freebsd-nq/sys/ufs/ffs/ffs_softdep.c
Kirk McKusick 8f829a5cf0 Continuing efforts to provide hardening of FFS. This change adds a
check hash to the filesystem inodes. Access attempts to files
associated with an inode with an invalid check hash will fail with
EINVAL (Invalid argument). Access is reestablished after an fsck
is run to find and validate the inodes with invalid check-hashes.
This check avoids a class of filesystem panics related to corrupted
inodes. The hash is done using crc32c.

Note this check-hash is for the inode itself and not any of its
indirect blocks. Check-hash validation may be extended to also
cover indirect block pointers, but that will be a separate (and
more costly) feature.

Check hashes are added only to UFS2 and not to UFS1 as UFS1 is
primarily used in embedded systems with small memories and low-powered
processors which need as light-weight a filesystem as possible.

Reviewed by:  kib
Tested by:    Peter Holm
Sponsored by: Netflix
2018-12-11 22:14:37 +00:00

14540 lines
413 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright 1998, 2000 Marshall Kirk McKusick.
* Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
* All rights reserved.
*
* The soft updates code is derived from the appendix of a University
* of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
* "Soft Updates: A Solution to the Metadata Update Problem in File
* Systems", CSE-TR-254-95, August 1995).
*
* Further information about soft updates can be obtained from:
*
* Marshall Kirk McKusick http://www.mckusick.com/softdep/
* 1614 Oxford Street mckusick@mckusick.com
* Berkeley, CA 94709-1608 +1-510-843-9542
* USA
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ffs.h"
#include "opt_quota.h"
#include "opt_ddb.h"
/*
* For now we want the safety net that the DEBUG flag provides.
*/
#ifndef DEBUG
#define DEBUG
#endif
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/kdb.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/rwlock.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/softdep.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ufs/ufs_extern.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <geom/geom.h>
#include <ddb/ddb.h>
#define KTR_SUJ 0 /* Define to KTR_SPARE. */
#ifndef SOFTUPDATES
int
softdep_flushfiles(oldmnt, flags, td)
struct mount *oldmnt;
int flags;
struct thread *td;
{
panic("softdep_flushfiles called");
}
int
softdep_mount(devvp, mp, fs, cred)
struct vnode *devvp;
struct mount *mp;
struct fs *fs;
struct ucred *cred;
{
return (0);
}
void
softdep_initialize()
{
return;
}
void
softdep_uninitialize()
{
return;
}
void
softdep_unmount(mp)
struct mount *mp;
{
panic("softdep_unmount called");
}
void
softdep_setup_sbupdate(ump, fs, bp)
struct ufsmount *ump;
struct fs *fs;
struct buf *bp;
{
panic("softdep_setup_sbupdate called");
}
void
softdep_setup_inomapdep(bp, ip, newinum, mode)
struct buf *bp;
struct inode *ip;
ino_t newinum;
int mode;
{
panic("softdep_setup_inomapdep called");
}
void
softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
struct buf *bp;
struct mount *mp;
ufs2_daddr_t newblkno;
int frags;
int oldfrags;
{
panic("softdep_setup_blkmapdep called");
}
void
softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip;
ufs_lbn_t lbn;
ufs2_daddr_t newblkno;
ufs2_daddr_t oldblkno;
long newsize;
long oldsize;
struct buf *bp;
{
panic("softdep_setup_allocdirect called");
}
void
softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip;
ufs_lbn_t lbn;
ufs2_daddr_t newblkno;
ufs2_daddr_t oldblkno;
long newsize;
long oldsize;
struct buf *bp;
{
panic("softdep_setup_allocext called");
}
void
softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
struct inode *ip;
ufs_lbn_t lbn;
struct buf *bp;
int ptrno;
ufs2_daddr_t newblkno;
ufs2_daddr_t oldblkno;
struct buf *nbp;
{
panic("softdep_setup_allocindir_page called");
}
void
softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
struct buf *nbp;
struct inode *ip;
struct buf *bp;
int ptrno;
ufs2_daddr_t newblkno;
{
panic("softdep_setup_allocindir_meta called");
}
void
softdep_journal_freeblocks(ip, cred, length, flags)
struct inode *ip;
struct ucred *cred;
off_t length;
int flags;
{
panic("softdep_journal_freeblocks called");
}
void
softdep_journal_fsync(ip)
struct inode *ip;
{
panic("softdep_journal_fsync called");
}
void
softdep_setup_freeblocks(ip, length, flags)
struct inode *ip;
off_t length;
int flags;
{
panic("softdep_setup_freeblocks called");
}
void
softdep_freefile(pvp, ino, mode)
struct vnode *pvp;
ino_t ino;
int mode;
{
panic("softdep_freefile called");
}
int
softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
struct buf *bp;
struct inode *dp;
off_t diroffset;
ino_t newinum;
struct buf *newdirbp;
int isnewblk;
{
panic("softdep_setup_directory_add called");
}
void
softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
struct buf *bp;
struct inode *dp;
caddr_t base;
caddr_t oldloc;
caddr_t newloc;
int entrysize;
{
panic("softdep_change_directoryentry_offset called");
}
void
softdep_setup_remove(bp, dp, ip, isrmdir)
struct buf *bp;
struct inode *dp;
struct inode *ip;
int isrmdir;
{
panic("softdep_setup_remove called");
}
void
softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
struct buf *bp;
struct inode *dp;
struct inode *ip;
ino_t newinum;
int isrmdir;
{
panic("softdep_setup_directory_change called");
}
void
softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
struct mount *mp;
struct buf *bp;
ufs2_daddr_t blkno;
int frags;
struct workhead *wkhd;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_inofree(mp, bp, ino, wkhd)
struct mount *mp;
struct buf *bp;
ino_t ino;
struct workhead *wkhd;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_unlink(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_revert_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_rmdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_revert_rmdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_create(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_revert_create(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_mkdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_revert_mkdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_dotdot_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
int
softdep_prealloc(vp, waitok)
struct vnode *vp;
int waitok;
{
panic("%s called", __FUNCTION__);
}
int
softdep_journal_lookup(mp, vpp)
struct mount *mp;
struct vnode **vpp;
{
return (ENOENT);
}
void
softdep_change_linkcnt(ip)
struct inode *ip;
{
panic("softdep_change_linkcnt called");
}
void
softdep_load_inodeblock(ip)
struct inode *ip;
{
panic("softdep_load_inodeblock called");
}
void
softdep_update_inodeblock(ip, bp, waitfor)
struct inode *ip;
struct buf *bp;
int waitfor;
{
panic("softdep_update_inodeblock called");
}
int
softdep_fsync(vp)
struct vnode *vp; /* the "in_core" copy of the inode */
{
return (0);
}
void
softdep_fsync_mountdev(vp)
struct vnode *vp;
{
return;
}
int
softdep_flushworklist(oldmnt, countp, td)
struct mount *oldmnt;
int *countp;
struct thread *td;
{
*countp = 0;
return (0);
}
int
softdep_sync_metadata(struct vnode *vp)
{
panic("softdep_sync_metadata called");
}
int
softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
{
panic("softdep_sync_buf called");
}
int
softdep_slowdown(vp)
struct vnode *vp;
{
panic("softdep_slowdown called");
}
int
softdep_request_cleanup(fs, vp, cred, resource)
struct fs *fs;
struct vnode *vp;
struct ucred *cred;
int resource;
{
return (0);
}
int
softdep_check_suspend(struct mount *mp,
struct vnode *devvp,
int softdep_depcnt,
int softdep_accdepcnt,
int secondary_writes,
int secondary_accwrites)
{
struct bufobj *bo;
int error;
(void) softdep_depcnt,
(void) softdep_accdepcnt;
bo = &devvp->v_bufobj;
ASSERT_BO_WLOCKED(bo);
MNT_ILOCK(mp);
while (mp->mnt_secondary_writes != 0) {
BO_UNLOCK(bo);
msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
(PUSER - 1) | PDROP, "secwr", 0);
BO_LOCK(bo);
MNT_ILOCK(mp);
}
/*
* Reasons for needing more work before suspend:
* - Dirty buffers on devvp.
* - Secondary writes occurred after start of vnode sync loop
*/
error = 0;
if (bo->bo_numoutput > 0 ||
bo->bo_dirty.bv_cnt > 0 ||
secondary_writes != 0 ||
mp->mnt_secondary_writes != 0 ||
secondary_accwrites != mp->mnt_secondary_accwrites)
error = EAGAIN;
BO_UNLOCK(bo);
return (error);
}
void
softdep_get_depcounts(struct mount *mp,
int *softdepactivep,
int *softdepactiveaccp)
{
(void) mp;
*softdepactivep = 0;
*softdepactiveaccp = 0;
}
void
softdep_buf_append(bp, wkhd)
struct buf *bp;
struct workhead *wkhd;
{
panic("softdep_buf_appendwork called");
}
void
softdep_inode_append(ip, cred, wkhd)
struct inode *ip;
struct ucred *cred;
struct workhead *wkhd;
{
panic("softdep_inode_appendwork called");
}
void
softdep_freework(wkhd)
struct workhead *wkhd;
{
panic("softdep_freework called");
}
#else
FEATURE(softupdates, "FFS soft-updates support");
static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
"soft updates stats");
static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
"total dependencies allocated");
static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
"high use dependencies allocated");
static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
"current dependencies allocated");
static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
"current dependencies written");
unsigned long dep_current[D_LAST + 1];
unsigned long dep_highuse[D_LAST + 1];
unsigned long dep_total[D_LAST + 1];
unsigned long dep_write[D_LAST + 1];
#define SOFTDEP_TYPE(type, str, long) \
static MALLOC_DEFINE(M_ ## type, #str, long); \
SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \
&dep_total[D_ ## type], 0, ""); \
SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \
&dep_current[D_ ## type], 0, ""); \
SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \
&dep_highuse[D_ ## type], 0, ""); \
SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \
&dep_write[D_ ## type], 0, "");
SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
"Block or frag allocated from cyl group map");
SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
#define M_SOFTDEP_FLAGS (M_WAITOK)
/*
* translate from workitem type to memory type
* MUST match the defines above, such that memtype[D_XXX] == M_XXX
*/
static struct malloc_type *memtype[] = {
NULL,
M_PAGEDEP,
M_INODEDEP,
M_BMSAFEMAP,
M_NEWBLK,
M_ALLOCDIRECT,
M_INDIRDEP,
M_ALLOCINDIR,
M_FREEFRAG,
M_FREEBLKS,
M_FREEFILE,
M_DIRADD,
M_MKDIR,
M_DIRREM,
M_NEWDIRBLK,
M_FREEWORK,
M_FREEDEP,
M_JADDREF,
M_JREMREF,
M_JMVREF,
M_JNEWBLK,
M_JFREEBLK,
M_JFREEFRAG,
M_JSEG,
M_JSEGDEP,
M_SBDEP,
M_JTRUNC,
M_JFSYNC,
M_SENTINEL
};
#define DtoM(type) (memtype[type])
/*
* Names of malloc types.
*/
#define TYPENAME(type) \
((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
memtype[type]->ks_shortdesc : "???")
/*
* End system adaptation definitions.
*/
#define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino)
#define DOT_OFFSET offsetof(struct dirtemplate, dot_ino)
/*
* Internal function prototypes.
*/
static void check_clear_deps(struct mount *);
static void softdep_error(char *, int);
static int softdep_process_worklist(struct mount *, int);
static int softdep_waitidle(struct mount *, int);
static void drain_output(struct vnode *);
static struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
static int check_inodedep_free(struct inodedep *);
static void clear_remove(struct mount *);
static void clear_inodedeps(struct mount *);
static void unlinked_inodedep(struct mount *, struct inodedep *);
static void clear_unlinked_inodedep(struct inodedep *);
static struct inodedep *first_unlinked_inodedep(struct ufsmount *);
static int flush_pagedep_deps(struct vnode *, struct mount *,
struct diraddhd *);
static int free_pagedep(struct pagedep *);
static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
static int flush_deplist(struct allocdirectlst *, int, int *);
static int sync_cgs(struct mount *, int);
static int handle_written_filepage(struct pagedep *, struct buf *, int);
static int handle_written_sbdep(struct sbdep *, struct buf *);
static void initiate_write_sbdep(struct sbdep *);
static void diradd_inode_written(struct diradd *, struct inodedep *);
static int handle_written_indirdep(struct indirdep *, struct buf *,
struct buf**, int);
static int handle_written_inodeblock(struct inodedep *, struct buf *, int);
static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
uint8_t *);
static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
static void handle_written_jaddref(struct jaddref *);
static void handle_written_jremref(struct jremref *);
static void handle_written_jseg(struct jseg *, struct buf *);
static void handle_written_jnewblk(struct jnewblk *);
static void handle_written_jblkdep(struct jblkdep *);
static void handle_written_jfreefrag(struct jfreefrag *);
static void complete_jseg(struct jseg *);
static void complete_jsegs(struct jseg *);
static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
static void jremref_write(struct jremref *, struct jseg *, uint8_t *);
static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
static inline void inoref_write(struct inoref *, struct jseg *,
struct jrefrec *);
static void handle_allocdirect_partdone(struct allocdirect *,
struct workhead *);
static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
struct workhead *);
static void indirdep_complete(struct indirdep *);
static int indirblk_lookup(struct mount *, ufs2_daddr_t);
static void indirblk_insert(struct freework *);
static void indirblk_remove(struct freework *);
static void handle_allocindir_partdone(struct allocindir *);
static void initiate_write_filepage(struct pagedep *, struct buf *);
static void initiate_write_indirdep(struct indirdep*, struct buf *);
static void handle_written_mkdir(struct mkdir *, int);
static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
uint8_t *);
static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
static void handle_workitem_freefile(struct freefile *);
static int handle_workitem_remove(struct dirrem *, int);
static struct dirrem *newdirrem(struct buf *, struct inode *,
struct inode *, int, struct dirrem **);
static struct indirdep *indirdep_lookup(struct mount *, struct inode *,
struct buf *);
static void cancel_indirdep(struct indirdep *, struct buf *,
struct freeblks *);
static void free_indirdep(struct indirdep *);
static void free_diradd(struct diradd *, struct workhead *);
static void merge_diradd(struct inodedep *, struct diradd *);
static void complete_diradd(struct diradd *);
static struct diradd *diradd_lookup(struct pagedep *, int);
static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
struct jremref *);
static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
struct jremref *);
static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
struct jremref *, struct jremref *);
static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
struct jremref *);
static void cancel_allocindir(struct allocindir *, struct buf *bp,
struct freeblks *, int);
static int setup_trunc_indir(struct freeblks *, struct inode *,
ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
static void complete_trunc_indir(struct freework *);
static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
int);
static void complete_mkdir(struct mkdir *);
static void free_newdirblk(struct newdirblk *);
static void free_jremref(struct jremref *);
static void free_jaddref(struct jaddref *);
static void free_jsegdep(struct jsegdep *);
static void free_jsegs(struct jblocks *);
static void rele_jseg(struct jseg *);
static void free_jseg(struct jseg *, struct jblocks *);
static void free_jnewblk(struct jnewblk *);
static void free_jblkdep(struct jblkdep *);
static void free_jfreefrag(struct jfreefrag *);
static void free_freedep(struct freedep *);
static void journal_jremref(struct dirrem *, struct jremref *,
struct inodedep *);
static void cancel_jnewblk(struct jnewblk *, struct workhead *);
static int cancel_jaddref(struct jaddref *, struct inodedep *,
struct workhead *);
static void cancel_jfreefrag(struct jfreefrag *);
static inline void setup_freedirect(struct freeblks *, struct inode *,
int, int);
static inline void setup_freeext(struct freeblks *, struct inode *, int, int);
static inline void setup_freeindir(struct freeblks *, struct inode *, int,
ufs_lbn_t, int);
static inline struct freeblks *newfreeblks(struct mount *, struct inode *);
static void freeblks_free(struct ufsmount *, struct freeblks *, int);
static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
int, int);
static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
static int cancel_pagedep(struct pagedep *, struct freeblks *, int);
static int deallocate_dependencies(struct buf *, struct freeblks *, int);
static void newblk_freefrag(struct newblk*);
static void free_newblk(struct newblk *);
static void cancel_allocdirect(struct allocdirectlst *,
struct allocdirect *, struct freeblks *);
static int check_inode_unwritten(struct inodedep *);
static int free_inodedep(struct inodedep *);
static void freework_freeblock(struct freework *, u_long);
static void freework_enqueue(struct freework *);
static int handle_workitem_freeblocks(struct freeblks *, int);
static int handle_complete_freeblocks(struct freeblks *, int);
static void handle_workitem_indirblk(struct freework *);
static void handle_written_freework(struct freework *);
static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
static struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
struct workhead *);
static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
struct inodedep *, struct allocindir *, ufs_lbn_t);
static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
ufs2_daddr_t, ufs_lbn_t);
static void handle_workitem_freefrag(struct freefrag *);
static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
ufs_lbn_t, u_long);
static void allocdirect_merge(struct allocdirectlst *,
struct allocdirect *, struct allocdirect *);
static struct freefrag *allocindir_merge(struct allocindir *,
struct allocindir *);
static int bmsafemap_find(struct bmsafemap_hashhead *, int,
struct bmsafemap **);
static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
int cg, struct bmsafemap *);
static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
struct newblk **);
static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
static int inodedep_find(struct inodedep_hashhead *, ino_t,
struct inodedep **);
static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
int, struct pagedep **);
static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
struct pagedep **);
static void pause_timer(void *);
static int request_cleanup(struct mount *, int);
static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
static void schedule_cleanup(struct mount *);
static void softdep_ast_cleanup_proc(struct thread *);
static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
static int process_worklist_item(struct mount *, int, int);
static void process_removes(struct vnode *);
static void process_truncates(struct vnode *);
static void jwork_move(struct workhead *, struct workhead *);
static void jwork_insert(struct workhead *, struct jsegdep *);
static void add_to_worklist(struct worklist *, int);
static void wake_worklist(struct worklist *);
static void wait_worklist(struct worklist *, char *);
static void remove_from_worklist(struct worklist *);
static void softdep_flush(void *);
static void softdep_flushjournal(struct mount *);
static int softdep_speedup(struct ufsmount *);
static void worklist_speedup(struct mount *);
static int journal_mount(struct mount *, struct fs *, struct ucred *);
static void journal_unmount(struct ufsmount *);
static int journal_space(struct ufsmount *, int);
static void journal_suspend(struct ufsmount *);
static int journal_unsuspend(struct ufsmount *ump);
static void softdep_prelink(struct vnode *, struct vnode *);
static void add_to_journal(struct worklist *);
static void remove_from_journal(struct worklist *);
static bool softdep_excess_items(struct ufsmount *, int);
static void softdep_process_journal(struct mount *, struct worklist *, int);
static struct jremref *newjremref(struct dirrem *, struct inode *,
struct inode *ip, off_t, nlink_t);
static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
uint16_t);
static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
uint16_t);
static inline struct jsegdep *inoref_jseg(struct inoref *);
static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
ufs2_daddr_t, int);
static void adjust_newfreework(struct freeblks *, int);
static struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
static void move_newblock_dep(struct jaddref *, struct inodedep *);
static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
ufs2_daddr_t, long, ufs_lbn_t);
static struct freework *newfreework(struct ufsmount *, struct freeblks *,
struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
static int jwait(struct worklist *, int);
static struct inodedep *inodedep_lookup_ip(struct inode *);
static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
static struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
static void handle_jwork(struct workhead *);
static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
struct mkdir **);
static struct jblocks *jblocks_create(void);
static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
static void jblocks_free(struct jblocks *, struct mount *, int);
static void jblocks_destroy(struct jblocks *);
static void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
/*
* Exported softdep operations.
*/
static void softdep_disk_io_initiation(struct buf *);
static void softdep_disk_write_complete(struct buf *);
static void softdep_deallocate_dependencies(struct buf *);
static int softdep_count_dependencies(struct buf *bp, int);
/*
* Global lock over all of soft updates.
*/
static struct mtx lk;
MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
#define ACQUIRE_GBLLOCK(lk) mtx_lock(lk)
#define FREE_GBLLOCK(lk) mtx_unlock(lk)
#define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED)
/*
* Per-filesystem soft-updates locking.
*/
#define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock)
#define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock)
#define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock)
#define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock)
#define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \
RA_WLOCKED)
#define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock)
#define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock)
/*
* Worklist queue management.
* These routines require that the lock be held.
*/
#ifndef /* NOT */ DEBUG
#define WORKLIST_INSERT(head, item) do { \
(item)->wk_state |= ONWORKLIST; \
LIST_INSERT_HEAD(head, item, wk_list); \
} while (0)
#define WORKLIST_REMOVE(item) do { \
(item)->wk_state &= ~ONWORKLIST; \
LIST_REMOVE(item, wk_list); \
} while (0)
#define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT
#define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE
#else /* DEBUG */
static void worklist_insert(struct workhead *, struct worklist *, int);
static void worklist_remove(struct worklist *, int);
#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
static void
worklist_insert(head, item, locked)
struct workhead *head;
struct worklist *item;
int locked;
{
if (locked)
LOCK_OWNED(VFSTOUFS(item->wk_mp));
if (item->wk_state & ONWORKLIST)
panic("worklist_insert: %p %s(0x%X) already on list",
item, TYPENAME(item->wk_type), item->wk_state);
item->wk_state |= ONWORKLIST;
LIST_INSERT_HEAD(head, item, wk_list);
}
static void
worklist_remove(item, locked)
struct worklist *item;
int locked;
{
if (locked)
LOCK_OWNED(VFSTOUFS(item->wk_mp));
if ((item->wk_state & ONWORKLIST) == 0)
panic("worklist_remove: %p %s(0x%X) not on list",
item, TYPENAME(item->wk_type), item->wk_state);
item->wk_state &= ~ONWORKLIST;
LIST_REMOVE(item, wk_list);
}
#endif /* DEBUG */
/*
* Merge two jsegdeps keeping only the oldest one as newer references
* can't be discarded until after older references.
*/
static inline struct jsegdep *
jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
{
struct jsegdep *swp;
if (two == NULL)
return (one);
if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
swp = one;
one = two;
two = swp;
}
WORKLIST_REMOVE(&two->jd_list);
free_jsegdep(two);
return (one);
}
/*
* If two freedeps are compatible free one to reduce list size.
*/
static inline struct freedep *
freedep_merge(struct freedep *one, struct freedep *two)
{
if (two == NULL)
return (one);
if (one->fd_freework == two->fd_freework) {
WORKLIST_REMOVE(&two->fd_list);
free_freedep(two);
}
return (one);
}
/*
* Move journal work from one list to another. Duplicate freedeps and
* jsegdeps are coalesced to keep the lists as small as possible.
*/
static void
jwork_move(dst, src)
struct workhead *dst;
struct workhead *src;
{
struct freedep *freedep;
struct jsegdep *jsegdep;
struct worklist *wkn;
struct worklist *wk;
KASSERT(dst != src,
("jwork_move: dst == src"));
freedep = NULL;
jsegdep = NULL;
LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
if (wk->wk_type == D_JSEGDEP)
jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
else if (wk->wk_type == D_FREEDEP)
freedep = freedep_merge(WK_FREEDEP(wk), freedep);
}
while ((wk = LIST_FIRST(src)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(dst, wk);
if (wk->wk_type == D_JSEGDEP) {
jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
continue;
}
if (wk->wk_type == D_FREEDEP)
freedep = freedep_merge(WK_FREEDEP(wk), freedep);
}
}
static void
jwork_insert(dst, jsegdep)
struct workhead *dst;
struct jsegdep *jsegdep;
{
struct jsegdep *jsegdepn;
struct worklist *wk;
LIST_FOREACH(wk, dst, wk_list)
if (wk->wk_type == D_JSEGDEP)
break;
if (wk == NULL) {
WORKLIST_INSERT(dst, &jsegdep->jd_list);
return;
}
jsegdepn = WK_JSEGDEP(wk);
if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
WORKLIST_REMOVE(wk);
free_jsegdep(jsegdepn);
WORKLIST_INSERT(dst, &jsegdep->jd_list);
} else
free_jsegdep(jsegdep);
}
/*
* Routines for tracking and managing workitems.
*/
static void workitem_free(struct worklist *, int);
static void workitem_alloc(struct worklist *, int, struct mount *);
static void workitem_reassign(struct worklist *, int);
#define WORKITEM_FREE(item, type) \
workitem_free((struct worklist *)(item), (type))
#define WORKITEM_REASSIGN(item, type) \
workitem_reassign((struct worklist *)(item), (type))
static void
workitem_free(item, type)
struct worklist *item;
int type;
{
struct ufsmount *ump;
#ifdef DEBUG
if (item->wk_state & ONWORKLIST)
panic("workitem_free: %s(0x%X) still on list",
TYPENAME(item->wk_type), item->wk_state);
if (item->wk_type != type && type != D_NEWBLK)
panic("workitem_free: type mismatch %s != %s",
TYPENAME(item->wk_type), TYPENAME(type));
#endif
if (item->wk_state & IOWAITING)
wakeup(item);
ump = VFSTOUFS(item->wk_mp);
LOCK_OWNED(ump);
KASSERT(ump->softdep_deps > 0,
("workitem_free: %s: softdep_deps going negative",
ump->um_fs->fs_fsmnt));
if (--ump->softdep_deps == 0 && ump->softdep_req)
wakeup(&ump->softdep_deps);
KASSERT(dep_current[item->wk_type] > 0,
("workitem_free: %s: dep_current[%s] going negative",
ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
("workitem_free: %s: softdep_curdeps[%s] going negative",
ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
atomic_subtract_long(&dep_current[item->wk_type], 1);
ump->softdep_curdeps[item->wk_type] -= 1;
free(item, DtoM(type));
}
static void
workitem_alloc(item, type, mp)
struct worklist *item;
int type;
struct mount *mp;
{
struct ufsmount *ump;
item->wk_type = type;
item->wk_mp = mp;
item->wk_state = 0;
ump = VFSTOUFS(mp);
ACQUIRE_GBLLOCK(&lk);
dep_current[type]++;
if (dep_current[type] > dep_highuse[type])
dep_highuse[type] = dep_current[type];
dep_total[type]++;
FREE_GBLLOCK(&lk);
ACQUIRE_LOCK(ump);
ump->softdep_curdeps[type] += 1;
ump->softdep_deps++;
ump->softdep_accdeps++;
FREE_LOCK(ump);
}
static void
workitem_reassign(item, newtype)
struct worklist *item;
int newtype;
{
struct ufsmount *ump;
ump = VFSTOUFS(item->wk_mp);
LOCK_OWNED(ump);
KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
("workitem_reassign: %s: softdep_curdeps[%s] going negative",
VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
ump->softdep_curdeps[item->wk_type] -= 1;
ump->softdep_curdeps[newtype] += 1;
KASSERT(dep_current[item->wk_type] > 0,
("workitem_reassign: %s: dep_current[%s] going negative",
VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
ACQUIRE_GBLLOCK(&lk);
dep_current[newtype]++;
dep_current[item->wk_type]--;
if (dep_current[newtype] > dep_highuse[newtype])
dep_highuse[newtype] = dep_current[newtype];
dep_total[newtype]++;
FREE_GBLLOCK(&lk);
item->wk_type = newtype;
}
/*
* Workitem queue management
*/
static int max_softdeps; /* maximum number of structs before slowdown */
static int tickdelay = 2; /* number of ticks to pause during slowdown */
static int proc_waiting; /* tracks whether we have a timeout posted */
static int *stat_countp; /* statistic to count in proc_waiting timeout */
static struct callout softdep_callout;
static int req_clear_inodedeps; /* syncer process flush some inodedeps */
static int req_clear_remove; /* syncer process flush some freeblks */
static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
/*
* runtime statistics
*/
static int stat_flush_threads; /* number of softdep flushing threads */
static int stat_worklist_push; /* number of worklist cleanups */
static int stat_blk_limit_push; /* number of times block limit neared */
static int stat_ino_limit_push; /* number of times inode limit neared */
static int stat_blk_limit_hit; /* number of times block slowdown imposed */
static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */
static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */
static int stat_journal_min; /* Times hit journal min threshold */
static int stat_journal_low; /* Times hit journal low threshold */
static int stat_journal_wait; /* Times blocked in jwait(). */
static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */
static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */
static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */
static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */
static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
static int stat_cleanup_failures; /* Number of cleanup requests that failed */
static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
&max_softdeps, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
&tickdelay, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
&stat_flush_threads, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
&stat_worklist_push, 0,"");
SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
&stat_blk_limit_push, 0,"");
SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
&stat_ino_limit_push, 0,"");
SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
&stat_blk_limit_hit, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
&stat_ino_limit_hit, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
&stat_sync_limit_hit, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
&stat_indir_blk_ptrs, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
&stat_inode_bitmap, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
&stat_direct_blk_ptrs, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
&stat_dir_entry, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
&stat_jaddref, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
&stat_jnewblk, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
&stat_journal_low, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
&stat_journal_min, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
&stat_journal_wait, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
&stat_jwait_filepage, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
&stat_jwait_freeblks, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
&stat_jwait_inode, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
&stat_jwait_newblk, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
&stat_cleanup_blkrequests, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
&stat_cleanup_inorequests, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
&stat_cleanup_high_delay, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
&stat_cleanup_retries, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
&stat_cleanup_failures, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
&softdep_flushcache, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
&stat_emptyjblocks, 0, "");
SYSCTL_DECL(_vfs_ffs);
/* Whether to recompute the summary at mount time */
static int compute_summary_at_mount = 0;
SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
&compute_summary_at_mount, 0, "Recompute summary at mount");
static int print_threads = 0;
SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
&print_threads, 0, "Notify flusher thread start/stop");
/* List of all filesystems mounted with soft updates */
static TAILQ_HEAD(, mount_softdeps) softdepmounts;
/*
* This function cleans the worklist for a filesystem.
* Each filesystem running with soft dependencies gets its own
* thread to run in this function. The thread is started up in
* softdep_mount and shutdown in softdep_unmount. They show up
* as part of the kernel "bufdaemon" process whose process
* entry is available in bufdaemonproc.
*/
static int searchfailed;
extern struct proc *bufdaemonproc;
static void
softdep_flush(addr)
void *addr;
{
struct mount *mp;
struct thread *td;
struct ufsmount *ump;
td = curthread;
td->td_pflags |= TDP_NORUNNINGBUF;
mp = (struct mount *)addr;
ump = VFSTOUFS(mp);
atomic_add_int(&stat_flush_threads, 1);
ACQUIRE_LOCK(ump);
ump->softdep_flags &= ~FLUSH_STARTING;
wakeup(&ump->softdep_flushtd);
FREE_LOCK(ump);
if (print_threads) {
if (stat_flush_threads == 1)
printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
bufdaemonproc->p_pid);
printf("Start thread %s\n", td->td_name);
}
for (;;) {
while (softdep_process_worklist(mp, 0) > 0 ||
(MOUNTEDSUJ(mp) &&
VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
kthread_suspend_check();
ACQUIRE_LOCK(ump);
if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
"sdflush", hz / 2);
ump->softdep_flags &= ~FLUSH_CLEANUP;
/*
* Check to see if we are done and need to exit.
*/
if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
FREE_LOCK(ump);
continue;
}
ump->softdep_flags &= ~FLUSH_EXIT;
FREE_LOCK(ump);
wakeup(&ump->softdep_flags);
if (print_threads)
printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
atomic_subtract_int(&stat_flush_threads, 1);
kthread_exit();
panic("kthread_exit failed\n");
}
}
static void
worklist_speedup(mp)
struct mount *mp;
{
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
ump->softdep_flags |= FLUSH_CLEANUP;
wakeup(&ump->softdep_flushtd);
}
static int
softdep_speedup(ump)
struct ufsmount *ump;
{
struct ufsmount *altump;
struct mount_softdeps *sdp;
LOCK_OWNED(ump);
worklist_speedup(ump->um_mountp);
bd_speedup();
/*
* If we have global shortages, then we need other
* filesystems to help with the cleanup. Here we wakeup a
* flusher thread for a filesystem that is over its fair
* share of resources.
*/
if (req_clear_inodedeps || req_clear_remove) {
ACQUIRE_GBLLOCK(&lk);
TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
if ((altump = sdp->sd_ump) == ump)
continue;
if (((req_clear_inodedeps &&
altump->softdep_curdeps[D_INODEDEP] >
max_softdeps / stat_flush_threads) ||
(req_clear_remove &&
altump->softdep_curdeps[D_DIRREM] >
(max_softdeps / 2) / stat_flush_threads)) &&
TRY_ACQUIRE_LOCK(altump))
break;
}
if (sdp == NULL) {
searchfailed++;
FREE_GBLLOCK(&lk);
} else {
/*
* Move to the end of the list so we pick a
* different one on out next try.
*/
TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
FREE_GBLLOCK(&lk);
if ((altump->softdep_flags &
(FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
altump->softdep_flags |= FLUSH_CLEANUP;
altump->um_softdep->sd_cleanups++;
wakeup(&altump->softdep_flushtd);
FREE_LOCK(altump);
}
}
return (speedup_syncer());
}
/*
* Add an item to the end of the work queue.
* This routine requires that the lock be held.
* This is the only routine that adds items to the list.
* The following routine is the only one that removes items
* and does so in order from first to last.
*/
#define WK_HEAD 0x0001 /* Add to HEAD. */
#define WK_NODELAY 0x0002 /* Process immediately. */
static void
add_to_worklist(wk, flags)
struct worklist *wk;
int flags;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
LOCK_OWNED(ump);
if (wk->wk_state & ONWORKLIST)
panic("add_to_worklist: %s(0x%X) already on list",
TYPENAME(wk->wk_type), wk->wk_state);
wk->wk_state |= ONWORKLIST;
if (ump->softdep_on_worklist == 0) {
LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
ump->softdep_worklist_tail = wk;
} else if (flags & WK_HEAD) {
LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
} else {
LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
ump->softdep_worklist_tail = wk;
}
ump->softdep_on_worklist += 1;
if (flags & WK_NODELAY)
worklist_speedup(wk->wk_mp);
}
/*
* Remove the item to be processed. If we are removing the last
* item on the list, we need to recalculate the tail pointer.
