2000-12-05 18:49:44 +00:00

1044 lines
28 KiB
C++

/* Last non-groff version: hgraph.c 1.14 (Berkeley) 84/11/27
*
* This file contains the graphics routines for converting gremlin pictures
* to troff input.
*/
#include "gprint.h"
#ifdef NEED_DECLARATION_HYPOT
extern "C" {
double hypot(double, double);
}
#endif /* NEED_DECLARATION_HYPOT */
#define MAXVECT 40
#define MAXPOINTS 200
#define LINELENGTH 1
#define PointsPerInterval 64
#define pi 3.14159265358979324
#define twopi (2.0 * pi)
#define len(a, b) hypot((double)(b.x-a.x), (double)(b.y-a.y))
extern int dotshifter; /* for the length of dotted curves */
extern int style[]; /* line and character styles */
extern double thick[];
extern char *tfont[];
extern int tsize[];
extern int stipple_index[]; /* stipple font index for stipples 0 - 16 */
extern char *stipple; /* stipple type (cf or ug) */
extern double troffscale; /* imports from main.c */
extern double linethickness;
extern int linmod;
extern int lastx;
extern int lasty;
extern int lastyline;
extern int ytop;
extern int ybottom;
extern int xleft;
extern int xright;
extern enum {
OUTLINE, FILL, BOTH
} polyfill;
extern double adj1;
extern double adj2;
extern double adj3;
extern double adj4;
extern int res;
void HGSetFont(int font, int size);
void HGPutText(int justify, POINT pnt, register char *string);
void HGSetBrush(int mode);
void tmove2(int px, int py);
void doarc(POINT cp, POINT sp, int angle);
void tmove(POINT * ptr);
void cr(void);
void drawwig(POINT * ptr);
void HGtline(int x1, int y1);
void dx(double x);
void dy(double y);
void HGArc(register int cx, register int cy, int px, int py, int angle);
void picurve(register int *x, register int *y, int npts);
void Paramaterize(int x[], int y[], float h[], int n);
void PeriodicSpline(float h[], int z[],
float dz[], float d2z[], float d3z[],
int npoints);
void NaturalEndSpline(float h[], int z[],
float dz[], float d2z[], float d3z[],
int npoints);
/*----------------------------------------------------------------------------*
| Routine: HGPrintElt (element_pointer, baseline)
|
| Results: Examines a picture element and calls the appropriate
| routine(s) to print them according to their type. After the
| picture is drawn, current position is (lastx, lasty).
*----------------------------------------------------------------------------*/
void
HGPrintElt(ELT *element,
int baseline)
{
register POINT *p1;
register POINT *p2;
register int length;
register int graylevel;
if (!DBNullelt(element) && !Nullpoint((p1 = element->ptlist))) {
/* p1 always has first point */
if (TEXT(element->type)) {
HGSetFont(element->brushf, element->size);
switch (element->size) {
case 1:
p1->y += adj1;
break;
case 2:
p1->y += adj2;
break;
case 3:
p1->y += adj3;
break;
case 4:
p1->y += adj4;
break;
default:
break;
}
HGPutText(element->type, *p1, element->textpt);
} else {
if (element->brushf) /* if there is a brush, the */
HGSetBrush(element->brushf); /* graphics need it set */
switch (element->type) {
case ARC:
p2 = PTNextPoint(p1);
tmove(p2);
doarc(*p1, *p2, element->size);
cr();
break;
case CURVE:
length = 0; /* keep track of line length */
drawwig(p1);
cr();
break;
case VECTOR:
length = 0; /* keep track of line length so */
tmove(p1); /* single lines don't get long */
while (!Nullpoint((p1 = PTNextPoint(p1)))) {
HGtline((int) (p1->x * troffscale),
(int) (p1->y * troffscale));
if (length++ > LINELENGTH) {
length = 0;
printf("\\\n");
}
} /* end while */
cr();
break;
case POLYGON:
{
/* brushf = style of outline; size = color of fill:
* on first pass (polyfill=FILL), do the interior using 'P'
* unless size=0
* on second pass (polyfill=OUTLINE), do the outline using a series
* of vectors. It might make more sense to use \D'p ...',
* but there is no uniform way to specify a 'fill character'
* that prints as 'no fill' on all output devices (and
* stipple fonts).
