = 0; off < PAGE_SIZE_4M; off += PAGE_SIZE) {
tp = tsb_kvtotte(va + off);
vpn = TV_VPN(va + off, TS_8K);
data = TD_V | TD_8K | TD_PA(pa + off) | TD_REF |
TD_SW | TD_CP | TD_CV | TD_P | TD_W;
pmap_bootstrap_set_tte(tp, vpn, data);
}
}
/*
* Set the start and end of KVA. The kernel is loaded starting
* at the first available 4MB super page, so we advance to the
* end of the last one used for it.
*/
virtual_avail = KERNBASE + kernel_tlb_slots * PAGE_SIZE_4M;
virtual_end = vm_max_kernel_address;
kernel_vm_end = vm_max_kernel_address;
/*
* Allocate kva space for temporary mappings.
*/
pmap_idle_map = virtual_avail;
virtual_avail += PAGE_SIZE * colors;
pmap_temp_map_1 = virtual_avail;
virtual_avail += PAGE_SIZE * colors;
pmap_temp_map_2 = virtual_avail;
virtual_avail += PAGE_SIZE * colors;
/*
* Allocate a kernel stack with guard page for thread0 and map it
* into the kernel TSB. We must ensure that the virtual address is
* colored properly for corresponding CPUs, since we're allocating
* from phys_avail so the memory won't have an associated vm_page_t.
*/
pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, colors);
kstack0_phys = pa;
virtual_avail += roundup(KSTACK_GUARD_PAGES, colors) * PAGE_SIZE;
kstack0 = virtual_avail;
virtual_avail += roundup(KSTACK_PAGES, colors) * PAGE_SIZE;
if (dcache_color_ignore == 0)
KASSERT(DCACHE_COLOR(kstack0) == DCACHE_COLOR(kstack0_phys),
("pmap_bootstrap: kstack0 miscolored"));
for (i = 0; i < KSTACK_PAGES; i++) {
pa = kstack0_phys + i * PAGE_SIZE;
va = kstack0 + i * PAGE_SIZE;
tp = tsb_kvtotte(va);
vpn = TV_VPN(va, TS_8K);
data = TD_V | TD_8K | TD_PA(pa) | TD_REF | TD_SW | TD_CP |
TD_CV | TD_P | TD_W;
pmap_bootstrap_set_tte(tp, vpn, data);
}
/*
* Calculate the last available physical address.
*/
for (i = 0; phys_avail[i + 2] != 0; i += 2)
;
Maxmem = sparc64_btop(phys_avail[i + 1]);
/*
* Add the PROM mappings to the kernel TSB.
*/
if ((vmem = OF_finddevice("/virtual-memory")) == -1)
OF_panic("%s: finddevice /virtual-memory", __func__);
if ((sz = OF_getproplen(vmem, "translations")) == -1)
OF_panic("%s: getproplen translations", __func__);
if (sizeof(translations) < sz)
OF_panic("%s: translations too small", __func__);
bzero(translations, sz);
if (OF_getprop(vmem, "translations", translations, sz) == -1)
OF_panic("%s: getprop /virtual-memory/translations",
__func__);
sz /= sizeof(*translations);
translations_size = sz;
CTR0(KTR_PMAP, "pmap_bootstrap: translations");
qsort(translations, sz, sizeof (*translations), om_cmp);
for (i = 0; i < sz; i++) {
CTR3(KTR_PMAP,
"translation: start=%#lx size=%#lx tte=%#lx",
translations[i].om_start, translations[i].om_size,
translations[i].om_tte);
if ((translations[i].om_tte & TD_V) == 0)
continue;
if (translations[i].om_start < VM_MIN_PROM_ADDRESS ||
translations[i].om_start > VM_MAX_PROM_ADDRESS)
continue;
for (off = 0; off < translations[i].om_size;
off += PAGE_SIZE) {
va = translations[i].om_start + off;
tp = tsb_kvtotte(va);
vpn = TV_VPN(va, TS_8K);
data = ((translations[i].om_tte &
~((TD_SOFT2_MASK << TD_SOFT2_SHIFT) |
(cpu_impl >= CPU_IMPL_ULTRASPARCI &&
cpu_impl < CPU_IMPL_ULTRASPARCIII ?
(TD_DIAG_SF_MASK << TD_DIAG_SF_SHIFT) :
(TD_RSVD_CH_MASK << TD_RSVD_CH_SHIFT)) |
(TD_SOFT_MASK << TD_SOFT_SHIFT))) | TD_EXEC) +
off;
pmap_bootstrap_set_tte(tp, vpn, data);
}
}
/*
* Get the available physical memory ranges from /memory/reg. These
* are only used for kernel dumps, but it may not be wise to do PROM
* calls in that situation.
*/
if ((sz = OF_getproplen(pmem, "reg")) == -1)
OF_panic("%s: getproplen /memory/reg", __func__);
if (sizeof(sparc64_memreg) < sz)
OF_panic("%s: sparc64_memreg too small", __func__);
if (OF_getprop(pmem, "reg", sparc64_memreg, sz) == -1)
OF_panic("%s: getprop /memory/reg", __func__);
sparc64_nmemreg = sz / sizeof(*sparc64_memreg);
/*
* Initialize the kernel pmap (which is statically allocated).
*/
pm = kernel_pmap;
PMAP_LOCK_INIT(pm);
for (i = 0; i < MAXCPU; i++)
pm->pm_context[i] = TLB_CTX_KERNEL;
CPU_FILL(&pm->pm_active);
/*
* Initialize the global tte list lock, which is more commonly
* known as the pmap pv global lock.
*/
rw_init(&tte_list_global_lock, "pmap pv global");
/*
* Flush all non-locked TLB entries possibly left over by the
* firmware.
*/
tlb_flush_nonlocked();
}
static void
pmap_init_qpages(void)
{
struct pcpu *pc;
int i;
if (dcache_color_ignore != 0)
return;
CPU_FOREACH(i) {
pc = pcpu_find(i);
pc->pc_qmap_addr = kva_alloc(PAGE_SIZE * DCACHE_COLORS);
if (pc->pc_qmap_addr == 0)
panic("pmap_init_qpages: unable to allocate KVA");
}
}
SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_qpages, NULL);
/*
* Map the 4MB kernel TSB pages.
*/
void
pmap_map_tsb(void)
{
vm_offset_t va;
vm_paddr_t pa;
u_long data;
int i;
for (i = 0; i < tsb_kernel_size; i += PAGE_SIZE_4M) {
va = (vm_offset_t)tsb_kernel + i;
pa = tsb_kernel_phys + i;
data = TD_V | TD_4M | TD_PA(pa) | TD_L | TD_CP | TD_CV |
TD_P | TD_W;
stxa(AA_DMMU_TAR, ASI_DMMU, TLB_TAR_VA(va) |
TLB_TAR_CTX(TLB_CTX_KERNEL));
stxa_sync(0, ASI_DTLB_DATA_IN_REG, data);
}
}
/*
* Set the secondary context to be the kernel context (needed for FP block
* operations in the kernel).