*/
static void
remove_from_worklist(wk)
struct worklist *wk;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
if (ump->softdep_worklist_tail == wk)
ump->softdep_worklist_tail =
(struct worklist *)wk->wk_list.le_prev;
WORKLIST_REMOVE(wk);
ump->softdep_on_worklist -= 1;
}
static void
wake_worklist(wk)
struct worklist *wk;
{
if (wk->wk_state & IOWAITING) {
wk->wk_state &= ~IOWAITING;
wakeup(wk);
}
}
static void
wait_worklist(wk, wmesg)
struct worklist *wk;
char *wmesg;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
wk->wk_state |= IOWAITING;
msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
}
/*
* Process that runs once per second to handle items in the background queue.
*
* Note that we ensure that everything is done in the order in which they
* appear in the queue. The code below depends on this property to ensure
* that blocks of a file are freed before the inode itself is freed. This
* ordering ensures that no new <vfsid, inum, lbn> triples will be generated
* until all the old ones have been purged from the dependency lists.
*/
static int
softdep_process_worklist(mp, full)
struct mount *mp;
int full;
{
int cnt, matchcnt;
struct ufsmount *ump;
long starttime;
KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
if (MOUNTEDSOFTDEP(mp) == 0)
return (0);
matchcnt = 0;
ump = VFSTOUFS(mp);
ACQUIRE_LOCK(ump);
starttime = time_second;
softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
check_clear_deps(mp);
while (ump->softdep_on_worklist > 0) {
if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
break;
else
matchcnt += cnt;
check_clear_deps(mp);
/*
* We do not generally want to stop for buffer space, but if
* we are really being a buffer hog, we will stop and wait.
*/
if (should_yield()) {
FREE_LOCK(ump);
kern_yield(PRI_USER);
bwillwrite();
ACQUIRE_LOCK(ump);
}
/*
* Never allow processing to run for more than one
* second. This gives the syncer thread the opportunity
* to pause if appropriate.
*/
if (!full && starttime != time_second)
break;
}
if (full == 0)
journal_unsuspend(ump);
FREE_LOCK(ump);
return (matchcnt);
}
/*
* Process all removes associated with a vnode if we are running out of
* journal space. Any other process which attempts to flush these will
* be unable as we have the vnodes locked.
*/
static void
process_removes(vp)
struct vnode *vp;
{
struct inodedep *inodedep;
struct dirrem *dirrem;
struct ufsmount *ump;
struct mount *mp;
ino_t inum;
mp = vp->v_mount;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
inum = VTOI(vp)->i_number;
for (;;) {
top:
if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
return;
LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
/*
* If another thread is trying to lock this vnode
* it will fail but we must wait for it to do so
* before we can proceed.
*/
if (dirrem->dm_state & INPROGRESS) {
wait_worklist(&dirrem->dm_list, "pwrwait");
goto top;
}
if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
(COMPLETE | ONWORKLIST))
break;
}
if (dirrem == NULL)
return;
remove_from_worklist(&dirrem->dm_list);
FREE_LOCK(ump);
if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
panic("process_removes: suspended filesystem");
handle_workitem_remove(dirrem, 0);
vn_finished_secondary_write(mp);
ACQUIRE_LOCK(ump);
}
}
/*
* Process all truncations associated with a vnode if we are running out
* of journal space. This is called when the vnode lock is already held
* and no other process can clear the truncation. This function returns
* a value greater than zero if it did any work.
*/
static void
process_truncates(vp)
struct vnode *vp;
{
struct inodedep *inodedep;
struct freeblks *freeblks;
struct ufsmount *ump;
struct mount *mp;
ino_t inum;
int cgwait;
mp = vp->v_mount;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
inum = VTOI(vp)->i_number;
for (;;) {
if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
return;
cgwait = 0;
TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
/* Journal entries not yet written. */
if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
jwait(&LIST_FIRST(
&freeblks->fb_jblkdephd)->jb_list,
MNT_WAIT);
break;
}
/* Another thread is executing this item. */
if (freeblks->fb_state & INPROGRESS) {
wait_worklist(&freeblks->fb_list, "ptrwait");
break;
}
/* Freeblks is waiting on a inode write. */
if ((freeblks->fb_state & COMPLETE) == 0) {
FREE_LOCK(ump);
ffs_update(vp, 1);
ACQUIRE_LOCK(ump);
break;
}
if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
(ALLCOMPLETE | ONWORKLIST)) {
remove_from_worklist(&freeblks->fb_list);
freeblks->fb_state |= INPROGRESS;
FREE_LOCK(ump);
if (vn_start_secondary_write(NULL, &mp,
V_NOWAIT))
panic("process_truncates: "
"suspended filesystem");
handle_workitem_freeblocks(freeblks, 0);
vn_finished_secondary_write(mp);
ACQUIRE_LOCK(ump);
break;
}
if (freeblks->fb_cgwait)
cgwait++;
}
if (cgwait) {
FREE_LOCK(ump);
sync_cgs(mp, MNT_WAIT);
ffs_sync_snap(mp, MNT_WAIT);
ACQUIRE_LOCK(ump);
continue;
}
if (freeblks == NULL)
break;
}
return;
}
/*
* Process one item on the worklist.
*/
static int
process_worklist_item(mp, target, flags)
struct mount *mp;
int target;
int flags;
{
struct worklist sentinel;
struct worklist *wk;
struct ufsmount *ump;
int matchcnt;
int error;
KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
/*
* If we are being called because of a process doing a
* copy-on-write, then it is not safe to write as we may
* recurse into the copy-on-write routine.
*/
if (curthread->td_pflags & TDP_COWINPROGRESS)
return (-1);
PHOLD(curproc); /* Don't let the stack go away. */
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
matchcnt = 0;
sentinel.wk_mp = NULL;
sentinel.wk_type = D_SENTINEL;
LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
wk = LIST_NEXT(&sentinel, wk_list)) {
if (wk->wk_type == D_SENTINEL) {
LIST_REMOVE(&sentinel, wk_list);
LIST_INSERT_AFTER(wk, &sentinel, wk_list);
continue;
}
if (wk->wk_state & INPROGRESS)
panic("process_worklist_item: %p already in progress.",
wk);
wk->wk_state |= INPROGRESS;
remove_from_worklist(wk);
FREE_LOCK(ump);
if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
panic("process_worklist_item: suspended filesystem");
switch (wk->wk_type) {
case D_DIRREM:
/* removal of a directory entry */
error = handle_workitem_remove(WK_DIRREM(wk), flags);
break;
case D_FREEBLKS:
/* releasing blocks and/or fragments from a file */
error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
flags);
break;
case D_FREEFRAG:
/* releasing a fragment when replaced as a file grows */
handle_workitem_freefrag(WK_FREEFRAG(wk));
error = 0;
break;
case D_FREEFILE:
/* releasing an inode when its link count drops to 0 */
handle_workitem_freefile(WK_FREEFILE(wk));
error = 0;
break;
default:
panic("%s_process_worklist: Unknown type %s",
"softdep", TYPENAME(wk->wk_type));
/* NOTREACHED */
}
vn_finished_secondary_write(mp);
ACQUIRE_LOCK(ump);
if (error == 0) {
if (++matchcnt == target)
break;
continue;
}
/*
* We have to retry the worklist item later. Wake up any
* waiters who may be able to complete it immediately and
* add the item back to the head so we don't try to execute
* it again.
*/
wk->wk_state &= ~INPROGRESS;
wake_worklist(wk);
add_to_worklist(wk, WK_HEAD);
}
/* Sentinal could've become the tail from remove_from_worklist. */
if (ump->softdep_worklist_tail == &sentinel)
ump->softdep_worklist_tail =
(struct worklist *)sentinel.wk_list.le_prev;
LIST_REMOVE(&sentinel, wk_list);
PRELE(curproc);
return (matchcnt);
}
/*
* Move dependencies from one buffer to another.
*/
int
softdep_move_dependencies(oldbp, newbp)
struct buf *oldbp;
struct buf *newbp;
{
struct worklist *wk, *wktail;
struct ufsmount *ump;
int dirty;
if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
return (0);
KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
("softdep_move_dependencies called on non-softdep filesystem"));
dirty = 0;
wktail = NULL;
ump = VFSTOUFS(wk->wk_mp);
ACQUIRE_LOCK(ump);
while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
LIST_REMOVE(wk, wk_list);
if (wk->wk_type == D_BMSAFEMAP &&
bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
dirty = 1;
if (wktail == NULL)
LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
else
LIST_INSERT_AFTER(wktail, wk, wk_list);
wktail = wk;
}
FREE_LOCK(ump);
return (dirty);
}
/*
* Purge the work list of all items associated with a particular mount point.
*/
int
softdep_flushworklist(oldmnt, countp, td)
struct mount *oldmnt;
int *countp;
struct thread *td;
{
struct vnode *devvp;
struct ufsmount *ump;
int count, error;
/*
* Alternately flush the block device associated with the mount
* point and process any dependencies that the flushing
* creates. We continue until no more worklist dependencies
* are found.
*/
*countp = 0;
error = 0;
ump = VFSTOUFS(oldmnt);
devvp = ump->um_devvp;
while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
*countp += count;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(devvp, MNT_WAIT, td);
VOP_UNLOCK(devvp, 0);
if (error != 0)
break;
}
return (error);
}
#define SU_WAITIDLE_RETRIES 20
static int
softdep_waitidle(struct mount *mp, int flags __unused)
{
struct ufsmount *ump;
struct vnode *devvp;
struct thread *td;
int error, i;
ump = VFSTOUFS(mp);
devvp = ump->um_devvp;
td = curthread;
error = 0;
ACQUIRE_LOCK(ump);
for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
ump->softdep_req = 1;
KASSERT((flags & FORCECLOSE) == 0 ||
ump->softdep_on_worklist == 0,
("softdep_waitidle: work added after flush"));
msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
"softdeps", 10 * hz);
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(devvp, MNT_WAIT, td);
VOP_UNLOCK(devvp, 0);
ACQUIRE_LOCK(ump);
if (error != 0)
break;
}
ump->softdep_req = 0;
if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
error = EBUSY;
printf("softdep_waitidle: Failed to flush worklist for %p\n",
mp);
}
FREE_LOCK(ump);
return (error);
}
/*
* Flush all vnodes and worklist items associated with a specified mount point.
*/
int
softdep_flushfiles(oldmnt, flags, td)
struct mount *oldmnt;
int flags;
struct thread *td;
{
#ifdef QUOTA
struct ufsmount *ump;
int i;
#endif
int error, early, depcount, loopcnt, retry_flush_count, retry;
int morework;
KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
("softdep_flushfiles called on non-softdep filesystem"));
loopcnt = 10;
retry_flush_count = 3;
retry_flush:
error = 0;
/*
* Alternately flush the vnodes associated with the mount
* point and process any dependencies that the flushing
* creates. In theory, this loop can happen at most twice,
* but we give it a few extra just to be sure.
*/
for (; loopcnt > 0; loopcnt--) {
/*
* Do another flush in case any vnodes were brought in
* as part of the cleanup operations.
*/
early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
break;
if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
depcount == 0)
break;
}
/*
* If we are unmounting then it is an error to fail. If we
* are simply trying to downgrade to read-only, then filesystem
* activity can keep us busy forever, so we just fail with EBUSY.
*/
if (loopcnt == 0) {
if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
panic("softdep_flushfiles: looping");
error = EBUSY;
}
if (!error)
error = softdep_waitidle(oldmnt, flags);
if (!error) {
if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
retry = 0;
MNT_ILOCK(oldmnt);
KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
("softdep_flushfiles: !MNTK_NOINSMNTQ"));
morework = oldmnt->mnt_nvnodelistsize > 0;
#ifdef QUOTA
ump = VFSTOUFS(oldmnt);
UFS_LOCK(ump);
for (i = 0; i < MAXQUOTAS; i++) {
if (ump->um_quotas[i] != NULLVP)
morework = 1;
}
UFS_UNLOCK(ump);
#endif
if (morework) {
if (--retry_flush_count > 0) {
retry = 1;
loopcnt = 3;
} else
error = EBUSY;
}
MNT_IUNLOCK(oldmnt);
if (retry)
goto retry_flush;
}
}
return (error);
}
/*
* Structure hashing.
*
* There are four types of structures that can be looked up:
* 1) pagedep structures identified by mount point, inode number,
* and logical block.
* 2) inodedep structures identified by mount point and inode number.
* 3) newblk structures identified by mount point and
* physical block number.
* 4) bmsafemap structures identified by mount point and
* cylinder group number.
*
* The "pagedep" and "inodedep" dependency structures are hashed
* separately from the file blocks and inodes to which they correspond.
* This separation helps when the in-memory copy of an inode or
* file block must be replaced. It also obviates the need to access
* an inode or file page when simply updating (or de-allocating)
* dependency structures. Lookup of newblk structures is needed to
* find newly allocated blocks when trying to associate them with
* their allocdirect or allocindir structure.
*
* The lookup routines optionally create and hash a new instance when
* an existing entry is not found. The bmsafemap lookup routine always
* allocates a new structure if an existing one is not found.
*/
#define DEPALLOC 0x0001 /* allocate structure if lookup fails */
/*
* Structures and routines associated with pagedep caching.
*/
#define PAGEDEP_HASH(ump, inum, lbn) \
(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
static int
pagedep_find(pagedephd, ino, lbn, pagedeppp)
struct pagedep_hashhead *pagedephd;
ino_t ino;
ufs_lbn_t lbn;
struct pagedep **pagedeppp;
{
struct pagedep *pagedep;
LIST_FOREACH(pagedep, pagedephd, pd_hash) {
if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
*pagedeppp = pagedep;
return (1);
}
}
*pagedeppp = NULL;
return (0);
}
/*
* Look up a pagedep. Return 1 if found, 0 otherwise.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in pagedeppp.
* This routine must be called with splbio interrupts blocked.
*/
static int
pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
struct mount *mp;
struct buf *bp;
ino_t ino;
ufs_lbn_t lbn;
int flags;
struct pagedep **pagedeppp;
{
struct pagedep *pagedep;
struct pagedep_hashhead *pagedephd;
struct worklist *wk;
struct ufsmount *ump;
int ret;
int i;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
if (bp) {
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
if (wk->wk_type == D_PAGEDEP) {
*pagedeppp = WK_PAGEDEP(wk);
return (1);
}
}
}
pagedephd = PAGEDEP_HASH(ump, ino, lbn);
ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
if (ret) {
if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
return (1);
}
if ((flags & DEPALLOC) == 0)
return (0);
FREE_LOCK(ump);
pagedep = malloc(sizeof(struct pagedep),
M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
ACQUIRE_LOCK(ump);
ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
if (*pagedeppp) {
/*
* This should never happen since we only create pagedeps
* with the vnode lock held. Could be an assert.
*/
WORKITEM_FREE(pagedep, D_PAGEDEP);
return (ret);
}
pagedep->pd_ino = ino;
pagedep->pd_lbn = lbn;
LIST_INIT(&pagedep->pd_dirremhd);
LIST_INIT(&pagedep->pd_pendinghd);
for (i = 0; i < DAHASHSZ; i++)
LIST_INIT(&pagedep->pd_diraddhd[i]);
LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
*pagedeppp = pagedep;
return (0);
}
/*
* Structures and routines associated with inodedep caching.
*/
#define INODEDEP_HASH(ump, inum) \
(&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
static int
inodedep_find(inodedephd, inum, inodedeppp)
struct inodedep_hashhead *inodedephd;
ino_t inum;
struct inodedep **inodedeppp;
{
struct inodedep *inodedep;
LIST_FOREACH(inodedep, inodedephd, id_hash)
if (inum == inodedep->id_ino)
break;
if (inodedep) {
*inodedeppp = inodedep;
return (1);
}
*inodedeppp = NULL;
return (0);
}
/*
* Look up an inodedep. Return 1 if found, 0 if not found.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in inodedeppp.
* This routine must be called with splbio interrupts blocked.
*/
static int
inodedep_lookup(mp, inum, flags, inodedeppp)
struct mount *mp;
ino_t inum;
int flags;
struct inodedep **inodedeppp;
{
struct inodedep *inodedep;
struct inodedep_hashhead *inodedephd;
struct ufsmount *ump;
struct fs *fs;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
fs = ump->um_fs;
inodedephd = INODEDEP_HASH(ump, inum);
if (inodedep_find(inodedephd, inum, inodedeppp))
return (1);
if ((flags & DEPALLOC) == 0)
return (0);
/*
* If the system is over its limit and our filesystem is
* responsible for more than our share of that usage and
* we are not in a rush, request some inodedep cleanup.
*/
if (softdep_excess_items(ump, D_INODEDEP))
schedule_cleanup(mp);
else
FREE_LOCK(ump);
inodedep = malloc(sizeof(struct inodedep),
M_INODEDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
ACQUIRE_LOCK(ump);
if (inodedep_find(inodedephd, inum, inodedeppp)) {
WORKITEM_FREE(inodedep, D_INODEDEP);
return (1);
}
inodedep->id_fs = fs;
inodedep->id_ino = inum;
inodedep->id_state = ALLCOMPLETE;
inodedep->id_nlinkdelta = 0;
inodedep->id_savedino1 = NULL;
inodedep->id_savedsize = -1;
inodedep->id_savedextsize = -1;
inodedep->id_savednlink = -1;
inodedep->id_bmsafemap = NULL;
inodedep->id_mkdiradd = NULL;
LIST_INIT(&inodedep->id_dirremhd);
LIST_INIT(&inodedep->id_pendinghd);
LIST_INIT(&inodedep->id_inowait);
LIST_INIT(&inodedep->id_bufwait);
TAILQ_INIT(&inodedep->id_inoreflst);
TAILQ_INIT(&inodedep->id_inoupdt);
TAILQ_INIT(&inodedep->id_newinoupdt);
TAILQ_INIT(&inodedep->id_extupdt);
TAILQ_INIT(&inodedep->id_newextupdt);
TAILQ_INIT(&inodedep->id_freeblklst);
LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
*inodedeppp = inodedep;
return (0);
}
/*
* Structures and routines associated with newblk caching.
*/
#define NEWBLK_HASH(ump, inum) \
(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
static int
newblk_find(newblkhd, newblkno, flags, newblkpp)
struct newblk_hashhead *newblkhd;
ufs2_daddr_t newblkno;
int flags;
struct newblk **newblkpp;
{
struct newblk *newblk;
LIST_FOREACH(newblk, newblkhd, nb_hash) {
if (newblkno != newblk->nb_newblkno)
continue;
/*
* If we're creating a new dependency don't match those that
* have already been converted to allocdirects. This is for
* a frag extend.
*/
if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
continue;
break;
}
if (newblk) {
*newblkpp = newblk;
return (1);
}
*newblkpp = NULL;
return (0);
}
/*
* Look up a newblk. Return 1 if found, 0 if not found.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in newblkpp.
*/
static int
newblk_lookup(mp, newblkno, flags, newblkpp)
struct mount *mp;
ufs2_daddr_t newblkno;
int flags;
struct newblk **newblkpp;
{
struct newblk *newblk;
struct newblk_hashhead *newblkhd;
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
newblkhd = NEWBLK_HASH(ump, newblkno);
if (newblk_find(newblkhd, newblkno, flags, newblkpp))
return (1);
if ((flags & DEPALLOC) == 0)
return (0);
if (softdep_excess_items(ump, D_NEWBLK) ||
softdep_excess_items(ump, D_ALLOCDIRECT) ||
softdep_excess_items(ump, D_ALLOCINDIR))
schedule_cleanup(mp);
else
FREE_LOCK(ump);
newblk = malloc(sizeof(union allblk), M_NEWBLK,
M_SOFTDEP_FLAGS | M_ZERO);
workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
ACQUIRE_LOCK(ump);
if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
WORKITEM_FREE(newblk, D_NEWBLK);
return (1);
}
newblk->nb_freefrag = NULL;
LIST_INIT(&newblk->nb_indirdeps);
LIST_INIT(&newblk->nb_newdirblk);
LIST_INIT(&newblk->nb_jwork);
newblk->nb_state = ATTACHED;
newblk->nb_newblkno = newblkno;
LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
*newblkpp = newblk;
return (0);
}
/*
* Structures and routines associated with freed indirect block caching.
*/
#define INDIR_HASH(ump, blkno) \
(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
/*
* Lookup an indirect block in the indir hash table. The freework is
* removed and potentially freed. The caller must do a blocking journal
* write before writing to the blkno.
*/
static int
indirblk_lookup(mp, blkno)
struct mount *mp;
ufs2_daddr_t blkno;
{
struct freework *freework;
struct indir_hashhead *wkhd;
struct ufsmount *ump;
ump = VFSTOUFS(mp);
wkhd = INDIR_HASH(ump, blkno);
TAILQ_FOREACH(freework, wkhd, fw_next) {
if (freework->fw_blkno != blkno)
continue;
indirblk_remove(freework);
return (1);
}
return (0);
}
/*
* Insert an indirect block represented by freework into the indirblk
* hash table so that it may prevent the block from being re-used prior
* to the journal being written.
*/
static void
indirblk_insert(freework)
struct freework *freework;
{
struct jblocks *jblocks;
struct jseg *jseg;
struct ufsmount *ump;
ump = VFSTOUFS(freework->fw_list.wk_mp);
jblocks = ump->softdep_jblocks;
jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
if (jseg == NULL)
return;
LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
fw_next);
freework->fw_state &= ~DEPCOMPLETE;
}
static void
indirblk_remove(freework)
struct freework *freework;
{
struct ufsmount *ump;
ump = VFSTOUFS(freework->fw_list.wk_mp);
LIST_REMOVE(freework, fw_segs);
TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
freework->fw_state |= DEPCOMPLETE;
if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
WORKITEM_FREE(freework, D_FREEWORK);
}
/*
* Executed during filesystem system initialization before
* mounting any filesystems.
*/
void
softdep_initialize()
{
TAILQ_INIT(&softdepmounts);
#ifdef __LP64__
max_softdeps = desiredvnodes * 4;
#else
max_softdeps = desiredvnodes * 2;
#endif
/* initialise bioops hack */
bioops.io_start = softdep_disk_io_initiation;
bioops.io_complete = softdep_disk_write_complete;
bioops.io_deallocate = softdep_deallocate_dependencies;
bioops.io_countdeps = softdep_count_dependencies;
softdep_ast_cleanup = softdep_ast_cleanup_proc;
/* Initialize the callout with an mtx. */
callout_init_mtx(&softdep_callout, &lk, 0);
}
/*
* Executed after all filesystems have been unmounted during
* filesystem module unload.
*/
void
softdep_uninitialize()
{
/* clear bioops hack */
bioops.io_start = NULL;
bioops.io_complete = NULL;
bioops.io_deallocate = NULL;
bioops.io_countdeps = NULL;
softdep_ast_cleanup = NULL;
callout_drain(&softdep_callout);
}
/*
* Called at mount time to notify the dependency code that a
* filesystem wishes to use it.
*/
int
softdep_mount(devvp, mp, fs, cred)
struct vnode *devvp;
struct mount *mp;
struct fs *fs;
struct ucred *cred;
{
struct csum_total cstotal;
struct mount_softdeps *sdp;
struct ufsmount *ump;
struct cg *cgp;
struct buf *bp;
u_int cyl, i;
int error;
sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
M_WAITOK | M_ZERO);
MNT_ILOCK(mp);
mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
MNTK_SOFTDEP | MNTK_NOASYNC;
}
ump = VFSTOUFS(mp);
ump->um_softdep = sdp;
MNT_IUNLOCK(mp);
rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
sdp->sd_ump = ump;
LIST_INIT(&ump->softdep_workitem_pending);
LIST_INIT(&ump->softdep_journal_pending);
TAILQ_INIT(&ump->softdep_unlinked);
LIST_INIT(&ump->softdep_dirtycg);
ump->softdep_worklist_tail = NULL;
ump->softdep_on_worklist = 0;
ump->softdep_deps = 0;
LIST_INIT(&ump->softdep_mkdirlisthd);
ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
&ump->pagedep_hash_size);
ump->pagedep_nextclean = 0;
ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
&ump->inodedep_hash_size);
ump->inodedep_nextclean = 0;
ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK,
&ump->newblk_hash_size);
ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
&ump->bmsafemap_hash_size);
i = 1 << (ffs(desiredvnodes / 10) - 1);
ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
M_FREEWORK, M_WAITOK);
ump->indir_hash_size = i - 1;
for (i = 0; i <= ump->indir_hash_size; i++)
TAILQ_INIT(&ump->indir_hashtbl[i]);
ACQUIRE_GBLLOCK(&lk);
TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
FREE_GBLLOCK(&lk);
if ((fs->fs_flags & FS_SUJ) &&
(error = journal_mount(mp, fs, cred)) != 0) {
printf("Failed to start journal: %d\n", error);
softdep_unmount(mp);
return (error);
}
/*
* Start our flushing thread in the bufdaemon process.
*/
ACQUIRE_LOCK(ump);
ump->softdep_flags |= FLUSH_STARTING;
FREE_LOCK(ump);
kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
&ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
mp->mnt_stat.f_mntonname);
ACQUIRE_LOCK(ump);
while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
hz / 2);
}
FREE_LOCK(ump);
/*
* When doing soft updates, the counters in the
* superblock may have gotten out of sync. Recomputation
* can take a long time and can be deferred for background
* fsck. However, the old behavior of scanning the cylinder
* groups and recalculating them at mount time is available
* by setting vfs.ffs.compute_summary_at_mount to one.
*/
if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
return (0);
bzero(&cstotal, sizeof cstotal);
for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
fs->fs_cgsize, cred, &bp)) != 0) {
brelse(bp);
softdep_unmount(mp);
return (error);
}
cgp = (struct cg *)bp->b_data;
cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
fs->fs_cs(fs, cyl) = cgp->cg_cs;
brelse(bp);
}
#ifdef DEBUG
if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
#endif
bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
return (0);
}
void
softdep_unmount(mp)
struct mount *mp;
{
struct ufsmount *ump;
#ifdef INVARIANTS
int i;
#endif
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_unmount called on non-softdep filesystem"));
ump = VFSTOUFS(mp);
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_SOFTDEP;
if (MOUNTEDSUJ(mp) == 0) {
MNT_IUNLOCK(mp);
} else {
mp->mnt_flag &= ~MNT_SUJ;
MNT_IUNLOCK(mp);
journal_unmount(ump);
}
/*
* Shut down our flushing thread. Check for NULL is if
* softdep_mount errors out before the thread has been created.
*/
if (ump->softdep_flushtd != NULL) {
ACQUIRE_LOCK(ump);
ump->softdep_flags |= FLUSH_EXIT;
wakeup(&ump->softdep_flushtd);
msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
"sdwait", 0);
KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
("Thread shutdown failed"));
}
/*
* Free up our resources.
*/
ACQUIRE_GBLLOCK(&lk);
TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
FREE_GBLLOCK(&lk);
rw_destroy(LOCK_PTR(ump));
hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
ump->bmsafemap_hash_size);
free(ump->indir_hashtbl, M_FREEWORK);
#ifdef INVARIANTS
for (i = 0; i <= D_LAST; i++)
KASSERT(ump->softdep_curdeps[i] == 0,
("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
TYPENAME(i), ump->softdep_curdeps[i]));
#endif
free(ump->um_softdep, M_MOUNTDATA);
}
static struct jblocks *
jblocks_create(void)
{
struct jblocks *jblocks;
jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
TAILQ_INIT(&jblocks->jb_segs);
jblocks->jb_avail = 10;
jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
M_JBLOCKS, M_WAITOK | M_ZERO);
return (jblocks);
}
static ufs2_daddr_t
jblocks_alloc(jblocks, bytes, actual)
struct jblocks *jblocks;
int bytes;
int *actual;
{
ufs2_daddr_t daddr;
struct jextent *jext;
int freecnt;
int blocks;
blocks = bytes / DEV_BSIZE;
jext = &jblocks->jb_extent[jblocks->jb_head];
freecnt = jext->je_blocks - jblocks->jb_off;
if (freecnt == 0) {
jblocks->jb_off = 0;
if (++jblocks->jb_head > jblocks->jb_used)
jblocks->jb_head = 0;
jext = &jblocks->jb_extent[jblocks->jb_head];
freecnt = jext->je_blocks;
}
if (freecnt > blocks)
freecnt = blocks;
*actual = freecnt * DEV_BSIZE;
daddr = jext->je_daddr + jblocks->jb_off;
jblocks->jb_off += freecnt;
jblocks->jb_free -= freecnt;
return (daddr);
}
static void
jblocks_free(jblocks, mp, bytes)
struct jblocks *jblocks;
struct mount *mp;
int bytes;
{
LOCK_OWNED(VFSTOUFS(mp));
jblocks->jb_free += bytes / DEV_BSIZE;
if (jblocks->jb_suspended)
worklist_speedup(mp);
wakeup(jblocks);
}
static void
jblocks_destroy(jblocks)
struct jblocks *jblocks;
{
if (jblocks->jb_extent)
free(jblocks->jb_extent, M_JBLOCKS);
free(jblocks, M_JBLOCKS);
}
static void
jblocks_add(jblocks, daddr, blocks)
struct jblocks *jblocks;
ufs2_daddr_t daddr;
int blocks;
{
struct jextent *jext;
jblocks->jb_blocks += blocks;
jblocks->jb_free += blocks;
jext = &jblocks->jb_extent[jblocks->jb_used];
/* Adding the first block. */
if (jext->je_daddr == 0) {
jext->je_daddr = daddr;
jext->je_blocks = blocks;
return;
}
/* Extending the last extent. */
if (jext->je_daddr + jext->je_blocks == daddr) {
jext->je_blocks += blocks;
return;
}
/* Adding a new extent. */
if (++jblocks->jb_used == jblocks->jb_avail) {
jblocks->jb_avail *= 2;
jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
M_JBLOCKS, M_WAITOK | M_ZERO);
memcpy(jext, jblocks->jb_extent,
sizeof(struct jextent) * jblocks->jb_used);
free(jblocks->jb_extent, M_JBLOCKS);
jblocks->jb_extent = jext;
}
jext = &jblocks->jb_extent[jblocks->jb_used];
jext->je_daddr = daddr;
jext->je_blocks = blocks;
return;
}
int
softdep_journal_lookup(mp, vpp)
struct mount *mp;
struct vnode **vpp;
{
struct componentname cnp;
struct vnode *dvp;
ino_t sujournal;
int error;
error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
if (error)
return (error);
bzero(&cnp, sizeof(cnp));
cnp.cn_nameiop = LOOKUP;
cnp.cn_flags = ISLASTCN;
cnp.cn_thread = curthread;
cnp.cn_cred = curthread->td_ucred;
cnp.cn_pnbuf = SUJ_FILE;
cnp.cn_nameptr = SUJ_FILE;
cnp.cn_namelen = strlen(SUJ_FILE);
error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
vput(dvp);
if (error != 0)
return (error);
error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
return (error);
}
/*
* Open and verify the journal file.
*/
static int
journal_mount(mp, fs, cred)
struct mount *mp;
struct fs *fs;
struct ucred *cred;
{
struct jblocks *jblocks;
struct ufsmount *ump;
struct vnode *vp;
struct inode *ip;
ufs2_daddr_t blkno;
int bcount;
int error;
int i;
ump = VFSTOUFS(mp);
ump->softdep_journal_tail = NULL;
ump->softdep_on_journal = 0;
ump->softdep_accdeps = 0;
ump->softdep_req = 0;
ump->softdep_jblocks = NULL;
error = softdep_journal_lookup(mp, &vp);
if (error != 0) {
printf("Failed to find journal. Use tunefs to create one\n");
return (error);
}
ip = VTOI(vp);
if (ip->i_size < SUJ_MIN) {
error = ENOSPC;
goto out;
}
bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */
jblocks = jblocks_create();
for (i = 0; i < bcount; i++) {
error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
if (error)
break;
jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
}
if (error) {
jblocks_destroy(jblocks);
goto out;
}
jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */
jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
ump->softdep_jblocks = jblocks;
out:
if (error == 0) {
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_SUJ;
mp->mnt_flag &= ~MNT_SOFTDEP;
MNT_IUNLOCK(mp);
/*
* Only validate the journal contents if the
* filesystem is clean, otherwise we write the logs
* but they'll never be used. If the filesystem was
* still dirty when we mounted it the journal is
* invalid and a new journal can only be valid if it
* starts from a clean mount.
*/
if (fs->fs_clean) {
DIP_SET(ip, i_modrev, fs->fs_mtime);
ip->i_flags |= IN_MODIFIED;
ffs_update(vp, 1);
}
}
vput(vp);
return (error);
}
static void
journal_unmount(ump)
struct ufsmount *ump;
{
if (ump->softdep_jblocks)
jblocks_destroy(ump->softdep_jblocks);
ump->softdep_jblocks = NULL;
}
/*
* Called when a journal record is ready to be written. Space is allocated
* and the journal entry is created when the journal is flushed to stable
* store.
*/
static void
add_to_journal(wk)
struct worklist *wk;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
LOCK_OWNED(ump);
if (wk->wk_state & ONWORKLIST)
panic("add_to_journal: %s(0x%X) already on list",
TYPENAME(wk->wk_type), wk->wk_state);
wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
if (LIST_EMPTY(&ump->softdep_journal_pending)) {
ump->softdep_jblocks->jb_age = ticks;
LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
} else
LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
ump->softdep_journal_tail = wk;
ump->softdep_on_journal += 1;
}
/*
* Remove an arbitrary item for the journal worklist maintain the tail
* pointer. This happens when a new operation obviates the need to
* journal an old operation.
*/
static void
remove_from_journal(wk)
struct worklist *wk;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
LOCK_OWNED(ump);
#ifdef SUJ_DEBUG
{
struct worklist *wkn;
LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
if (wkn == wk)
break;
if (wkn == NULL)
panic("remove_from_journal: %p is not in journal", wk);
}
#endif
/*
* We emulate a TAILQ to save space in most structures which do not
* require TAILQ semantics. Here we must update the tail position
* when removing the tail which is not the final entry. This works
* only if the worklist linkage are at the beginning of the structure.