* If polyfill=BOTH, just use the \D'p ...' command.
*/
float firstx = p1->x;
float firsty = p1->y;
length = 0; /* keep track of line length so */
/* single lines don't get long */
if (polyfill == FILL || polyfill == BOTH) {
/* do the interior */
char command = (polyfill == BOTH && element->brushf) ? 'p' : 'P';
/* include outline, if there is one and */
/* the -p flag was set */
/* switch based on what gremlin gives */
switch (element->size) {
case 1:
graylevel = 1;
break;
case 3:
graylevel = 2;
break;
case 12:
graylevel = 3;
break;
case 14:
graylevel = 4;
break;
case 16:
graylevel = 5;
break;
case 19:
graylevel = 6;
break;
case 21:
graylevel = 7;
break;
case 23:
graylevel = 8;
break;
default: /* who's giving something else? */
graylevel = NSTIPPLES;
break;
}
/* int graylevel = element->size; */
if (graylevel < 0)
break;
if (graylevel > NSTIPPLES)
graylevel = NSTIPPLES;
printf("\\h'-%du'\\D'f %du'",
stipple_index[graylevel],
stipple_index[graylevel]);
cr();
tmove(p1);
printf("\\D'%c", command);
while (!Nullpoint((PTNextPoint(p1)))) {
p1 = PTNextPoint(p1);
dx((double) p1->x);
dy((double) p1->y);
if (length++ > LINELENGTH) {
length = 0;
printf("\\\n");
}
} /* end while */
/* close polygon if not done so by user */
if ((firstx != p1->x) || (firsty != p1->y)) {
dx((double) firstx);
dy((double) firsty);
}
putchar('\'');
cr();
break;
}
/* else polyfill == OUTLINE; only draw the outline */
if (!(element->brushf))
break;
length = 0; /* keep track of line length */
tmove(p1);
while (!Nullpoint((PTNextPoint(p1)))) {
p1 = PTNextPoint(p1);
HGtline((int) (p1->x * troffscale),
(int) (p1->y * troffscale));
if (length++ > LINELENGTH) {
length = 0;
printf("\\\n");
}
} /* end while */
/* close polygon if not done so by user */
if ((firstx != p1->x) || (firsty != p1->y)) {
HGtline((int) (firstx * troffscale),
(int) (firsty * troffscale));
}
cr();
break;
} /* end case POLYGON */
} /* end switch */
} /* end else Text */
} /* end if */
} /* end PrintElt */
/*----------------------------------------------------------------------------*
| Routine: HGPutText (justification, position_point, string)
|
| Results: Given the justification, a point to position with, and a
| string to put, HGPutText first sends the string into a
| diversion, moves to the positioning point, then outputs
| local vertical and horizontal motions as needed to justify
| the text. After all motions are done, the diversion is
| printed out.
*----------------------------------------------------------------------------*/
void
HGPutText(int justify,
POINT pnt,
register char *string)
{
int savelasty = lasty; /* vertical motion for text is to be */
/* ignored. Save current y here */
printf(".nr g8 \\n(.d\n"); /* save current vertical position. */
printf(".ds g9 \""); /* define string containing the text. */
while (*string) { /* put out the string */
if (*string == '\\' &&
*(string + 1) == '\\') { /* one character at a */
printf("\\\\\\"); /* time replacing // */
string++; /* by //// to prevent */
} /* interpretation at */
printf("%c", *(string++)); /* printout time */
}
printf("\n");
tmove(&pnt); /* move to positioning point */
switch (justify) {
/* local vertical motions */
/* (the numbers here are used to be somewhat compatible with gprint) */
case CENTLEFT:
case CENTCENT:
case CENTRIGHT:
printf("\\v'0.85n'"); /* down half */
break;
case TOPLEFT:
case TOPCENT:
case TOPRIGHT:
printf("\\v'1.7n'"); /* down whole */
}
switch (justify) {
/* local horizontal motions */
case BOTCENT:
case CENTCENT:
case TOPCENT:
printf("\\h'-\\w'\\*(g9'u/2u'"); /* back half */
break;
case BOTRIGHT:
case CENTRIGHT:
case TOPRIGHT:
printf("\\h'-\\w'\\*(g9'u'"); /* back whole */
}
printf("\\&\\*(g9\n"); /* now print the text. */
printf(".sp |\\n(g8u\n"); /* restore vertical position */
lasty = savelasty; /* vertical position restored to where it */
lastx = xleft; /* was before text, also horizontal is at */
/* left */
} /* end HGPutText */
/*----------------------------------------------------------------------------*
| Routine: doarc (center_point, start_point, angle)
|
| Results: Produces either drawarc command or a drawcircle command
| depending on the angle needed to draw through.