*/
void
pmap_set_kctx(void)
{
stxa(AA_DMMU_SCXR, ASI_DMMU, (ldxa(AA_DMMU_SCXR, ASI_DMMU) &
TLB_CXR_PGSZ_MASK) | TLB_CTX_KERNEL);
flush(KERNBASE);
}
/*
* Allocate a physical page of memory directly from the phys_avail map.
* Can only be called from pmap_bootstrap before avail start and end are
* calculated.
*/
static vm_paddr_t
pmap_bootstrap_alloc(vm_size_t size, uint32_t colors)
{
vm_paddr_t pa;
int i;
size = roundup(size, PAGE_SIZE * colors);
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
if (phys_avail[i + 1] - phys_avail[i] < size)
continue;
pa = phys_avail[i];
phys_avail[i] += size;
return (pa);
}
OF_panic("%s: no suitable region found", __func__);
}
/*
* Set a TTE. This function is intended as a helper when tsb_kernel is
* direct-mapped but we haven't taken over the trap table, yet, as it's the
* case when we are taking advantage of ASI_ATOMIC_QUAD_LDD_PHYS to access
* the kernel TSB.
*/
void
pmap_bootstrap_set_tte(struct tte *tp, u_long vpn, u_long data)
{
if (tsb_kernel_ldd_phys == 0) {
tp->tte_vpn = vpn;
tp->tte_data = data;
} else {
stxa((vm_paddr_t)tp + offsetof(struct tte, tte_vpn),
ASI_PHYS_USE_EC, vpn);
stxa((vm_paddr_t)tp + offsetof(struct tte, tte_data),
ASI_PHYS_USE_EC, data);
}
}
/*
* Initialize a vm_page's machine-dependent fields.
*/
void
pmap_page_init(vm_page_t m)
{
TAILQ_INIT(&m->md.tte_list);
m->md.color = DCACHE_COLOR(VM_PAGE_TO_PHYS(m));
m->md.pmap = NULL;
}
/*
* Initialize the pmap module.
*/
void
pmap_init(void)
{
vm_offset_t addr;
vm_size_t size;
int result;
int i;
for (i = 0; i < translations_size; i++) {
addr = translations[i].om_start;
size = translations[i].om_size;
if ((translations[i].om_tte & TD_V) == 0)
continue;
if (addr < VM_MIN_PROM_ADDRESS || addr > VM_MAX_PROM_ADDRESS)
continue;
result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
if (result != KERN_SUCCESS || addr != translations[i].om_start)
panic("pmap_init: vm_map_find");
}
}
/*
* Extract the physical page address associated with the given
* map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pm, vm_offset_t va)
{
struct tte *tp;
vm_paddr_t pa;
if (pm == kernel_pmap)
return (pmap_kextract(va));
PMAP_LOCK(pm);
tp = tsb_tte_lookup(pm, va);
if (tp == NULL)
pa = 0;
else
pa = TTE_GET_PA(tp) | (va & TTE_GET_PAGE_MASK(tp));
PMAP_UNLOCK(pm);
return (pa);
}
/*
* Atomically extract and hold the physical page with the given
* pmap and virtual address pair if that mapping permits the given
* protection.
*/
vm_page_t
pmap_extract_and_hold(pmap_t pm, vm_offset_t va, vm_prot_t prot)
{
struct tte *tp;
vm_page_t m;
vm_paddr_t pa;
m = NULL;
pa = 0;
PMAP_LOCK(pm);
retry:
if (pm == kernel_pmap) {
if (va >= VM_MIN_DIRECT_ADDRESS) {
tp = NULL;
m = PHYS_TO_VM_PAGE(TLB_DIRECT_TO_PHYS(va));
(void)vm_page_pa_tryrelock(pm, TLB_DIRECT_TO_PHYS(va),
&pa);
vm_page_hold(m);
} else {
tp = tsb_kvtotte(va);
if ((tp->tte_data & TD_V) == 0)
tp = NULL;
}
} else
tp = tsb_tte_lookup(pm, va);
if (tp != NULL && ((tp->tte_data & TD_SW) ||
(prot & VM_PROT_WRITE) == 0)) {
if (vm_page_pa_tryrelock(pm, TTE_GET_PA(tp), &pa))
goto retry;
m = PHYS_TO_VM_PAGE(TTE_GET_PA(tp));
vm_page_hold(m);
}
PA_UNLOCK_COND(pa);
PMAP_UNLOCK(pm);
return (m);
}
/*
* Extract the physical page address associated with the given kernel virtual
* address.
*/
vm_paddr_t
pmap_kextract(vm_offset_t va)
{
struct tte *tp;
if (va >= VM_MIN_DIRECT_ADDRESS)
return (TLB_DIRECT_TO_PHYS(va));
tp = tsb_kvtotte(va);
if ((tp->tte_data & TD_V) == 0)
return (0);
return (TTE_GET_PA(tp) | (va & TTE_GET_PAGE_MASK(tp)));
}
int
pmap_cache_enter(vm_page_t m, vm_offset_t va)
{
struct tte *tp;
int color;
rw_assert(&tte_list_global_lock, RA_WLOCKED);
KASSERT((m->flags & PG_FICTITIOUS) == 0,
("pmap_cache_enter: fake page"));
PMAP_STATS_INC(pmap_ncache_enter);
if (dcache_color_ignore != 0)
return (1);
/*
* Find the color for this virtual address and note the added mapping.
*/
color = DCACHE_COLOR(va);
m->md.colors[color]++;
/*
* If all existing mappings have the same color, the mapping is
* cacheable.
*/
if (m->md.color == color) {
KASSERT(m->md.colors[DCACHE_OTHER_COLOR(color)] == 0,
("pmap_cache_enter: cacheable, mappings of other color"));
if (m->md.color == DCACHE_COLOR(VM_PAGE_TO_PHYS(m)))
PMAP_STATS_INC(pmap_ncache_enter_c);
else
PMAP_STATS_INC(pmap_ncache_enter_oc);
return (1);
}
/*
* If there are no mappings of the other color, and the page still has
* the wrong color, this must be a new mapping. Change the color to
* match the new mapping, which is cacheable. We must flush the page
* from the cache now.
*/
if (m->md.colors[DCACHE_OTHER_COLOR(color)] == 0) {
KASSERT(m->md.colors[color] == 1,
("pmap_cache_enter: changing color, not new mapping"));
dcache_page_inval(VM_PAGE_TO_PHYS(m));
m->md.color = color;
if (m->md.color == DCACHE_COLOR(VM_PAGE_TO_PHYS(m)))
PMAP_STATS_INC(pmap_ncache_enter_cc);
else
PMAP_STATS_INC(pmap_ncache_enter_coc);
return (1);
}
/*
* If the mapping is already non-cacheable, just return.
*/
if (m->md.color == -1) {
PMAP_STATS_INC(pmap_ncache_enter_nc);
return (0);
}
PMAP_STATS_INC(pmap_ncache_enter_cnc);
/*
* Mark all mappings as uncacheable, flush any lines with the other
* color out of the dcache, and set the color to none (-1).