*/
if (ump->softdep_journal_tail == wk)
ump->softdep_journal_tail =
(struct worklist *)wk->wk_list.le_prev;
WORKLIST_REMOVE(wk);
ump->softdep_on_journal -= 1;
}
/*
* Check for journal space as well as dependency limits so the prelink
* code can throttle both journaled and non-journaled filesystems.
* Threshold is 0 for low and 1 for min.
*/
static int
journal_space(ump, thresh)
struct ufsmount *ump;
int thresh;
{
struct jblocks *jblocks;
int limit, avail;
jblocks = ump->softdep_jblocks;
if (jblocks == NULL)
return (1);
/*
* We use a tighter restriction here to prevent request_cleanup()
* running in threads from running into locks we currently hold.
* We have to be over the limit and our filesystem has to be
* responsible for more than our share of that usage.
*/
limit = (max_softdeps / 10) * 9;
if (dep_current[D_INODEDEP] > limit &&
ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
return (0);
if (thresh)
thresh = jblocks->jb_min;
else
thresh = jblocks->jb_low;
avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
avail = jblocks->jb_free - avail;
return (avail > thresh);
}
static void
journal_suspend(ump)
struct ufsmount *ump;
{
struct jblocks *jblocks;
struct mount *mp;
mp = UFSTOVFS(ump);
jblocks = ump->softdep_jblocks;
MNT_ILOCK(mp);
if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
stat_journal_min++;
mp->mnt_kern_flag |= MNTK_SUSPEND;
mp->mnt_susp_owner = ump->softdep_flushtd;
}
jblocks->jb_suspended = 1;
MNT_IUNLOCK(mp);
}
static int
journal_unsuspend(struct ufsmount *ump)
{
struct jblocks *jblocks;
struct mount *mp;
mp = UFSTOVFS(ump);
jblocks = ump->softdep_jblocks;
if (jblocks != NULL && jblocks->jb_suspended &&
journal_space(ump, jblocks->jb_min)) {
jblocks->jb_suspended = 0;
FREE_LOCK(ump);
mp->mnt_susp_owner = curthread;
vfs_write_resume(mp, 0);
ACQUIRE_LOCK(ump);
return (1);
}
return (0);
}
/*
* Called before any allocation function to be certain that there is
* sufficient space in the journal prior to creating any new records.
* Since in the case of block allocation we may have multiple locked
* buffers at the time of the actual allocation we can not block
* when the journal records are created. Doing so would create a deadlock
* if any of these buffers needed to be flushed to reclaim space. Instead
* we require a sufficiently large amount of available space such that
* each thread in the system could have passed this allocation check and
* still have sufficient free space. With 20% of a minimum journal size
* of 1MB we have 6553 records available.
*/
int
softdep_prealloc(vp, waitok)
struct vnode *vp;
int waitok;
{
struct ufsmount *ump;
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
("softdep_prealloc called on non-softdep filesystem"));
/*
* Nothing to do if we are not running journaled soft updates.
* If we currently hold the snapshot lock, we must avoid
* handling other resources that could cause deadlock. Do not
* touch quotas vnode since it is typically recursed with
* other vnode locks held.
*/
if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
(vp->v_vflag & VV_SYSTEM) != 0)
return (0);
ump = VFSTOUFS(vp->v_mount);
ACQUIRE_LOCK(ump);
if (journal_space(ump, 0)) {
FREE_LOCK(ump);
return (0);
}
stat_journal_low++;
FREE_LOCK(ump);
if (waitok == MNT_NOWAIT)
return (ENOSPC);
/*
* Attempt to sync this vnode once to flush any journal
* work attached to it.
*/
if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
ffs_syncvnode(vp, waitok, 0);
ACQUIRE_LOCK(ump);
process_removes(vp);
process_truncates(vp);
if (journal_space(ump, 0) == 0) {
softdep_speedup(ump);
if (journal_space(ump, 1) == 0)
journal_suspend(ump);
}
FREE_LOCK(ump);
return (0);
}
/*
* Before adjusting a link count on a vnode verify that we have sufficient
* journal space. If not, process operations that depend on the currently
* locked pair of vnodes to try to flush space as the syncer, buf daemon,
* and softdep flush threads can not acquire these locks to reclaim space.
*/
static void
softdep_prelink(dvp, vp)
struct vnode *dvp;
struct vnode *vp;
{
struct ufsmount *ump;
ump = VFSTOUFS(dvp->v_mount);
LOCK_OWNED(ump);
/*
* Nothing to do if we have sufficient journal space.
* If we currently hold the snapshot lock, we must avoid
* handling other resources that could cause deadlock.
*/
if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
return;
stat_journal_low++;
FREE_LOCK(ump);
if (vp)
ffs_syncvnode(vp, MNT_NOWAIT, 0);
ffs_syncvnode(dvp, MNT_WAIT, 0);
ACQUIRE_LOCK(ump);
/* Process vp before dvp as it may create .. removes. */
if (vp) {
process_removes(vp);
process_truncates(vp);
}
process_removes(dvp);
process_truncates(dvp);
softdep_speedup(ump);
process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
if (journal_space(ump, 0) == 0) {
softdep_speedup(ump);
if (journal_space(ump, 1) == 0)
journal_suspend(ump);
}
}
static void
jseg_write(ump, jseg, data)
struct ufsmount *ump;
struct jseg *jseg;
uint8_t *data;
{
struct jsegrec *rec;
rec = (struct jsegrec *)data;
rec->jsr_seq = jseg->js_seq;
rec->jsr_oldest = jseg->js_oldseq;
rec->jsr_cnt = jseg->js_cnt;
rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
rec->jsr_crc = 0;
rec->jsr_time = ump->um_fs->fs_mtime;
}
static inline void
inoref_write(inoref, jseg, rec)
struct inoref *inoref;
struct jseg *jseg;
struct jrefrec *rec;
{
inoref->if_jsegdep->jd_seg = jseg;
rec->jr_ino = inoref->if_ino;
rec->jr_parent = inoref->if_parent;
rec->jr_nlink = inoref->if_nlink;
rec->jr_mode = inoref->if_mode;
rec->jr_diroff = inoref->if_diroff;
}
static void
jaddref_write(jaddref, jseg, data)
struct jaddref *jaddref;
struct jseg *jseg;
uint8_t *data;
{
struct jrefrec *rec;
rec = (struct jrefrec *)data;
rec->jr_op = JOP_ADDREF;
inoref_write(&jaddref->ja_ref, jseg, rec);
}
static void
jremref_write(jremref, jseg, data)
struct jremref *jremref;
struct jseg *jseg;
uint8_t *data;
{
struct jrefrec *rec;
rec = (struct jrefrec *)data;
rec->jr_op = JOP_REMREF;
inoref_write(&jremref->jr_ref, jseg, rec);
}
static void
jmvref_write(jmvref, jseg, data)
struct jmvref *jmvref;
struct jseg *jseg;
uint8_t *data;
{
struct jmvrec *rec;
rec = (struct jmvrec *)data;
rec->jm_op = JOP_MVREF;
rec->jm_ino = jmvref->jm_ino;
rec->jm_parent = jmvref->jm_parent;
rec->jm_oldoff = jmvref->jm_oldoff;
rec->jm_newoff = jmvref->jm_newoff;
}
static void
jnewblk_write(jnewblk, jseg, data)
struct jnewblk *jnewblk;
struct jseg *jseg;
uint8_t *data;
{
struct jblkrec *rec;
jnewblk->jn_jsegdep->jd_seg = jseg;
rec = (struct jblkrec *)data;
rec->jb_op = JOP_NEWBLK;
rec->jb_ino = jnewblk->jn_ino;
rec->jb_blkno = jnewblk->jn_blkno;
rec->jb_lbn = jnewblk->jn_lbn;
rec->jb_frags = jnewblk->jn_frags;
rec->jb_oldfrags = jnewblk->jn_oldfrags;
}
static void
jfreeblk_write(jfreeblk, jseg, data)
struct jfreeblk *jfreeblk;
struct jseg *jseg;
uint8_t *data;
{
struct jblkrec *rec;
jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
rec = (struct jblkrec *)data;
rec->jb_op = JOP_FREEBLK;
rec->jb_ino = jfreeblk->jf_ino;
rec->jb_blkno = jfreeblk->jf_blkno;
rec->jb_lbn = jfreeblk->jf_lbn;
rec->jb_frags = jfreeblk->jf_frags;
rec->jb_oldfrags = 0;
}
static void
jfreefrag_write(jfreefrag, jseg, data)
struct jfreefrag *jfreefrag;
struct jseg *jseg;
uint8_t *data;
{
struct jblkrec *rec;
jfreefrag->fr_jsegdep->jd_seg = jseg;
rec = (struct jblkrec *)data;
rec->jb_op = JOP_FREEBLK;
rec->jb_ino = jfreefrag->fr_ino;
rec->jb_blkno = jfreefrag->fr_blkno;
rec->jb_lbn = jfreefrag->fr_lbn;
rec->jb_frags = jfreefrag->fr_frags;
rec->jb_oldfrags = 0;
}
static void
jtrunc_write(jtrunc, jseg, data)
struct jtrunc *jtrunc;
struct jseg *jseg;
uint8_t *data;
{
struct jtrncrec *rec;
jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
rec = (struct jtrncrec *)data;
rec->jt_op = JOP_TRUNC;
rec->jt_ino = jtrunc->jt_ino;
rec->jt_size = jtrunc->jt_size;
rec->jt_extsize = jtrunc->jt_extsize;
}
static void
jfsync_write(jfsync, jseg, data)
struct jfsync *jfsync;
struct jseg *jseg;
uint8_t *data;
{
struct jtrncrec *rec;
rec = (struct jtrncrec *)data;
rec->jt_op = JOP_SYNC;
rec->jt_ino = jfsync->jfs_ino;
rec->jt_size = jfsync->jfs_size;
rec->jt_extsize = jfsync->jfs_extsize;
}
static void
softdep_flushjournal(mp)
struct mount *mp;
{
struct jblocks *jblocks;
struct ufsmount *ump;
if (MOUNTEDSUJ(mp) == 0)
return;
ump = VFSTOUFS(mp);
jblocks = ump->softdep_jblocks;
ACQUIRE_LOCK(ump);
while (ump->softdep_on_journal) {
jblocks->jb_needseg = 1;
softdep_process_journal(mp, NULL, MNT_WAIT);
}
FREE_LOCK(ump);
}
static void softdep_synchronize_completed(struct bio *);
static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
static void
softdep_synchronize_completed(bp)
struct bio *bp;
{
struct jseg *oldest;
struct jseg *jseg;
struct ufsmount *ump;
/*
* caller1 marks the last segment written before we issued the
* synchronize cache.
*/
jseg = bp->bio_caller1;
if (jseg == NULL) {
g_destroy_bio(bp);
return;
}
ump = VFSTOUFS(jseg->js_list.wk_mp);
ACQUIRE_LOCK(ump);
oldest = NULL;
/*
* Mark all the journal entries waiting on the synchronize cache
* as completed so they may continue on.
*/
while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
jseg->js_state |= COMPLETE;
oldest = jseg;
jseg = TAILQ_PREV(jseg, jseglst, js_next);
}
/*
* Restart deferred journal entry processing from the oldest
* completed jseg.
*/
if (oldest)
complete_jsegs(oldest);
FREE_LOCK(ump);
g_destroy_bio(bp);
}
/*
* Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
* barriers. The journal must be written prior to any blocks that depend
* on it and the journal can not be released until the blocks have be
* written. This code handles both barriers simultaneously.
*/
static void
softdep_synchronize(bp, ump, caller1)
struct bio *bp;
struct ufsmount *ump;
void *caller1;
{
bp->bio_cmd = BIO_FLUSH;
bp->bio_flags |= BIO_ORDERED;
bp->bio_data = NULL;
bp->bio_offset = ump->um_cp->provider->mediasize;
bp->bio_length = 0;
bp->bio_done = softdep_synchronize_completed;
bp->bio_caller1 = caller1;
g_io_request(bp,
(struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
}
/*
* Flush some journal records to disk.
*/
static void
softdep_process_journal(mp, needwk, flags)
struct mount *mp;
struct worklist *needwk;
int flags;
{
struct jblocks *jblocks;
struct ufsmount *ump;
struct worklist *wk;
struct jseg *jseg;
struct buf *bp;
struct bio *bio;
uint8_t *data;
struct fs *fs;
int shouldflush;
int segwritten;
int jrecmin; /* Minimum records per block. */
int jrecmax; /* Maximum records per block. */
int size;
int cnt;
int off;
int devbsize;
if (MOUNTEDSUJ(mp) == 0)
return;
shouldflush = softdep_flushcache;
bio = NULL;
jseg = NULL;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
fs = ump->um_fs;
jblocks = ump->softdep_jblocks;
devbsize = ump->um_devvp->v_bufobj.bo_bsize;
/*
* We write anywhere between a disk block and fs block. The upper
* bound is picked to prevent buffer cache fragmentation and limit
* processing time per I/O.
*/
jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
segwritten = 0;
for (;;) {
cnt = ump->softdep_on_journal;
/*
* Criteria for writing a segment:
* 1) We have a full block.
* 2) We're called from jwait() and haven't found the
* journal item yet.
* 3) Always write if needseg is set.
* 4) If we are called from process_worklist and have
* not yet written anything we write a partial block
* to enforce a 1 second maximum latency on journal
* entries.
*/
if (cnt < (jrecmax - 1) && needwk == NULL &&
jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
break;
cnt++;
/*
* Verify some free journal space. softdep_prealloc() should
* guarantee that we don't run out so this is indicative of
* a problem with the flow control. Try to recover
* gracefully in any event.
*/
while (jblocks->jb_free == 0) {
if (flags != MNT_WAIT)
break;
printf("softdep: Out of journal space!\n");
softdep_speedup(ump);
msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
}
FREE_LOCK(ump);
jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
workitem_alloc(&jseg->js_list, D_JSEG, mp);
LIST_INIT(&jseg->js_entries);
LIST_INIT(&jseg->js_indirs);
jseg->js_state = ATTACHED;
if (shouldflush == 0)
jseg->js_state |= COMPLETE;
else if (bio == NULL)
bio = g_alloc_bio();
jseg->js_jblocks = jblocks;
bp = geteblk(fs->fs_bsize, 0);
ACQUIRE_LOCK(ump);
/*
* If there was a race while we were allocating the block
* and jseg the entry we care about was likely written.
* We bail out in both the WAIT and NOWAIT case and assume
* the caller will loop if the entry it cares about is
* not written.
*/
cnt = ump->softdep_on_journal;
if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
bp->b_flags |= B_INVAL | B_NOCACHE;
WORKITEM_FREE(jseg, D_JSEG);
FREE_LOCK(ump);
brelse(bp);
ACQUIRE_LOCK(ump);
break;
}
/*
* Calculate the disk block size required for the available
* records rounded to the min size.
*/
if (cnt == 0)
size = devbsize;
else if (cnt < jrecmax)
size = howmany(cnt, jrecmin) * devbsize;
else
size = fs->fs_bsize;
/*
* Allocate a disk block for this journal data and account
* for truncation of the requested size if enough contiguous
* space was not available.
*/
bp->b_blkno = jblocks_alloc(jblocks, size, &size);
bp->b_lblkno = bp->b_blkno;
bp->b_offset = bp->b_blkno * DEV_BSIZE;
bp->b_bcount = size;
bp->b_flags &= ~B_INVAL;
bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
/*
* Initialize our jseg with cnt records. Assign the next
* sequence number to it and link it in-order.
*/
cnt = MIN(cnt, (size / devbsize) * jrecmin);
jseg->js_buf = bp;
jseg->js_cnt = cnt;
jseg->js_refs = cnt + 1; /* Self ref. */
jseg->js_size = size;
jseg->js_seq = jblocks->jb_nextseq++;
if (jblocks->jb_oldestseg == NULL)
jblocks->jb_oldestseg = jseg;
jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
if (jblocks->jb_writeseg == NULL)
jblocks->jb_writeseg = jseg;
/*
* Start filling in records from the pending list.
*/
data = bp->b_data;
off = 0;
/*
* Always put a header on the first block.
* XXX As with below, there might not be a chance to get
* into the loop. Ensure that something valid is written.
*/
jseg_write(ump, jseg, data);
off += JREC_SIZE;
data = bp->b_data + off;
/*
* XXX Something is wrong here. There's no work to do,
* but we need to perform and I/O and allow it to complete
* anyways.
*/
if (LIST_EMPTY(&ump->softdep_journal_pending))
stat_emptyjblocks++;
while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
!= NULL) {
if (cnt == 0)
break;
/* Place a segment header on every device block. */
if ((off % devbsize) == 0) {
jseg_write(ump, jseg, data);
off += JREC_SIZE;
data = bp->b_data + off;
}
if (wk == needwk)
needwk = NULL;
remove_from_journal(wk);
wk->wk_state |= INPROGRESS;
WORKLIST_INSERT(&jseg->js_entries, wk);
switch (wk->wk_type) {
case D_JADDREF:
jaddref_write(WK_JADDREF(wk), jseg, data);
break;
case D_JREMREF:
jremref_write(WK_JREMREF(wk), jseg, data);
break;
case D_JMVREF:
jmvref_write(WK_JMVREF(wk), jseg, data);
break;
case D_JNEWBLK:
jnewblk_write(WK_JNEWBLK(wk), jseg, data);
break;
case D_JFREEBLK:
jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
break;
case D_JFREEFRAG:
jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
break;
case D_JTRUNC:
jtrunc_write(WK_JTRUNC(wk), jseg, data);
break;
case D_JFSYNC:
jfsync_write(WK_JFSYNC(wk), jseg, data);
break;
default:
panic("process_journal: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
off += JREC_SIZE;
data = bp->b_data + off;
cnt--;
}
/* Clear any remaining space so we don't leak kernel data */
if (size > off)
bzero(data, size - off);
/*
* Write this one buffer and continue.
*/
segwritten = 1;
jblocks->jb_needseg = 0;
WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
FREE_LOCK(ump);
pbgetvp(ump->um_devvp, bp);
/*
* We only do the blocking wait once we find the journal
* entry we're looking for.
*/
if (needwk == NULL && flags == MNT_WAIT)
bwrite(bp);
else
bawrite(bp);
ACQUIRE_LOCK(ump);
}
/*
* If we wrote a segment issue a synchronize cache so the journal
* is reflected on disk before the data is written. Since reclaiming
* journal space also requires writing a journal record this
* process also enforces a barrier before reclamation.
*/
if (segwritten && shouldflush) {
softdep_synchronize(bio, ump,
TAILQ_LAST(&jblocks->jb_segs, jseglst));
} else if (bio)
g_destroy_bio(bio);
/*
* If we've suspended the filesystem because we ran out of journal
* space either try to sync it here to make some progress or
* unsuspend it if we already have.
*/
if (flags == 0 && jblocks->jb_suspended) {
if (journal_unsuspend(ump))
return;
FREE_LOCK(ump);
VFS_SYNC(mp, MNT_NOWAIT);
ffs_sbupdate(ump, MNT_WAIT, 0);
ACQUIRE_LOCK(ump);
}
}
/*
* Complete a jseg, allowing all dependencies awaiting journal writes
* to proceed. Each journal dependency also attaches a jsegdep to dependent
* structures so that the journal segment can be freed to reclaim space.
*/
static void
complete_jseg(jseg)
struct jseg *jseg;
{
struct worklist *wk;
struct jmvref *jmvref;
#ifdef INVARIANTS
int i = 0;
#endif
while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
WORKLIST_REMOVE(wk);
wk->wk_state &= ~INPROGRESS;
wk->wk_state |= COMPLETE;
KASSERT(i++ < jseg->js_cnt,
("handle_written_jseg: overflow %d >= %d",
i - 1, jseg->js_cnt));
switch (wk->wk_type) {
case D_JADDREF:
handle_written_jaddref(WK_JADDREF(wk));
break;
case D_JREMREF:
handle_written_jremref(WK_JREMREF(wk));
break;
case D_JMVREF:
rele_jseg(jseg); /* No jsegdep. */
jmvref = WK_JMVREF(wk);
LIST_REMOVE(jmvref, jm_deps);
if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
free_pagedep(jmvref->jm_pagedep);
WORKITEM_FREE(jmvref, D_JMVREF);
break;
case D_JNEWBLK:
handle_written_jnewblk(WK_JNEWBLK(wk));
break;
case D_JFREEBLK:
handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
break;
case D_JTRUNC:
handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
break;
case D_JFSYNC:
rele_jseg(jseg); /* No jsegdep. */
WORKITEM_FREE(wk, D_JFSYNC);
break;
case D_JFREEFRAG:
handle_written_jfreefrag(WK_JFREEFRAG(wk));
break;
default:
panic("handle_written_jseg: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
/* Release the self reference so the structure may be freed. */
rele_jseg(jseg);
}
/*
* Determine which jsegs are ready for completion processing. Waits for
* synchronize cache to complete as well as forcing in-order completion
* of journal entries.
*/
static void
complete_jsegs(jseg)
struct jseg *jseg;
{
struct jblocks *jblocks;
struct jseg *jsegn;
jblocks = jseg->js_jblocks;
/*
* Don't allow out of order completions. If this isn't the first
* block wait for it to write before we're done.
*/
if (jseg != jblocks->jb_writeseg)
return;
/* Iterate through available jsegs processing their entries. */
while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
jblocks->jb_oldestwrseq = jseg->js_oldseq;
jsegn = TAILQ_NEXT(jseg, js_next);
complete_jseg(jseg);
jseg = jsegn;
}
jblocks->jb_writeseg = jseg;
/*
* Attempt to free jsegs now that oldestwrseq may have advanced.
*/
free_jsegs(jblocks);
}
/*
* Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle
* the final completions.
*/
static void
handle_written_jseg(jseg, bp)
struct jseg *jseg;
struct buf *bp;
{
if (jseg->js_refs == 0)
panic("handle_written_jseg: No self-reference on %p", jseg);
jseg->js_state |= DEPCOMPLETE;
/*
* We'll never need this buffer again, set flags so it will be
* discarded.
*/
bp->b_flags |= B_INVAL | B_NOCACHE;
pbrelvp(bp);
complete_jsegs(jseg);
}
static inline struct jsegdep *
inoref_jseg(inoref)
struct inoref *inoref;
{
struct jsegdep *jsegdep;
jsegdep = inoref->if_jsegdep;
inoref->if_jsegdep = NULL;
return (jsegdep);
}
/*
* Called once a jremref has made it to stable store. The jremref is marked
* complete and we attempt to free it. Any pagedeps writes sleeping waiting
* for the jremref to complete will be awoken by free_jremref.
*/
static void
handle_written_jremref(jremref)
struct jremref *jremref;
{
struct inodedep *inodedep;
struct jsegdep *jsegdep;
struct dirrem *dirrem;
/* Grab the jsegdep. */
jsegdep = inoref_jseg(&jremref->jr_ref);
/*
* Remove us from the inoref list.
*/
if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
0, &inodedep) == 0)
panic("handle_written_jremref: Lost inodedep");
TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
/*
* Complete the dirrem.
*/
dirrem = jremref->jr_dirrem;
jremref->jr_dirrem = NULL;
LIST_REMOVE(jremref, jr_deps);
jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
jwork_insert(&dirrem->dm_jwork, jsegdep);
if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
(dirrem->dm_state & COMPLETE) != 0)
add_to_worklist(&dirrem->dm_list, 0);
free_jremref(jremref);
}
/*
* Called once a jaddref has made it to stable store. The dependency is
* marked complete and any dependent structures are added to the inode
* bufwait list to be completed as soon as it is written. If a bitmap write
* depends on this entry we move the inode into the inodedephd of the
* bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
*/
static void
handle_written_jaddref(jaddref)
struct jaddref *jaddref;
{
struct jsegdep *jsegdep;
struct inodedep *inodedep;
struct diradd *diradd;
struct mkdir *mkdir;
/* Grab the jsegdep. */
jsegdep = inoref_jseg(&jaddref->ja_ref);
mkdir = NULL;
diradd = NULL;
if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
0, &inodedep) == 0)
panic("handle_written_jaddref: Lost inodedep.");
if (jaddref->ja_diradd == NULL)
panic("handle_written_jaddref: No dependency");
if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
diradd = jaddref->ja_diradd;
WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
} else if (jaddref->ja_state & MKDIR_PARENT) {
mkdir = jaddref->ja_mkdir;
WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
} else if (jaddref->ja_state & MKDIR_BODY)
mkdir = jaddref->ja_mkdir;
else
panic("handle_written_jaddref: Unknown dependency %p",
jaddref->ja_diradd);
jaddref->ja_diradd = NULL; /* also clears ja_mkdir */
/*
* Remove us from the inode list.
*/
TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
/*
* The mkdir may be waiting on the jaddref to clear before freeing.
*/
if (mkdir) {
KASSERT(mkdir->md_list.wk_type == D_MKDIR,
("handle_written_jaddref: Incorrect type for mkdir %s",
TYPENAME(mkdir->md_list.wk_type)));
mkdir->md_jaddref = NULL;
diradd = mkdir->md_diradd;
mkdir->md_state |= DEPCOMPLETE;
complete_mkdir(mkdir);
}
jwork_insert(&diradd->da_jwork, jsegdep);
if (jaddref->ja_state & NEWBLOCK) {
inodedep->id_state |= ONDEPLIST;
LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
inodedep, id_deps);
}
free_jaddref(jaddref);
}
/*
* Called once a jnewblk journal is written. The allocdirect or allocindir
* is placed in the bmsafemap to await notification of a written bitmap. If
* the operation was canceled we add the segdep to the appropriate
* dependency to free the journal space once the canceling operation
* completes.
*/
static void
handle_written_jnewblk(jnewblk)
struct jnewblk *jnewblk;
{
struct bmsafemap *bmsafemap;
struct freefrag *freefrag;
struct freework *freework;
struct jsegdep *jsegdep;
struct newblk *newblk;
/* Grab the jsegdep. */
jsegdep = jnewblk->jn_jsegdep;
jnewblk->jn_jsegdep = NULL;
if (jnewblk->jn_dep == NULL)
panic("handle_written_jnewblk: No dependency for the segdep.");
switch (jnewblk->jn_dep->wk_type) {
case D_NEWBLK:
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
/*
* Add the written block to the bmsafemap so it can
* be notified when the bitmap is on disk.
*/
newblk = WK_NEWBLK(jnewblk->jn_dep);
newblk->nb_jnewblk = NULL;
if ((newblk->nb_state & GOINGAWAY) == 0) {
bmsafemap = newblk->nb_bmsafemap;
newblk->nb_state |= ONDEPLIST;
LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
nb_deps);
}
jwork_insert(&newblk->nb_jwork, jsegdep);
break;
case D_FREEFRAG:
/*
* A newblock being removed by a freefrag when replaced by
* frag extension.
*/
freefrag = WK_FREEFRAG(jnewblk->jn_dep);
freefrag->ff_jdep = NULL;
jwork_insert(&freefrag->ff_jwork, jsegdep);
break;
case D_FREEWORK:
/*
* A direct block was removed by truncate.
*/
freework = WK_FREEWORK(jnewblk->jn_dep);
freework->fw_jnewblk = NULL;
jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
break;
default:
panic("handle_written_jnewblk: Unknown type %d.",
jnewblk->jn_dep->wk_type);
}
jnewblk->jn_dep = NULL;
free_jnewblk(jnewblk);
}
/*
* Cancel a jfreefrag that won't be needed, probably due to colliding with
* an in-flight allocation that has not yet been committed. Divorce us
* from the freefrag and mark it DEPCOMPLETE so that it may be added
* to the worklist.
*/
static void
cancel_jfreefrag(jfreefrag)
struct jfreefrag *jfreefrag;
{
struct freefrag *freefrag;
if (jfreefrag->fr_jsegdep) {
free_jsegdep(jfreefrag->fr_jsegdep);
jfreefrag->fr_jsegdep = NULL;
}
freefrag = jfreefrag->fr_freefrag;
jfreefrag->fr_freefrag = NULL;
free_jfreefrag(jfreefrag);
freefrag->ff_state |= DEPCOMPLETE;
CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
}
/*
* Free a jfreefrag when the parent freefrag is rendered obsolete.
*/
static void
free_jfreefrag(jfreefrag)
struct jfreefrag *jfreefrag;
{
if (jfreefrag->fr_state & INPROGRESS)
WORKLIST_REMOVE(&jfreefrag->fr_list);
else if (jfreefrag->fr_state & ONWORKLIST)
remove_from_journal(&jfreefrag->fr_list);
if (jfreefrag->fr_freefrag != NULL)
panic("free_jfreefrag: Still attached to a freefrag.");
WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
}
/*
* Called when the journal write for a jfreefrag completes. The parent
* freefrag is added to the worklist if this completes its dependencies.
*/
static void
handle_written_jfreefrag(jfreefrag)
struct jfreefrag *jfreefrag;
{
struct jsegdep *jsegdep;
struct freefrag *freefrag;
/* Grab the jsegdep. */
jsegdep = jfreefrag->fr_jsegdep;
jfreefrag->fr_jsegdep = NULL;
freefrag = jfreefrag->fr_freefrag;
if (freefrag == NULL)
panic("handle_written_jfreefrag: No freefrag.");
freefrag->ff_state |= DEPCOMPLETE;
freefrag->ff_jdep = NULL;
jwork_insert(&freefrag->ff_jwork, jsegdep);
if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
add_to_worklist(&freefrag->ff_list, 0);
jfreefrag->fr_freefrag = NULL;
free_jfreefrag(jfreefrag);
}
/*
* Called when the journal write for a jfreeblk completes. The jfreeblk
* is removed from the freeblks list of pending journal writes and the
* jsegdep is moved to the freeblks jwork to be completed when all blocks
* have been reclaimed.
*/
static void
handle_written_jblkdep(jblkdep)
struct jblkdep *jblkdep;
{
struct freeblks *freeblks;
struct jsegdep *jsegdep;
/* Grab the jsegdep. */
jsegdep = jblkdep->jb_jsegdep;
jblkdep->jb_jsegdep = NULL;
freeblks = jblkdep->jb_freeblks;
LIST_REMOVE(jblkdep, jb_deps);
jwork_insert(&freeblks->fb_jwork, jsegdep);
/*
* If the freeblks is all journaled, we can add it to the worklist.
*/
if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
(freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
add_to_worklist(&freeblks->fb_list, WK_NODELAY);
free_jblkdep(jblkdep);
}
static struct jsegdep *
newjsegdep(struct worklist *wk)
{
struct jsegdep *jsegdep;
jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
jsegdep->jd_seg = NULL;
return (jsegdep);
}
static struct jmvref *
newjmvref(dp, ino, oldoff, newoff)
struct inode *dp;
ino_t ino;
off_t oldoff;
off_t newoff;
{
struct jmvref *jmvref;
jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
jmvref->jm_parent = dp->i_number;
jmvref->jm_ino = ino;
jmvref->jm_oldoff = oldoff;
jmvref->jm_newoff = newoff;
return (jmvref);
}
/*
* Allocate a new jremref that tracks the removal of ip from dp with the
* directory entry offset of diroff. Mark the entry as ATTACHED and
* DEPCOMPLETE as we have all the information required for the journal write
* and the directory has already been removed from the buffer. The caller
* is responsible for linking the jremref into the pagedep and adding it
* to the journal to write. The MKDIR_PARENT flag is set if we're doing
* a DOTDOT addition so handle_workitem_remove() can properly assign
* the jsegdep when we're done.
*/
static struct jremref *
newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
off_t diroff, nlink_t nlink)
{
struct jremref *jremref;
jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
jremref->jr_state = ATTACHED;
newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
nlink, ip->i_mode);
jremref->jr_dirrem = dirrem;
return (jremref);
}
static inline void
newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
nlink_t nlink, uint16_t mode)
{
inoref->if_jsegdep = newjsegdep(&inoref->if_list);
inoref->if_diroff = diroff;
inoref->if_ino = ino;
inoref->if_parent = parent;
inoref->if_nlink = nlink;
inoref->if_mode = mode;
}
/*
* Allocate a new jaddref to track the addition of ino to dp at diroff. The
* directory offset may not be known until later. The caller is responsible
* adding the entry to the journal when this information is available. nlink
* should be the link count prior to the addition and mode is only required
* to have the correct FMT.
*/
static struct jaddref *
newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
uint16_t mode)
{
struct jaddref *jaddref;
jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
jaddref->ja_state = ATTACHED;
jaddref->ja_mkdir = NULL;
newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
return (jaddref);
}
/*
* Create a new free dependency for a freework. The caller is responsible
* for adjusting the reference count when it has the lock held. The freedep
* will track an outstanding bitmap write that will ultimately clear the
* freework to continue.
*/
static struct freedep *
newfreedep(struct freework *freework)
{
struct freedep *freedep;
freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
freedep->fd_freework = freework;
return (freedep);
}
/*
* Free a freedep structure once the buffer it is linked to is written. If
* this is the last reference to the freework schedule it for completion.
*/
static void
free_freedep(freedep)
struct freedep *freedep;
{
struct freework *freework;
freework = freedep->fd_freework;
freework->fw_freeblks->fb_cgwait--;
if (--freework->fw_ref == 0)
freework_enqueue(freework);
WORKITEM_FREE(freedep, D_FREEDEP);
}
/*
* Allocate a new freework structure that may be a level in an indirect
* when parent is not NULL or a top level block when it is. The top level
* freework structures are allocated without the per-filesystem lock held
* and before the freeblks is visible outside of softdep_setup_freeblocks().
*/
static struct freework *
newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
struct ufsmount *ump;
struct freeblks *freeblks;
struct freework *parent;
ufs_lbn_t lbn;
ufs2_daddr_t nb;
int frags;
int off;
int journal;
{
struct freework *freework;
freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
freework->fw_state = ATTACHED;
freework->fw_jnewblk = NULL;
freework->fw_freeblks = freeblks;
freework->fw_parent = parent;
freework->fw_lbn = lbn;
freework->fw_blkno = nb;
freework->fw_frags = frags;
freework->fw_indir = NULL;
freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
freework->fw_start = freework->fw_off = off;
if (journal)
newjfreeblk(freeblks, lbn, nb, frags);
if (parent == NULL) {
ACQUIRE_LOCK(ump);
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
freeblks->fb_ref++;
FREE_LOCK(ump);
}
return (freework);
}
/*
* Eliminate a jfreeblk for a block that does not need journaling.