*----------------------------------------------------------------------------*/
void
doarc(POINT cp,
POINT sp,
int angle)
{
if (angle) /* arc with angle */
HGArc((int) (cp.x * troffscale), (int) (cp.y * troffscale),
(int) (sp.x * troffscale), (int) (sp.y * troffscale), angle);
else /* a full circle (angle == 0) */
HGArc((int) (cp.x * troffscale), (int) (cp.y * troffscale),
(int) (sp.x * troffscale), (int) (sp.y * troffscale), 0);
}
/*----------------------------------------------------------------------------*
| Routine: HGSetFont (font_number, Point_size)
|
| Results: ALWAYS outputs a .ft and .ps directive to troff. This is
| done because someone may change stuff inside a text string.
| Changes thickness back to default thickness. Default
| thickness depends on font and pointsize.
*----------------------------------------------------------------------------*/
void
HGSetFont(int font,
int size)
{
printf(".ft %s\n"
".ps %d\n", tfont[font - 1], tsize[size - 1]);
linethickness = DEFTHICK;
}
/*----------------------------------------------------------------------------*
| Routine: HGSetBrush (line_mode)
|
| Results: Generates the troff commands to set up the line width and
| style of subsequent lines. Does nothing if no change is
| needed.
|
| Side Efct: Sets `linmode' and `linethicknes'.
*----------------------------------------------------------------------------*/
void
HGSetBrush(int mode)
{
register int printed = 0;
if (linmod != style[--mode]) {
/* Groff doesn't understand \Ds, so we take it out */
/* printf ("\\D's %du'", linmod = style[mode]); */
linmod = style[mode];
printed = 1;
}
if (linethickness != thick[mode]) {
linethickness = thick[mode];
printf("\\h'-%.2fp'\\D't %.2fp'", linethickness, linethickness);
printed = 1;
}
if (printed)
cr();
}
/*----------------------------------------------------------------------------*
| Routine: dx (x_destination)
|
| Results: Scales and outputs a number for delta x (with a leading
| space) given `lastx' and x_destination.
|
| Side Efct: Resets `lastx' to x_destination.
*----------------------------------------------------------------------------*/
void
dx(double x)
{
register int ix = (int) (x * troffscale);
printf(" %du", ix - lastx);
lastx = ix;
}
/*----------------------------------------------------------------------------*
| Routine: dy (y_destination)
|
| Results: Scales and outputs a number for delta y (with a leading
| space) given `lastyline' and y_destination.
|
| Side Efct: Resets `lastyline' to y_destination. Since `line' vertical
| motions don't affect `page' ones, `lasty' isn't updated.
*----------------------------------------------------------------------------*/
void
dy(double y)
{
register int iy = (int) (y * troffscale);
printf(" %du", iy - lastyline);
lastyline = iy;
}
/*----------------------------------------------------------------------------*
| Routine: tmove2 (px, py)
|
| Results: Produces horizontal and vertical moves for troff given the
| pair of points to move to and knowing the current position.
| Also puts out a horizontal move to start the line. This is
| a variation without the .sp command.
*----------------------------------------------------------------------------*/
void
tmove2(int px,
int py)
{
register int dx;
register int dy;
if ((dy = py - lasty)) {
printf("\\v'%du'", dy);
}
lastyline = lasty = py; /* lasty is always set to current */
if ((dx = px - lastx)) {
printf("\\h'%du'", dx);
lastx = px;
}
}
/*----------------------------------------------------------------------------*
| Routine: tmove (point_pointer)
|
| Results: Produces horizontal and vertical moves for troff given the
| pointer of a point to move to and knowing the current
| position. Also puts out a horizontal move to start the
| line.