*/
TAILQ_FOREACH(tp, &m->md.tte_list, tte_link) {
atomic_clear_long(&tp->tte_data, TD_CV);
tlb_page_demap(TTE_GET_PMAP(tp), TTE_GET_VA(tp));
}
dcache_page_inval(VM_PAGE_TO_PHYS(m));
m->md.color = -1;
return (0);
}
static void
pmap_cache_remove(vm_page_t m, vm_offset_t va)
{
struct tte *tp;
int color;
rw_assert(&tte_list_global_lock, RA_WLOCKED);
CTR3(KTR_PMAP, "pmap_cache_remove: m=%p va=%#lx c=%d", m, va,
m->md.colors[DCACHE_COLOR(va)]);
KASSERT((m->flags & PG_FICTITIOUS) == 0,
("pmap_cache_remove: fake page"));
PMAP_STATS_INC(pmap_ncache_remove);
if (dcache_color_ignore != 0)
return;
KASSERT(m->md.colors[DCACHE_COLOR(va)] > 0,
("pmap_cache_remove: no mappings %d <= 0",
m->md.colors[DCACHE_COLOR(va)]));
/*
* Find the color for this virtual address and note the removal of
* the mapping.
*/
color = DCACHE_COLOR(va);
m->md.colors[color]--;
/*
* If the page is cacheable, just return and keep the same color, even
* if there are no longer any mappings.
*/
if (m->md.color != -1) {
if (m->md.color == DCACHE_COLOR(VM_PAGE_TO_PHYS(m)))
PMAP_STATS_INC(pmap_ncache_remove_c);
else
PMAP_STATS_INC(pmap_ncache_remove_oc);
return;
}
KASSERT(m->md.colors[DCACHE_OTHER_COLOR(color)] != 0,
("pmap_cache_remove: uncacheable, no mappings of other color"));
/*
* If the page is not cacheable (color is -1), and the number of
* mappings for this color is not zero, just return. There are
* mappings of the other color still, so remain non-cacheable.
*/
if (m->md.colors[color] != 0) {
PMAP_STATS_INC(pmap_ncache_remove_nc);
return;
}
/*
* The number of mappings for this color is now zero. Recache the
* other colored mappings, and change the page color to the other
* color. There should be no lines in the data cache for this page,
* so flushing should not be needed.
*/
TAILQ_FOREACH(tp, &m->md.tte_list, tte_link) {
atomic_set_long(&tp->tte_data, TD_CV);
tlb_page_demap(TTE_GET_PMAP(tp), TTE_GET_VA(tp));
}
m->md.color = DCACHE_OTHER_COLOR(color);
if (m->md.color == DCACHE_COLOR(VM_PAGE_TO_PHYS(m)))
PMAP_STATS_INC(pmap_ncache_remove_cc);
else
PMAP_STATS_INC(pmap_ncache_remove_coc);
}
/*
* Map a wired page into kernel virtual address space.
*/
void
pmap_kenter(vm_offset_t va, vm_page_t m)
{
vm_offset_t ova;
struct tte *tp;
vm_page_t om;
u_long data;
rw_assert(&tte_list_global_lock, RA_WLOCKED);
PMAP_STATS_INC(pmap_nkenter);
tp = tsb_kvtotte(va);
CTR4(KTR_PMAP, "pmap_kenter: va=%#lx pa=%#lx tp=%p data=%#lx",
va, VM_PAGE_TO_PHYS(m), tp, tp->tte_data);
if (DCACHE_COLOR(VM_PAGE_TO_PHYS(m)) != DCACHE_COLOR(va)) {
CTR5(KTR_SPARE2,
"pmap_kenter: off color va=%#lx pa=%#lx o=%p ot=%d pi=%#lx",
va, VM_PAGE_TO_PHYS(m), m->object,
m->object ? m->object->type : -1,
m->pindex);
PMAP_STATS_INC(pmap_nkenter_oc);
}
if ((tp->tte_data & TD_V) != 0) {
om = PHYS_TO_VM_PAGE(TTE_GET_PA(tp));
ova = TTE_GET_VA(tp);
if (m == om && va == ova) {
PMAP_STATS_INC(pmap_nkenter_stupid);
return;
}
TAILQ_REMOVE(&om->md.tte_list, tp, tte_link);
pmap_cache_remove(om, ova);
if (va != ova)
tlb_page_demap(kernel_pmap, ova);
}
data = TD_V | TD_8K | VM_PAGE_TO_PHYS(m) | TD_REF | TD_SW | TD_CP |
TD_P | TD_W;
if (pmap_cache_enter(m, va) != 0)
data |= TD_CV;
tp->tte_vpn = TV_VPN(va, TS_8K);
tp->tte_data = data;
TAILQ_INSERT_TAIL(&m->md.tte_list, tp, tte_link);
}
/*
* Map a wired page into kernel virtual address space. This additionally
* takes a flag argument which is or'ed to the TTE data. This is used by
* sparc64_bus_mem_map().
* NOTE: if the mapping is non-cacheable, it's the caller's responsibility
* to flush entries that might still be in the cache, if applicable.
*/
void
pmap_kenter_flags(vm_offset_t va, vm_paddr_t pa, u_long flags)
{
struct tte *tp;
tp = tsb_kvtotte(va);
CTR4(KTR_PMAP, "pmap_kenter_flags: va=%#lx pa=%#lx tp=%p data=%#lx",
va, pa, tp, tp->tte_data);
tp->tte_vpn = TV_VPN(va, TS_8K);
tp->tte_data = TD_V | TD_8K | TD_PA(pa) | TD_REF | TD_P | flags;
}
/*
* Remove a wired page from kernel virtual address space.
*/
void
pmap_kremove(vm_offset_t va)
{
struct tte *tp;
vm_page_t m;
rw_assert(&tte_list_global_lock, RA_WLOCKED);
PMAP_STATS_INC(pmap_nkremove);
tp = tsb_kvtotte(va);
CTR3(KTR_PMAP, "pmap_kremove: va=%#lx tp=%p data=%#lx", va, tp,
tp->tte_data);
if ((tp->tte_data & TD_V) == 0)
return;
m = PHYS_TO_VM_PAGE(TTE_GET_PA(tp));
TAILQ_REMOVE(&m->md.tte_list, tp, tte_link);
pmap_cache_remove(m, va);
TTE_ZERO(tp);
}
/*
* Inverse of pmap_kenter_flags, used by bus_space_unmap().
*/
void
pmap_kremove_flags(vm_offset_t va)
{
struct tte *tp;
tp = tsb_kvtotte(va);
CTR3(KTR_PMAP, "pmap_kremove_flags: va=%#lx tp=%p data=%#lx", va, tp,
tp->tte_data);
TTE_ZERO(tp);
}
/*
* Map a range of physical addresses into kernel virtual address space.
*
* The value passed in *virt is a suggested virtual address for the mapping.
* Architectures which can support a direct-mapped physical to virtual region
* can return the appropriate address within that region, leaving '*virt'
* unchanged.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
{
return (TLB_PHYS_TO_DIRECT(start));
}
/*
* Map a list of wired pages into kernel virtual address space. This is
* intended for temporary mappings which do not need page modification or
* references recorded. Existing mappings in the region are overwritten.