*/
static void
cancel_jfreeblk(freeblks, blkno)
struct freeblks *freeblks;
ufs2_daddr_t blkno;
{
struct jfreeblk *jfreeblk;
struct jblkdep *jblkdep;
LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
if (jblkdep->jb_list.wk_type != D_JFREEBLK)
continue;
jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
if (jfreeblk->jf_blkno == blkno)
break;
}
if (jblkdep == NULL)
return;
CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
free_jsegdep(jblkdep->jb_jsegdep);
LIST_REMOVE(jblkdep, jb_deps);
WORKITEM_FREE(jfreeblk, D_JFREEBLK);
}
/*
* Allocate a new jfreeblk to journal top level block pointer when truncating
* a file. The caller must add this to the worklist when the per-filesystem
* lock is held.
*/
static struct jfreeblk *
newjfreeblk(freeblks, lbn, blkno, frags)
struct freeblks *freeblks;
ufs_lbn_t lbn;
ufs2_daddr_t blkno;
int frags;
{
struct jfreeblk *jfreeblk;
jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
freeblks->fb_list.wk_mp);
jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
jfreeblk->jf_dep.jb_freeblks = freeblks;
jfreeblk->jf_ino = freeblks->fb_inum;
jfreeblk->jf_lbn = lbn;
jfreeblk->jf_blkno = blkno;
jfreeblk->jf_frags = frags;
LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
return (jfreeblk);
}
/*
* The journal is only prepared to handle full-size block numbers, so we
* have to adjust the record to reflect the change to a full-size block.
* For example, suppose we have a block made up of fragments 8-15 and
* want to free its last two fragments. We are given a request that says:
* FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
* where frags are the number of fragments to free and oldfrags are the
* number of fragments to keep. To block align it, we have to change it to
* have a valid full-size blkno, so it becomes:
* FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
*/
static void
adjust_newfreework(freeblks, frag_offset)
struct freeblks *freeblks;
int frag_offset;
{
struct jfreeblk *jfreeblk;
KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
("adjust_newfreework: Missing freeblks dependency"));
jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
jfreeblk->jf_blkno -= frag_offset;
jfreeblk->jf_frags += frag_offset;
}
/*
* Allocate a new jtrunc to track a partial truncation.
*/
static struct jtrunc *
newjtrunc(freeblks, size, extsize)
struct freeblks *freeblks;
off_t size;
int extsize;
{
struct jtrunc *jtrunc;
jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
freeblks->fb_list.wk_mp);
jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
jtrunc->jt_dep.jb_freeblks = freeblks;
jtrunc->jt_ino = freeblks->fb_inum;
jtrunc->jt_size = size;
jtrunc->jt_extsize = extsize;
LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
return (jtrunc);
}
/*
* If we're canceling a new bitmap we have to search for another ref
* to move into the bmsafemap dep. This might be better expressed
* with another structure.
*/
static void
move_newblock_dep(jaddref, inodedep)
struct jaddref *jaddref;
struct inodedep *inodedep;
{
struct inoref *inoref;
struct jaddref *jaddrefn;
jaddrefn = NULL;
for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
inoref = TAILQ_NEXT(inoref, if_deps)) {
if ((jaddref->ja_state & NEWBLOCK) &&
inoref->if_list.wk_type == D_JADDREF) {
jaddrefn = (struct jaddref *)inoref;
break;
}
}
if (jaddrefn == NULL)
return;
jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
jaddrefn->ja_state |= jaddref->ja_state &
(ATTACHED | UNDONE | NEWBLOCK);
jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
jaddref->ja_state |= ATTACHED;
LIST_REMOVE(jaddref, ja_bmdeps);
LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
ja_bmdeps);
}
/*
* Cancel a jaddref either before it has been written or while it is being
* written. This happens when a link is removed before the add reaches
* the disk. The jaddref dependency is kept linked into the bmsafemap
* and inode to prevent the link count or bitmap from reaching the disk
* until handle_workitem_remove() re-adjusts the counts and bitmaps as
* required.
*
* Returns 1 if the canceled addref requires journaling of the remove and
* 0 otherwise.
*/
static int
cancel_jaddref(jaddref, inodedep, wkhd)
struct jaddref *jaddref;
struct inodedep *inodedep;
struct workhead *wkhd;
{
struct inoref *inoref;
struct jsegdep *jsegdep;
int needsj;
KASSERT((jaddref->ja_state & COMPLETE) == 0,
("cancel_jaddref: Canceling complete jaddref"));
if (jaddref->ja_state & (INPROGRESS | COMPLETE))
needsj = 1;
else
needsj = 0;
if (inodedep == NULL)
if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
0, &inodedep) == 0)
panic("cancel_jaddref: Lost inodedep");
/*
* We must adjust the nlink of any reference operation that follows
* us so that it is consistent with the in-memory reference. This
* ensures that inode nlink rollbacks always have the correct link.
*/
if (needsj == 0) {
for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
inoref = TAILQ_NEXT(inoref, if_deps)) {
if (inoref->if_state & GOINGAWAY)
break;
inoref->if_nlink--;
}
}
jsegdep = inoref_jseg(&jaddref->ja_ref);
if (jaddref->ja_state & NEWBLOCK)
move_newblock_dep(jaddref, inodedep);
wake_worklist(&jaddref->ja_list);
jaddref->ja_mkdir = NULL;
if (jaddref->ja_state & INPROGRESS) {
jaddref->ja_state &= ~INPROGRESS;
WORKLIST_REMOVE(&jaddref->ja_list);
jwork_insert(wkhd, jsegdep);
} else {
free_jsegdep(jsegdep);
if (jaddref->ja_state & DEPCOMPLETE)
remove_from_journal(&jaddref->ja_list);
}
jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
/*
* Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
* can arrange for them to be freed with the bitmap. Otherwise we
* no longer need this addref attached to the inoreflst and it
* will incorrectly adjust nlink if we leave it.
*/
if ((jaddref->ja_state & NEWBLOCK) == 0) {
TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
jaddref->ja_state |= COMPLETE;
free_jaddref(jaddref);
return (needsj);
}
/*
* Leave the head of the list for jsegdeps for fast merging.
*/
if (LIST_FIRST(wkhd) != NULL) {
jaddref->ja_state |= ONWORKLIST;
LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
} else
WORKLIST_INSERT(wkhd, &jaddref->ja_list);
return (needsj);
}
/*
* Attempt to free a jaddref structure when some work completes. This
* should only succeed once the entry is written and all dependencies have
* been notified.
*/
static void
free_jaddref(jaddref)
struct jaddref *jaddref;
{
if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
if (jaddref->ja_ref.if_jsegdep)
panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
jaddref, jaddref->ja_state);
if (jaddref->ja_state & NEWBLOCK)
LIST_REMOVE(jaddref, ja_bmdeps);
if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
panic("free_jaddref: Bad state %p(0x%X)",
jaddref, jaddref->ja_state);
if (jaddref->ja_mkdir != NULL)
panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
WORKITEM_FREE(jaddref, D_JADDREF);
}
/*
* Free a jremref structure once it has been written or discarded.
*/
static void
free_jremref(jremref)
struct jremref *jremref;
{
if (jremref->jr_ref.if_jsegdep)
free_jsegdep(jremref->jr_ref.if_jsegdep);
if (jremref->jr_state & INPROGRESS)
panic("free_jremref: IO still pending");
WORKITEM_FREE(jremref, D_JREMREF);
}
/*
* Free a jnewblk structure.
*/
static void
free_jnewblk(jnewblk)
struct jnewblk *jnewblk;
{
if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
LIST_REMOVE(jnewblk, jn_deps);
if (jnewblk->jn_dep != NULL)
panic("free_jnewblk: Dependency still attached.");
WORKITEM_FREE(jnewblk, D_JNEWBLK);
}
/*
* Cancel a jnewblk which has been been made redundant by frag extension.
*/
static void
cancel_jnewblk(jnewblk, wkhd)
struct jnewblk *jnewblk;
struct workhead *wkhd;
{
struct jsegdep *jsegdep;
CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
jsegdep = jnewblk->jn_jsegdep;
if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
panic("cancel_jnewblk: Invalid state");
jnewblk->jn_jsegdep = NULL;
jnewblk->jn_dep = NULL;
jnewblk->jn_state |= GOINGAWAY;
if (jnewblk->jn_state & INPROGRESS) {
jnewblk->jn_state &= ~INPROGRESS;
WORKLIST_REMOVE(&jnewblk->jn_list);
jwork_insert(wkhd, jsegdep);
} else {
free_jsegdep(jsegdep);
remove_from_journal(&jnewblk->jn_list);
}
wake_worklist(&jnewblk->jn_list);
WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
}
static void
free_jblkdep(jblkdep)
struct jblkdep *jblkdep;
{
if (jblkdep->jb_list.wk_type == D_JFREEBLK)
WORKITEM_FREE(jblkdep, D_JFREEBLK);
else if (jblkdep->jb_list.wk_type == D_JTRUNC)
WORKITEM_FREE(jblkdep, D_JTRUNC);
else
panic("free_jblkdep: Unexpected type %s",
TYPENAME(jblkdep->jb_list.wk_type));
}
/*
* Free a single jseg once it is no longer referenced in memory or on
* disk. Reclaim journal blocks and dependencies waiting for the segment
* to disappear.
*/
static void
free_jseg(jseg, jblocks)
struct jseg *jseg;
struct jblocks *jblocks;
{
struct freework *freework;
/*
* Free freework structures that were lingering to indicate freed
* indirect blocks that forced journal write ordering on reallocate.
*/
while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
indirblk_remove(freework);
if (jblocks->jb_oldestseg == jseg)
jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
KASSERT(LIST_EMPTY(&jseg->js_entries),
("free_jseg: Freed jseg has valid entries."));
WORKITEM_FREE(jseg, D_JSEG);
}
/*
* Free all jsegs that meet the criteria for being reclaimed and update
* oldestseg.
*/
static void
free_jsegs(jblocks)
struct jblocks *jblocks;
{
struct jseg *jseg;
/*
* Free only those jsegs which have none allocated before them to
* preserve the journal space ordering.
*/
while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
/*
* Only reclaim space when nothing depends on this journal
* set and another set has written that it is no longer
* valid.
*/
if (jseg->js_refs != 0) {
jblocks->jb_oldestseg = jseg;
return;
}
if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
break;
if (jseg->js_seq > jblocks->jb_oldestwrseq)
break;
/*
* We can free jsegs that didn't write entries when
* oldestwrseq == js_seq.
*/
if (jseg->js_seq == jblocks->jb_oldestwrseq &&
jseg->js_cnt != 0)
break;
free_jseg(jseg, jblocks);
}
/*
* If we exited the loop above we still must discover the
* oldest valid segment.
*/
if (jseg)
for (jseg = jblocks->jb_oldestseg; jseg != NULL;
jseg = TAILQ_NEXT(jseg, js_next))
if (jseg->js_refs != 0)
break;
jblocks->jb_oldestseg = jseg;
/*
* The journal has no valid records but some jsegs may still be
* waiting on oldestwrseq to advance. We force a small record
* out to permit these lingering records to be reclaimed.
*/
if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
jblocks->jb_needseg = 1;
}
/*
* Release one reference to a jseg and free it if the count reaches 0. This
* should eventually reclaim journal space as well.
*/
static void
rele_jseg(jseg)
struct jseg *jseg;
{
KASSERT(jseg->js_refs > 0,
("free_jseg: Invalid refcnt %d", jseg->js_refs));
if (--jseg->js_refs != 0)
return;
free_jsegs(jseg->js_jblocks);
}
/*
* Release a jsegdep and decrement the jseg count.
*/
static void
free_jsegdep(jsegdep)
struct jsegdep *jsegdep;
{
if (jsegdep->jd_seg)
rele_jseg(jsegdep->jd_seg);
WORKITEM_FREE(jsegdep, D_JSEGDEP);
}
/*
* Wait for a journal item to make it to disk. Initiate journal processing
* if required.
*/
static int
jwait(wk, waitfor)
struct worklist *wk;
int waitfor;
{
LOCK_OWNED(VFSTOUFS(wk->wk_mp));
/*
* Blocking journal waits cause slow synchronous behavior. Record
* stats on the frequency of these blocking operations.
*/
if (waitfor == MNT_WAIT) {
stat_journal_wait++;
switch (wk->wk_type) {
case D_JREMREF:
case D_JMVREF:
stat_jwait_filepage++;
break;
case D_JTRUNC:
case D_JFREEBLK:
stat_jwait_freeblks++;
break;
case D_JNEWBLK:
stat_jwait_newblk++;
break;
case D_JADDREF:
stat_jwait_inode++;
break;
default:
break;
}
}
/*
* If IO has not started we process the journal. We can't mark the
* worklist item as IOWAITING because we drop the lock while
* processing the journal and the worklist entry may be freed after
* this point. The caller may call back in and re-issue the request.
*/
if ((wk->wk_state & INPROGRESS) == 0) {
softdep_process_journal(wk->wk_mp, wk, waitfor);
if (waitfor != MNT_WAIT)
return (EBUSY);
return (0);
}
if (waitfor != MNT_WAIT)
return (EBUSY);
wait_worklist(wk, "jwait");
return (0);
}
/*
* Lookup an inodedep based on an inode pointer and set the nlinkdelta as
* appropriate. This is a convenience function to reduce duplicate code
* for the setup and revert functions below.
*/
static struct inodedep *
inodedep_lookup_ip(ip)
struct inode *ip;
{
struct inodedep *inodedep;
KASSERT(ip->i_nlink >= ip->i_effnlink,
("inodedep_lookup_ip: bad delta"));
(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
&inodedep);
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
return (inodedep);
}
/*
* Called prior to creating a new inode and linking it to a directory. The
* jaddref structure must already be allocated by softdep_setup_inomapdep
* and it is discovered here so we can initialize the mode and update
* nlinkdelta.
*/
void
softdep_setup_create(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_create called on non-softdep filesystem"));
KASSERT(ip->i_nlink == 1,
("softdep_setup_create: Invalid link count."));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
("softdep_setup_create: No addref structure present."));
}
softdep_prelink(dvp, NULL);
FREE_LOCK(ITOUMP(dp));
}
/*
* Create a jaddref structure to track the addition of a DOTDOT link when
* we are reparenting an inode as part of a rename. This jaddref will be
* found by softdep_setup_directory_change. Adjusts nlinkdelta for
* non-journaling softdep.
*/
void
softdep_setup_dotdot_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_dotdot_link called on non-softdep filesystem"));
dvp = ITOV(dp);
jaddref = NULL;
/*
* We don't set MKDIR_PARENT as this is not tied to a mkdir and
* is used as a normal link would be.
*/
if (DOINGSUJ(dvp))
jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
dp->i_effnlink - 1, dp->i_mode);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(dp);
if (jaddref)
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
softdep_prelink(dvp, ITOV(ip));
FREE_LOCK(ITOUMP(dp));
}
/*
* Create a jaddref structure to track a new link to an inode. The directory
* offset is not known until softdep_setup_directory_add or
* softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling
* softdep.
*/
void
softdep_setup_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_link called on non-softdep filesystem"));
dvp = ITOV(dp);
jaddref = NULL;
if (DOINGSUJ(dvp))
jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
ip->i_mode);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (jaddref)
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
softdep_prelink(dvp, ITOV(ip));
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to create the jaddref structures to track . and .. references as
* well as lookup and further initialize the incomplete jaddref created
* by softdep_setup_inomapdep when the inode was allocated. Adjusts
* nlinkdelta for non-journaling softdep.
*/
void
softdep_setup_mkdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *dotdotaddref;
struct jaddref *dotaddref;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_mkdir called on non-softdep filesystem"));
dvp = ITOV(dp);
dotaddref = dotdotaddref = NULL;
if (DOINGSUJ(dvp)) {
dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
ip->i_mode);
dotaddref->ja_state |= MKDIR_BODY;
dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
dp->i_effnlink - 1, dp->i_mode);
dotdotaddref->ja_state |= MKDIR_PARENT;
}
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL,
("softdep_setup_mkdir: No addref structure present."));
KASSERT(jaddref->ja_parent == dp->i_number,
("softdep_setup_mkdir: bad parent %ju",
(uintmax_t)jaddref->ja_parent));
TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
if_deps);
}
inodedep = inodedep_lookup_ip(dp);
if (DOINGSUJ(dvp))
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
&dotdotaddref->ja_ref, if_deps);
softdep_prelink(ITOV(dp), NULL);
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to track nlinkdelta of the inode and parent directories prior to
* unlinking a directory.
*/
void
softdep_setup_rmdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_rmdir called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
(void) inodedep_lookup_ip(ip);
(void) inodedep_lookup_ip(dp);
softdep_prelink(dvp, ITOV(ip));
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to track nlinkdelta of the inode and parent directories prior to
* unlink.
*/
void
softdep_setup_unlink(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_unlink called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
(void) inodedep_lookup_ip(ip);
(void) inodedep_lookup_ip(dp);
softdep_prelink(dvp, ITOV(ip));
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to release the journal structures created by a failed non-directory
* creation. Adjusts nlinkdelta for non-journaling softdep.
*/
void
softdep_revert_create(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
("softdep_revert_create called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref->ja_parent == dp->i_number,
("softdep_revert_create: addref parent mismatch"));
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
}
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to release the journal structures created by a failed link
* addition. Adjusts nlinkdelta for non-journaling softdep.
*/
void
softdep_revert_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_revert_link called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref->ja_parent == dp->i_number,
("softdep_revert_link: addref parent mismatch"));
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
}
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to release the journal structures created by a failed mkdir
* attempt. Adjusts nlinkdelta for non-journaling softdep.
*/
void
softdep_revert_mkdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct jaddref *dotaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_revert_mkdir called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(dp);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref->ja_parent == ip->i_number,
("softdep_revert_mkdir: dotdot addref parent mismatch"));
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
}
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref->ja_parent == dp->i_number,
("softdep_revert_mkdir: addref parent mismatch"));
dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
inoreflst, if_deps);
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
KASSERT(dotaddref->ja_parent == ip->i_number,
("softdep_revert_mkdir: dot addref parent mismatch"));
cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
}
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to correct nlinkdelta after a failed rmdir.
*/
void
softdep_revert_rmdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_revert_rmdir called on non-softdep filesystem"));
ACQUIRE_LOCK(ITOUMP(dp));
(void) inodedep_lookup_ip(ip);
(void) inodedep_lookup_ip(dp);
FREE_LOCK(ITOUMP(dp));
}
/*
* Protecting the freemaps (or bitmaps).
*
* To eliminate the need to execute fsck before mounting a filesystem
* after a power failure, one must (conservatively) guarantee that the
* on-disk copy of the bitmaps never indicate that a live inode or block is
* free. So, when a block or inode is allocated, the bitmap should be
* updated (on disk) before any new pointers. When a block or inode is
* freed, the bitmap should not be updated until all pointers have been
* reset. The latter dependency is handled by the delayed de-allocation
* approach described below for block and inode de-allocation. The former
* dependency is handled by calling the following procedure when a block or
* inode is allocated. When an inode is allocated an "inodedep" is created
* with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
* Each "inodedep" is also inserted into the hash indexing structure so
* that any additional link additions can be made dependent on the inode
* allocation.
*
* The ufs filesystem maintains a number of free block counts (e.g., per
* cylinder group, per cylinder and per <cylinder, rotational position> pair)
* in addition to the bitmaps. These counts are used to improve efficiency
* during allocation and therefore must be consistent with the bitmaps.
* There is no convenient way to guarantee post-crash consistency of these
* counts with simple update ordering, for two main reasons: (1) The counts
* and bitmaps for a single cylinder group block are not in the same disk
* sector. If a disk write is interrupted (e.g., by power failure), one may
* be written and the other not. (2) Some of the counts are located in the
* superblock rather than the cylinder group block. So, we focus our soft
* updates implementation on protecting the bitmaps. When mounting a
* filesystem, we recompute the auxiliary counts from the bitmaps.
*/
/*
* Called just after updating the cylinder group block to allocate an inode.
*/
void
softdep_setup_inomapdep(bp, ip, newinum, mode)
struct buf *bp; /* buffer for cylgroup block with inode map */
struct inode *ip; /* inode related to allocation */
ino_t newinum; /* new inode number being allocated */
int mode;
{
struct inodedep *inodedep;
struct bmsafemap *bmsafemap;
struct jaddref *jaddref;
struct mount *mp;
struct fs *fs;
mp = ITOVFS(ip);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_inomapdep called on non-softdep filesystem"));
fs = VFSTOUFS(mp)->um_fs;
jaddref = NULL;
/*
* Allocate the journal reference add structure so that the bitmap
* can be dependent on it.
*/
if (MOUNTEDSUJ(mp)) {
jaddref = newjaddref(ip, newinum, 0, 0, mode);
jaddref->ja_state |= NEWBLOCK;
}
/*
* Create a dependency for the newly allocated inode.
* Panic if it already exists as something is seriously wrong.
* Otherwise add it to the dependency list for the buffer holding
* the cylinder group map from which it was allocated.
*
* We have to preallocate a bmsafemap entry in case it is needed
* in bmsafemap_lookup since once we allocate the inodedep, we
* have to finish initializing it before we can FREE_LOCK().
* By preallocating, we avoid FREE_LOCK() while doing a malloc
* in bmsafemap_lookup. We cannot call bmsafemap_lookup before
* creating the inodedep as it can be freed during the time
* that we FREE_LOCK() while allocating the inodedep. We must
* call workitem_alloc() before entering the locked section as
* it also acquires the lock and we must avoid trying doing so
* recursively.
*/
bmsafemap = malloc(sizeof(struct bmsafemap),
M_BMSAFEMAP, M_SOFTDEP_FLAGS);
workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
ACQUIRE_LOCK(ITOUMP(ip));
if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
panic("softdep_setup_inomapdep: dependency %p for new"
"inode already exists", inodedep);
bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
if (jaddref) {
LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
} else {
inodedep->id_state |= ONDEPLIST;
LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
}
inodedep->id_bmsafemap = bmsafemap;
inodedep->id_state &= ~DEPCOMPLETE;
FREE_LOCK(ITOUMP(ip));
}
/*
* Called just after updating the cylinder group block to
* allocate block or fragment.
*/
void
softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
struct buf *bp; /* buffer for cylgroup block with block map */
struct mount *mp; /* filesystem doing allocation */
ufs2_daddr_t newblkno; /* number of newly allocated block */
int frags; /* Number of fragments. */
int oldfrags; /* Previous number of fragments for extend. */
{
struct newblk *newblk;
struct bmsafemap *bmsafemap;
struct jnewblk *jnewblk;
struct ufsmount *ump;
struct fs *fs;
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_blkmapdep called on non-softdep filesystem"));
ump = VFSTOUFS(mp);
fs = ump->um_fs;
jnewblk = NULL;
/*
* Create a dependency for the newly allocated block.
* Add it to the dependency list for the buffer holding
* the cylinder group map from which it was allocated.
*/
if (MOUNTEDSUJ(mp)) {
jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
jnewblk->jn_state = ATTACHED;
jnewblk->jn_blkno = newblkno;
jnewblk->jn_frags = frags;
jnewblk->jn_oldfrags = oldfrags;
#ifdef SUJ_DEBUG
{
struct cg *cgp;
uint8_t *blksfree;
long bno;
int i;
cgp = (struct cg *)bp->b_data;
blksfree = cg_blksfree(cgp);
bno = dtogd(fs, jnewblk->jn_blkno);
for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
i++) {
if (isset(blksfree, bno + i))
panic("softdep_setup_blkmapdep: "
"free fragment %d from %d-%d "
"state 0x%X dep %p", i,
jnewblk->jn_oldfrags,
jnewblk->jn_frags,
jnewblk->jn_state,
jnewblk->jn_dep);
}
}
#endif
}
CTR3(KTR_SUJ,
"softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
newblkno, frags, oldfrags);
ACQUIRE_LOCK(ump);
if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
panic("softdep_setup_blkmapdep: found block");
newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
dtog(fs, newblkno), NULL);
if (jnewblk) {
jnewblk->jn_dep = (struct worklist *)newblk;
LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
} else {
newblk->nb_state |= ONDEPLIST;
LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
}
newblk->nb_bmsafemap = bmsafemap;
newblk->nb_jnewblk = jnewblk;
FREE_LOCK(ump);
}
#define BMSAFEMAP_HASH(ump, cg) \
(&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
static int
bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
struct bmsafemap_hashhead *bmsafemaphd;
int cg;
struct bmsafemap **bmsafemapp;
{
struct bmsafemap *bmsafemap;
LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
if (bmsafemap->sm_cg == cg)
break;
if (bmsafemap) {
*bmsafemapp = bmsafemap;
return (1);
}
*bmsafemapp = NULL;
return (0);
}
/*
* Find the bmsafemap associated with a cylinder group buffer.
* If none exists, create one. The buffer must be locked when
* this routine is called and this routine must be called with
* the softdep lock held. To avoid giving up the lock while
* allocating a new bmsafemap, a preallocated bmsafemap may be
* provided. If it is provided but not needed, it is freed.
*/
static struct bmsafemap *
bmsafemap_lookup(mp, bp, cg, newbmsafemap)
struct mount *mp;
struct buf *bp;
int cg;
struct bmsafemap *newbmsafemap;
{
struct bmsafemap_hashhead *bmsafemaphd;
struct bmsafemap *bmsafemap, *collision;
struct worklist *wk;
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
if (wk->wk_type == D_BMSAFEMAP) {
if (newbmsafemap)
WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
return (WK_BMSAFEMAP(wk));
}
}
bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
if (newbmsafemap)
WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
return (bmsafemap);
}
if (newbmsafemap) {
bmsafemap = newbmsafemap;
} else {
FREE_LOCK(ump);
bmsafemap = malloc(sizeof(struct bmsafemap),
M_BMSAFEMAP, M_SOFTDEP_FLAGS);
workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
ACQUIRE_LOCK(ump);
}
bmsafemap->sm_buf = bp;
LIST_INIT(&bmsafemap->sm_inodedephd);
LIST_INIT(&bmsafemap->sm_inodedepwr);
LIST_INIT(&bmsafemap->sm_newblkhd);
LIST_INIT(&bmsafemap->sm_newblkwr);
LIST_INIT(&bmsafemap->sm_jaddrefhd);
LIST_INIT(&bmsafemap->sm_jnewblkhd);
LIST_INIT(&bmsafemap->sm_freehd);
LIST_INIT(&bmsafemap->sm_freewr);
if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
return (collision);
}
bmsafemap->sm_cg = cg;
LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
return (bmsafemap);
}
/*
* Direct block allocation dependencies.
*
* When a new block is allocated, the corresponding disk locations must be
* initialized (with zeros or new data) before the on-disk inode points to
* them. Also, the freemap from which the block was allocated must be
* updated (on disk) before the inode's pointer. These two dependencies are
* independent of each other and are needed for all file blocks and indirect
* blocks that are pointed to directly by the inode. Just before the
* "in-core" version of the inode is updated with a newly allocated block
* number, a procedure (below) is called to setup allocation dependency
* structures. These structures are removed when the corresponding
* dependencies are satisfied or when the block allocation becomes obsolete
* (i.e., the file is deleted, the block is de-allocated, or the block is a
* fragment that gets upgraded). All of these cases are handled in
* procedures described later.
*
* When a file extension causes a fragment to be upgraded, either to a larger
* fragment or to a full block, the on-disk location may change (if the
* previous fragment could not simply be extended). In this case, the old
* fragment must be de-allocated, but not until after the inode's pointer has
* been updated. In most cases, this is handled by later procedures, which
* will construct a "freefrag" structure to be added to the workitem queue
* when the inode update is complete (or obsolete). The main exception to
* this is when an allocation occurs while a pending allocation dependency
* (for the same block pointer) remains. This case is handled in the main
* allocation dependency setup procedure by immediately freeing the
* unreferenced fragments.
*/
void
softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip; /* inode to which block is being added */
ufs_lbn_t off; /* block pointer within inode */
ufs2_daddr_t newblkno; /* disk block number being added */
ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */
long newsize; /* size of new block */
long oldsize; /* size of new block */
struct buf *bp; /* bp for allocated block */
{
struct allocdirect *adp, *oldadp;
struct allocdirectlst *adphead;
struct freefrag *freefrag;
struct inodedep *inodedep;
struct pagedep *pagedep;
struct jnewblk *jnewblk;
struct newblk *newblk;
struct mount *mp;
ufs_lbn_t lbn;
lbn = bp->b_lblkno;
mp = ITOVFS(ip);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_allocdirect called on non-softdep filesystem"));
if (oldblkno && oldblkno != newblkno)
/*
* The usual case is that a smaller fragment that
* was just allocated has been replaced with a bigger
* fragment or a full-size block. If it is marked as
* B_DELWRI, the current contents have not been written
* to disk. It is possible that the block was written
* earlier, but very uncommon. If the block has never
* been written, there is no need to send a BIO_DELETE
* for it when it is freed. The gain from avoiding the
* TRIMs for the common case of unwritten blocks far
* exceeds the cost of the write amplification for the
* uncommon case of failing to send a TRIM for a block
* that had been written.
*/
freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
(bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
else
freefrag = NULL;
CTR6(KTR_SUJ,
"softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
"off %jd newsize %ld oldsize %d",
ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
ACQUIRE_LOCK(ITOUMP(ip));
if (off >= UFS_NDADDR) {
if (lbn > 0)
panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
lbn, off);
/* allocating an indirect block */
if (oldblkno != 0)
panic("softdep_setup_allocdirect: non-zero indir");
} else {
if (off != lbn)
panic("softdep_setup_allocdirect: lbn %jd != off %jd",
lbn, off);
/*
* Allocating a direct block.
*
* If we are allocating a directory block, then we must
* allocate an associated pagedep to track additions and
* deletions.
*/
if ((ip->i_mode & IFMT) == IFDIR)
pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
&pagedep);
}
if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
panic("softdep_setup_allocdirect: lost block");
KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
("softdep_setup_allocdirect: newblk already initialized"));
/*
* Convert the newblk to an allocdirect.
*/
WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
adp = (struct allocdirect *)newblk;
newblk->nb_freefrag = freefrag;
adp->ad_offset = off;
adp->ad_oldblkno = oldblkno;
adp->ad_newsize = newsize;
adp->ad_oldsize = oldsize;
/*
* Finish initializing the journal.
*/
if ((jnewblk = newblk->nb_jnewblk) != NULL) {
jnewblk->jn_ino = ip->i_number;
jnewblk->jn_lbn = lbn;
add_to_journal(&jnewblk->jn_list);
}
if (freefrag && freefrag->ff_jdep != NULL &&
freefrag->ff_jdep->wk_type == D_JFREEFRAG)
add_to_journal(freefrag->ff_jdep);
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
adp->ad_inodedep = inodedep;
WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
/*
* The list of allocdirects must be kept in sorted and ascending
* order so that the rollback routines can quickly determine the
* first uncommitted block (the size of the file stored on disk
* ends at the end of the lowest committed fragment, or if there
* are no fragments, at the end of the highest committed block).
* Since files generally grow, the typical case is that the new
* block is to be added at the end of the list. We speed this
* special case by checking against the last allocdirect in the
* list before laboriously traversing the list looking for the
* insertion point.
*/
adphead = &inodedep->id_newinoupdt;
oldadp = TAILQ_LAST(adphead, allocdirectlst);
if (oldadp == NULL || oldadp->ad_offset <= off) {
/* insert at end of list */
TAILQ_INSERT_TAIL(adphead, adp, ad_next);
if (oldadp != NULL && oldadp->ad_offset == off)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(ITOUMP(ip));
return;
}
TAILQ_FOREACH(oldadp, adphead, ad_next) {
if (oldadp->ad_offset >= off)
break;
}
if (oldadp == NULL)
panic("softdep_setup_allocdirect: lost entry");
/* insert in middle of list */
TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
if (oldadp->ad_offset == off)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(ITOUMP(ip));
}
/*
* Merge a newer and older journal record to be stored either in a
* newblock or freefrag. This handles aggregating journal records for
* fragment allocation into a second record as well as replacing a
* journal free with an aborted journal allocation. A segment for the
* oldest record will be placed on wkhd if it has been written. If not
* the segment for the newer record will suffice.
*/
static struct worklist *
jnewblk_merge(new, old, wkhd)
struct worklist *new;
struct worklist *old;
struct workhead *wkhd;
{
struct jnewblk *njnewblk;
struct jnewblk *jnewblk;
/* Handle NULLs to simplify callers. */
if (new == NULL)
return (old);
if (old == NULL)
return (new);
/* Replace a jfreefrag with a jnewblk. */
if (new->wk_type == D_JFREEFRAG) {
if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
panic("jnewblk_merge: blkno mismatch: %p, %p",
old, new);
cancel_jfreefrag(WK_JFREEFRAG(new));
return (old);
}
if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
panic("jnewblk_merge: Bad type: old %d new %d\n",
old->wk_type, new->wk_type);
/*
* Handle merging of two jnewblk records that describe
* different sets of fragments in the same block.
*/
jnewblk = WK_JNEWBLK(old);
njnewblk = WK_JNEWBLK(new);
if (jnewblk->jn_blkno != njnewblk->jn_blkno)
panic("jnewblk_merge: Merging disparate blocks.");
/*
* The record may be rolled back in the cg.
*/
if (jnewblk->jn_state & UNDONE) {
jnewblk->jn_state &= ~UNDONE;
njnewblk->jn_state |= UNDONE;
njnewblk->jn_state &= ~ATTACHED;
}
/*
* We modify the newer addref and free the older so that if neither
* has been written the most up-to-date copy will be on disk. If
* both have been written but rolled back we only temporarily need
* one of them to fix the bits when the cg write completes.
*/
jnewblk->jn_state |= ATTACHED | COMPLETE;
njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
cancel_jnewblk(jnewblk, wkhd);
WORKLIST_REMOVE(&jnewblk->jn_list);
free_jnewblk(jnewblk);
return (new);
}
/*
* Replace an old allocdirect dependency with a newer one.
* This routine must be called with splbio interrupts blocked.