*----------------------------------------------------------------------------*/
void
tmove(POINT * ptr)
{
register int ix = (int) (ptr->x * troffscale);
register int iy = (int) (ptr->y * troffscale);
register int dx;
register int dy;
if ((dy = iy - lasty)) {
printf(".sp %du\n", dy);
}
lastyline = lasty = iy; /* lasty is always set to current */
if ((dx = ix - lastx)) {
printf("\\h'%du'", dx);
lastx = ix;
}
}
/*----------------------------------------------------------------------------*
| Routine: cr ( )
|
| Results: Ends off an input line. `.sp -1' is also added to counteract
| the vertical move done at the end of text lines.
|
| Side Efct: Sets `lastx' to `xleft' for troff's return to left margin.
*----------------------------------------------------------------------------*/
void
cr(void)
{
printf("\n.sp -1\n");
lastx = xleft;
}
/*----------------------------------------------------------------------------*
| Routine: line ( )
|
| Results: Draws a single solid line to (x,y).
*----------------------------------------------------------------------------*/
void
line(int px,
int py)
{
printf("\\D'l");
printf(" %du", px - lastx);
printf(" %du'", py - lastyline);
lastx = px;
lastyline = lasty = py;
}
/*----------------------------------------------------------------------------
| Routine: drawwig (ptr)
|
| Results: The point sequence found in the structure pointed by ptr is
| placed in integer arrays for further manipulation by the
| existing routing. With the proper parameters, HGCurve is
| called.
*----------------------------------------------------------------------------*/
void
drawwig(POINT * ptr)
{
register int npts; /* point list index */
int x[MAXPOINTS], y[MAXPOINTS]; /* point list */
for (npts = 1; !Nullpoint(ptr); ptr = PTNextPoint(ptr), npts++) {
x[npts] = (int) (ptr->x * troffscale);
y[npts] = (int) (ptr->y * troffscale);
}
if (--npts) {
/* HGCurve(&x[0], &y[0], npts); */ /*Gremlin looks different, so... */
picurve(&x[0], &y[0], npts);
}
}
/*----------------------------------------------------------------------------
| Routine: HGArc (xcenter, ycenter, xstart, ystart, angle)
|
| Results: This routine plots an arc centered about (cx, cy) counter
| clockwise starting from the point (px, py) through `angle'
| degrees. If angle is 0, a full circle is drawn. It does so
| by creating a draw-path around the arc whose density of
| points depends on the size of the arc.
*----------------------------------------------------------------------------*/
void
HGArc(register int cx,
register int cy,
int px,
int py,
int angle)
{
double xs, ys, resolution, fullcircle;
int m;
register int mask;
register int extent;
register int nx;
register int ny;
register int length;
register double epsilon;
xs = px - cx;
ys = py - cy;
length = 0;
resolution = (1.0 + hypot(xs, ys) / res) * PointsPerInterval;
/* mask = (1 << (int) log10(resolution + 1.0)) - 1; */
(void) frexp(resolution, &m); /* A bit more elegant than log10 */
for (mask = 1; mask < m; mask = mask << 1);
mask -= 1;
epsilon = 1.0 / resolution;
fullcircle = (2.0 * pi) * resolution;
if (angle == 0)
extent = (int) fullcircle;
else
extent = (int) (angle * fullcircle / 360.0);
HGtline(px, py);
while (--extent >= 0) {
xs += epsilon * ys;
nx = cx + (int) (xs + 0.5);
ys -= epsilon * xs;
ny = cy + (int) (ys + 0.5);
if (!(extent & mask)) {
HGtline(nx, ny); /* put out a point on circle */
if (length++ > LINELENGTH) {
length = 0;
printf("\\\n");
}
}
} /* end for */
} /* end HGArc */
/*----------------------------------------------------------------------------
| Routine: picurve (xpoints, ypoints, num_of_points)
|
| Results: Draws a curve delimited by (not through) the line segments
| traced by (xpoints, ypoints) point list. This is the `Pic'
| style curve.