*/
void
pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
{
vm_offset_t va;
PMAP_STATS_INC(pmap_nqenter);
va = sva;
rw_wlock(&tte_list_global_lock);
while (count-- > 0) {
pmap_kenter(va, *m);
va += PAGE_SIZE;
m++;
}
rw_wunlock(&tte_list_global_lock);
tlb_range_demap(kernel_pmap, sva, va);
}
/*
* Remove page mappings from kernel virtual address space. Intended for
* temporary mappings entered by pmap_qenter.
*/
void
pmap_qremove(vm_offset_t sva, int count)
{
vm_offset_t va;
PMAP_STATS_INC(pmap_nqremove);
va = sva;
rw_wlock(&tte_list_global_lock);
while (count-- > 0) {
pmap_kremove(va);
va += PAGE_SIZE;
}
rw_wunlock(&tte_list_global_lock);
tlb_range_demap(kernel_pmap, sva, va);
}
/*
* Initialize the pmap associated with process 0.
*/
void
pmap_pinit0(pmap_t pm)
{
int i;
PMAP_LOCK_INIT(pm);
for (i = 0; i < MAXCPU; i++)
pm->pm_context[i] = TLB_CTX_KERNEL;
CPU_ZERO(&pm->pm_active);
pm->pm_tsb = NULL;
pm->pm_tsb_obj = NULL;
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
}
/*
* Initialize a preallocated and zeroed pmap structure, such as one in a
* vmspace structure.
*/
int
pmap_pinit(pmap_t pm)
{
vm_page_t ma[TSB_PAGES];
vm_page_t m;
int i;
/*
* Allocate KVA space for the TSB.
*/
if (pm->pm_tsb == NULL) {
pm->pm_tsb = (struct tte *)kva_alloc(TSB_BSIZE);
if (pm->pm_tsb == NULL)
return (0);
}
/*
* Allocate an object for it.
*/
if (pm->pm_tsb_obj == NULL)
pm->pm_tsb_obj = vm_object_allocate(OBJT_PHYS, TSB_PAGES);
for (i = 0; i < MAXCPU; i++)
pm->pm_context[i] = -1;
CPU_ZERO(&pm->pm_active);
VM_OBJECT_WLOCK(pm->pm_tsb_obj);
for (i = 0; i < TSB_PAGES; i++) {
m = vm_page_grab(pm->pm_tsb_obj, i, VM_ALLOC_NOBUSY |
VM_ALLOC_WIRED | VM_ALLOC_ZERO);
m->valid = VM_PAGE_BITS_ALL;
m->md.pmap = pm;
ma[i] = m;
}
VM_OBJECT_WUNLOCK(pm->pm_tsb_obj);
pmap_qenter((vm_offset_t)pm->pm_tsb, ma, TSB_PAGES);
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
return (1);
}
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pm)
{
vm_object_t obj;
vm_page_t m;
#ifdef SMP
struct pcpu *pc;
#endif
CTR2(KTR_PMAP, "pmap_release: ctx=%#x tsb=%p",
pm->pm_context[curcpu], pm->pm_tsb);
KASSERT(pmap_resident_count(pm) == 0,
("pmap_release: resident pages %ld != 0",
pmap_resident_count(pm)));
/*
* After the pmap was freed, it might be reallocated to a new process.
* When switching, this might lead us to wrongly assume that we need
* not switch contexts because old and new pmap pointer are equal.
* Therefore, make sure that this pmap is not referenced by any PCPU
* pointer any more. This could happen in two cases:
* - A process that referenced the pmap is currently exiting on a CPU.
* However, it is guaranteed to not switch in any more after setting
* its state to PRS_ZOMBIE.
* - A process that referenced this pmap ran on a CPU, but we switched
* to a kernel thread, leaving the pmap pointer unchanged.
*/
#ifdef SMP
sched_pin();
STAILQ_FOREACH(pc, &cpuhead, pc_allcpu)
atomic_cmpset_rel_ptr((uintptr_t *)&pc->pc_pmap,
(uintptr_t)pm, (uintptr_t)NULL);
sched_unpin();
#else
critical_enter();
if (PCPU_GET(pmap) == pm)
PCPU_SET(pmap, NULL);
critical_exit();
#endif
pmap_qremove((vm_offset_t)pm->pm_tsb, TSB_PAGES);
obj = pm->pm_tsb_obj;
VM_OBJECT_WLOCK(obj);
KASSERT(obj->ref_count == 1, ("pmap_release: tsbobj ref count != 1"));
while (!TAILQ_EMPTY(&obj->memq)) {
m = TAILQ_FIRST(&obj->memq);
m->md.pmap = NULL;
m->wire_count--;
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
vm_page_free_zero(m);
}
VM_OBJECT_WUNLOCK(obj);
}
/*
* Grow the number of kernel page table entries. Unneeded.
*/
void
pmap_growkernel(vm_offset_t addr)
{
panic("pmap_growkernel: can't grow kernel");
}
int
pmap_remove_tte(struct pmap *pm, struct pmap *pm2, struct tte *tp,
vm_offset_t va)
{
vm_page_t m;
u_long data;
rw_assert(&tte_list_global_lock, RA_WLOCKED);
data = atomic_readandclear_long(&tp->tte_data);
if ((data & TD_FAKE) == 0) {
m = PHYS_TO_VM_PAGE(TD_PA(data));
TAILQ_REMOVE(&m->md.tte_list, tp, tte_link);
if ((data & TD_WIRED) != 0)
pm->pm_stats.wired_count--;
if ((data & TD_PV) != 0) {
if ((data & TD_W) != 0)
vm_page_dirty(m);
if ((data & TD_REF) != 0)
vm_page_aflag_set(m, PGA_REFERENCED);
if (TAILQ_EMPTY(&m->md.tte_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
pm->pm_stats.resident_count--;
}
pmap_cache_remove(m, va);
}
TTE_ZERO(tp);
if (PMAP_REMOVE_DONE(pm))
return (0);
return (1);
}
/*
* Remove the given range of addresses from the specified map.