*/
static void
allocdirect_merge(adphead, newadp, oldadp)
struct allocdirectlst *adphead; /* head of list holding allocdirects */
struct allocdirect *newadp; /* allocdirect being added */
struct allocdirect *oldadp; /* existing allocdirect being checked */
{
struct worklist *wk;
struct freefrag *freefrag;
freefrag = NULL;
LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
newadp->ad_oldsize != oldadp->ad_newsize ||
newadp->ad_offset >= UFS_NDADDR)
panic("%s %jd != new %jd || old size %ld != new %ld",
"allocdirect_merge: old blkno",
(intmax_t)newadp->ad_oldblkno,
(intmax_t)oldadp->ad_newblkno,
newadp->ad_oldsize, oldadp->ad_newsize);
newadp->ad_oldblkno = oldadp->ad_oldblkno;
newadp->ad_oldsize = oldadp->ad_oldsize;
/*
* If the old dependency had a fragment to free or had never
* previously had a block allocated, then the new dependency
* can immediately post its freefrag and adopt the old freefrag.
* This action is done by swapping the freefrag dependencies.
* The new dependency gains the old one's freefrag, and the
* old one gets the new one and then immediately puts it on
* the worklist when it is freed by free_newblk. It is
* not possible to do this swap when the old dependency had a
* non-zero size but no previous fragment to free. This condition
* arises when the new block is an extension of the old block.
* Here, the first part of the fragment allocated to the new
* dependency is part of the block currently claimed on disk by
* the old dependency, so cannot legitimately be freed until the
* conditions for the new dependency are fulfilled.
*/
freefrag = newadp->ad_freefrag;
if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
newadp->ad_freefrag = oldadp->ad_freefrag;
oldadp->ad_freefrag = freefrag;
}
/*
* If we are tracking a new directory-block allocation,
* move it from the old allocdirect to the new allocdirect.
*/
if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
WORKLIST_REMOVE(wk);
if (!LIST_EMPTY(&oldadp->ad_newdirblk))
panic("allocdirect_merge: extra newdirblk");
WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
}
TAILQ_REMOVE(adphead, oldadp, ad_next);
/*
* We need to move any journal dependencies over to the freefrag
* that releases this block if it exists. Otherwise we are
* extending an existing block and we'll wait until that is
* complete to release the journal space and extend the
* new journal to cover this old space as well.
*/
if (freefrag == NULL) {
if (oldadp->ad_newblkno != newadp->ad_newblkno)
panic("allocdirect_merge: %jd != %jd",
oldadp->ad_newblkno, newadp->ad_newblkno);
newadp->ad_block.nb_jnewblk = (struct jnewblk *)
jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
&oldadp->ad_block.nb_jnewblk->jn_list,
&newadp->ad_block.nb_jwork);
oldadp->ad_block.nb_jnewblk = NULL;
cancel_newblk(&oldadp->ad_block, NULL,
&newadp->ad_block.nb_jwork);
} else {
wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
&freefrag->ff_list, &freefrag->ff_jwork);
freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
&freefrag->ff_jwork);
}
free_newblk(&oldadp->ad_block);
}
/*
* Allocate a jfreefrag structure to journal a single block free.
*/
static struct jfreefrag *
newjfreefrag(freefrag, ip, blkno, size, lbn)
struct freefrag *freefrag;
struct inode *ip;
ufs2_daddr_t blkno;
long size;
ufs_lbn_t lbn;
{
struct jfreefrag *jfreefrag;
struct fs *fs;
fs = ITOFS(ip);
jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
M_SOFTDEP_FLAGS);
workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
jfreefrag->fr_ino = ip->i_number;
jfreefrag->fr_lbn = lbn;
jfreefrag->fr_blkno = blkno;
jfreefrag->fr_frags = numfrags(fs, size);
jfreefrag->fr_freefrag = freefrag;
return (jfreefrag);
}
/*
* Allocate a new freefrag structure.
*/
static struct freefrag *
newfreefrag(ip, blkno, size, lbn, key)
struct inode *ip;
ufs2_daddr_t blkno;
long size;
ufs_lbn_t lbn;
u_long key;
{
struct freefrag *freefrag;
struct ufsmount *ump;
struct fs *fs;
CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
ip->i_number, blkno, size, lbn);
ump = ITOUMP(ip);
fs = ump->um_fs;
if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
panic("newfreefrag: frag size");
freefrag = malloc(sizeof(struct freefrag),
M_FREEFRAG, M_SOFTDEP_FLAGS);
workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
freefrag->ff_state = ATTACHED;
LIST_INIT(&freefrag->ff_jwork);
freefrag->ff_inum = ip->i_number;
freefrag->ff_vtype = ITOV(ip)->v_type;
freefrag->ff_blkno = blkno;
freefrag->ff_fragsize = size;
freefrag->ff_key = key;
if (MOUNTEDSUJ(UFSTOVFS(ump))) {
freefrag->ff_jdep = (struct worklist *)
newjfreefrag(freefrag, ip, blkno, size, lbn);
} else {
freefrag->ff_state |= DEPCOMPLETE;
freefrag->ff_jdep = NULL;
}
return (freefrag);
}
/*
* This workitem de-allocates fragments that were replaced during
* file block allocation.
*/
static void
handle_workitem_freefrag(freefrag)
struct freefrag *freefrag;
{
struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
struct workhead wkhd;
CTR3(KTR_SUJ,
"handle_workitem_freefrag: ino %d blkno %jd size %ld",
freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
/*
* It would be illegal to add new completion items to the
* freefrag after it was schedule to be done so it must be
* safe to modify the list head here.
*/
LIST_INIT(&wkhd);
ACQUIRE_LOCK(ump);
LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
/*
* If the journal has not been written we must cancel it here.
*/
if (freefrag->ff_jdep) {
if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
panic("handle_workitem_freefrag: Unexpected type %d\n",
freefrag->ff_jdep->wk_type);
cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
}
FREE_LOCK(ump);
ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
&wkhd, freefrag->ff_key);
ACQUIRE_LOCK(ump);
WORKITEM_FREE(freefrag, D_FREEFRAG);
FREE_LOCK(ump);
}
/*
* Set up a dependency structure for an external attributes data block.
* This routine follows much of the structure of softdep_setup_allocdirect.
* See the description of softdep_setup_allocdirect above for details.
*/
void
softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip;
ufs_lbn_t off;
ufs2_daddr_t newblkno;
ufs2_daddr_t oldblkno;
long newsize;
long oldsize;
struct buf *bp;
{
struct allocdirect *adp, *oldadp;
struct allocdirectlst *adphead;
struct freefrag *freefrag;
struct inodedep *inodedep;
struct jnewblk *jnewblk;
struct newblk *newblk;
struct mount *mp;
struct ufsmount *ump;
ufs_lbn_t lbn;
mp = ITOVFS(ip);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_allocext called on non-softdep filesystem"));
KASSERT(off < UFS_NXADDR,
("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
lbn = bp->b_lblkno;
if (oldblkno && oldblkno != newblkno)
/*
* The usual case is that a smaller fragment that
* was just allocated has been replaced with a bigger
* fragment or a full-size block. If it is marked as
* B_DELWRI, the current contents have not been written
* to disk. It is possible that the block was written
* earlier, but very uncommon. If the block has never
* been written, there is no need to send a BIO_DELETE
* for it when it is freed. The gain from avoiding the
* TRIMs for the common case of unwritten blocks far
* exceeds the cost of the write amplification for the
* uncommon case of failing to send a TRIM for a block
* that had been written.
*/
freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
(bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
else
freefrag = NULL;
ACQUIRE_LOCK(ump);
if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
panic("softdep_setup_allocext: lost block");
KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
("softdep_setup_allocext: newblk already initialized"));
/*
* Convert the newblk to an allocdirect.
*/
WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
adp = (struct allocdirect *)newblk;
newblk->nb_freefrag = freefrag;
adp->ad_offset = off;
adp->ad_oldblkno = oldblkno;
adp->ad_newsize = newsize;
adp->ad_oldsize = oldsize;
adp->ad_state |= EXTDATA;
/*
* Finish initializing the journal.
*/
if ((jnewblk = newblk->nb_jnewblk) != NULL) {
jnewblk->jn_ino = ip->i_number;
jnewblk->jn_lbn = lbn;
add_to_journal(&jnewblk->jn_list);
}
if (freefrag && freefrag->ff_jdep != NULL &&
freefrag->ff_jdep->wk_type == D_JFREEFRAG)
add_to_journal(freefrag->ff_jdep);
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
adp->ad_inodedep = inodedep;
WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
/*
* The list of allocdirects must be kept in sorted and ascending
* order so that the rollback routines can quickly determine the
* first uncommitted block (the size of the file stored on disk
* ends at the end of the lowest committed fragment, or if there
* are no fragments, at the end of the highest committed block).
* Since files generally grow, the typical case is that the new
* block is to be added at the end of the list. We speed this
* special case by checking against the last allocdirect in the
* list before laboriously traversing the list looking for the
* insertion point.
*/
adphead = &inodedep->id_newextupdt;
oldadp = TAILQ_LAST(adphead, allocdirectlst);
if (oldadp == NULL || oldadp->ad_offset <= off) {
/* insert at end of list */
TAILQ_INSERT_TAIL(adphead, adp, ad_next);
if (oldadp != NULL && oldadp->ad_offset == off)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(ump);
return;
}
TAILQ_FOREACH(oldadp, adphead, ad_next) {
if (oldadp->ad_offset >= off)
break;
}
if (oldadp == NULL)
panic("softdep_setup_allocext: lost entry");
/* insert in middle of list */
TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
if (oldadp->ad_offset == off)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(ump);
}
/*
* Indirect block allocation dependencies.
*
* The same dependencies that exist for a direct block also exist when
* a new block is allocated and pointed to by an entry in a block of
* indirect pointers. The undo/redo states described above are also
* used here. Because an indirect block contains many pointers that
* may have dependencies, a second copy of the entire in-memory indirect
* block is kept. The buffer cache copy is always completely up-to-date.
* The second copy, which is used only as a source for disk writes,
* contains only the safe pointers (i.e., those that have no remaining
* update dependencies). The second copy is freed when all pointers
* are safe. The cache is not allowed to replace indirect blocks with
* pending update dependencies. If a buffer containing an indirect
* block with dependencies is written, these routines will mark it
* dirty again. It can only be successfully written once all the
* dependencies are removed. The ffs_fsync routine in conjunction with
* softdep_sync_metadata work together to get all the dependencies
* removed so that a file can be successfully written to disk. Three
* procedures are used when setting up indirect block pointer
* dependencies. The division is necessary because of the organization
* of the "balloc" routine and because of the distinction between file
* pages and file metadata blocks.
*/
/*
* Allocate a new allocindir structure.
*/
static struct allocindir *
newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
struct inode *ip; /* inode for file being extended */
int ptrno; /* offset of pointer in indirect block */
ufs2_daddr_t newblkno; /* disk block number being added */
ufs2_daddr_t oldblkno; /* previous block number, 0 if none */
ufs_lbn_t lbn;
{
struct newblk *newblk;
struct allocindir *aip;
struct freefrag *freefrag;
struct jnewblk *jnewblk;
if (oldblkno)
freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
SINGLETON_KEY);
else
freefrag = NULL;
ACQUIRE_LOCK(ITOUMP(ip));
if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
panic("new_allocindir: lost block");
KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
("newallocindir: newblk already initialized"));
WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
newblk->nb_freefrag = freefrag;
aip = (struct allocindir *)newblk;
aip->ai_offset = ptrno;
aip->ai_oldblkno = oldblkno;
aip->ai_lbn = lbn;
if ((jnewblk = newblk->nb_jnewblk) != NULL) {
jnewblk->jn_ino = ip->i_number;
jnewblk->jn_lbn = lbn;
add_to_journal(&jnewblk->jn_list);
}
if (freefrag && freefrag->ff_jdep != NULL &&
freefrag->ff_jdep->wk_type == D_JFREEFRAG)
add_to_journal(freefrag->ff_jdep);
return (aip);
}
/*
* Called just before setting an indirect block pointer
* to a newly allocated file page.
*/
void
softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
struct inode *ip; /* inode for file being extended */
ufs_lbn_t lbn; /* allocated block number within file */
struct buf *bp; /* buffer with indirect blk referencing page */
int ptrno; /* offset of pointer in indirect block */
ufs2_daddr_t newblkno; /* disk block number being added */
ufs2_daddr_t oldblkno; /* previous block number, 0 if none */
struct buf *nbp; /* buffer holding allocated page */
{
struct inodedep *inodedep;
struct freefrag *freefrag;
struct allocindir *aip;
struct pagedep *pagedep;
struct mount *mp;
struct ufsmount *ump;
mp = ITOVFS(ip);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_allocindir_page called on non-softdep filesystem"));
KASSERT(lbn == nbp->b_lblkno,
("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
lbn, bp->b_lblkno));
CTR4(KTR_SUJ,
"softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
"lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
/*
* If we are allocating a directory page, then we must
* allocate an associated pagedep to track additions and
* deletions.
*/
if ((ip->i_mode & IFMT) == IFDIR)
pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
FREE_LOCK(ump);
if (freefrag)
handle_workitem_freefrag(freefrag);
}
/*
* Called just before setting an indirect block pointer to a
* newly allocated indirect block.
*/
void
softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
struct buf *nbp; /* newly allocated indirect block */
struct inode *ip; /* inode for file being extended */
struct buf *bp; /* indirect block referencing allocated block */
int ptrno; /* offset of pointer in indirect block */
ufs2_daddr_t newblkno; /* disk block number being added */
{
struct inodedep *inodedep;
struct allocindir *aip;
struct ufsmount *ump;
ufs_lbn_t lbn;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_setup_allocindir_meta called on non-softdep filesystem"));
CTR3(KTR_SUJ,
"softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
ip->i_number, newblkno, ptrno);
lbn = nbp->b_lblkno;
ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
panic("softdep_setup_allocindir_meta: Block already existed");
FREE_LOCK(ump);
}
static void
indirdep_complete(indirdep)
struct indirdep *indirdep;
{
struct allocindir *aip;
LIST_REMOVE(indirdep, ir_next);
indirdep->ir_state |= DEPCOMPLETE;
while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
LIST_REMOVE(aip, ai_next);
free_newblk(&aip->ai_block);
}
/*
* If this indirdep is not attached to a buf it was simply waiting
* on completion to clear completehd. free_indirdep() asserts
* that nothing is dangling.
*/
if ((indirdep->ir_state & ONWORKLIST) == 0)
free_indirdep(indirdep);
}
static struct indirdep *
indirdep_lookup(mp, ip, bp)
struct mount *mp;
struct inode *ip;
struct buf *bp;
{
struct indirdep *indirdep, *newindirdep;
struct newblk *newblk;
struct ufsmount *ump;
struct worklist *wk;
struct fs *fs;
ufs2_daddr_t blkno;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
indirdep = NULL;
newindirdep = NULL;
fs = ump->um_fs;
for (;;) {
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
if (wk->wk_type != D_INDIRDEP)
continue;
indirdep = WK_INDIRDEP(wk);
break;
}
/* Found on the buffer worklist, no new structure to free. */
if (indirdep != NULL && newindirdep == NULL)
return (indirdep);
if (indirdep != NULL && newindirdep != NULL)
panic("indirdep_lookup: simultaneous create");
/* None found on the buffer and a new structure is ready. */
if (indirdep == NULL && newindirdep != NULL)
break;
/* None found and no new structure available. */
FREE_LOCK(ump);
newindirdep = malloc(sizeof(struct indirdep),
M_INDIRDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
newindirdep->ir_state = ATTACHED;
if (I_IS_UFS1(ip))
newindirdep->ir_state |= UFS1FMT;
TAILQ_INIT(&newindirdep->ir_trunc);
newindirdep->ir_saveddata = NULL;
LIST_INIT(&newindirdep->ir_deplisthd);
LIST_INIT(&newindirdep->ir_donehd);
LIST_INIT(&newindirdep->ir_writehd);
LIST_INIT(&newindirdep->ir_completehd);
if (bp->b_blkno == bp->b_lblkno) {
ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
NULL, NULL);
bp->b_blkno = blkno;
}
newindirdep->ir_freeblks = NULL;
newindirdep->ir_savebp =
getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
newindirdep->ir_bp = bp;
BUF_KERNPROC(newindirdep->ir_savebp);
bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
ACQUIRE_LOCK(ump);
}
indirdep = newindirdep;
WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
/*
* If the block is not yet allocated we don't set DEPCOMPLETE so
* that we don't free dependencies until the pointers are valid.
* This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
* than using the hash.
*/
if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
else
indirdep->ir_state |= DEPCOMPLETE;
return (indirdep);
}
/*
* Called to finish the allocation of the "aip" allocated
* by one of the two routines above.
*/
static struct freefrag *
setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
struct buf *bp; /* in-memory copy of the indirect block */
struct inode *ip; /* inode for file being extended */
struct inodedep *inodedep; /* Inodedep for ip */
struct allocindir *aip; /* allocindir allocated by the above routines */
ufs_lbn_t lbn; /* Logical block number for this block. */
{
struct fs *fs;
struct indirdep *indirdep;
struct allocindir *oldaip;
struct freefrag *freefrag;
struct mount *mp;
struct ufsmount *ump;
mp = ITOVFS(ip);
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
fs = ump->um_fs;
if (bp->b_lblkno >= 0)
panic("setup_allocindir_phase2: not indir blk");
KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
indirdep = indirdep_lookup(mp, ip, bp);
KASSERT(indirdep->ir_savebp != NULL,
("setup_allocindir_phase2 NULL ir_savebp"));
aip->ai_indirdep = indirdep;
/*
* Check for an unwritten dependency for this indirect offset. If
* there is, merge the old dependency into the new one. This happens
* as a result of reallocblk only.
*/
freefrag = NULL;
if (aip->ai_oldblkno != 0) {
LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
if (oldaip->ai_offset == aip->ai_offset) {
freefrag = allocindir_merge(aip, oldaip);
goto done;
}
}
LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
if (oldaip->ai_offset == aip->ai_offset) {
freefrag = allocindir_merge(aip, oldaip);
goto done;
}
}
}
done:
LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
return (freefrag);
}
/*
* Merge two allocindirs which refer to the same block. Move newblock
* dependencies and setup the freefrags appropriately.
*/
static struct freefrag *
allocindir_merge(aip, oldaip)
struct allocindir *aip;
struct allocindir *oldaip;
{
struct freefrag *freefrag;
struct worklist *wk;
if (oldaip->ai_newblkno != aip->ai_oldblkno)
panic("allocindir_merge: blkno");
aip->ai_oldblkno = oldaip->ai_oldblkno;
freefrag = aip->ai_freefrag;
aip->ai_freefrag = oldaip->ai_freefrag;
oldaip->ai_freefrag = NULL;
KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
/*
* If we are tracking a new directory-block allocation,
* move it from the old allocindir to the new allocindir.
*/
if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
WORKLIST_REMOVE(wk);
if (!LIST_EMPTY(&oldaip->ai_newdirblk))
panic("allocindir_merge: extra newdirblk");
WORKLIST_INSERT(&aip->ai_newdirblk, wk);
}
/*
* We can skip journaling for this freefrag and just complete
* any pending journal work for the allocindir that is being
* removed after the freefrag completes.
*/
if (freefrag->ff_jdep)
cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
LIST_REMOVE(oldaip, ai_next);
freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
&freefrag->ff_list, &freefrag->ff_jwork);
free_newblk(&oldaip->ai_block);
return (freefrag);
}
static inline void
setup_freedirect(freeblks, ip, i, needj)
struct freeblks *freeblks;
struct inode *ip;
int i;
int needj;
{
struct ufsmount *ump;
ufs2_daddr_t blkno;
int frags;
blkno = DIP(ip, i_db[i]);
if (blkno == 0)
return;
DIP_SET(ip, i_db[i], 0);
ump = ITOUMP(ip);
frags = sblksize(ump->um_fs, ip->i_size, i);
frags = numfrags(ump->um_fs, frags);
newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
}
static inline void
setup_freeext(freeblks, ip, i, needj)
struct freeblks *freeblks;
struct inode *ip;
int i;
int needj;
{
struct ufsmount *ump;
ufs2_daddr_t blkno;
int frags;
blkno = ip->i_din2->di_extb[i];
if (blkno == 0)
return;
ip->i_din2->di_extb[i] = 0;
ump = ITOUMP(ip);
frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
frags = numfrags(ump->um_fs, frags);
newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
}
static inline void
setup_freeindir(freeblks, ip, i, lbn, needj)
struct freeblks *freeblks;
struct inode *ip;
int i;
ufs_lbn_t lbn;
int needj;
{
struct ufsmount *ump;
ufs2_daddr_t blkno;
blkno = DIP(ip, i_ib[i]);
if (blkno == 0)
return;
DIP_SET(ip, i_ib[i], 0);
ump = ITOUMP(ip);
newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
0, needj);
}
static inline struct freeblks *
newfreeblks(mp, ip)
struct mount *mp;
struct inode *ip;
{
struct freeblks *freeblks;
freeblks = malloc(sizeof(struct freeblks),
M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
LIST_INIT(&freeblks->fb_jblkdephd);
LIST_INIT(&freeblks->fb_jwork);
freeblks->fb_ref = 0;
freeblks->fb_cgwait = 0;
freeblks->fb_state = ATTACHED;
freeblks->fb_uid = ip->i_uid;
freeblks->fb_inum = ip->i_number;
freeblks->fb_vtype = ITOV(ip)->v_type;
freeblks->fb_modrev = DIP(ip, i_modrev);
freeblks->fb_devvp = ITODEVVP(ip);
freeblks->fb_chkcnt = 0;
freeblks->fb_len = 0;
return (freeblks);
}
static void
trunc_indirdep(indirdep, freeblks, bp, off)
struct indirdep *indirdep;
struct freeblks *freeblks;
struct buf *bp;
int off;
{
struct allocindir *aip, *aipn;
/*
* The first set of allocindirs won't be in savedbp.
*/
LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
if (aip->ai_offset > off)
cancel_allocindir(aip, bp, freeblks, 1);
LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
if (aip->ai_offset > off)
cancel_allocindir(aip, bp, freeblks, 1);
/*
* These will exist in savedbp.
*/
LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
if (aip->ai_offset > off)
cancel_allocindir(aip, NULL, freeblks, 0);
LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
if (aip->ai_offset > off)
cancel_allocindir(aip, NULL, freeblks, 0);
}
/*
* Follow the chain of indirects down to lastlbn creating a freework
* structure for each. This will be used to start indir_trunc() at
* the right offset and create the journal records for the parrtial
* truncation. A second step will handle the truncated dependencies.
*/
static int
setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
struct freeblks *freeblks;
struct inode *ip;
ufs_lbn_t lbn;
ufs_lbn_t lastlbn;
ufs2_daddr_t blkno;
{
struct indirdep *indirdep;
struct indirdep *indirn;
struct freework *freework;
struct newblk *newblk;
struct mount *mp;
struct ufsmount *ump;
struct buf *bp;
uint8_t *start;
uint8_t *end;
ufs_lbn_t lbnadd;
int level;
int error;
int off;
freework = NULL;
if (blkno == 0)
return (0);
mp = freeblks->fb_list.wk_mp;
ump = VFSTOUFS(mp);
bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
if ((bp->b_flags & B_CACHE) == 0) {
bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
bp->b_iocmd = BIO_READ;
bp->b_flags &= ~B_INVAL;
bp->b_ioflags &= ~BIO_ERROR;
vfs_busy_pages(bp, 0);
bp->b_iooffset = dbtob(bp->b_blkno);
bstrategy(bp);
#ifdef RACCT
if (racct_enable) {
PROC_LOCK(curproc);
racct_add_buf(curproc, bp, 0);
PROC_UNLOCK(curproc);
}
#endif /* RACCT */
curthread->td_ru.ru_inblock++;
error = bufwait(bp);
if (error) {
brelse(bp);
return (error);
}
}
level = lbn_level(lbn);
lbnadd = lbn_offset(ump->um_fs, level);
/*
* Compute the offset of the last block we want to keep. Store
* in the freework the first block we want to completely free.
*/
off = (lastlbn - -(lbn + level)) / lbnadd;
if (off + 1 == NINDIR(ump->um_fs))
goto nowork;
freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
/*
* Link the freework into the indirdep. This will prevent any new
* allocations from proceeding until we are finished with the
* truncate and the block is written.
*/
ACQUIRE_LOCK(ump);
indirdep = indirdep_lookup(mp, ip, bp);
if (indirdep->ir_freeblks)
panic("setup_trunc_indir: indirdep already truncated.");
TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
freework->fw_indir = indirdep;
/*
* Cancel any allocindirs that will not make it to disk.
* We have to do this for all copies of the indirdep that
* live on this newblk.
*/
if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
&newblk) == 0)
panic("setup_trunc_indir: lost block");
LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
trunc_indirdep(indirn, freeblks, bp, off);
} else
trunc_indirdep(indirdep, freeblks, bp, off);
FREE_LOCK(ump);
/*
* Creation is protected by the buf lock. The saveddata is only
* needed if a full truncation follows a partial truncation but it
* is difficult to allocate in that case so we fetch it anyway.
*/
if (indirdep->ir_saveddata == NULL)
indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
M_SOFTDEP_FLAGS);
nowork:
/* Fetch the blkno of the child and the zero start offset. */
if (I_IS_UFS1(ip)) {
blkno = ((ufs1_daddr_t *)bp->b_data)[off];
start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
} else {
blkno = ((ufs2_daddr_t *)bp->b_data)[off];
start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
}
if (freework) {
/* Zero the truncated pointers. */
end = bp->b_data + bp->b_bcount;
bzero(start, end - start);
bdwrite(bp);
} else
bqrelse(bp);
if (level == 0)
return (0);
lbn++; /* adjust level */
lbn -= (off * lbnadd);
return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
}
/*
* Complete the partial truncation of an indirect block setup by
* setup_trunc_indir(). This zeros the truncated pointers in the saved
* copy and writes them to disk before the freeblks is allowed to complete.
*/
static void
complete_trunc_indir(freework)
struct freework *freework;
{
struct freework *fwn;
struct indirdep *indirdep;
struct ufsmount *ump;
struct buf *bp;
uintptr_t start;
int count;
ump = VFSTOUFS(freework->fw_list.wk_mp);
LOCK_OWNED(ump);
indirdep = freework->fw_indir;
for (;;) {
bp = indirdep->ir_bp;
/* See if the block was discarded. */
if (bp == NULL)
break;
/* Inline part of getdirtybuf(). We dont want bremfree. */
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
break;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
LOCK_PTR(ump)) == 0)
BUF_UNLOCK(bp);
ACQUIRE_LOCK(ump);
}
freework->fw_state |= DEPCOMPLETE;
TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
/*
* Zero the pointers in the saved copy.
*/
if (indirdep->ir_state & UFS1FMT)
start = sizeof(ufs1_daddr_t);
else
start = sizeof(ufs2_daddr_t);
start *= freework->fw_start;
count = indirdep->ir_savebp->b_bcount - start;
start += (uintptr_t)indirdep->ir_savebp->b_data;
bzero((char *)start, count);
/*
* We need to start the next truncation in the list if it has not
* been started yet.
*/
fwn = TAILQ_FIRST(&indirdep->ir_trunc);
if (fwn != NULL) {
if (fwn->fw_freeblks == indirdep->ir_freeblks)
TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
if ((fwn->fw_state & ONWORKLIST) == 0)
freework_enqueue(fwn);
}
/*
* If bp is NULL the block was fully truncated, restore
* the saved block list otherwise free it if it is no
* longer needed.
*/
if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
if (bp == NULL)
bcopy(indirdep->ir_saveddata,
indirdep->ir_savebp->b_data,
indirdep->ir_savebp->b_bcount);
free(indirdep->ir_saveddata, M_INDIRDEP);
indirdep->ir_saveddata = NULL;
}
/*
* When bp is NULL there is a full truncation pending. We
* must wait for this full truncation to be journaled before
* we can release this freework because the disk pointers will
* never be written as zero.
*/
if (bp == NULL) {
if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
handle_written_freework(freework);
else
WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
&freework->fw_list);
} else {
/* Complete when the real copy is written. */
WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
BUF_UNLOCK(bp);
}
}
/*
* Calculate the number of blocks we are going to release where datablocks
* is the current total and length is the new file size.
*/
static ufs2_daddr_t
blkcount(fs, datablocks, length)
struct fs *fs;
ufs2_daddr_t datablocks;
off_t length;
{
off_t totblks, numblks;
totblks = 0;
numblks = howmany(length, fs->fs_bsize);
if (numblks <= UFS_NDADDR) {
totblks = howmany(length, fs->fs_fsize);
goto out;
}
totblks = blkstofrags(fs, numblks);
numblks -= UFS_NDADDR;
/*
* Count all single, then double, then triple indirects required.
* Subtracting one indirects worth of blocks for each pass
* acknowledges one of each pointed to by the inode.
*/
for (;;) {
totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
numblks -= NINDIR(fs);
if (numblks <= 0)
break;
numblks = howmany(numblks, NINDIR(fs));
}
out:
totblks = fsbtodb(fs, totblks);
/*
* Handle sparse files. We can't reclaim more blocks than the inode
* references. We will correct it later in handle_complete_freeblks()
* when we know the real count.
*/
if (totblks > datablocks)
return (0);
return (datablocks - totblks);
}
/*
* Handle freeblocks for journaled softupdate filesystems.
*
* Contrary to normal softupdates, we must preserve the block pointers in
* indirects until their subordinates are free. This is to avoid journaling
* every block that is freed which may consume more space than the journal
* itself. The recovery program will see the free block journals at the
* base of the truncated area and traverse them to reclaim space. The
* pointers in the inode may be cleared immediately after the journal
* records are written because each direct and indirect pointer in the
* inode is recorded in a journal. This permits full truncation to proceed
* asynchronously. The write order is journal -> inode -> cgs -> indirects.
*
* The algorithm is as follows:
* 1) Traverse the in-memory state and create journal entries to release
* the relevant blocks and full indirect trees.
* 2) Traverse the indirect block chain adding partial truncation freework
* records to indirects in the path to lastlbn. The freework will
* prevent new allocation dependencies from being satisfied in this
* indirect until the truncation completes.
* 3) Read and lock the inode block, performing an update with the new size
* and pointers. This prevents truncated data from becoming valid on
* disk through step 4.
* 4) Reap unsatisfied dependencies that are beyond the truncated area,
* eliminate journal work for those records that do not require it.
* 5) Schedule the journal records to be written followed by the inode block.
* 6) Allocate any necessary frags for the end of file.
* 7) Zero any partially truncated blocks.
*
* From this truncation proceeds asynchronously using the freework and
* indir_trunc machinery. The file will not be extended again into a
* partially truncated indirect block until all work is completed but
* the normal dependency mechanism ensures that it is rolled back/forward
* as appropriate. Further truncation may occur without delay and is
* serialized in indir_trunc().
*/
void
softdep_journal_freeblocks(ip, cred, length, flags)
struct inode *ip; /* The inode whose length is to be reduced */
struct ucred *cred;
off_t length; /* The new length for the file */
int flags; /* IO_EXT and/or IO_NORMAL */
{
struct freeblks *freeblks, *fbn;
struct worklist *wk, *wkn;
struct inodedep *inodedep;
struct jblkdep *jblkdep;
struct allocdirect *adp, *adpn;
struct ufsmount *ump;
struct fs *fs;
struct buf *bp;
struct vnode *vp;
struct mount *mp;
ufs2_daddr_t extblocks, datablocks;
ufs_lbn_t tmpval, lbn, lastlbn;
int frags, lastoff, iboff, allocblock, needj, error, i;
ump = ITOUMP(ip);
mp = UFSTOVFS(ump);
fs = ump->um_fs;
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_journal_freeblocks called on non-softdep filesystem"));
vp = ITOV(ip);
needj = 1;
iboff = -1;
allocblock = 0;
extblocks = 0;
datablocks = 0;
frags = 0;
freeblks = newfreeblks(mp, ip);
ACQUIRE_LOCK(ump);
/*
* If we're truncating a removed file that will never be written
* we don't need to journal the block frees. The canceled journals
* for the allocations will suffice.
*/
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
length == 0)
needj = 0;
CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
ip->i_number, length, needj);
FREE_LOCK(ump);
/*
* Calculate the lbn that we are truncating to. This results in -1
* if we're truncating the 0 bytes. So it is the last lbn we want
* to keep, not the first lbn we want to truncate.
*/
lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
lastoff = blkoff(fs, length);
/*
* Compute frags we are keeping in lastlbn. 0 means all.
*/
if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
frags = fragroundup(fs, lastoff);
/* adp offset of last valid allocdirect. */
iboff = lastlbn;
} else if (lastlbn > 0)
iboff = UFS_NDADDR;
if (fs->fs_magic == FS_UFS2_MAGIC)
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
/*
* Handle normal data blocks and indirects. This section saves
* values used after the inode update to complete frag and indirect
* truncation.
*/
if ((flags & IO_NORMAL) != 0) {
/*
* Handle truncation of whole direct and indirect blocks.
*/
for (i = iboff + 1; i < UFS_NDADDR; i++)
setup_freedirect(freeblks, ip, i, needj);
for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
i < UFS_NIADDR;
i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
/* Release a whole indirect tree. */
if (lbn > lastlbn) {
setup_freeindir(freeblks, ip, i, -lbn -i,
needj);
continue;
}
iboff = i + UFS_NDADDR;
/*
* Traverse partially truncated indirect tree.
*/
if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
setup_trunc_indir(freeblks, ip, -lbn - i,
lastlbn, DIP(ip, i_ib[i]));
}
/*
* Handle partial truncation to a frag boundary.
*/
if (frags) {
ufs2_daddr_t blkno;
long oldfrags;
oldfrags = blksize(fs, ip, lastlbn);
blkno = DIP(ip, i_db[lastlbn]);
if (blkno && oldfrags != frags) {
oldfrags -= frags;
oldfrags = numfrags(fs, oldfrags);
blkno += numfrags(fs, frags);
newfreework(ump, freeblks, NULL, lastlbn,
blkno, oldfrags, 0, needj);
if (needj)
adjust_newfreework(freeblks,
numfrags(fs, frags));
} else if (blkno == 0)
allocblock = 1;
}
/*
* Add a journal record for partial truncate if we are
* handling indirect blocks. Non-indirects need no extra
* journaling.