*----------------------------------------------------------------------------*/
void
picurve(register int *x,
register int *y,
int npts)
{
register int nseg; /* effective resolution for each curve */
register int xp; /* current point (and temporary) */
register int yp;
int pxp, pyp; /* previous point (to make lines from) */
int i; /* inner curve segment traverser */
int length = 0;
double w; /* position factor */
double t1, t2, t3; /* calculation temps */
if (x[1] == x[npts] && y[1] == y[npts]) {
x[0] = x[npts - 1]; /* if the lines' ends meet, make */
y[0] = y[npts - 1]; /* sure the curve meets */
x[npts + 1] = x[2];
y[npts + 1] = y[2];
} else { /* otherwise, make the ends of the */
x[0] = x[1]; /* curve touch the ending points of */
y[0] = y[1]; /* the line segments */
x[npts + 1] = x[npts];
y[npts + 1] = y[npts];
}
pxp = (x[0] + x[1]) / 2; /* make the last point pointers */
pyp = (y[0] + y[1]) / 2; /* point to the start of the 1st line */
tmove2(pxp, pyp);
for (; npts--; x++, y++) { /* traverse the line segments */
xp = x[0] - x[1];
yp = y[0] - y[1];
nseg = (int) hypot((double) xp, (double) yp);
xp = x[1] - x[2];
yp = y[1] - y[2];
/* `nseg' is the number of line */
/* segments that will be drawn for */
/* each curve segment. */
nseg = (int) ((double) (nseg + (int) hypot((double) xp, (double) yp)) /
res * PointsPerInterval);
for (i = 1; i < nseg; i++) {
w = (double) i / (double) nseg;
t1 = w * w;
t3 = t1 + 1.0 - (w + w);
t2 = 2.0 - (t3 + t1);
xp = (((int) (t1 * x[2] + t2 * x[1] + t3 * x[0])) + 1) / 2;
yp = (((int) (t1 * y[2] + t2 * y[1] + t3 * y[0])) + 1) / 2;
HGtline(xp, yp);
if (length++ > LINELENGTH) {
length = 0;
printf("\\\n");
}
}
}
}
/*----------------------------------------------------------------------------
| Routine: HGCurve(xpoints, ypoints, num_points)
|
| Results: This routine generates a smooth curve through a set of
| points. The method used is the parametric spline curve on
| unit knot mesh described in `Spline Curve Techniques' by
| Patrick Baudelaire, Robert Flegal, and Robert Sproull --
| Xerox Parc.
*----------------------------------------------------------------------------*/
void
HGCurve(int *x,
int *y,
int numpoints)
{
float h[MAXPOINTS], dx[MAXPOINTS], dy[MAXPOINTS];
float d2x[MAXPOINTS], d2y[MAXPOINTS], d3x[MAXPOINTS], d3y[MAXPOINTS];
float t, t2, t3;
register int j;
register int k;
register int nx;
register int ny;
int lx, ly;
int length = 0;
lx = x[1];
ly = y[1];
tmove2(lx, ly);
/*
* Solve for derivatives of the curve at each point separately for x and y
* (parametric).
*/
Paramaterize(x, y, h, numpoints);
/* closed curve */
if ((x[1] == x[numpoints]) && (y[1] == y[numpoints])) {
PeriodicSpline(h, x, dx, d2x, d3x, numpoints);
PeriodicSpline(h, y, dy, d2y, d3y, numpoints);
} else {
NaturalEndSpline(h, x, dx, d2x, d3x, numpoints);
NaturalEndSpline(h, y, dy, d2y, d3y, numpoints);
}
/*
* generate the curve using the above information and PointsPerInterval
* vectors between each specified knot.
*/
for (j = 1; j < numpoints; ++j) {
if ((x[j] == x[j + 1]) && (y[j] == y[j + 1]))
continue;
for (k = 0; k <= PointsPerInterval; ++k) {
t = (float) k *h[j] / (float) PointsPerInterval;
t2 = t * t;
t3 = t * t * t;
nx = x[j] + (int) (t * dx[j] + t2 * d2x[j] / 2 + t3 * d3x[j] / 6);
ny = y[j] + (int) (t * dy[j] + t2 * d2y[j] / 2 + t3 * d3y[j] / 6);
HGtline(nx, ny);
if (length++ > LINELENGTH) {
length = 0;
printf("\\\n");
}
} /* end for k */
} /* end for j */
} /* end HGCurve */
/*----------------------------------------------------------------------------
| Routine: Paramaterize (xpoints, ypoints, hparams, num_points)
|
| Results: This routine calculates parameteric values for use in
| calculating curves. The parametric values are returned
| in the array h. The values are an approximation of
| cumulative arc lengths of the curve (uses cord length).
| For additional information, see paper cited below.