*/
void
pmap_remove(pmap_t pm, vm_offset_t start, vm_offset_t end)
{
struct tte *tp;
vm_offset_t va;
CTR3(KTR_PMAP, "pmap_remove: ctx=%#lx start=%#lx end=%#lx",
pm->pm_context[curcpu], start, end);
if (PMAP_REMOVE_DONE(pm))
return;
rw_wlock(&tte_list_global_lock);
PMAP_LOCK(pm);
if (end - start > PMAP_TSB_THRESH) {
tsb_foreach(pm, NULL, start, end, pmap_remove_tte);
tlb_context_demap(pm);
} else {
for (va = start; va < end; va += PAGE_SIZE)
if ((tp = tsb_tte_lookup(pm, va)) != NULL &&
!pmap_remove_tte(pm, NULL, tp, va))
break;
tlb_range_demap(pm, start, end - 1);
}
PMAP_UNLOCK(pm);
rw_wunlock(&tte_list_global_lock);
}
void
pmap_remove_all(vm_page_t m)
{
struct pmap *pm;
struct tte *tpn;
struct tte *tp;
vm_offset_t va;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_all: page %p is not managed", m));
rw_wlock(&tte_list_global_lock);
for (tp = TAILQ_FIRST(&m->md.tte_list); tp != NULL; tp = tpn) {
tpn = TAILQ_NEXT(tp, tte_link);
if ((tp->tte_data & TD_PV) == 0)
continue;
pm = TTE_GET_PMAP(tp);
va = TTE_GET_VA(tp);
PMAP_LOCK(pm);
if ((tp->tte_data & TD_WIRED) != 0)
pm->pm_stats.wired_count--;
if ((tp->tte_data & TD_REF) != 0)
vm_page_aflag_set(m, PGA_REFERENCED);
if ((tp->tte_data & TD_W) != 0)
vm_page_dirty(m);
tp->tte_data &= ~TD_V;
tlb_page_demap(pm, va);
TAILQ_REMOVE(&m->md.tte_list, tp, tte_link);
pm->pm_stats.resident_count--;
pmap_cache_remove(m, va);
TTE_ZERO(tp);
PMAP_UNLOCK(pm);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&tte_list_global_lock);
}
static int
pmap_protect_tte(struct pmap *pm, struct pmap *pm2, struct tte *tp,
vm_offset_t va)
{
u_long data;
vm_page_t m;
PMAP_LOCK_ASSERT(pm, MA_OWNED);
data = atomic_clear_long(&tp->tte_data, TD_SW | TD_W);
if ((data & (TD_PV | TD_W)) == (TD_PV | TD_W)) {
m = PHYS_TO_VM_PAGE(TD_PA(data));
vm_page_dirty(m);
}
return (1);
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
void
pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
vm_offset_t va;
struct tte *tp;
CTR4(KTR_PMAP, "pmap_protect: ctx=%#lx sva=%#lx eva=%#lx prot=%#lx",
pm->pm_context[curcpu], sva, eva, prot);
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
pmap_remove(pm, sva, eva);
return;
}
if (prot & VM_PROT_WRITE)
return;
PMAP_LOCK(pm);
if (eva - sva > PMAP_TSB_THRESH) {
tsb_foreach(pm, NULL, sva, eva, pmap_protect_tte);
tlb_context_demap(pm);
} else {
for (va = sva; va < eva; va += PAGE_SIZE)
if ((tp = tsb_tte_lookup(pm, va)) != NULL)
pmap_protect_tte(pm, NULL, tp, va);
tlb_range_demap(pm, sva, eva - 1);
}
PMAP_UNLOCK(pm);
}
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*/
int
pmap_enter(pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags, int8_t psind)
{
int rv;
rw_wlock(&tte_list_global_lock);
PMAP_LOCK(pm);
rv = pmap_enter_locked(pm, va, m, prot, flags, psind);
rw_wunlock(&tte_list_global_lock);
PMAP_UNLOCK(pm);
return (rv);
}
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*
* The page queues and pmap must be locked.
*/
static int
pmap_enter_locked(pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags, int8_t psind __unused)
{
struct tte *tp;
vm_paddr_t pa;
vm_page_t real;
u_long data;
boolean_t wired;
rw_assert(&tte_list_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pm, MA_OWNED);
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
VM_OBJECT_ASSERT_LOCKED(m->object);
PMAP_STATS_INC(pmap_nenter);
pa = VM_PAGE_TO_PHYS(m);
wired = (flags & PMAP_ENTER_WIRED) != 0;
/*
* If this is a fake page from the device_pager, but it covers actual
* physical memory, convert to the real backing page.
*/
if ((m->flags & PG_FICTITIOUS) != 0) {
real = vm_phys_paddr_to_vm_page(pa);
if (real != NULL)
m = real;
}
CTR6(KTR_PMAP,
"pmap_enter_locked: ctx=%p m=%p va=%#lx pa=%#lx prot=%#x wired=%d",
pm->pm_context[curcpu], m, va, pa, prot, wired);
/*
* If there is an existing mapping, and the physical address has not
* changed, must be protection or wiring change.
*/
if ((tp = tsb_tte_lookup(pm, va)) != NULL && TTE_GET_PA(tp) == pa) {
CTR0(KTR_PMAP, "pmap_enter_locked: update");
PMAP_STATS_INC(pmap_nenter_update);
/*
* Wiring change, just update stats.
*/
if (wired) {
if ((tp->tte_data & TD_WIRED) == 0) {
tp->tte_data |= TD_WIRED;
pm->pm_stats.wired_count++;
}
} else {
if ((tp->tte_data & TD_WIRED) != 0) {
tp->tte_data &= ~TD_WIRED;
pm->pm_stats.wired_count--;
}
}
/*
* Save the old bits and clear the ones we're interested in.
*/
data = tp->tte_data;
tp->tte_data &= ~(TD_EXEC | TD_SW | TD_W);
/*
* If we're turning off write permissions, sense modify status.
*/
if ((prot & VM_PROT_WRITE) != 0) {
tp->tte_data |= TD_SW;
if (wired)
tp->tte_data |= TD_W;
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
} else if ((data & TD_W) != 0)
vm_page_dirty(m);
/*
* If we're turning on execute permissions, flush the icache.
*/
if ((prot & VM_PROT_EXECUTE) != 0) {
if ((data & TD_EXEC) == 0)
icache_page_inval(pa);
tp->tte_data |= TD_EXEC;
}
/*
* Delete the old mapping.
*/
tlb_page_demap(pm, TTE_GET_VA(tp));
} else {
/*
* If there is an existing mapping, but its for a different
* physical address, delete the old mapping.
*/
if (tp != NULL) {
CTR0(KTR_PMAP, "pmap_enter_locked: replace");
PMAP_STATS_INC(pmap_nenter_replace);
pmap_remove_tte(pm, NULL, tp, va);
tlb_page_demap(pm, va);
} else {
CTR0(KTR_PMAP, "pmap_enter_locked: new");
PMAP_STATS_INC(pmap_nenter_new);
}
/*
* Now set up the data and install the new mapping.
*/
data = TD_V | TD_8K | TD_PA(pa);
if (pm == kernel_pmap)
data |= TD_P;
if ((prot & VM_PROT_WRITE) != 0) {
data |= TD_SW;
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
}
if (prot & VM_PROT_EXECUTE) {
data |= TD_EXEC;
icache_page_inval(pa);
}
/*
* If its wired update stats. We also don't need reference or
* modify tracking for wired mappings, so set the bits now.