*/
if (length != 0 && lastlbn >= UFS_NDADDR) {
ip->i_flag |= IN_TRUNCATED;
newjtrunc(freeblks, length, 0);
}
ip->i_size = length;
DIP_SET(ip, i_size, ip->i_size);
datablocks = DIP(ip, i_blocks) - extblocks;
if (length != 0)
datablocks = blkcount(fs, datablocks, length);
freeblks->fb_len = length;
}
if ((flags & IO_EXT) != 0) {
for (i = 0; i < UFS_NXADDR; i++)
setup_freeext(freeblks, ip, i, needj);
ip->i_din2->di_extsize = 0;
datablocks += extblocks;
}
#ifdef QUOTA
/* Reference the quotas in case the block count is wrong in the end. */
quotaref(vp, freeblks->fb_quota);
(void) chkdq(ip, -datablocks, NOCRED, 0);
#endif
freeblks->fb_chkcnt = -datablocks;
UFS_LOCK(ump);
fs->fs_pendingblocks += datablocks;
UFS_UNLOCK(ump);
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
/*
* Handle truncation of incomplete alloc direct dependencies. We
* hold the inode block locked to prevent incomplete dependencies
* from reaching the disk while we are eliminating those that
* have been truncated. This is a partially inlined ffs_update().
*/
ufs_itimes(vp);
ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, cred, &bp);
if (error) {
brelse(bp);
softdep_error("softdep_journal_freeblocks", error);
return;
}
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
softdep_update_inodeblock(ip, bp, 0);
if (ump->um_fstype == UFS1) {
*((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
} else {
ffs_update_dinode_ckhash(fs, ip->i_din2);
*((struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
}
ACQUIRE_LOCK(ump);
(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
if ((inodedep->id_state & IOSTARTED) != 0)
panic("softdep_setup_freeblocks: inode busy");
/*
* Add the freeblks structure to the list of operations that
* must await the zero'ed inode being written to disk. If we
* still have a bitmap dependency (needj), then the inode
* has never been written to disk, so we can process the
* freeblks below once we have deleted the dependencies.
*/
if (needj)
WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
else
freeblks->fb_state |= COMPLETE;
if ((flags & IO_NORMAL) != 0) {
TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
if (adp->ad_offset > iboff)
cancel_allocdirect(&inodedep->id_inoupdt, adp,
freeblks);
/*
* Truncate the allocdirect. We could eliminate
* or modify journal records as well.
*/
else if (adp->ad_offset == iboff && frags)
adp->ad_newsize = frags;
}
}
if ((flags & IO_EXT) != 0)
while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
cancel_allocdirect(&inodedep->id_extupdt, adp,
freeblks);
/*
* Scan the bufwait list for newblock dependencies that will never
* make it to disk.
*/
LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
if (wk->wk_type != D_ALLOCDIRECT)
continue;
adp = WK_ALLOCDIRECT(wk);
if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
cancel_jfreeblk(freeblks, adp->ad_newblkno);
cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
}
}
/*
* Add journal work.
*/
LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
add_to_journal(&jblkdep->jb_list);
FREE_LOCK(ump);
bdwrite(bp);
/*
* Truncate dependency structures beyond length.
*/
trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
/*
* This is only set when we need to allocate a fragment because
* none existed at the end of a frag-sized file. It handles only
* allocating a new, zero filled block.
*/
if (allocblock) {
ip->i_size = length - lastoff;
DIP_SET(ip, i_size, ip->i_size);
error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
if (error != 0) {
softdep_error("softdep_journal_freeblks", error);
return;
}
ip->i_size = length;
DIP_SET(ip, i_size, length);
ip->i_flag |= IN_CHANGE | IN_UPDATE;
allocbuf(bp, frags);
ffs_update(vp, 0);
bawrite(bp);
} else if (lastoff != 0 && vp->v_type != VDIR) {
int size;
/*
* Zero the end of a truncated frag or block.
*/
size = sblksize(fs, length, lastlbn);
error = bread(vp, lastlbn, size, cred, &bp);
if (error) {
softdep_error("softdep_journal_freeblks", error);
return;
}
bzero((char *)bp->b_data + lastoff, size - lastoff);
bawrite(bp);
}
ACQUIRE_LOCK(ump);
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
/*
* We zero earlier truncations so they don't erroneously
* update i_blocks.
*/
if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
fbn->fb_len = 0;
if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
LIST_EMPTY(&freeblks->fb_jblkdephd))
freeblks->fb_state |= INPROGRESS;
else
freeblks = NULL;
FREE_LOCK(ump);
if (freeblks)
handle_workitem_freeblocks(freeblks, 0);
trunc_pages(ip, length, extblocks, flags);
}
/*
* Flush a JOP_SYNC to the journal.
*/
void
softdep_journal_fsync(ip)
struct inode *ip;
{
struct jfsync *jfsync;
struct ufsmount *ump;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_journal_fsync called on non-softdep filesystem"));
if ((ip->i_flag & IN_TRUNCATED) == 0)
return;
ip->i_flag &= ~IN_TRUNCATED;
jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
jfsync->jfs_size = ip->i_size;
jfsync->jfs_ino = ip->i_number;
ACQUIRE_LOCK(ump);
add_to_journal(&jfsync->jfs_list);
jwait(&jfsync->jfs_list, MNT_WAIT);
FREE_LOCK(ump);
}
/*
* Block de-allocation dependencies.
*
* When blocks are de-allocated, the on-disk pointers must be nullified before
* the blocks are made available for use by other files. (The true
* requirement is that old pointers must be nullified before new on-disk
* pointers are set. We chose this slightly more stringent requirement to
* reduce complexity.) Our implementation handles this dependency by updating
* the inode (or indirect block) appropriately but delaying the actual block
* de-allocation (i.e., freemap and free space count manipulation) until
* after the updated versions reach stable storage. After the disk is
* updated, the blocks can be safely de-allocated whenever it is convenient.
* This implementation handles only the common case of reducing a file's
* length to zero. Other cases are handled by the conventional synchronous
* write approach.
*
* The ffs implementation with which we worked double-checks
* the state of the block pointers and file size as it reduces
* a file's length. Some of this code is replicated here in our
* soft updates implementation. The freeblks->fb_chkcnt field is
* used to transfer a part of this information to the procedure
* that eventually de-allocates the blocks.
*
* This routine should be called from the routine that shortens
* a file's length, before the inode's size or block pointers
* are modified. It will save the block pointer information for
* later release and zero the inode so that the calling routine
* can release it.
*/
void
softdep_setup_freeblocks(ip, length, flags)
struct inode *ip; /* The inode whose length is to be reduced */
off_t length; /* The new length for the file */
int flags; /* IO_EXT and/or IO_NORMAL */
{
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
struct freeblks *freeblks;
struct inodedep *inodedep;
struct allocdirect *adp;
struct ufsmount *ump;
struct buf *bp;
struct fs *fs;
ufs2_daddr_t extblocks, datablocks;
struct mount *mp;
int i, delay, error;
ufs_lbn_t tmpval;
ufs_lbn_t lbn;
ump = ITOUMP(ip);
mp = UFSTOVFS(ump);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_freeblocks called on non-softdep filesystem"));
CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
ip->i_number, length);
KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
fs = ump->um_fs;
if ((error = bread(ump->um_devvp,
fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, NOCRED, &bp)) != 0) {
brelse(bp);
softdep_error("softdep_setup_freeblocks", error);
return;
}
freeblks = newfreeblks(mp, ip);
extblocks = 0;
datablocks = 0;
if (fs->fs_magic == FS_UFS2_MAGIC)
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
if ((flags & IO_NORMAL) != 0) {
for (i = 0; i < UFS_NDADDR; i++)
setup_freedirect(freeblks, ip, i, 0);
for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
i < UFS_NIADDR;
i++, lbn += tmpval, tmpval *= NINDIR(fs))
setup_freeindir(freeblks, ip, i, -lbn -i, 0);
ip->i_size = 0;
DIP_SET(ip, i_size, 0);
datablocks = DIP(ip, i_blocks) - extblocks;
}
if ((flags & IO_EXT) != 0) {
for (i = 0; i < UFS_NXADDR; i++)
setup_freeext(freeblks, ip, i, 0);
ip->i_din2->di_extsize = 0;
datablocks += extblocks;
}
#ifdef QUOTA
/* Reference the quotas in case the block count is wrong in the end. */
quotaref(ITOV(ip), freeblks->fb_quota);
(void) chkdq(ip, -datablocks, NOCRED, 0);
#endif
freeblks->fb_chkcnt = -datablocks;
UFS_LOCK(ump);
fs->fs_pendingblocks += datablocks;
UFS_UNLOCK(ump);
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
/*
* Push the zero'ed inode to its disk buffer so that we are free
* to delete its dependencies below. Once the dependencies are gone
* the buffer can be safely released.
*/
if (ump->um_fstype == UFS1) {
dp1 = ((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number));
ip->i_din1->di_freelink = dp1->di_freelink;
*dp1 = *ip->i_din1;
} else {
dp2 = ((struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number));
ip->i_din2->di_freelink = dp2->di_freelink;
ffs_update_dinode_ckhash(fs, ip->i_din2);
*dp2 = *ip->i_din2;
}
/*
* Find and eliminate any inode dependencies.
*/
ACQUIRE_LOCK(ump);
(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
if ((inodedep->id_state & IOSTARTED) != 0)
panic("softdep_setup_freeblocks: inode busy");
/*
* Add the freeblks structure to the list of operations that
* must await the zero'ed inode being written to disk. If we
* still have a bitmap dependency (delay == 0), then the inode
* has never been written to disk, so we can process the
* freeblks below once we have deleted the dependencies.
*/
delay = (inodedep->id_state & DEPCOMPLETE);
if (delay)
WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
else
freeblks->fb_state |= COMPLETE;
/*
* Because the file length has been truncated to zero, any
* pending block allocation dependency structures associated
* with this inode are obsolete and can simply be de-allocated.
* We must first merge the two dependency lists to get rid of
* any duplicate freefrag structures, then purge the merged list.
* If we still have a bitmap dependency, then the inode has never
* been written to disk, so we can free any fragments without delay.
*/
if (flags & IO_NORMAL) {
merge_inode_lists(&inodedep->id_newinoupdt,
&inodedep->id_inoupdt);
while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
cancel_allocdirect(&inodedep->id_inoupdt, adp,
freeblks);
}
if (flags & IO_EXT) {
merge_inode_lists(&inodedep->id_newextupdt,
&inodedep->id_extupdt);
while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
cancel_allocdirect(&inodedep->id_extupdt, adp,
freeblks);
}
FREE_LOCK(ump);
bdwrite(bp);
trunc_dependencies(ip, freeblks, -1, 0, flags);
ACQUIRE_LOCK(ump);
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
(void) free_inodedep(inodedep);
freeblks->fb_state |= DEPCOMPLETE;
/*
* If the inode with zeroed block pointers is now on disk
* we can start freeing blocks.
*/
if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
freeblks->fb_state |= INPROGRESS;
else
freeblks = NULL;
FREE_LOCK(ump);
if (freeblks)
handle_workitem_freeblocks(freeblks, 0);
trunc_pages(ip, length, extblocks, flags);
}
/*
* Eliminate pages from the page cache that back parts of this inode and
* adjust the vnode pager's idea of our size. This prevents stale data
* from hanging around in the page cache.
*/
static void
trunc_pages(ip, length, extblocks, flags)
struct inode *ip;
off_t length;
ufs2_daddr_t extblocks;
int flags;
{
struct vnode *vp;
struct fs *fs;
ufs_lbn_t lbn;
off_t end, extend;
vp = ITOV(ip);
fs = ITOFS(ip);
extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
if ((flags & IO_EXT) != 0)
vn_pages_remove(vp, extend, 0);
if ((flags & IO_NORMAL) == 0)
return;
BO_LOCK(&vp->v_bufobj);
drain_output(vp);
BO_UNLOCK(&vp->v_bufobj);
/*
* The vnode pager eliminates file pages we eliminate indirects
* below.
*/
vnode_pager_setsize(vp, length);
/*
* Calculate the end based on the last indirect we want to keep. If
* the block extends into indirects we can just use the negative of
* its lbn. Doubles and triples exist at lower numbers so we must
* be careful not to remove those, if they exist. double and triple
* indirect lbns do not overlap with others so it is not important
* to verify how many levels are required.
*/
lbn = lblkno(fs, length);
if (lbn >= UFS_NDADDR) {
/* Calculate the virtual lbn of the triple indirect. */
lbn = -lbn - (UFS_NIADDR - 1);
end = OFF_TO_IDX(lblktosize(fs, lbn));
} else
end = extend;
vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
}
/*
* See if the buf bp is in the range eliminated by truncation.
*/
static int
trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
struct buf *bp;
int *blkoffp;
ufs_lbn_t lastlbn;
int lastoff;
int flags;
{
ufs_lbn_t lbn;
*blkoffp = 0;
/* Only match ext/normal blocks as appropriate. */
if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
return (0);
/* ALTDATA is always a full truncation. */
if ((bp->b_xflags & BX_ALTDATA) != 0)
return (1);
/* -1 is full truncation. */
if (lastlbn == -1)
return (1);
/*
* If this is a partial truncate we only want those
* blocks and indirect blocks that cover the range
* we're after.
*/
lbn = bp->b_lblkno;
if (lbn < 0)
lbn = -(lbn + lbn_level(lbn));
if (lbn < lastlbn)
return (0);
/* Here we only truncate lblkno if it's partial. */
if (lbn == lastlbn) {
if (lastoff == 0)
return (0);
*blkoffp = lastoff;
}
return (1);
}
/*
* Eliminate any dependencies that exist in memory beyond lblkno:off
*/
static void
trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
struct inode *ip;
struct freeblks *freeblks;
ufs_lbn_t lastlbn;
int lastoff;
int flags;
{
struct bufobj *bo;
struct vnode *vp;
struct buf *bp;
int blkoff;
/*
* We must wait for any I/O in progress to finish so that
* all potential buffers on the dirty list will be visible.
* Once they are all there, walk the list and get rid of
* any dependencies.
*/
vp = ITOV(ip);
bo = &vp->v_bufobj;
BO_LOCK(bo);
drain_output(vp);
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
bp->b_vflags &= ~BV_SCANNED;
restart:
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
if (bp->b_vflags & BV_SCANNED)
continue;
if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
bp->b_vflags |= BV_SCANNED;
continue;
}
KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
goto restart;
BO_UNLOCK(bo);
if (deallocate_dependencies(bp, freeblks, blkoff))
bqrelse(bp);
else
brelse(bp);
BO_LOCK(bo);
goto restart;
}
/*
* Now do the work of vtruncbuf while also matching indirect blocks.
*/
TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
bp->b_vflags &= ~BV_SCANNED;
cleanrestart:
TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
if (bp->b_vflags & BV_SCANNED)
continue;
if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
bp->b_vflags |= BV_SCANNED;
continue;
}
if (BUF_LOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_LOCKPTR(bo)) == ENOLCK) {
BO_LOCK(bo);
goto cleanrestart;
}
bp->b_vflags |= BV_SCANNED;
bremfree(bp);
if (blkoff != 0) {
allocbuf(bp, blkoff);
bqrelse(bp);
} else {
bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
brelse(bp);
}
BO_LOCK(bo);
goto cleanrestart;
}
drain_output(vp);
BO_UNLOCK(bo);
}
static int
cancel_pagedep(pagedep, freeblks, blkoff)
struct pagedep *pagedep;
struct freeblks *freeblks;
int blkoff;
{
struct jremref *jremref;
struct jmvref *jmvref;
struct dirrem *dirrem, *tmp;
int i;
/*
* Copy any directory remove dependencies to the list
* to be processed after the freeblks proceeds. If
* directory entry never made it to disk they
* can be dumped directly onto the work list.
*/
LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
/* Skip this directory removal if it is intended to remain. */
if (dirrem->dm_offset < blkoff)
continue;
/*
* If there are any dirrems we wait for the journal write
* to complete and then restart the buf scan as the lock
* has been dropped.
*/
while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
jwait(&jremref->jr_list, MNT_WAIT);
return (ERESTART);
}
LIST_REMOVE(dirrem, dm_next);
dirrem->dm_dirinum = pagedep->pd_ino;
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
}
while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
jwait(&jmvref->jm_list, MNT_WAIT);
return (ERESTART);
}
/*
* When we're partially truncating a pagedep we just want to flush
* journal entries and return. There can not be any adds in the
* truncated portion of the directory and newblk must remain if
* part of the block remains.
*/
if (blkoff != 0) {
struct diradd *dap;
LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
if (dap->da_offset > blkoff)
panic("cancel_pagedep: diradd %p off %d > %d",
dap, dap->da_offset, blkoff);
for (i = 0; i < DAHASHSZ; i++)
LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
if (dap->da_offset > blkoff)
panic("cancel_pagedep: diradd %p off %d > %d",
dap, dap->da_offset, blkoff);
return (0);
}
/*
* There should be no directory add dependencies present
* as the directory could not be truncated until all
* children were removed.
*/
KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
("deallocate_dependencies: pendinghd != NULL"));
for (i = 0; i < DAHASHSZ; i++)
KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
("deallocate_dependencies: diraddhd != NULL"));
if ((pagedep->pd_state & NEWBLOCK) != 0)
free_newdirblk(pagedep->pd_newdirblk);
if (free_pagedep(pagedep) == 0)
panic("Failed to free pagedep %p", pagedep);
return (0);
}
/*
* Reclaim any dependency structures from a buffer that is about to
* be reallocated to a new vnode. The buffer must be locked, thus,
* no I/O completion operations can occur while we are manipulating
* its associated dependencies. The mutex is held so that other I/O's
* associated with related dependencies do not occur.
*/
static int
deallocate_dependencies(bp, freeblks, off)
struct buf *bp;
struct freeblks *freeblks;
int off;
{
struct indirdep *indirdep;
struct pagedep *pagedep;
struct worklist *wk, *wkn;
struct ufsmount *ump;
ump = softdep_bp_to_mp(bp);
if (ump == NULL)
goto done;
ACQUIRE_LOCK(ump);
LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
switch (wk->wk_type) {
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
if (bp->b_lblkno >= 0 ||
bp->b_blkno != indirdep->ir_savebp->b_lblkno)
panic("deallocate_dependencies: not indir");
cancel_indirdep(indirdep, bp, freeblks);
continue;
case D_PAGEDEP:
pagedep = WK_PAGEDEP(wk);
if (cancel_pagedep(pagedep, freeblks, off)) {
FREE_LOCK(ump);
return (ERESTART);
}
continue;
case D_ALLOCINDIR:
/*
* Simply remove the allocindir, we'll find it via
* the indirdep where we can clear pointers if
* needed.
*/
WORKLIST_REMOVE(wk);
continue;
case D_FREEWORK:
/*
* A truncation is waiting for the zero'd pointers
* to be written. It can be freed when the freeblks
* is journaled.
*/
WORKLIST_REMOVE(wk);
wk->wk_state |= ONDEPLIST;
WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
break;
case D_ALLOCDIRECT:
if (off != 0)
continue;
/* FALLTHROUGH */
default:
panic("deallocate_dependencies: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
FREE_LOCK(ump);
done:
/*
* Don't throw away this buf, we were partially truncating and
* some deps may always remain.
*/
if (off) {
allocbuf(bp, off);
bp->b_vflags |= BV_SCANNED;
return (EBUSY);
}
bp->b_flags |= B_INVAL | B_NOCACHE;
return (0);
}
/*
* An allocdirect is being canceled due to a truncate. We must make sure
* the journal entry is released in concert with the blkfree that releases
* the storage. Completed journal entries must not be released until the
* space is no longer pointed to by the inode or in the bitmap.
*/
static void
cancel_allocdirect(adphead, adp, freeblks)
struct allocdirectlst *adphead;
struct allocdirect *adp;
struct freeblks *freeblks;
{
struct freework *freework;
struct newblk *newblk;
struct worklist *wk;
TAILQ_REMOVE(adphead, adp, ad_next);
newblk = (struct newblk *)adp;
freework = NULL;
/*
* Find the correct freework structure.
*/
LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
if (wk->wk_type != D_FREEWORK)
continue;
freework = WK_FREEWORK(wk);
if (freework->fw_blkno == newblk->nb_newblkno)
break;
}
if (freework == NULL)
panic("cancel_allocdirect: Freework not found");
/*
* If a newblk exists at all we still have the journal entry that
* initiated the allocation so we do not need to journal the free.
*/
cancel_jfreeblk(freeblks, freework->fw_blkno);
/*
* If the journal hasn't been written the jnewblk must be passed
* to the call to ffs_blkfree that reclaims the space. We accomplish
* this by linking the journal dependency into the freework to be
* freed when freework_freeblock() is called. If the journal has
* been written we can simply reclaim the journal space when the
* freeblks work is complete.
*/
freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
&freeblks->fb_jwork);
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
}
/*
* Cancel a new block allocation. May be an indirect or direct block. We
* remove it from various lists and return any journal record that needs to
* be resolved by the caller.
*
* A special consideration is made for indirects which were never pointed
* at on disk and will never be found once this block is released.
*/
static struct jnewblk *
cancel_newblk(newblk, wk, wkhd)
struct newblk *newblk;
struct worklist *wk;
struct workhead *wkhd;
{
struct jnewblk *jnewblk;
CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
newblk->nb_state |= GOINGAWAY;
/*
* Previously we traversed the completedhd on each indirdep
* attached to this newblk to cancel them and gather journal
* work. Since we need only the oldest journal segment and
* the lowest point on the tree will always have the oldest
* journal segment we are free to release the segments
* of any subordinates and may leave the indirdep list to
* indirdep_complete() when this newblk is freed.
*/
if (newblk->nb_state & ONDEPLIST) {
newblk->nb_state &= ~ONDEPLIST;
LIST_REMOVE(newblk, nb_deps);
}
if (newblk->nb_state & ONWORKLIST)
WORKLIST_REMOVE(&newblk->nb_list);
/*
* If the journal entry hasn't been written we save a pointer to
* the dependency that frees it until it is written or the
* superseding operation completes.
*/
jnewblk = newblk->nb_jnewblk;
if (jnewblk != NULL && wk != NULL) {
newblk->nb_jnewblk = NULL;
jnewblk->jn_dep = wk;
}
if (!LIST_EMPTY(&newblk->nb_jwork))
jwork_move(wkhd, &newblk->nb_jwork);
/*
* When truncating we must free the newdirblk early to remove
* the pagedep from the hash before returning.
*/
if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
free_newdirblk(WK_NEWDIRBLK(wk));
if (!LIST_EMPTY(&newblk->nb_newdirblk))
panic("cancel_newblk: extra newdirblk");
return (jnewblk);
}
/*
* Schedule the freefrag associated with a newblk to be released once
* the pointers are written and the previous block is no longer needed.
*/
static void
newblk_freefrag(newblk)
struct newblk *newblk;
{
struct freefrag *freefrag;
if (newblk->nb_freefrag == NULL)
return;
freefrag = newblk->nb_freefrag;
newblk->nb_freefrag = NULL;
freefrag->ff_state |= COMPLETE;
if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
add_to_worklist(&freefrag->ff_list, 0);
}
/*
* Free a newblk. Generate a new freefrag work request if appropriate.
* This must be called after the inode pointer and any direct block pointers
* are valid or fully removed via truncate or frag extension.
*/
static void
free_newblk(newblk)
struct newblk *newblk;
{
struct indirdep *indirdep;
struct worklist *wk;
KASSERT(newblk->nb_jnewblk == NULL,
("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
("free_newblk: unclaimed newblk"));
LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
newblk_freefrag(newblk);
if (newblk->nb_state & ONDEPLIST)
LIST_REMOVE(newblk, nb_deps);
if (newblk->nb_state & ONWORKLIST)
WORKLIST_REMOVE(&newblk->nb_list);
LIST_REMOVE(newblk, nb_hash);
if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
free_newdirblk(WK_NEWDIRBLK(wk));
if (!LIST_EMPTY(&newblk->nb_newdirblk))
panic("free_newblk: extra newdirblk");
while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
indirdep_complete(indirdep);
handle_jwork(&newblk->nb_jwork);
WORKITEM_FREE(newblk, D_NEWBLK);
}
/*
* Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
* This routine must be called with splbio interrupts blocked.
*/
static void
free_newdirblk(newdirblk)
struct newdirblk *newdirblk;
{
struct pagedep *pagedep;
struct diradd *dap;
struct worklist *wk;
LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
WORKLIST_REMOVE(&newdirblk->db_list);
/*
* If the pagedep is still linked onto the directory buffer
* dependency chain, then some of the entries on the
* pd_pendinghd list may not be committed to disk yet. In
* this case, we will simply clear the NEWBLOCK flag and
* let the pd_pendinghd list be processed when the pagedep
* is next written. If the pagedep is no longer on the buffer
* dependency chain, then all the entries on the pd_pending
* list are committed to disk and we can free them here.
*/
pagedep = newdirblk->db_pagedep;
pagedep->pd_state &= ~NEWBLOCK;
if ((pagedep->pd_state & ONWORKLIST) == 0) {
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
free_diradd(dap, NULL);
/*
* If no dependencies remain, the pagedep will be freed.
*/
free_pagedep(pagedep);
}
/* Should only ever be one item in the list. */
while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
WORKLIST_REMOVE(wk);
handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
}
WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
}
/*
* Prepare an inode to be freed. The actual free operation is not
* done until the zero'ed inode has been written to disk.
*/
void
softdep_freefile(pvp, ino, mode)
struct vnode *pvp;
ino_t ino;
int mode;
{
struct inode *ip = VTOI(pvp);
struct inodedep *inodedep;
struct freefile *freefile;
struct freeblks *freeblks;
struct ufsmount *ump;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_freefile called on non-softdep filesystem"));
/*
* This sets up the inode de-allocation dependency.
*/
freefile = malloc(sizeof(struct freefile),
M_FREEFILE, M_SOFTDEP_FLAGS);
workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
freefile->fx_mode = mode;
freefile->fx_oldinum = ino;
freefile->fx_devvp = ump->um_devvp;
LIST_INIT(&freefile->fx_jwork);
UFS_LOCK(ump);
ump->um_fs->fs_pendinginodes += 1;
UFS_UNLOCK(ump);
/*
* If the inodedep does not exist, then the zero'ed inode has
* been written to disk. If the allocated inode has never been
* written to disk, then the on-disk inode is zero'ed. In either
* case we can free the file immediately. If the journal was
* canceled before being written the inode will never make it to
* disk and we must send the canceled journal entrys to
* ffs_freefile() to be cleared in conjunction with the bitmap.
* Any blocks waiting on the inode to write can be safely freed
* here as it will never been written.
*/
ACQUIRE_LOCK(ump);
inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
if (inodedep) {
/*
* Clear out freeblks that no longer need to reference
* this inode.
*/
while ((freeblks =
TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
fb_next);
freeblks->fb_state &= ~ONDEPLIST;
}
/*
* Remove this inode from the unlinked list.
*/
if (inodedep->id_state & UNLINKED) {
/*
* Save the journal work to be freed with the bitmap
* before we clear UNLINKED. Otherwise it can be lost
* if the inode block is written.
*/
handle_bufwait(inodedep, &freefile->fx_jwork);
clear_unlinked_inodedep(inodedep);
/*
* Re-acquire inodedep as we've dropped the
* per-filesystem lock in clear_unlinked_inodedep().
*/
inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
}
}
if (inodedep == NULL || check_inode_unwritten(inodedep)) {
FREE_LOCK(ump);
handle_workitem_freefile(freefile);
return;
}
if ((inodedep->id_state & DEPCOMPLETE) == 0)
inodedep->id_state |= GOINGAWAY;
WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
FREE_LOCK(ump);
if (ip->i_number == ino)
ip->i_flag |= IN_MODIFIED;
}
/*
* Check to see if an inode has never been written to disk. If
* so free the inodedep and return success, otherwise return failure.
* This routine must be called with splbio interrupts blocked.
*
* If we still have a bitmap dependency, then the inode has never
* been written to disk. Drop the dependency as it is no longer
* necessary since the inode is being deallocated. We set the
* ALLCOMPLETE flags since the bitmap now properly shows that the
* inode is not allocated. Even if the inode is actively being
* written, it has been rolled back to its zero'ed state, so we
* are ensured that a zero inode is what is on the disk. For short
* lived files, this change will usually result in removing all the
* dependencies from the inode so that it can be freed immediately.
*/
static int
check_inode_unwritten(inodedep)
struct inodedep *inodedep;
{
LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
!LIST_EMPTY(&inodedep->id_dirremhd) ||
!LIST_EMPTY(&inodedep->id_pendinghd) ||
!LIST_EMPTY(&inodedep->id_bufwait) ||
!LIST_EMPTY(&inodedep->id_inowait) ||
!TAILQ_EMPTY(&inodedep->id_inoreflst) ||
!TAILQ_EMPTY(&inodedep->id_inoupdt) ||
!TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
!TAILQ_EMPTY(&inodedep->id_extupdt) ||
!TAILQ_EMPTY(&inodedep->id_newextupdt) ||
!TAILQ_EMPTY(&inodedep->id_freeblklst) ||
inodedep->id_mkdiradd != NULL ||
inodedep->id_nlinkdelta != 0)
return (0);
/*
* Another process might be in initiate_write_inodeblock_ufs[12]
* trying to allocate memory without holding "Softdep Lock".
*/
if ((inodedep->id_state & IOSTARTED) != 0 &&
inodedep->id_savedino1 == NULL)
return (0);
if (inodedep->id_state & ONDEPLIST)
LIST_REMOVE(inodedep, id_deps);
inodedep->id_state &= ~ONDEPLIST;
inodedep->id_state |= ALLCOMPLETE;
inodedep->id_bmsafemap = NULL;
if (inodedep->id_state & ONWORKLIST)
WORKLIST_REMOVE(&inodedep->id_list);
if (inodedep->id_savedino1 != NULL) {
free(inodedep->id_savedino1, M_SAVEDINO);
inodedep->id_savedino1 = NULL;
}
if (free_inodedep(inodedep) == 0)
panic("check_inode_unwritten: busy inode");
return (1);
}
static int
check_inodedep_free(inodedep)
struct inodedep *inodedep;
{
LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
!LIST_EMPTY(&inodedep->id_dirremhd) ||
!LIST_EMPTY(&inodedep->id_pendinghd) ||
!LIST_EMPTY(&inodedep->id_bufwait) ||
!LIST_EMPTY(&inodedep->id_inowait) ||
!TAILQ_EMPTY(&inodedep->id_inoreflst) ||
!TAILQ_EMPTY(&inodedep->id_inoupdt) ||
!TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
!TAILQ_EMPTY(&inodedep->id_extupdt) ||
!TAILQ_EMPTY(&inodedep->id_newextupdt) ||
!TAILQ_EMPTY(&inodedep->id_freeblklst) ||
inodedep->id_mkdiradd != NULL ||
inodedep->id_nlinkdelta != 0 ||
inodedep->id_savedino1 != NULL)
return (0);
return (1);
}
/*
* Try to free an inodedep structure. Return 1 if it could be freed.
*/
static int
free_inodedep(inodedep)
struct inodedep *inodedep;
{
LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
!check_inodedep_free(inodedep))
return (0);
if (inodedep->id_state & ONDEPLIST)
LIST_REMOVE(inodedep, id_deps);
LIST_REMOVE(inodedep, id_hash);
WORKITEM_FREE(inodedep, D_INODEDEP);
return (1);
}
/*
* Free the block referenced by a freework structure. The parent freeblks
* structure is released and completed when the final cg bitmap reaches
* the disk. This routine may be freeing a jnewblk which never made it to
* disk in which case we do not have to wait as the operation is undone
* in memory immediately.
*/
static void
freework_freeblock(freework, key)
struct freework *freework;
u_long key;
{
struct freeblks *freeblks;
struct jnewblk *jnewblk;
struct ufsmount *ump;
struct workhead wkhd;
struct fs *fs;
int bsize;
int needj;
ump = VFSTOUFS(freework->fw_list.wk_mp);
LOCK_OWNED(ump);
/*
* Handle partial truncate separately.
*/
if (freework->fw_indir) {
complete_trunc_indir(freework);
return;
}
freeblks = freework->fw_freeblks;
fs = ump->um_fs;
needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
bsize = lfragtosize(fs, freework->fw_frags);
LIST_INIT(&wkhd);
/*
* DEPCOMPLETE is cleared in indirblk_insert() if the block lives
* on the indirblk hashtable and prevents premature freeing.
*/
freework->fw_state |= DEPCOMPLETE;
/*
* SUJ needs to wait for the segment referencing freed indirect
* blocks to expire so that we know the checker will not confuse
* a re-allocated indirect block with its old contents.
*/
if (needj && freework->fw_lbn <= -UFS_NDADDR)
indirblk_insert(freework);
/*
* If we are canceling an existing jnewblk pass it to the free
* routine, otherwise pass the freeblk which will ultimately
* release the freeblks. If we're not journaling, we can just
* free the freeblks immediately.
*/
jnewblk = freework->fw_jnewblk;
if (jnewblk != NULL) {
cancel_jnewblk(jnewblk, &wkhd);
needj = 0;
} else if (needj) {
freework->fw_state |= DELAYEDFREE;
freeblks->fb_cgwait++;
WORKLIST_INSERT(&wkhd, &freework->fw_list);
}
FREE_LOCK(ump);
freeblks_free(ump, freeblks, btodb(bsize));
CTR4(KTR_SUJ,
"freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
ACQUIRE_LOCK(ump);
/*
* The jnewblk will be discarded and the bits in the map never
* made it to disk. We can immediately free the freeblk.
*/
if (needj == 0)
handle_written_freework(freework);
}
/*
* We enqueue freework items that need processing back on the freeblks and
* add the freeblks to the worklist. This makes it easier to find all work
* required to flush a truncation in process_truncates().