*----------------------------------------------------------------------------*/
void
Paramaterize(int x[],
int y[],
float h[],
int n)
{
register int dx;
register int dy;
register int i;
register int j;
float u[MAXPOINTS];
for (i = 1; i <= n; ++i) {
u[i] = 0;
for (j = 1; j < i; j++) {
dx = x[j + 1] - x[j];
dy = y[j + 1] - y[j];
/* Here was overflowing, so I changed it. */
/* u[i] += sqrt ((double) (dx * dx + dy * dy)); */
u[i] += hypot((double) dx, (double) dy);
}
}
for (i = 1; i < n; ++i)
h[i] = u[i + 1] - u[i];
} /* end Paramaterize */
/*----------------------------------------------------------------------------
| Routine: PeriodicSpline (h, z, dz, d2z, d3z, npoints)
|
| Results: This routine solves for the cubic polynomial to fit a spline
| curve to the the points specified by the list of values.
| The Curve generated is periodic. The algorithms for this
| curve are from the `Spline Curve Techniques' paper cited
| above.
*----------------------------------------------------------------------------*/
void
PeriodicSpline(float h[], /* paramaterization */
int z[], /* point list */
float dz[], /* to return the 1st derivative */
float d2z[], /* 2nd derivative */
float d3z[], /* 3rd derivative */
int npoints) /* number of valid points */
{
float d[MAXPOINTS];
float deltaz[MAXPOINTS], a[MAXPOINTS], b[MAXPOINTS];
float c[MAXPOINTS], r[MAXPOINTS], s[MAXPOINTS];
int i;
/* step 1 */
for (i = 1; i < npoints; ++i) {
deltaz[i] = h[i] ? ((double) (z[i + 1] - z[i])) / h[i] : 0;
}
h[0] = h[npoints - 1];
deltaz[0] = deltaz[npoints - 1];
/* step 2 */
for (i = 1; i < npoints - 1; ++i) {
d[i] = deltaz[i + 1] - deltaz[i];
}
d[0] = deltaz[1] - deltaz[0];
/* step 3a */
a[1] = 2 * (h[0] + h[1]);
b[1] = d[0];
c[1] = h[0];
for (i = 2; i < npoints - 1; ++i) {
a[i] = 2 * (h[i - 1] + h[i]) -
pow((double) h[i - 1], (double) 2.0) / a[i - 1];
b[i] = d[i - 1] - h[i - 1] * b[i - 1] / a[i - 1];
c[i] = -h[i - 1] * c[i - 1] / a[i - 1];
}
/* step 3b */
r[npoints - 1] = 1;
s[npoints - 1] = 0;
for (i = npoints - 2; i > 0; --i) {
r[i] = -(h[i] * r[i + 1] + c[i]) / a[i];
s[i] = (6 * b[i] - h[i] * s[i + 1]) / a[i];
}
/* step 4 */
d2z[npoints - 1] = (6 * d[npoints - 2] - h[0] * s[1]
- h[npoints - 1] * s[npoints - 2])
/ (h[0] * r[1] + h[npoints - 1] * r[npoints - 2]
+ 2 * (h[npoints - 2] + h[0]));
for (i = 1; i < npoints - 1; ++i) {
d2z[i] = r[i] * d2z[npoints - 1] + s[i];
}
d2z[npoints] = d2z[1];
/* step 5 */
for (i = 1; i < npoints; ++i) {
dz[i] = deltaz[i] - h[i] * (2 * d2z[i] + d2z[i + 1]) / 6;
d3z[i] = h[i] ? (d2z[i + 1] - d2z[i]) / h[i] : 0;
}
} /* end PeriodicSpline */
/*----------------------------------------------------------------------------
| Routine: NaturalEndSpline (h, z, dz, d2z, d3z, npoints)
|
| Results: This routine solves for the cubic polynomial to fit a spline
| curve the the points specified by the list of values. The
| alogrithms for this curve are from the `Spline Curve
| Techniques' paper cited above.