*/
if (wired) {
pm->pm_stats.wired_count++;
data |= TD_REF | TD_WIRED;
if ((prot & VM_PROT_WRITE) != 0)
data |= TD_W;
}
tsb_tte_enter(pm, m, va, TS_8K, data);
}
return (KERN_SUCCESS);
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
pmap_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m;
vm_pindex_t diff, psize;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
m = m_start;
rw_wlock(&tte_list_global_lock);
PMAP_LOCK(pm);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
pmap_enter_locked(pm, start + ptoa(diff), m, prot &
(VM_PROT_READ | VM_PROT_EXECUTE), 0, 0);
m = TAILQ_NEXT(m, listq);
}
rw_wunlock(&tte_list_global_lock);
PMAP_UNLOCK(pm);
}
void
pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
rw_wlock(&tte_list_global_lock);
PMAP_LOCK(pm);
pmap_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
0, 0);
rw_wunlock(&tte_list_global_lock);
PMAP_UNLOCK(pm);
}
void
pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
vm_pindex_t pindex, vm_size_t size)
{
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("pmap_object_init_pt: non-device object"));
}
static int
pmap_unwire_tte(pmap_t pm, pmap_t pm2, struct tte *tp, vm_offset_t va)
{
PMAP_LOCK_ASSERT(pm, MA_OWNED);
if ((tp->tte_data & TD_WIRED) == 0)
panic("pmap_unwire_tte: tp %p is missing TD_WIRED", tp);
atomic_clear_long(&tp->tte_data, TD_WIRED);
pm->pm_stats.wired_count--;
return (1);
}
/*
* Clear the wired attribute from the mappings for the specified range of
* addresses in the given pmap. Every valid mapping within that range must
* have the wired attribute set. In contrast, invalid mappings cannot have
* the wired attribute set, so they are ignored.
*
* The wired attribute of the translation table entry is not a hardware
* feature, so there is no need to invalidate any TLB entries.
*/
void
pmap_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t va;
struct tte *tp;
PMAP_LOCK(pm);
if (eva - sva > PMAP_TSB_THRESH)
tsb_foreach(pm, NULL, sva, eva, pmap_unwire_tte);
else {
for (va = sva; va < eva; va += PAGE_SIZE)
if ((tp = tsb_tte_lookup(pm, va)) != NULL)
pmap_unwire_tte(pm, NULL, tp, va);
}
PMAP_UNLOCK(pm);
}
static int
pmap_copy_tte(pmap_t src_pmap, pmap_t dst_pmap, struct tte *tp,
vm_offset_t va)
{
vm_page_t m;
u_long data;
if ((tp->tte_data & TD_FAKE) != 0)
return (1);
if (tsb_tte_lookup(dst_pmap, va) == NULL) {
data = tp->tte_data &
~(TD_PV | TD_REF | TD_SW | TD_CV | TD_W);
m = PHYS_TO_VM_PAGE(TTE_GET_PA(tp));
tsb_tte_enter(dst_pmap, m, va, TS_8K, data);
}
return (1);
}
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
vm_size_t len, vm_offset_t src_addr)
{
struct tte *tp;
vm_offset_t va;
if (dst_addr != src_addr)
return;
rw_wlock(&tte_list_global_lock);
if (dst_pmap < src_pmap) {
PMAP_LOCK(dst_pmap);
PMAP_LOCK(src_pmap);
} else {
PMAP_LOCK(src_pmap);
PMAP_LOCK(dst_pmap);
}
if (len > PMAP_TSB_THRESH) {
tsb_foreach(src_pmap, dst_pmap, src_addr, src_addr + len,
pmap_copy_tte);
tlb_context_demap(dst_pmap);
} else {
for (va = src_addr; va < src_addr + len; va += PAGE_SIZE)
if ((tp = tsb_tte_lookup(src_pmap, va)) != NULL)
pmap_copy_tte(src_pmap, dst_pmap, tp, va);
tlb_range_demap(dst_pmap, src_addr, src_addr + len - 1);
}
rw_wunlock(&tte_list_global_lock);
PMAP_UNLOCK(src_pmap);
PMAP_UNLOCK(dst_pmap);
}
void
pmap_zero_page(vm_page_t m)
{
struct tte *tp;
vm_offset_t va;
vm_paddr_t pa;
KASSERT((m->flags & PG_FICTITIOUS) == 0,
("pmap_zero_page: fake page"));
PMAP_STATS_INC(pmap_nzero_page);
pa = VM_PAGE_TO_PHYS(m);
if (dcache_color_ignore != 0 || m->md.color == DCACHE_COLOR(pa)) {
PMAP_STATS_INC(pmap_nzero_page_c);
va = TLB_PHYS_TO_DIRECT(pa);
cpu_block_zero((void *)va, PAGE_SIZE);
} else if (m->md.color == -1) {
PMAP_STATS_INC(pmap_nzero_page_nc);
aszero(ASI_PHYS_USE_EC, pa, PAGE_SIZE);
} else {
PMAP_STATS_INC(pmap_nzero_page_oc);
PMAP_LOCK(kernel_pmap);
va = pmap_temp_map_1 + (m->md.color * PAGE_SIZE);
tp = tsb_kvtotte(va);
tp->tte_data = TD_V | TD_8K | TD_PA(pa) | TD_CP | TD_CV | TD_W;
tp->tte_vpn = TV_VPN(va, TS_8K);
cpu_block_zero((void *)va, PAGE_SIZE);
tlb_page_demap(kernel_pmap, va);
PMAP_UNLOCK(kernel_pmap);
}
}
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
struct tte *tp;
vm_offset_t va;
vm_paddr_t pa;
KASSERT((m->flags & PG_FICTITIOUS) == 0,
("pmap_zero_page_area: fake page"));
KASSERT(off + size <= PAGE_SIZE, ("pmap_zero_page_area: bad off/size"));
PMAP_STATS_INC(pmap_nzero_page_area);
pa = VM_PAGE_TO_PHYS(m);
if (dcache_color_ignore != 0 || m->md.color == DCACHE_COLOR(pa)) {
PMAP_STATS_INC(pmap_nzero_page_area_c);
va = TLB_PHYS_TO_DIRECT(pa);
bzero((void *)(va + off), size);
} else if (m->md.color == -1) {
PMAP_STATS_INC(pmap_nzero_page_area_nc);
aszero(ASI_PHYS_USE_EC, pa + off, size);
} else {
PMAP_STATS_INC(pmap_nzero_page_area_oc);
PMAP_LOCK(kernel_pmap);
va = pmap_temp_map_1 + (m->md.color * PAGE_SIZE);
tp = tsb_kvtotte(va);
tp->tte_data = TD_V | TD_8K | TD_PA(pa) | TD_CP | TD_CV | TD_W;
tp->tte_vpn = TV_VPN(va, TS_8K);
bzero((void *)(va + off), size);
tlb_page_demap(kernel_pmap, va);
PMAP_UNLOCK(kernel_pmap);
}
}
void
pmap_zero_page_idle(vm_page_t m)
{
struct tte *tp;
vm_offset_t va;
vm_paddr_t pa;
KASSERT((m->flags & PG_FICTITIOUS) == 0,
("pmap_zero_page_idle: fake page"));
PMAP_STATS_INC(pmap_nzero_page_idle);
pa = VM_PAGE_TO_PHYS(m);
if (dcache_color_ignore != 0 || m->md.color == DCACHE_COLOR(pa)) {
PMAP_STATS_INC(pmap_nzero_page_idle_c);
va = TLB_PHYS_TO_DIRECT(pa);
cpu_block_zero((void *)va, PAGE_SIZE);