*/
static void
freework_enqueue(freework)
struct freework *freework;
{
struct freeblks *freeblks;
freeblks = freework->fw_freeblks;
if ((freework->fw_state & INPROGRESS) == 0)
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
if ((freeblks->fb_state &
(ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
LIST_EMPTY(&freeblks->fb_jblkdephd))
add_to_worklist(&freeblks->fb_list, WK_NODELAY);
}
/*
* Start, continue, or finish the process of freeing an indirect block tree.
* The free operation may be paused at any point with fw_off containing the
* offset to restart from. This enables us to implement some flow control
* for large truncates which may fan out and generate a huge number of
* dependencies.
*/
static void
handle_workitem_indirblk(freework)
struct freework *freework;
{
struct freeblks *freeblks;
struct ufsmount *ump;
struct fs *fs;
freeblks = freework->fw_freeblks;
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
fs = ump->um_fs;
if (freework->fw_state & DEPCOMPLETE) {
handle_written_freework(freework);
return;
}
if (freework->fw_off == NINDIR(fs)) {
freework_freeblock(freework, SINGLETON_KEY);
return;
}
freework->fw_state |= INPROGRESS;
FREE_LOCK(ump);
indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
freework->fw_lbn);
ACQUIRE_LOCK(ump);
}
/*
* Called when a freework structure attached to a cg buf is written. The
* ref on either the parent or the freeblks structure is released and
* the freeblks is added back to the worklist if there is more work to do.
*/
static void
handle_written_freework(freework)
struct freework *freework;
{
struct freeblks *freeblks;
struct freework *parent;
freeblks = freework->fw_freeblks;
parent = freework->fw_parent;
if (freework->fw_state & DELAYEDFREE)
freeblks->fb_cgwait--;
freework->fw_state |= COMPLETE;
if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
WORKITEM_FREE(freework, D_FREEWORK);
if (parent) {
if (--parent->fw_ref == 0)
freework_enqueue(parent);
return;
}
if (--freeblks->fb_ref != 0)
return;
if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
add_to_worklist(&freeblks->fb_list, WK_NODELAY);
}
/*
* This workitem routine performs the block de-allocation.
* The workitem is added to the pending list after the updated
* inode block has been written to disk. As mentioned above,
* checks regarding the number of blocks de-allocated (compared
* to the number of blocks allocated for the file) are also
* performed in this function.
*/
static int
handle_workitem_freeblocks(freeblks, flags)
struct freeblks *freeblks;
int flags;
{
struct freework *freework;
struct newblk *newblk;
struct allocindir *aip;
struct ufsmount *ump;
struct worklist *wk;
u_long key;
KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
("handle_workitem_freeblocks: Journal entries not written."));
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
ACQUIRE_LOCK(ump);
while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_DIRREM:
wk->wk_state |= COMPLETE;
add_to_worklist(wk, 0);
continue;
case D_ALLOCDIRECT:
free_newblk(WK_NEWBLK(wk));
continue;
case D_ALLOCINDIR:
aip = WK_ALLOCINDIR(wk);
freework = NULL;
if (aip->ai_state & DELAYEDFREE) {
FREE_LOCK(ump);
freework = newfreework(ump, freeblks, NULL,
aip->ai_lbn, aip->ai_newblkno,
ump->um_fs->fs_frag, 0, 0);
ACQUIRE_LOCK(ump);
}
newblk = WK_NEWBLK(wk);
if (newblk->nb_jnewblk) {
freework->fw_jnewblk = newblk->nb_jnewblk;
newblk->nb_jnewblk->jn_dep = &freework->fw_list;
newblk->nb_jnewblk = NULL;
}
free_newblk(newblk);
continue;
case D_FREEWORK:
freework = WK_FREEWORK(wk);
if (freework->fw_lbn <= -UFS_NDADDR)
handle_workitem_indirblk(freework);
else
freework_freeblock(freework, key);
continue;
default:
panic("handle_workitem_freeblocks: Unknown type %s",
TYPENAME(wk->wk_type));
}
}
if (freeblks->fb_ref != 0) {
freeblks->fb_state &= ~INPROGRESS;
wake_worklist(&freeblks->fb_list);
freeblks = NULL;
}
FREE_LOCK(ump);
ffs_blkrelease_finish(ump, key);
if (freeblks)
return handle_complete_freeblocks(freeblks, flags);
return (0);
}
/*
* Handle completion of block free via truncate. This allows fs_pending
* to track the actual free block count more closely than if we only updated
* it at the end. We must be careful to handle cases where the block count
* on free was incorrect.
*/
static void
freeblks_free(ump, freeblks, blocks)
struct ufsmount *ump;
struct freeblks *freeblks;
int blocks;
{
struct fs *fs;
ufs2_daddr_t remain;
UFS_LOCK(ump);
remain = -freeblks->fb_chkcnt;
freeblks->fb_chkcnt += blocks;
if (remain > 0) {
if (remain < blocks)
blocks = remain;
fs = ump->um_fs;
fs->fs_pendingblocks -= blocks;
}
UFS_UNLOCK(ump);
}
/*
* Once all of the freework workitems are complete we can retire the
* freeblocks dependency and any journal work awaiting completion. This
* can not be called until all other dependencies are stable on disk.
*/
static int
handle_complete_freeblocks(freeblks, flags)
struct freeblks *freeblks;
int flags;
{
struct inodedep *inodedep;
struct inode *ip;
struct vnode *vp;
struct fs *fs;
struct ufsmount *ump;
ufs2_daddr_t spare;
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
fs = ump->um_fs;
flags = LK_EXCLUSIVE | flags;
spare = freeblks->fb_chkcnt;
/*
* If we did not release the expected number of blocks we may have
* to adjust the inode block count here. Only do so if it wasn't
* a truncation to zero and the modrev still matches.
*/
if (spare && freeblks->fb_len != 0) {
if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
flags, &vp, FFSV_FORCEINSMQ) != 0)
return (EBUSY);
ip = VTOI(vp);
if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
ip->i_flag |= IN_CHANGE;
/*
* We must wait so this happens before the
* journal is reclaimed.
*/
ffs_update(vp, 1);
}
vput(vp);
}
if (spare < 0) {
UFS_LOCK(ump);
fs->fs_pendingblocks += spare;
UFS_UNLOCK(ump);
}
#ifdef QUOTA
/* Handle spare. */
if (spare)
quotaadj(freeblks->fb_quota, ump, -spare);
quotarele(freeblks->fb_quota);
#endif
ACQUIRE_LOCK(ump);
if (freeblks->fb_state & ONDEPLIST) {
inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
0, &inodedep);
TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
freeblks->fb_state &= ~ONDEPLIST;
if (TAILQ_EMPTY(&inodedep->id_freeblklst))
free_inodedep(inodedep);
}
/*
* All of the freeblock deps must be complete prior to this call
* so it's now safe to complete earlier outstanding journal entries.
*/
handle_jwork(&freeblks->fb_jwork);
WORKITEM_FREE(freeblks, D_FREEBLKS);
FREE_LOCK(ump);
return (0);
}
/*
* Release blocks associated with the freeblks and stored in the indirect
* block dbn. If level is greater than SINGLE, the block is an indirect block
* and recursive calls to indirtrunc must be used to cleanse other indirect
* blocks.
*
* This handles partial and complete truncation of blocks. Partial is noted
* with goingaway == 0. In this case the freework is completed after the
* zero'd indirects are written to disk. For full truncation the freework
* is completed after the block is freed.
*/
static void
indir_trunc(freework, dbn, lbn)
struct freework *freework;
ufs2_daddr_t dbn;
ufs_lbn_t lbn;
{
struct freework *nfreework;
struct workhead wkhd;
struct freeblks *freeblks;
struct buf *bp;
struct fs *fs;
struct indirdep *indirdep;
struct ufsmount *ump;
ufs1_daddr_t *bap1;
ufs2_daddr_t nb, nnb, *bap2;
ufs_lbn_t lbnadd, nlbn;
u_long key;
int nblocks, ufs1fmt, freedblocks;
int goingaway, freedeps, needj, level, cnt, i;
freeblks = freework->fw_freeblks;
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
fs = ump->um_fs;
/*
* Get buffer of block pointers to be freed. There are three cases:
*
* 1) Partial truncate caches the indirdep pointer in the freework
* which provides us a back copy to the save bp which holds the
* pointers we want to clear. When this completes the zero
* pointers are written to the real copy.
* 2) The indirect is being completely truncated, cancel_indirdep()
* eliminated the real copy and placed the indirdep on the saved
* copy. The indirdep and buf are discarded when this completes.
* 3) The indirect was not in memory, we read a copy off of the disk
* using the devvp and drop and invalidate the buffer when we're
* done.
*/
goingaway = 1;
indirdep = NULL;
if (freework->fw_indir != NULL) {
goingaway = 0;
indirdep = freework->fw_indir;
bp = indirdep->ir_savebp;
if (bp == NULL || bp->b_blkno != dbn)
panic("indir_trunc: Bad saved buf %p blkno %jd",
bp, (intmax_t)dbn);
} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
/*
* The lock prevents the buf dep list from changing and
* indirects on devvp should only ever have one dependency.
*/
indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
panic("indir_trunc: Bad indirdep %p from buf %p",
indirdep, bp);
} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
NOCRED, &bp) != 0) {
brelse(bp);
return;
}
ACQUIRE_LOCK(ump);
/* Protects against a race with complete_trunc_indir(). */
freework->fw_state &= ~INPROGRESS;
/*
* If we have an indirdep we need to enforce the truncation order
* and discard it when it is complete.
*/
if (indirdep) {
if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
!TAILQ_EMPTY(&indirdep->ir_trunc)) {
/*
* Add the complete truncate to the list on the
* indirdep to enforce in-order processing.
*/
if (freework->fw_indir == NULL)
TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
freework, fw_next);
FREE_LOCK(ump);
return;
}
/*
* If we're goingaway, free the indirdep. Otherwise it will
* linger until the write completes.
*/
if (goingaway)
free_indirdep(indirdep);
}
FREE_LOCK(ump);
/* Initialize pointers depending on block size. */
if (ump->um_fstype == UFS1) {
bap1 = (ufs1_daddr_t *)bp->b_data;
nb = bap1[freework->fw_off];
ufs1fmt = 1;
bap2 = NULL;
} else {
bap2 = (ufs2_daddr_t *)bp->b_data;
nb = bap2[freework->fw_off];
ufs1fmt = 0;
bap1 = NULL;
}
level = lbn_level(lbn);
needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
lbnadd = lbn_offset(fs, level);
nblocks = btodb(fs->fs_bsize);
nfreework = freework;
freedeps = 0;
cnt = 0;
/*
* Reclaim blocks. Traverses into nested indirect levels and
* arranges for the current level to be freed when subordinates
* are free when journaling.
*/
key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
if (i != NINDIR(fs) - 1) {
if (ufs1fmt)
nnb = bap1[i+1];
else
nnb = bap2[i+1];
} else
nnb = 0;
if (nb == 0)
continue;
cnt++;
if (level != 0) {
nlbn = (lbn + 1) - (i * lbnadd);
if (needj != 0) {
nfreework = newfreework(ump, freeblks, freework,
nlbn, nb, fs->fs_frag, 0, 0);
freedeps++;
}
indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
} else {
struct freedep *freedep;
/*
* Attempt to aggregate freedep dependencies for
* all blocks being released to the same CG.
*/
LIST_INIT(&wkhd);
if (needj != 0 &&
(nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
freedep = newfreedep(freework);
WORKLIST_INSERT_UNLOCKED(&wkhd,
&freedep->fd_list);
freedeps++;
}
CTR3(KTR_SUJ,
"indir_trunc: ino %jd blkno %jd size %d",
freeblks->fb_inum, nb, fs->fs_bsize);
ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
fs->fs_bsize, freeblks->fb_inum,
freeblks->fb_vtype, &wkhd, key);
}
}
ffs_blkrelease_finish(ump, key);
if (goingaway) {
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
}
freedblocks = 0;
if (level == 0)
freedblocks = (nblocks * cnt);
if (needj == 0)
freedblocks += nblocks;
freeblks_free(ump, freeblks, freedblocks);
/*
* If we are journaling set up the ref counts and offset so this
* indirect can be completed when its children are free.
*/
if (needj) {
ACQUIRE_LOCK(ump);
freework->fw_off = i;
freework->fw_ref += freedeps;
freework->fw_ref -= NINDIR(fs) + 1;
if (level == 0)
freeblks->fb_cgwait += freedeps;
if (freework->fw_ref == 0)
freework_freeblock(freework, SINGLETON_KEY);
FREE_LOCK(ump);
return;
}
/*
* If we're not journaling we can free the indirect now.
*/
dbn = dbtofsb(fs, dbn);
CTR3(KTR_SUJ,
"indir_trunc 2: ino %jd blkno %jd size %d",
freeblks->fb_inum, dbn, fs->fs_bsize);
ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
/* Non SUJ softdep does single-threaded truncations. */
if (freework->fw_blkno == dbn) {
freework->fw_state |= ALLCOMPLETE;
ACQUIRE_LOCK(ump);
handle_written_freework(freework);
FREE_LOCK(ump);
}
return;
}
/*
* Cancel an allocindir when it is removed via truncation. When bp is not
* NULL the indirect never appeared on disk and is scheduled to be freed
* independently of the indir so we can more easily track journal work.
*/
static void
cancel_allocindir(aip, bp, freeblks, trunc)
struct allocindir *aip;
struct buf *bp;
struct freeblks *freeblks;
int trunc;
{
struct indirdep *indirdep;
struct freefrag *freefrag;
struct newblk *newblk;
newblk = (struct newblk *)aip;
LIST_REMOVE(aip, ai_next);
/*
* We must eliminate the pointer in bp if it must be freed on its
* own due to partial truncate or pending journal work.
*/
if (bp && (trunc || newblk->nb_jnewblk)) {
/*
* Clear the pointer and mark the aip to be freed
* directly if it never existed on disk.
*/
aip->ai_state |= DELAYEDFREE;
indirdep = aip->ai_indirdep;
if (indirdep->ir_state & UFS1FMT)
((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
else
((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
}
/*
* When truncating the previous pointer will be freed via
* savedbp. Eliminate the freefrag which would dup free.
*/
if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
newblk->nb_freefrag = NULL;
if (freefrag->ff_jdep)
cancel_jfreefrag(
WK_JFREEFRAG(freefrag->ff_jdep));
jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
WORKITEM_FREE(freefrag, D_FREEFRAG);
}
/*
* If the journal hasn't been written the jnewblk must be passed
* to the call to ffs_blkfree that reclaims the space. We accomplish
* this by leaving the journal dependency on the newblk to be freed
* when a freework is created in handle_workitem_freeblocks().
*/
cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
}
/*
* Create the mkdir dependencies for . and .. in a new directory. Link them
* in to a newdirblk so any subsequent additions are tracked properly. The
* caller is responsible for adding the mkdir1 dependency to the journal
* and updating id_mkdiradd. This function returns with the per-filesystem
* lock held.
*/
static struct mkdir *
setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
struct diradd *dap;
ino_t newinum;
ino_t dinum;
struct buf *newdirbp;
struct mkdir **mkdirp;
{
struct newblk *newblk;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct newdirblk *newdirblk;
struct mkdir *mkdir1, *mkdir2;
struct worklist *wk;
struct jaddref *jaddref;
struct ufsmount *ump;
struct mount *mp;
mp = dap->da_list.wk_mp;
ump = VFSTOUFS(mp);
newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
M_SOFTDEP_FLAGS);
workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
LIST_INIT(&newdirblk->db_mkdir);
mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
mkdir1->md_state = ATTACHED | MKDIR_BODY;
mkdir1->md_diradd = dap;
mkdir1->md_jaddref = NULL;
mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
mkdir2->md_state = ATTACHED | MKDIR_PARENT;
mkdir2->md_diradd = dap;
mkdir2->md_jaddref = NULL;
if (MOUNTEDSUJ(mp) == 0) {
mkdir1->md_state |= DEPCOMPLETE;
mkdir2->md_state |= DEPCOMPLETE;
}
/*
* Dependency on "." and ".." being written to disk.
*/
mkdir1->md_buf = newdirbp;
ACQUIRE_LOCK(VFSTOUFS(mp));
LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
/*
* We must link the pagedep, allocdirect, and newdirblk for
* the initial file page so the pointer to the new directory
* is not written until the directory contents are live and
* any subsequent additions are not marked live until the
* block is reachable via the inode.
*/
if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
panic("setup_newdir: lost pagedep");
LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
if (wk->wk_type == D_ALLOCDIRECT)
break;
if (wk == NULL)
panic("setup_newdir: lost allocdirect");
if (pagedep->pd_state & NEWBLOCK)
panic("setup_newdir: NEWBLOCK already set");
newblk = WK_NEWBLK(wk);
pagedep->pd_state |= NEWBLOCK;
pagedep->pd_newdirblk = newdirblk;
newdirblk->db_pagedep = pagedep;
WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
/*
* Look up the inodedep for the parent directory so that we
* can link mkdir2 into the pending dotdot jaddref or
* the inode write if there is none. If the inode is
* ALLCOMPLETE and no jaddref is present all dependencies have
* been satisfied and mkdir2 can be freed.
*/
inodedep_lookup(mp, dinum, 0, &inodedep);
if (MOUNTEDSUJ(mp)) {
if (inodedep == NULL)
panic("setup_newdir: Lost parent.");
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
(jaddref->ja_state & MKDIR_PARENT),
("setup_newdir: bad dotdot jaddref %p", jaddref));
LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
mkdir2->md_jaddref = jaddref;
jaddref->ja_mkdir = mkdir2;
} else if (inodedep == NULL ||
(inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
dap->da_state &= ~MKDIR_PARENT;
WORKITEM_FREE(mkdir2, D_MKDIR);
mkdir2 = NULL;
} else {
LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
}
*mkdirp = mkdir2;
return (mkdir1);
}
/*
* Directory entry addition dependencies.
*
* When adding a new directory entry, the inode (with its incremented link
* count) must be written to disk before the directory entry's pointer to it.
* Also, if the inode is newly allocated, the corresponding freemap must be
* updated (on disk) before the directory entry's pointer. These requirements
* are met via undo/redo on the directory entry's pointer, which consists
* simply of the inode number.
*
* As directory entries are added and deleted, the free space within a
* directory block can become fragmented. The ufs filesystem will compact
* a fragmented directory block to make space for a new entry. When this
* occurs, the offsets of previously added entries change. Any "diradd"
* dependency structures corresponding to these entries must be updated with
* the new offsets.
*/
/*
* This routine is called after the in-memory inode's link
* count has been incremented, but before the directory entry's
* pointer to the inode has been set.
*/
int
softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for directory */
off_t diroffset; /* offset of new entry in directory */
ino_t newinum; /* inode referenced by new directory entry */
struct buf *newdirbp; /* non-NULL => contents of new mkdir */
int isnewblk; /* entry is in a newly allocated block */
{
int offset; /* offset of new entry within directory block */
ufs_lbn_t lbn; /* block in directory containing new entry */
struct fs *fs;
struct diradd *dap;
struct newblk *newblk;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct newdirblk *newdirblk;
struct mkdir *mkdir1, *mkdir2;
struct jaddref *jaddref;
struct ufsmount *ump;
struct mount *mp;
int isindir;
mp = ITOVFS(dp);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_directory_add called on non-softdep filesystem"));
/*
* Whiteouts have no dependencies.
*/
if (newinum == UFS_WINO) {
if (newdirbp != NULL)
bdwrite(newdirbp);
return (0);
}
jaddref = NULL;
mkdir1 = mkdir2 = NULL;
fs = ump->um_fs;
lbn = lblkno(fs, diroffset);
offset = blkoff(fs, diroffset);
dap = malloc(sizeof(struct diradd), M_DIRADD,
M_SOFTDEP_FLAGS|M_ZERO);
workitem_alloc(&dap->da_list, D_DIRADD, mp);
dap->da_offset = offset;
dap->da_newinum = newinum;
dap->da_state = ATTACHED;
LIST_INIT(&dap->da_jwork);
isindir = bp->b_lblkno >= UFS_NDADDR;
newdirblk = NULL;
if (isnewblk &&
(isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
newdirblk = malloc(sizeof(struct newdirblk),
M_NEWDIRBLK, M_SOFTDEP_FLAGS);
workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
LIST_INIT(&newdirblk->db_mkdir);
}
/*
* If we're creating a new directory setup the dependencies and set
* the dap state to wait for them. Otherwise it's COMPLETE and
* we can move on.
*/
if (newdirbp == NULL) {
dap->da_state |= DEPCOMPLETE;
ACQUIRE_LOCK(ump);
} else {
dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
&mkdir2);
}
/*
* Link into parent directory pagedep to await its being written.
*/
pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
#ifdef DEBUG
if (diradd_lookup(pagedep, offset) != NULL)
panic("softdep_setup_directory_add: %p already at off %d\n",
diradd_lookup(pagedep, offset), offset);
#endif
dap->da_pagedep = pagedep;
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
da_pdlist);
inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
/*
* If we're journaling, link the diradd into the jaddref so it
* may be completed after the journal entry is written. Otherwise,
* link the diradd into its inodedep. If the inode is not yet
* written place it on the bufwait list, otherwise do the post-inode
* write processing to put it on the id_pendinghd list.
*/
if (MOUNTEDSUJ(mp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
("softdep_setup_directory_add: bad jaddref %p", jaddref));
jaddref->ja_diroff = diroffset;
jaddref->ja_diradd = dap;
add_to_journal(&jaddref->ja_list);
} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
diradd_inode_written(dap, inodedep);
else
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
/*
* Add the journal entries for . and .. links now that the primary
* link is written.
*/
if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
inoreflst, if_deps);
KASSERT(jaddref != NULL &&
jaddref->ja_ino == jaddref->ja_parent &&
(jaddref->ja_state & MKDIR_BODY),
("softdep_setup_directory_add: bad dot jaddref %p",
jaddref));
mkdir1->md_jaddref = jaddref;
jaddref->ja_mkdir = mkdir1;
/*
* It is important that the dotdot journal entry
* is added prior to the dot entry since dot writes
* both the dot and dotdot links. These both must
* be added after the primary link for the journal
* to remain consistent.
*/
add_to_journal(&mkdir2->md_jaddref->ja_list);
add_to_journal(&jaddref->ja_list);
}
/*
* If we are adding a new directory remember this diradd so that if
* we rename it we can keep the dot and dotdot dependencies. If
* we are adding a new name for an inode that has a mkdiradd we
* must be in rename and we have to move the dot and dotdot
* dependencies to this new name. The old name is being orphaned
* soon.
*/
if (mkdir1 != NULL) {
if (inodedep->id_mkdiradd != NULL)
panic("softdep_setup_directory_add: Existing mkdir");
inodedep->id_mkdiradd = dap;
} else if (inodedep->id_mkdiradd)
merge_diradd(inodedep, dap);
if (newdirblk != NULL) {
/*
* There is nothing to do if we are already tracking
* this block.
*/
if ((pagedep->pd_state & NEWBLOCK) != 0) {
WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
FREE_LOCK(ump);
return (0);
}
if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
== 0)
panic("softdep_setup_directory_add: lost entry");
WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
pagedep->pd_state |= NEWBLOCK;
pagedep->pd_newdirblk = newdirblk;
newdirblk->db_pagedep = pagedep;
FREE_LOCK(ump);
/*
* If we extended into an indirect signal direnter to sync.
*/
if (isindir)
return (1);
return (0);
}
FREE_LOCK(ump);
return (0);
}
/*
* This procedure is called to change the offset of a directory
* entry when compacting a directory block which must be owned
* exclusively by the caller. Note that the actual entry movement
* must be done in this procedure to ensure that no I/O completions
* occur while the move is in progress.
*/
void
softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
struct buf *bp; /* Buffer holding directory block. */
struct inode *dp; /* inode for directory */
caddr_t base; /* address of dp->i_offset */
caddr_t oldloc; /* address of old directory location */
caddr_t newloc; /* address of new directory location */
int entrysize; /* size of directory entry */
{
int offset, oldoffset, newoffset;
struct pagedep *pagedep;
struct jmvref *jmvref;
struct diradd *dap;
struct direct *de;
struct mount *mp;
struct ufsmount *ump;
ufs_lbn_t lbn;
int flags;
mp = ITOVFS(dp);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_change_directoryentry_offset called on "
"non-softdep filesystem"));
de = (struct direct *)oldloc;
jmvref = NULL;
flags = 0;
/*
* Moves are always journaled as it would be too complex to
* determine if any affected adds or removes are present in the
* journal.
*/
if (MOUNTEDSUJ(mp)) {
flags = DEPALLOC;
jmvref = newjmvref(dp, de->d_ino,
dp->i_offset + (oldloc - base),
dp->i_offset + (newloc - base));
}
lbn = lblkno(ump->um_fs, dp->i_offset);
offset = blkoff(ump->um_fs, dp->i_offset);
oldoffset = offset + (oldloc - base);
newoffset = offset + (newloc - base);
ACQUIRE_LOCK(ump);
if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
goto done;
dap = diradd_lookup(pagedep, oldoffset);
if (dap) {
dap->da_offset = newoffset;
newoffset = DIRADDHASH(newoffset);
oldoffset = DIRADDHASH(oldoffset);
if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
newoffset != oldoffset) {
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
dap, da_pdlist);
}
}
done:
if (jmvref) {
jmvref->jm_pagedep = pagedep;
LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
add_to_journal(&jmvref->jm_list);
}
bcopy(oldloc, newloc, entrysize);
FREE_LOCK(ump);
}
/*
* Move the mkdir dependencies and journal work from one diradd to another
* when renaming a directory. The new name must depend on the mkdir deps
* completing as the old name did. Directories can only have one valid link
* at a time so one must be canonical.
*/
static void
merge_diradd(inodedep, newdap)
struct inodedep *inodedep;
struct diradd *newdap;
{
struct diradd *olddap;
struct mkdir *mkdir, *nextmd;
struct ufsmount *ump;
short state;
olddap = inodedep->id_mkdiradd;
inodedep->id_mkdiradd = newdap;
if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
newdap->da_state &= ~DEPCOMPLETE;
ump = VFSTOUFS(inodedep->id_list.wk_mp);
for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
mkdir = nextmd) {
nextmd = LIST_NEXT(mkdir, md_mkdirs);
if (mkdir->md_diradd != olddap)
continue;
mkdir->md_diradd = newdap;
state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
newdap->da_state |= state;
olddap->da_state &= ~state;
if ((olddap->da_state &
(MKDIR_PARENT | MKDIR_BODY)) == 0)
break;
}
if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
panic("merge_diradd: unfound ref");
}
/*
* Any mkdir related journal items are not safe to be freed until
* the new name is stable.
*/
jwork_move(&newdap->da_jwork, &olddap->da_jwork);
olddap->da_state |= DEPCOMPLETE;
complete_diradd(olddap);
}
/*
* Move the diradd to the pending list when all diradd dependencies are
* complete.
*/
static void
complete_diradd(dap)
struct diradd *dap;
{
struct pagedep *pagedep;
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
}
}
/*
* Cancel a diradd when a dirrem overlaps with it. We must cancel the journal
* add entries and conditonally journal the remove.
*/
static void
cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
struct diradd *dap;
struct dirrem *dirrem;
struct jremref *jremref;
struct jremref *dotremref;
struct jremref *dotdotremref;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct inoref *inoref;
struct ufsmount *ump;
struct mkdir *mkdir;
/*
* If no remove references were allocated we're on a non-journaled
* filesystem and can skip the cancel step.
*/
if (jremref == NULL) {
free_diradd(dap, NULL);
return;
}
/*
* Cancel the primary name an free it if it does not require
* journaling.
*/
if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
0, &inodedep) != 0) {
/* Abort the addref that reference this diradd. */
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if (inoref->if_list.wk_type != D_JADDREF)
continue;
jaddref = (struct jaddref *)inoref;
if (jaddref->ja_diradd != dap)
continue;
if (cancel_jaddref(jaddref, inodedep,
&dirrem->dm_jwork) == 0) {
free_jremref(jremref);
jremref = NULL;
}
break;
}
}
/*
* Cancel subordinate names and free them if they do not require
* journaling.
*/
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
ump = VFSTOUFS(dap->da_list.wk_mp);
LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
if (mkdir->md_diradd != dap)
continue;
if ((jaddref = mkdir->md_jaddref) == NULL)
continue;
mkdir->md_jaddref = NULL;
if (mkdir->md_state & MKDIR_PARENT) {
if (cancel_jaddref(jaddref, NULL,
&dirrem->dm_jwork) == 0) {
free_jremref(dotdotremref);
dotdotremref = NULL;
}
} else {
if (cancel_jaddref(jaddref, inodedep,
&dirrem->dm_jwork) == 0) {
free_jremref(dotremref);
dotremref = NULL;
}
}
}
}
if (jremref)
journal_jremref(dirrem, jremref, inodedep);
if (dotremref)
journal_jremref(dirrem, dotremref, inodedep);
if (dotdotremref)
journal_jremref(dirrem, dotdotremref, NULL);
jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
free_diradd(dap, &dirrem->dm_jwork);
}
/*
* Free a diradd dependency structure. This routine must be called
* with splbio interrupts blocked.
*/
static void
free_diradd(dap, wkhd)
struct diradd *dap;
struct workhead *wkhd;
{
struct dirrem *dirrem;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct mkdir *mkdir, *nextmd;
struct ufsmount *ump;
ump = VFSTOUFS(dap->da_list.wk_mp);
LOCK_OWNED(ump);
LIST_REMOVE(dap, da_pdlist);
if (dap->da_state & ONWORKLIST)
WORKLIST_REMOVE(&dap->da_list);
if ((dap->da_state & DIRCHG) == 0) {
pagedep = dap->da_pagedep;
} else {
dirrem = dap->da_previous;
pagedep = dirrem->dm_pagedep;
dirrem->dm_dirinum = pagedep->pd_ino;
dirrem->dm_state |= COMPLETE;
if (LIST_EMPTY(&dirrem->dm_jremrefhd))
add_to_worklist(&dirrem->dm_list, 0);
}
if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
0, &inodedep) != 0)
if (inodedep->id_mkdiradd == dap)
inodedep->id_mkdiradd = NULL;
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
mkdir = nextmd) {
nextmd = LIST_NEXT(mkdir, md_mkdirs);
if (mkdir->md_diradd != dap)
continue;
dap->da_state &=
~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
LIST_REMOVE(mkdir, md_mkdirs);
if (mkdir->md_state & ONWORKLIST)
WORKLIST_REMOVE(&mkdir->md_list);
if (mkdir->md_jaddref != NULL)
panic("free_diradd: Unexpected jaddref");
WORKITEM_FREE(mkdir, D_MKDIR);
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
break;
}
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
panic("free_diradd: unfound ref");
}
if (inodedep)
free_inodedep(inodedep);
/*
* Free any journal segments waiting for the directory write.
*/
handle_jwork(&dap->da_jwork);
WORKITEM_FREE(dap, D_DIRADD);
}
/*
* Directory entry removal dependencies.
*
* When removing a directory entry, the entry's inode pointer must be
* zero'ed on disk before the corresponding inode's link count is decremented
* (possibly freeing the inode for re-use). This dependency is handled by
* updating the directory entry but delaying the inode count reduction until
* after the directory block has been written to disk. After this point, the
* inode count can be decremented whenever it is convenient.
*/
/*
* This routine should be called immediately after removing
* a directory entry. The inode's link count should not be
* decremented by the calling procedure -- the soft updates
* code will do this task when it is safe.
*/
void
softdep_setup_remove(bp, dp, ip, isrmdir)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
int isrmdir; /* indicates if doing RMDIR */
{
struct dirrem *dirrem, *prevdirrem;
struct inodedep *inodedep;
struct ufsmount *ump;
int direct;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_setup_remove called on non-softdep filesystem"));
/*
* Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want
* newdirrem() to setup the full directory remove which requires
* isrmdir > 1.
*/
dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
/*
* Add the dirrem to the inodedep's pending remove list for quick
* discovery later.
*/
if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
panic("softdep_setup_remove: Lost inodedep.");
KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
dirrem->dm_state |= ONDEPLIST;
LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
/*
* If the COMPLETE flag is clear, then there were no active
* entries and we want to roll back to a zeroed entry until
* the new inode is committed to disk. If the COMPLETE flag is
* set then we have deleted an entry that never made it to
* disk. If the entry we deleted resulted from a name change,
* then the old name still resides on disk. We cannot delete
* its inode (returned to us in prevdirrem) until the zeroed
* directory entry gets to disk. The new inode has never been
* referenced on the disk, so can be deleted immediately.
*/
if ((dirrem->dm_state & COMPLETE) == 0) {
LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
dm_next);
FREE_LOCK(ump);
} else {
if (prevdirrem != NULL)
LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
prevdirrem, dm_next);
dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
FREE_LOCK(ump);
if (direct)
handle_workitem_remove(dirrem, 0);
}
}
/*
* Check for an entry matching 'offset' on both the pd_dirraddhd list and the
* pd_pendinghd list of a pagedep.
*/
static struct diradd *
diradd_lookup(pagedep, offset)
struct pagedep *pagedep;
int offset;
{
struct diradd *dap;
LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
if (dap->da_offset == offset)
return (dap);
LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
if (dap->da_offset == offset)
return (dap);
return (NULL);
}
/*
* Search for a .. diradd dependency in a directory that is being removed.
* If the directory was renamed to a new parent we have a diradd rather
* than a mkdir for the .. entry. We need to cancel it now before
* it is found in truncate().
*/
static struct jremref *
cancel_diradd_dotdot(ip, dirrem, jremref)
struct inode *ip;
struct dirrem *dirrem;
struct jremref *jremref;
{
struct pagedep *pagedep;
struct diradd *dap;
struct worklist *wk;
if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
return (jremref);
dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
if (dap == NULL)
return (jremref);
cancel_diradd(dap, dirrem, jremref, NULL, NULL);
/*
* Mark any journal work as belonging to the parent so it is freed
* with the .. reference.
*/
LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
wk->wk_state |= MKDIR_PARENT;
return (NULL);
}
/*
* Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
* replace it with a dirrem/diradd pair as a result of re-parenting a
* directory. This ensures that we don't simultaneously have a mkdir and
* a diradd for the same .. entry.