*----------------------------------------------------------------------------*/
void
NaturalEndSpline(float h[], /* parameterization */
int z[], /* Point list */
float dz[], /* to return the 1st derivative */
float d2z[], /* 2nd derivative */
float d3z[], /* 3rd derivative */
int npoints) /* number of valid points */
{
float d[MAXPOINTS];
float deltaz[MAXPOINTS], a[MAXPOINTS], b[MAXPOINTS];
int i;
/* step 1 */
for (i = 1; i < npoints; ++i) {
deltaz[i] = h[i] ? ((double) (z[i + 1] - z[i])) / h[i] : 0;
}
deltaz[0] = deltaz[npoints - 1];
/* step 2 */
for (i = 1; i < npoints - 1; ++i) {
d[i] = deltaz[i + 1] - deltaz[i];
}
d[0] = deltaz[1] - deltaz[0];
/* step 3 */
a[0] = 2 * (h[2] + h[1]);
b[0] = d[1];
for (i = 1; i < npoints - 2; ++i) {
a[i] = 2 * (h[i + 1] + h[i + 2]) -
pow((double) h[i + 1], (double) 2.0) / a[i - 1];
b[i] = d[i + 1] - h[i + 1] * b[i - 1] / a[i - 1];
}
/* step 4 */
d2z[npoints] = d2z[1] = 0;
for (i = npoints - 1; i > 1; --i) {
d2z[i] = (6 * b[i - 2] - h[i] * d2z[i + 1]) / a[i - 2];
}
/* step 5 */
for (i = 1; i < npoints; ++i) {
dz[i] = deltaz[i] - h[i] * (2 * d2z[i] + d2z[i + 1]) / 6;
d3z[i] = h[i] ? (d2z[i + 1] - d2z[i]) / h[i] : 0;
}
} /* end NaturalEndSpline */
/*----------------------------------------------------------------------------*
| Routine: change (x_position, y_position, visible_flag)
|
| Results: As HGtline passes from the invisible to visible (or vice
| versa) portion of a line, change is called to either draw
| the line, or initialize the beginning of the next one.
| Change calls line to draw segments if visible_flag is set
| (which means we're leaving a visible area).
*----------------------------------------------------------------------------*/
void
change(register int x,
register int y,
register int vis)
{
static int length = 0;
if (vis) { /* leaving a visible area, draw it. */
line(x, y);
if (length++ > LINELENGTH) {
length = 0;
printf("\\\n");
}
} else { /* otherwise, we're entering one, remember */
/* beginning */
tmove2(x, y);
}
}
/*----------------------------------------------------------------------------
| Routine: HGtline (xstart, ystart, xend, yend)
|
| Results: Draws a line from current position to (x1,y1) using line(x1,
| y1) to place individual segments of dotted or dashed lines.
*----------------------------------------------------------------------------*/
void
HGtline(int x1,
int y1)
{
register int x0 = lastx;
register int y0 = lasty;
register int dx;
register int dy;
register int oldcoord;
register int res1;
register int visible;
register int res2;
register int xinc;
register int yinc;
register int dotcounter;
if (linmod == SOLID) {
line(x1, y1);
return;
}
/* for handling different resolutions */
dotcounter = linmod << dotshifter;
xinc = 1;
yinc = 1;
if ((dx = x1 - x0) < 0) {
xinc = -xinc;
dx = -dx;
}
if ((dy = y1 - y0) < 0) {
yinc = -yinc;
dy = -dy;
}
res1 = 0;
res2 = 0;
visible = 0;
if (dx >= dy) {
oldcoord = y0;
while (x0 != x1) {
if ((x0 & dotcounter) && !visible) {
change(x0, y0, 0);
visible = 1;
} else if (visible && !(x0 & dotcounter)) {
change(x0 - xinc, oldcoord, 1);
visible = 0;
}
if (res1 > res2) {
oldcoord = y0;
res2 += dx - res1;
res1 = 0;
y0 += yinc;
}
res1 += dy;
x0 += xinc;
}
} else {
oldcoord = x0;
while (y0 != y1) {
if ((y0 & dotcounter) && !visible) {
change(x0, y0, 0);
visible = 1;
} else if (visible && !(y0 & dotcounter)) {
change(oldcoord, y0 - yinc, 1);
visible = 0;
}
if (res1 > res2) {
oldcoord = x0;
res2 += dy - res1;
res1 = 0;
x0 += xinc;
}
res1 += dx;
y0 += yinc;
}
}
if (visible)
change(x1, y1, 1);
else
change(x1, y1, 0);
}
/* EOF */