} else if (m->md.color == -1) {
PMAP_STATS_INC(pmap_nzero_page_idle_nc);
aszero(ASI_PHYS_USE_EC, pa, PAGE_SIZE);
} else {
PMAP_STATS_INC(pmap_nzero_page_idle_oc);
va = pmap_idle_map + (m->md.color * PAGE_SIZE);
tp = tsb_kvtotte(va);
tp->tte_data = TD_V | TD_8K | TD_PA(pa) | TD_CP | TD_CV | TD_W;
tp->tte_vpn = TV_VPN(va, TS_8K);
cpu_block_zero((void *)va, PAGE_SIZE);
tlb_page_demap(kernel_pmap, va);
}
}
void
pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t vdst;
vm_offset_t vsrc;
vm_paddr_t pdst;
vm_paddr_t psrc;
struct tte *tp;
KASSERT((mdst->flags & PG_FICTITIOUS) == 0,
("pmap_copy_page: fake dst page"));
KASSERT((msrc->flags & PG_FICTITIOUS) == 0,
("pmap_copy_page: fake src page"));
PMAP_STATS_INC(pmap_ncopy_page);
pdst = VM_PAGE_TO_PHYS(mdst);
psrc = VM_PAGE_TO_PHYS(msrc);
if (dcache_color_ignore != 0 ||
(msrc->md.color == DCACHE_COLOR(psrc) &&
mdst->md.color == DCACHE_COLOR(pdst))) {
PMAP_STATS_INC(pmap_ncopy_page_c);
vdst = TLB_PHYS_TO_DIRECT(pdst);
vsrc = TLB_PHYS_TO_DIRECT(psrc);
cpu_block_copy((void *)vsrc, (void *)vdst, PAGE_SIZE);
} else if (msrc->md.color == -1 && mdst->md.color == -1) {
PMAP_STATS_INC(pmap_ncopy_page_nc);
ascopy(ASI_PHYS_USE_EC, psrc, pdst, PAGE_SIZE);
} else if (msrc->md.color == -1) {
if (mdst->md.color == DCACHE_COLOR(pdst)) {
PMAP_STATS_INC(pmap_ncopy_page_dc);
vdst = TLB_PHYS_TO_DIRECT(pdst);
ascopyfrom(ASI_PHYS_USE_EC, psrc, (void *)vdst,
PAGE_SIZE);
} else {
PMAP_STATS_INC(pmap_ncopy_page_doc);
PMAP_LOCK(kernel_pmap);
vdst = pmap_temp_map_1 + (mdst->md.color * PAGE_SIZE);
tp = tsb_kvtotte(vdst);
tp->tte_data =
TD_V | TD_8K | TD_PA(pdst) | TD_CP | TD_CV | TD_W;
tp->tte_vpn = TV_VPN(vdst, TS_8K);
ascopyfrom(ASI_PHYS_USE_EC, psrc, (void *)vdst,
PAGE_SIZE);
tlb_page_demap(kernel_pmap, vdst);
PMAP_UNLOCK(kernel_pmap);
}
} else if (mdst->md.color == -1) {
if (msrc->md.color == DCACHE_COLOR(psrc)) {
PMAP_STATS_INC(pmap_ncopy_page_sc);
vsrc = TLB_PHYS_TO_DIRECT(psrc);
ascopyto((void *)vsrc, ASI_PHYS_USE_EC, pdst,
PAGE_SIZE);
} else {
PMAP_STATS_INC(pmap_ncopy_page_soc);
PMAP_LOCK(kernel_pmap);
vsrc = pmap_temp_map_1 + (msrc->md.color * PAGE_SIZE);
tp = tsb_kvtotte(vsrc);
tp->tte_data =
TD_V | TD_8K | TD_PA(psrc) | TD_CP | TD_CV | TD_W;
tp->tte_vpn = TV_VPN(vsrc, TS_8K);
ascopyto((void *)vsrc, ASI_PHYS_USE_EC, pdst,
PAGE_SIZE);
tlb_page_demap(kernel_pmap, vsrc);
PMAP_UNLOCK(kernel_pmap);
}
} else {
PMAP_STATS_INC(pmap_ncopy_page_oc);
PMAP_LOCK(kernel_pmap);
vdst = pmap_temp_map_1 + (mdst->md.color * PAGE_SIZE);
tp = tsb_kvtotte(vdst);
tp->tte_data =
TD_V | TD_8K | TD_PA(pdst) | TD_CP | TD_CV | TD_W;
tp->tte_vpn = TV_VPN(vdst, TS_8K);
vsrc = pmap_temp_map_2 + (msrc->md.color * PAGE_SIZE);
tp = tsb_kvtotte(vsrc);
tp->tte_data =
TD_V | TD_8K | TD_PA(psrc) | TD_CP | TD_CV | TD_W;
tp->tte_vpn = TV_VPN(vsrc, TS_8K);
cpu_block_copy((void *)vsrc, (void *)vdst, PAGE_SIZE);
tlb_page_demap(kernel_pmap, vdst);
tlb_page_demap(kernel_pmap, vsrc);
PMAP_UNLOCK(kernel_pmap);
}
}
vm_offset_t
pmap_quick_enter_page(vm_page_t m)
{
vm_paddr_t pa;
vm_offset_t qaddr;
struct tte *tp;
pa = VM_PAGE_TO_PHYS(m);
if (dcache_color_ignore != 0 || m->md.color == DCACHE_COLOR(pa))
return (TLB_PHYS_TO_DIRECT(pa));
critical_enter();
qaddr = PCPU_GET(qmap_addr);
qaddr += (PAGE_SIZE * ((DCACHE_COLORS + DCACHE_COLOR(pa) -
DCACHE_COLOR(qaddr)) % DCACHE_COLORS));
tp = tsb_kvtotte(qaddr);
KASSERT(tp->tte_data == 0, ("pmap_quick_enter_page: PTE busy"));
tp->tte_data = TD_V | TD_8K | TD_PA(pa) | TD_CP | TD_CV | TD_W;
tp->tte_vpn = TV_VPN(qaddr, TS_8K);
return (qaddr);
}
void
pmap_quick_remove_page(vm_offset_t addr)
{
vm_offset_t qaddr;
struct tte *tp;
if (addr >= VM_MIN_DIRECT_ADDRESS)
return;
tp = tsb_kvtotte(addr);
qaddr = PCPU_GET(qmap_addr);
KASSERT((addr >= qaddr) && (addr < (qaddr + (PAGE_SIZE * DCACHE_COLORS))),
("pmap_quick_remove_page: invalid address"));
KASSERT(tp->tte_data != 0, ("pmap_quick_remove_page: PTE not in use"));
stxa(TLB_DEMAP_VA(addr) | TLB_DEMAP_NUCLEUS | TLB_DEMAP_PAGE, ASI_DMMU_DEMAP, 0);
stxa(TLB_DEMAP_VA(addr) | TLB_DEMAP_NUCLEUS | TLB_DEMAP_PAGE, ASI_IMMU_DEMAP, 0);
flush(KERNBASE);
TTE_ZERO(tp);
critical_exit();
}
int unmapped_buf_allowed;
void
pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
vm_offset_t b_offset, int xfersize)
{
panic("pmap_copy_pages: not implemented");
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
pmap_page_exists_quick(pmap_t pm, vm_page_t m)
{
struct tte *tp;
int loops;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_page_exists_quick: page %p is not managed", m));
loops = 0;
rv = FALSE;
rw_wlock(&tte_list_global_lock);
TAILQ_FOREACH(tp, &m->md.tte_list, tte_link) {
if ((tp->tte_data & TD_PV) == 0)
continue;
if (TTE_GET_PMAP(tp) == pm) {
rv = TRUE;
break;
}
if (++loops >= 16)
break;
}
rw_wunlock(&tte_list_global_lock);
return (rv);
}
/*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
pmap_page_wired_mappings(vm_page_t m)
{
struct tte *tp;
int count;
count = 0;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (count);
rw_wlock(&tte_list_global_lock);
TAILQ_FOREACH(tp, &m->md.tte_list, tte_link)
if ((tp->tte_data & (TD_PV | TD_WIRED)) == (TD_PV | TD_WIRED))
count++;
rw_wunlock(&tte_list_global_lock);
return (count);
}
/*
* Remove all pages from specified address space, this aids process exit
* speeds. This is much faster than pmap_remove in the case of running down
* an entire address space. Only works for the current pmap.
*/
void
pmap_remove_pages(pmap_t pm)
{
}
/*
* Returns TRUE if the given page has a managed mapping.
*/
boolean_t
pmap_page_is_mapped(vm_page_t m)
{
struct tte *tp;
boolean_t rv;
rv = FALSE;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (rv);
rw_wlock(&tte_list_global_lock);
TAILQ_FOREACH(tp, &m->md.tte_list, tte_link)
if ((tp->tte_data & TD_PV) != 0) {
rv = TRUE;
break;
}
rw_wunlock(&tte_list_global_lock);
return (rv);
}
/*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
int
pmap_ts_referenced(vm_page_t m)
{
struct tte *tpf;
struct tte *tpn;
struct tte *tp;
u_long data;
int count;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_ts_referenced: page %p is not managed", m));
count = 0;
rw_wlock(&tte_list_global_lock);
if ((tp = TAILQ_FIRST(&m->md.tte_list)) != NULL) {
tpf = tp;
do {
tpn = TAILQ_NEXT(tp, tte_link);
TAILQ_REMOVE(&m->md.tte_list, tp, tte_link);
TAILQ_INSERT_TAIL(&m->md.tte_list, tp, tte_link);
if ((tp->tte_data & TD_PV) == 0)
continue;
data = atomic_clear_long(&tp->tte_data, TD_REF);
if ((data & TD_REF) != 0 && ++count > 4)
break;
} while ((tp = tpn) != NULL && tp != tpf);
}
rw_wunlock(&tte_list_global_lock);
return (count);
}
boolean_t
pmap_is_modified(vm_page_t m)
{
struct tte *tp;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_modified: page %p is not managed", m));
rv = FALSE;
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no TTEs can have TD_W set.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return (rv);
rw_wlock(&tte_list_global_lock);
TAILQ_FOREACH(tp, &m->md.tte_list, tte_link) {
if ((tp->tte_data & TD_PV) == 0)
continue;
if ((tp->tte_data & TD_W) != 0) {
rv = TRUE;
break;
}
}
rw_wunlock(&tte_list_global_lock);
return (rv);
}
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is elgible
* for prefault.
*/
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
boolean_t rv;
PMAP_LOCK(pmap);
rv = tsb_tte_lookup(pmap, addr) == NULL;
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Return whether or not the specified physical page was referenced
* in any physical maps.
*/
boolean_t
pmap_is_referenced(vm_page_t m)
{
struct tte *tp;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_referenced: page %p is not managed", m));
rv = FALSE;
rw_wlock(&tte_list_global_lock);
TAILQ_FOREACH(tp, &m->md.tte_list, tte_link) {
if ((tp->tte_data & TD_PV) == 0)
continue;
if ((tp->tte_data & TD_REF) != 0) {
rv = TRUE;
break;
}
}
rw_wunlock(&tte_list_global_lock);
return (rv);
}
/*
* This function is advisory.
*/
void
pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
{
}
void
pmap_clear_modify(vm_page_t m)
{
struct tte *tp;
u_long data;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_clear_modify: page %p is not managed", m));
VM_OBJECT_ASSERT_WLOCKED(m->object);
KASSERT(!vm_page_xbusied(m),
("pmap_clear_modify: page %p is exclusive busied", m));
/*
* If the page is not PGA_WRITEABLE, then no TTEs can have TD_W set.
* If the object containing the page is locked and the page is not
* exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
*/
if ((m->aflags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&tte_list_global_lock);
TAILQ_FOREACH(tp, &m->md.tte_list, tte_link) {
if ((tp->tte_data & TD_PV) == 0)
continue;
data = atomic_clear_long(&tp->tte_data, TD_W);
if ((data & TD_W) != 0)
tlb_page_demap(TTE_GET_PMAP(tp), TTE_GET_VA(tp));
}
rw_wunlock(&tte_list_global_lock);
}
void
pmap_remove_write(vm_page_t m)
{
struct tte *tp;
u_long data;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_write: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* set by another thread while the object is locked. Thus,
* if PGA_WRITEABLE is clear, no page table entries need updating.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&tte_list_global_lock);
TAILQ_FOREACH(tp, &m->md.tte_list, tte_link) {
if ((tp->tte_data & TD_PV) == 0)
continue;
data = atomic_clear_long(&tp->tte_data, TD_SW | TD_W);
if ((data & TD_W) != 0) {
vm_page_dirty(m);
tlb_page_demap(TTE_GET_PMAP(tp), TTE_GET_VA(tp));
}
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&tte_list_global_lock);
}
int
pmap_mincore(pmap_t pm, vm_offset_t addr, vm_paddr_t *locked_pa)
{
/* TODO; */
return (0);
}
/*
* Activate a user pmap. The pmap must be activated before its address space
* can be accessed in any way.
*/
void
pmap_activate(struct thread *td)
{
struct vmspace *vm;
struct pmap *pm;
int context;
critical_enter();
vm = td->td_proc->p_vmspace;
pm = vmspace_pmap(vm);
context = PCPU_GET(tlb_ctx);
if (context == PCPU_GET(tlb_ctx_max)) {
tlb_flush_user();
context = PCPU_GET(tlb_ctx_min);
}
PCPU_SET(tlb_ctx, context + 1);
pm->pm_context[curcpu] = context;
#ifdef SMP
CPU_SET_ATOMIC(PCPU_GET(cpuid), &pm->pm_active);
atomic_store_acq_ptr((uintptr_t *)PCPU_PTR(pmap), (uintptr_t)pm);
#else
CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
PCPU_SET(pmap, pm);
#endif
stxa(AA_DMMU_TSB, ASI_DMMU, pm->pm_tsb);
stxa(AA_IMMU_TSB, ASI_IMMU, pm->pm_tsb);
stxa(AA_DMMU_PCXR, ASI_DMMU, (ldxa(AA_DMMU_PCXR, ASI_DMMU) &
TLB_CXR_PGSZ_MASK) | context);
flush(KERNBASE);
critical_exit();
}
void
pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
{
}
/*
* Increase the starting virtual address of the given mapping if a
* different alignment might result in more superpage mappings.
*/
void
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
vm_offset_t *addr, vm_size_t size)
{
}