*/
static struct jremref *
cancel_mkdir_dotdot(ip, dirrem, jremref)
struct inode *ip;
struct dirrem *dirrem;
struct jremref *jremref;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct ufsmount *ump;
struct mkdir *mkdir;
struct diradd *dap;
struct mount *mp;
mp = ITOVFS(ip);
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
return (jremref);
dap = inodedep->id_mkdiradd;
if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
return (jremref);
ump = VFSTOUFS(inodedep->id_list.wk_mp);
for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
mkdir = LIST_NEXT(mkdir, md_mkdirs))
if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
break;
if (mkdir == NULL)
panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
if ((jaddref = mkdir->md_jaddref) != NULL) {
mkdir->md_jaddref = NULL;
jaddref->ja_state &= ~MKDIR_PARENT;
if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
panic("cancel_mkdir_dotdot: Lost parent inodedep");
if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
journal_jremref(dirrem, jremref, inodedep);
jremref = NULL;
}
}
if (mkdir->md_state & ONWORKLIST)
WORKLIST_REMOVE(&mkdir->md_list);
mkdir->md_state |= ALLCOMPLETE;
complete_mkdir(mkdir);
return (jremref);
}
static void
journal_jremref(dirrem, jremref, inodedep)
struct dirrem *dirrem;
struct jremref *jremref;
struct inodedep *inodedep;
{
if (inodedep == NULL)
if (inodedep_lookup(jremref->jr_list.wk_mp,
jremref->jr_ref.if_ino, 0, &inodedep) == 0)
panic("journal_jremref: Lost inodedep");
LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
add_to_journal(&jremref->jr_list);
}
static void
dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
struct dirrem *dirrem;
struct jremref *jremref;
struct jremref *dotremref;
struct jremref *dotdotremref;
{
struct inodedep *inodedep;
if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
&inodedep) == 0)
panic("dirrem_journal: Lost inodedep");
journal_jremref(dirrem, jremref, inodedep);
if (dotremref)
journal_jremref(dirrem, dotremref, inodedep);
if (dotdotremref)
journal_jremref(dirrem, dotdotremref, NULL);
}
/*
* Allocate a new dirrem if appropriate and return it along with
* its associated pagedep. Called without a lock, returns with lock.
*/
static struct dirrem *
newdirrem(bp, dp, ip, isrmdir, prevdirremp)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
int isrmdir; /* indicates if doing RMDIR */
struct dirrem **prevdirremp; /* previously referenced inode, if any */
{
int offset;
ufs_lbn_t lbn;
struct diradd *dap;
struct dirrem *dirrem;
struct pagedep *pagedep;
struct jremref *jremref;
struct jremref *dotremref;
struct jremref *dotdotremref;
struct vnode *dvp;
struct ufsmount *ump;
/*
* Whiteouts have no deletion dependencies.
*/
if (ip == NULL)
panic("newdirrem: whiteout");
dvp = ITOV(dp);
ump = ITOUMP(dp);
/*
* If the system is over its limit and our filesystem is
* responsible for more than our share of that usage and
* we are not a snapshot, request some inodedep cleanup.
* Limiting the number of dirrem structures will also limit
* the number of freefile and freeblks structures.
*/
ACQUIRE_LOCK(ump);
if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
schedule_cleanup(UFSTOVFS(ump));
else
FREE_LOCK(ump);
dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
M_ZERO);
workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
LIST_INIT(&dirrem->dm_jremrefhd);
LIST_INIT(&dirrem->dm_jwork);
dirrem->dm_state = isrmdir ? RMDIR : 0;
dirrem->dm_oldinum = ip->i_number;
*prevdirremp = NULL;
/*
* Allocate remove reference structures to track journal write
* dependencies. We will always have one for the link and
* when doing directories we will always have one more for dot.
* When renaming a directory we skip the dotdot link change so
* this is not needed.
*/
jremref = dotremref = dotdotremref = NULL;
if (DOINGSUJ(dvp)) {
if (isrmdir) {
jremref = newjremref(dirrem, dp, ip, dp->i_offset,
ip->i_effnlink + 2);
dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
ip->i_effnlink + 1);
dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
dp->i_effnlink + 1);
dotdotremref->jr_state |= MKDIR_PARENT;
} else
jremref = newjremref(dirrem, dp, ip, dp->i_offset,
ip->i_effnlink + 1);
}
ACQUIRE_LOCK(ump);
lbn = lblkno(ump->um_fs, dp->i_offset);
offset = blkoff(ump->um_fs, dp->i_offset);
pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
&pagedep);
dirrem->dm_pagedep = pagedep;
dirrem->dm_offset = offset;
/*
* If we're renaming a .. link to a new directory, cancel any
* existing MKDIR_PARENT mkdir. If it has already been canceled
* the jremref is preserved for any potential diradd in this
* location. This can not coincide with a rmdir.
*/
if (dp->i_offset == DOTDOT_OFFSET) {
if (isrmdir)
panic("newdirrem: .. directory change during remove?");
jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
}
/*
* If we're removing a directory search for the .. dependency now and
* cancel it. Any pending journal work will be added to the dirrem
* to be completed when the workitem remove completes.
*/
if (isrmdir)
dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
/*
* Check for a diradd dependency for the same directory entry.
* If present, then both dependencies become obsolete and can
* be de-allocated.
*/
dap = diradd_lookup(pagedep, offset);
if (dap == NULL) {
/*
* Link the jremref structures into the dirrem so they are
* written prior to the pagedep.
*/
if (jremref)
dirrem_journal(dirrem, jremref, dotremref,
dotdotremref);
return (dirrem);
}
/*
* Must be ATTACHED at this point.
*/
if ((dap->da_state & ATTACHED) == 0)
panic("newdirrem: not ATTACHED");
if (dap->da_newinum != ip->i_number)
panic("newdirrem: inum %ju should be %ju",
(uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
/*
* If we are deleting a changed name that never made it to disk,
* then return the dirrem describing the previous inode (which
* represents the inode currently referenced from this entry on disk).
*/
if ((dap->da_state & DIRCHG) != 0) {
*prevdirremp = dap->da_previous;
dap->da_state &= ~DIRCHG;
dap->da_pagedep = pagedep;
}
/*
* We are deleting an entry that never made it to disk.
* Mark it COMPLETE so we can delete its inode immediately.
*/
dirrem->dm_state |= COMPLETE;
cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
#ifdef SUJ_DEBUG
if (isrmdir == 0) {
struct worklist *wk;
LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
}
#endif
return (dirrem);
}
/*
* Directory entry change dependencies.
*
* Changing an existing directory entry requires that an add operation
* be completed first followed by a deletion. The semantics for the addition
* are identical to the description of adding a new entry above except
* that the rollback is to the old inode number rather than zero. Once
* the addition dependency is completed, the removal is done as described
* in the removal routine above.
*/
/*
* This routine should be called immediately after changing
* a directory entry. The inode's link count should not be
* decremented by the calling procedure -- the soft updates
* code will perform this task when it is safe.
*/
void
softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
ino_t newinum; /* new inode number for changed entry */
int isrmdir; /* indicates if doing RMDIR */
{
int offset;
struct diradd *dap = NULL;
struct dirrem *dirrem, *prevdirrem;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct jaddref *jaddref;
struct mount *mp;
struct ufsmount *ump;
mp = ITOVFS(dp);
ump = VFSTOUFS(mp);
offset = blkoff(ump->um_fs, dp->i_offset);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_directory_change called on non-softdep filesystem"));
/*
* Whiteouts do not need diradd dependencies.
*/
if (newinum != UFS_WINO) {
dap = malloc(sizeof(struct diradd),
M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
workitem_alloc(&dap->da_list, D_DIRADD, mp);
dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
dap->da_offset = offset;
dap->da_newinum = newinum;
LIST_INIT(&dap->da_jwork);
}
/*
* Allocate a new dirrem and ACQUIRE_LOCK.
*/
dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
pagedep = dirrem->dm_pagedep;
/*
* The possible values for isrmdir:
* 0 - non-directory file rename
* 1 - directory rename within same directory
* inum - directory rename to new directory of given inode number
* When renaming to a new directory, we are both deleting and
* creating a new directory entry, so the link count on the new
* directory should not change. Thus we do not need the followup
* dirrem which is usually done in handle_workitem_remove. We set
* the DIRCHG flag to tell handle_workitem_remove to skip the
* followup dirrem.
*/
if (isrmdir > 1)
dirrem->dm_state |= DIRCHG;
/*
* Whiteouts have no additional dependencies,
* so just put the dirrem on the correct list.
*/
if (newinum == UFS_WINO) {
if ((dirrem->dm_state & COMPLETE) == 0) {
LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
dm_next);
} else {
dirrem->dm_dirinum = pagedep->pd_ino;
if (LIST_EMPTY(&dirrem->dm_jremrefhd))
add_to_worklist(&dirrem->dm_list, 0);
}
FREE_LOCK(ump);
return;
}
/*
* Add the dirrem to the inodedep's pending remove list for quick
* discovery later. A valid nlinkdelta ensures that this lookup
* will not fail.
*/
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
panic("softdep_setup_directory_change: Lost inodedep.");
dirrem->dm_state |= ONDEPLIST;
LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
/*
* If the COMPLETE flag is clear, then there were no active
* entries and we want to roll back to the previous inode until
* the new inode is committed to disk. If the COMPLETE flag is
* set, then we have deleted an entry that never made it to disk.
* If the entry we deleted resulted from a name change, then the old
* inode reference still resides on disk. Any rollback that we do
* needs to be to that old inode (returned to us in prevdirrem). If
* the entry we deleted resulted from a create, then there is
* no entry on the disk, so we want to roll back to zero rather
* than the uncommitted inode. In either of the COMPLETE cases we
* want to immediately free the unwritten and unreferenced inode.
*/
if ((dirrem->dm_state & COMPLETE) == 0) {
dap->da_previous = dirrem;
} else {
if (prevdirrem != NULL) {
dap->da_previous = prevdirrem;
} else {
dap->da_state &= ~DIRCHG;
dap->da_pagedep = pagedep;
}
dirrem->dm_dirinum = pagedep->pd_ino;
if (LIST_EMPTY(&dirrem->dm_jremrefhd))
add_to_worklist(&dirrem->dm_list, 0);
}
/*
* Lookup the jaddref for this journal entry. We must finish
* initializing it and make the diradd write dependent on it.
* If we're not journaling, put it on the id_bufwait list if the
* inode is not yet written. If it is written, do the post-inode
* write processing to put it on the id_pendinghd list.
*/
inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
if (MOUNTEDSUJ(mp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
("softdep_setup_directory_change: bad jaddref %p",
jaddref));
jaddref->ja_diroff = dp->i_offset;
jaddref->ja_diradd = dap;
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
dap, da_pdlist);
add_to_journal(&jaddref->ja_list);
} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
dap->da_state |= COMPLETE;
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
} else {
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
dap, da_pdlist);
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
}
/*
* If we're making a new name for a directory that has not been
* committed when need to move the dot and dotdot references to
* this new name.
*/
if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
merge_diradd(inodedep, dap);
FREE_LOCK(ump);
}
/*
* Called whenever the link count on an inode is changed.
* It creates an inode dependency so that the new reference(s)
* to the inode cannot be committed to disk until the updated
* inode has been written.
*/
void
softdep_change_linkcnt(ip)
struct inode *ip; /* the inode with the increased link count */
{
struct inodedep *inodedep;
struct ufsmount *ump;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_change_linkcnt called on non-softdep filesystem"));
ACQUIRE_LOCK(ump);
inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
if (ip->i_nlink < ip->i_effnlink)
panic("softdep_change_linkcnt: bad delta");
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
FREE_LOCK(ump);
}
/*
* Attach a sbdep dependency to the superblock buf so that we can keep
* track of the head of the linked list of referenced but unlinked inodes.
*/
void
softdep_setup_sbupdate(ump, fs, bp)
struct ufsmount *ump;
struct fs *fs;
struct buf *bp;
{
struct sbdep *sbdep;
struct worklist *wk;
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_setup_sbupdate called on non-softdep filesystem"));
LIST_FOREACH(wk, &bp->b_dep, wk_list)
if (wk->wk_type == D_SBDEP)
break;
if (wk != NULL)
return;
sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
sbdep->sb_fs = fs;
sbdep->sb_ump = ump;
ACQUIRE_LOCK(ump);
WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
FREE_LOCK(ump);
}
/*
* Return the first unlinked inodedep which is ready to be the head of the
* list. The inodedep and all those after it must have valid next pointers.
*/
static struct inodedep *
first_unlinked_inodedep(ump)
struct ufsmount *ump;
{
struct inodedep *inodedep;
struct inodedep *idp;
LOCK_OWNED(ump);
for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
inodedep; inodedep = idp) {
if ((inodedep->id_state & UNLINKNEXT) == 0)
return (NULL);
idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
break;
if ((inodedep->id_state & UNLINKPREV) == 0)
break;
}
return (inodedep);
}
/*
* Set the sujfree unlinked head pointer prior to writing a superblock.
*/
static void
initiate_write_sbdep(sbdep)
struct sbdep *sbdep;
{
struct inodedep *inodedep;
struct fs *bpfs;
struct fs *fs;
bpfs = sbdep->sb_fs;
fs = sbdep->sb_ump->um_fs;
inodedep = first_unlinked_inodedep(sbdep->sb_ump);
if (inodedep) {
fs->fs_sujfree = inodedep->id_ino;
inodedep->id_state |= UNLINKPREV;
} else
fs->fs_sujfree = 0;
bpfs->fs_sujfree = fs->fs_sujfree;
}
/*
* After a superblock is written determine whether it must be written again
* due to a changing unlinked list head.
*/
static int
handle_written_sbdep(sbdep, bp)
struct sbdep *sbdep;
struct buf *bp;
{
struct inodedep *inodedep;
struct fs *fs;
LOCK_OWNED(sbdep->sb_ump);
fs = sbdep->sb_fs;
/*
* If the superblock doesn't match the in-memory list start over.
*/
inodedep = first_unlinked_inodedep(sbdep->sb_ump);
if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
(inodedep == NULL && fs->fs_sujfree != 0)) {
bdirty(bp);
return (1);
}
WORKITEM_FREE(sbdep, D_SBDEP);
if (fs->fs_sujfree == 0)
return (0);
/*
* Now that we have a record of this inode in stable store allow it
* to be written to free up pending work. Inodes may see a lot of
* write activity after they are unlinked which we must not hold up.
*/
for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
inodedep, inodedep->id_state);
if (inodedep->id_state & UNLINKONLIST)
break;
inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
}
return (0);
}
/*
* Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
*/
static void
unlinked_inodedep(mp, inodedep)
struct mount *mp;
struct inodedep *inodedep;
{
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
if (MOUNTEDSUJ(mp) == 0)
return;
ump->um_fs->fs_fmod = 1;
if (inodedep->id_state & UNLINKED)
panic("unlinked_inodedep: %p already unlinked\n", inodedep);
inodedep->id_state |= UNLINKED;
TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
}
/*
* Remove an inodedep from the unlinked inodedep list. This may require
* disk writes if the inode has made it that far.
*/
static void
clear_unlinked_inodedep(inodedep)
struct inodedep *inodedep;
{
struct ufs2_dinode *dip;
struct ufsmount *ump;
struct inodedep *idp;
struct inodedep *idn;
struct fs *fs;
struct buf *bp;
ino_t ino;
ino_t nino;
ino_t pino;
int error;
ump = VFSTOUFS(inodedep->id_list.wk_mp);
fs = ump->um_fs;
ino = inodedep->id_ino;
error = 0;
for (;;) {
LOCK_OWNED(ump);
KASSERT((inodedep->id_state & UNLINKED) != 0,
("clear_unlinked_inodedep: inodedep %p not unlinked",
inodedep));
/*
* If nothing has yet been written simply remove us from
* the in memory list and return. This is the most common
* case where handle_workitem_remove() loses the final
* reference.
*/
if ((inodedep->id_state & UNLINKLINKS) == 0)
break;
/*
* If we have a NEXT pointer and no PREV pointer we can simply
* clear NEXT's PREV and remove ourselves from the list. Be
* careful not to clear PREV if the superblock points at
* next as well.
*/
idn = TAILQ_NEXT(inodedep, id_unlinked);
if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
if (idn && fs->fs_sujfree != idn->id_ino)
idn->id_state &= ~UNLINKPREV;
break;
}
/*
* Here we have an inodedep which is actually linked into
* the list. We must remove it by forcing a write to the
* link before us, whether it be the superblock or an inode.
* Unfortunately the list may change while we're waiting
* on the buf lock for either resource so we must loop until
* we lock the right one. If both the superblock and an
* inode point to this inode we must clear the inode first
* followed by the superblock.
*/
idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
pino = 0;
if (idp && (idp->id_state & UNLINKNEXT))
pino = idp->id_ino;
FREE_LOCK(ump);
if (pino == 0) {
bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
(int)fs->fs_sbsize, 0, 0, 0);
} else {
error = bread(ump->um_devvp,
fsbtodb(fs, ino_to_fsba(fs, pino)),
(int)fs->fs_bsize, NOCRED, &bp);
if (error)
brelse(bp);
}
ACQUIRE_LOCK(ump);
if (error)
break;
/* If the list has changed restart the loop. */
idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
nino = 0;
if (idp && (idp->id_state & UNLINKNEXT))
nino = idp->id_ino;
if (nino != pino ||
(inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
FREE_LOCK(ump);
brelse(bp);
ACQUIRE_LOCK(ump);
continue;
}
nino = 0;
idn = TAILQ_NEXT(inodedep, id_unlinked);
if (idn)
nino = idn->id_ino;
/*
* Remove us from the in memory list. After this we cannot
* access the inodedep.
*/
KASSERT((inodedep->id_state & UNLINKED) != 0,
("clear_unlinked_inodedep: inodedep %p not unlinked",
inodedep));
inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
FREE_LOCK(ump);
/*
* The predecessor's next pointer is manually updated here
* so that the NEXT flag is never cleared for an element
* that is in the list.
*/
if (pino == 0) {
bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
bp);
} else if (fs->fs_magic == FS_UFS1_MAGIC) {
((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, pino))->di_freelink = nino;
} else {
dip = (struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, pino);
dip->di_freelink = nino;
ffs_update_dinode_ckhash(fs, dip);
}
/*
* If the bwrite fails we have no recourse to recover. The
* filesystem is corrupted already.
*/
bwrite(bp);
ACQUIRE_LOCK(ump);
/*
* If the superblock pointer still needs to be cleared force
* a write here.
*/
if (fs->fs_sujfree == ino) {
FREE_LOCK(ump);
bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
(int)fs->fs_sbsize, 0, 0, 0);
bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
bp);
bwrite(bp);
ACQUIRE_LOCK(ump);
}
if (fs->fs_sujfree != ino)
return;
panic("clear_unlinked_inodedep: Failed to clear free head");
}
if (inodedep->id_ino == fs->fs_sujfree)
panic("clear_unlinked_inodedep: Freeing head of free list");
inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
return;
}
/*
* This workitem decrements the inode's link count.
* If the link count reaches zero, the file is removed.
*/
static int
handle_workitem_remove(dirrem, flags)
struct dirrem *dirrem;
int flags;
{
struct inodedep *inodedep;
struct workhead dotdotwk;
struct worklist *wk;
struct ufsmount *ump;
struct mount *mp;
struct vnode *vp;
struct inode *ip;
ino_t oldinum;
if (dirrem->dm_state & ONWORKLIST)
panic("handle_workitem_remove: dirrem %p still on worklist",
dirrem);
oldinum = dirrem->dm_oldinum;
mp = dirrem->dm_list.wk_mp;
ump = VFSTOUFS(mp);
flags |= LK_EXCLUSIVE;
if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
return (EBUSY);
ip = VTOI(vp);
ACQUIRE_LOCK(ump);
if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
panic("handle_workitem_remove: lost inodedep");
if (dirrem->dm_state & ONDEPLIST)
LIST_REMOVE(dirrem, dm_inonext);
KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
("handle_workitem_remove: Journal entries not written."));
/*
* Move all dependencies waiting on the remove to complete
* from the dirrem to the inode inowait list to be completed
* after the inode has been updated and written to disk. Any
* marked MKDIR_PARENT are saved to be completed when the .. ref
* is removed.
*/
LIST_INIT(&dotdotwk);
while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
WORKLIST_REMOVE(wk);
if (wk->wk_state & MKDIR_PARENT) {
wk->wk_state &= ~MKDIR_PARENT;
WORKLIST_INSERT(&dotdotwk, wk);
continue;
}
WORKLIST_INSERT(&inodedep->id_inowait, wk);
}
LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
/*
* Normal file deletion.
*/
if ((dirrem->dm_state & RMDIR) == 0) {
ip->i_nlink--;
DIP_SET(ip, i_nlink, ip->i_nlink);
ip->i_flag |= IN_CHANGE;
if (ip->i_nlink < ip->i_effnlink)
panic("handle_workitem_remove: bad file delta");
if (ip->i_nlink == 0)
unlinked_inodedep(mp, inodedep);
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
("handle_workitem_remove: worklist not empty. %s",
TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
WORKITEM_FREE(dirrem, D_DIRREM);
FREE_LOCK(ump);
goto out;
}
/*
* Directory deletion. Decrement reference count for both the
* just deleted parent directory entry and the reference for ".".
* Arrange to have the reference count on the parent decremented
* to account for the loss of "..".
*/
ip->i_nlink -= 2;
DIP_SET(ip, i_nlink, ip->i_nlink);
ip->i_flag |= IN_CHANGE;
if (ip->i_nlink < ip->i_effnlink)
panic("handle_workitem_remove: bad dir delta");
if (ip->i_nlink == 0)
unlinked_inodedep(mp, inodedep);
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
/*
* Rename a directory to a new parent. Since, we are both deleting
* and creating a new directory entry, the link count on the new
* directory should not change. Thus we skip the followup dirrem.
*/
if (dirrem->dm_state & DIRCHG) {
KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
("handle_workitem_remove: DIRCHG and worklist not empty."));
WORKITEM_FREE(dirrem, D_DIRREM);
FREE_LOCK(ump);
goto out;
}
dirrem->dm_state = ONDEPLIST;
dirrem->dm_oldinum = dirrem->dm_dirinum;
/*
* Place the dirrem on the parent's diremhd list.
*/
if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
panic("handle_workitem_remove: lost dir inodedep");
LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
/*
* If the allocated inode has never been written to disk, then
* the on-disk inode is zero'ed and we can remove the file
* immediately. When journaling if the inode has been marked
* unlinked and not DEPCOMPLETE we know it can never be written.
*/
inodedep_lookup(mp, oldinum, 0, &inodedep);
if (inodedep == NULL ||
(inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
check_inode_unwritten(inodedep)) {
FREE_LOCK(ump);
vput(vp);
return handle_workitem_remove(dirrem, flags);
}
WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
FREE_LOCK(ump);
ip->i_flag |= IN_CHANGE;
out:
ffs_update(vp, 0);
vput(vp);
return (0);
}
/*
* Inode de-allocation dependencies.
*
* When an inode's link count is reduced to zero, it can be de-allocated. We
* found it convenient to postpone de-allocation until after the inode is
* written to disk with its new link count (zero). At this point, all of the
* on-disk inode's block pointers are nullified and, with careful dependency
* list ordering, all dependencies related to the inode will be satisfied and
* the corresponding dependency structures de-allocated. So, if/when the
* inode is reused, there will be no mixing of old dependencies with new
* ones. This artificial dependency is set up by the block de-allocation
* procedure above (softdep_setup_freeblocks) and completed by the
* following procedure.
*/
static void
handle_workitem_freefile(freefile)
struct freefile *freefile;
{
struct workhead wkhd;
struct fs *fs;
struct inodedep *idp;
struct ufsmount *ump;
int error;
ump = VFSTOUFS(freefile->fx_list.wk_mp);
fs = ump->um_fs;
#ifdef DEBUG
ACQUIRE_LOCK(ump);
error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
FREE_LOCK(ump);
if (error)
panic("handle_workitem_freefile: inodedep %p survived", idp);
#endif
UFS_LOCK(ump);
fs->fs_pendinginodes -= 1;
UFS_UNLOCK(ump);
LIST_INIT(&wkhd);
LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
softdep_error("handle_workitem_freefile", error);
ACQUIRE_LOCK(ump);
WORKITEM_FREE(freefile, D_FREEFILE);
FREE_LOCK(ump);
}
/*
* Helper function which unlinks marker element from work list and returns
* the next element on the list.
*/
static __inline struct worklist *
markernext(struct worklist *marker)
{
struct worklist *next;
next = LIST_NEXT(marker, wk_list);
LIST_REMOVE(marker, wk_list);
return next;
}
/*
* Disk writes.
*
* The dependency structures constructed above are most actively used when file
* system blocks are written to disk. No constraints are placed on when a
* block can be written, but unsatisfied update dependencies are made safe by
* modifying (or replacing) the source memory for the duration of the disk
* write. When the disk write completes, the memory block is again brought
* up-to-date.
*
* In-core inode structure reclamation.
*
* Because there are a finite number of "in-core" inode structures, they are
* reused regularly. By transferring all inode-related dependencies to the
* in-memory inode block and indexing them separately (via "inodedep"s), we
* can allow "in-core" inode structures to be reused at any time and avoid
* any increase in contention.
*
* Called just before entering the device driver to initiate a new disk I/O.
* The buffer must be locked, thus, no I/O completion operations can occur
* while we are manipulating its associated dependencies.
*/
static void
softdep_disk_io_initiation(bp)
struct buf *bp; /* structure describing disk write to occur */
{
struct worklist *wk;
struct worklist marker;
struct inodedep *inodedep;
struct freeblks *freeblks;
struct jblkdep *jblkdep;
struct newblk *newblk;
struct ufsmount *ump;
/*
* We only care about write operations. There should never
* be dependencies for reads.
*/
if (bp->b_iocmd != BIO_WRITE)
panic("softdep_disk_io_initiation: not write");
if (bp->b_vflags & BV_BKGRDINPROG)
panic("softdep_disk_io_initiation: Writing buffer with "
"background write in progress: %p", bp);
ump = softdep_bp_to_mp(bp);
if (ump == NULL)
return;
marker.wk_type = D_LAST + 1; /* Not a normal workitem */
PHOLD(curproc); /* Don't swap out kernel stack */
ACQUIRE_LOCK(ump);
/*
* Do any necessary pre-I/O processing.
*/
for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
wk = markernext(&marker)) {
LIST_INSERT_AFTER(wk, &marker, wk_list);
switch (wk->wk_type) {
case D_PAGEDEP:
initiate_write_filepage(WK_PAGEDEP(wk), bp);
continue;
case D_INODEDEP:
inodedep = WK_INODEDEP(wk);
if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
initiate_write_inodeblock_ufs1(inodedep, bp);
else
initiate_write_inodeblock_ufs2(inodedep, bp);
continue;
case D_INDIRDEP:
initiate_write_indirdep(WK_INDIRDEP(wk), bp);
continue;
case D_BMSAFEMAP:
initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
continue;
case D_JSEG:
WK_JSEG(wk)->js_buf = NULL;
continue;
case D_FREEBLKS:
freeblks = WK_FREEBLKS(wk);
jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
/*
* We have to wait for the freeblks to be journaled
* before we can write an inodeblock with updated
* pointers. Be careful to arrange the marker so
* we revisit the freeblks if it's not removed by
* the first jwait().
*/
if (jblkdep != NULL) {
LIST_REMOVE(&marker, wk_list);
LIST_INSERT_BEFORE(wk, &marker, wk_list);
jwait(&jblkdep->jb_list, MNT_WAIT);
}
continue;
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
/*
* We have to wait for the jnewblk to be journaled
* before we can write to a block if the contents
* may be confused with an earlier file's indirect
* at recovery time. Handle the marker as described
* above.
*/
newblk = WK_NEWBLK(wk);
if (newblk->nb_jnewblk != NULL &&
indirblk_lookup(newblk->nb_list.wk_mp,
newblk->nb_newblkno)) {
LIST_REMOVE(&marker, wk_list);
LIST_INSERT_BEFORE(wk, &marker, wk_list);
jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
}
continue;
case D_SBDEP:
initiate_write_sbdep(WK_SBDEP(wk));
continue;
case D_MKDIR:
case D_FREEWORK:
case D_FREEDEP:
case D_JSEGDEP:
continue;
default:
panic("handle_disk_io_initiation: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
FREE_LOCK(ump);
PRELE(curproc); /* Allow swapout of kernel stack */
}
/*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in a directory. The buffer must be locked,
* thus, no I/O completion operations can occur while we are
* manipulating its associated dependencies.
*/
static void
initiate_write_filepage(pagedep, bp)
struct pagedep *pagedep;
struct buf *bp;
{
struct jremref *jremref;
struct jmvref *jmvref;
struct dirrem *dirrem;
struct diradd *dap;
struct direct *ep;
int i;
if (pagedep->pd_state & IOSTARTED) {
/*
* This can only happen if there is a driver that does not
* understand chaining. Here biodone will reissue the call
* to strategy for the incomplete buffers.
*/
printf("initiate_write_filepage: already started\n");
return;
}
pagedep->pd_state |= IOSTARTED;
/*
* Wait for all journal remove dependencies to hit the disk.
* We can not allow any potentially conflicting directory adds
* to be visible before removes and rollback is too difficult.
* The per-filesystem lock may be dropped and re-acquired, however
* we hold the buf locked so the dependency can not go away.
*/
LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
jwait(&jremref->jr_list, MNT_WAIT);
while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
jwait(&jmvref->jm_list, MNT_WAIT);
for (i = 0; i < DAHASHSZ; i++) {
LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
ep = (struct direct *)
((char *)bp->b_data + dap->da_offset);
if (ep->d_ino != dap->da_newinum)
panic("%s: dir inum %ju != new %ju",
"initiate_write_filepage",
(uintmax_t)ep->d_ino,
(uintmax_t)dap->da_newinum);
if (dap->da_state & DIRCHG)
ep->d_ino = dap->da_previous->dm_oldinum;
else
ep->d_ino = 0;
dap->da_state &= ~ATTACHED;
dap->da_state |= UNDONE;
}
}
}
/*
* Version of initiate_write_inodeblock that handles UFS1 dinodes.
* Note that any bug fixes made to this routine must be done in the
* version found below.
*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in an inodeblock. The buffer must be
* locked, thus, no I/O completion operations can occur while we
* are manipulating its associated dependencies.
*/
static void
initiate_write_inodeblock_ufs1(inodedep, bp)
struct inodedep *inodedep;
struct buf *bp; /* The inode block */
{
struct allocdirect *adp, *lastadp;
struct ufs1_dinode *dp;
struct ufs1_dinode *sip;
struct inoref *inoref;
struct ufsmount *ump;
struct fs *fs;
ufs_lbn_t i;
#ifdef INVARIANTS
ufs_lbn_t prevlbn = 0;
#endif
int deplist;
if (inodedep->id_state & IOSTARTED)
panic("initiate_write_inodeblock_ufs1: already started");
inodedep->id_state |= IOSTARTED;
fs = inodedep->id_fs;
ump = VFSTOUFS(inodedep->id_list.wk_mp);
LOCK_OWNED(ump);
dp = (struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, inodedep->id_ino);
/*
* If we're on the unlinked list but have not yet written our
* next pointer initialize it here.
*/
if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
struct inodedep *inon;
inon = TAILQ_NEXT(inodedep, id_unlinked);
dp->di_freelink = inon ? inon->id_ino : 0;
}
/*
* If the bitmap is not yet written, then the allocated
* inode cannot be written to disk.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
if (inodedep->id_savedino1 != NULL)
panic("initiate_write_inodeblock_ufs1: I/O underway");
FREE_LOCK(ump);
sip = malloc(sizeof(struct ufs1_dinode),
M_SAVEDINO, M_SOFTDEP_FLAGS);
ACQUIRE_LOCK(ump);
inodedep->id_savedino1 = sip;
*inodedep->id_savedino1 = *dp;
bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
dp->di_gen = inodedep->id_savedino1->di_gen;
dp->di_freelink = inodedep->id_savedino1->di_freelink;
return;
}
/*
* If no dependencies, then there is nothing to roll back.
*/
inodedep->id_savedsize = dp->di_size;
inodedep->id_savedextsize = 0;
inodedep->id_savednlink = dp->di_nlink;
if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
TAILQ_EMPTY(&inodedep->id_inoreflst))
return;
/*
* Revert the link count to that of the first unwritten journal entry.
*/
inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
if (inoref)
dp->di_nlink = inoref->if_nlink;
/*
* Set the dependencies to busy.
*/
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef INVARIANTS
if (deplist != 0 && prevlbn >= adp->ad_offset)
panic("softdep_write_inodeblock: lbn order");
prevlbn = adp->ad_offset;
if (adp->ad_offset < UFS_NDADDR &&
dp->di_db[adp->ad_offset] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs1: "
"direct pointer #%jd mismatch %d != %jd",
(intmax_t)adp->ad_offset,
dp->di_db[adp->ad_offset],
(intmax_t)adp->ad_newblkno);
if (adp->ad_offset >= UFS_NDADDR &&
dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs1: "
"indirect pointer #%jd mismatch %d != %jd",
(intmax_t)adp->ad_offset - UFS_NDADDR,
dp->di_ib[adp->ad_offset - UFS_NDADDR],
(intmax_t)adp->ad_newblkno);
deplist |= 1 << adp->ad_offset;
if ((adp->ad_state & ATTACHED) == 0)
panic("initiate_write_inodeblock_ufs1: "
"Unknown state 0x%x", adp->ad_state);
#endif /* INVARIANTS */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_offset >= UFS_NDADDR)
break;
dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
#ifdef INVARIANTS
if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
panic("initiate_write_inodeblock_ufs1: "
"lost dep1");
#endif /* INVARIANTS */
dp->di_db[i] = 0;
}
for (i = 0; i < UFS_NIADDR; i++) {
#ifdef INVARIANTS
if (dp->di_ib[i] != 0 &&
(deplist & ((1 << UFS_NDADDR) << i)) == 0)
panic("initiate_write_inodeblock_ufs1: "
"lost dep2");
#endif /* INVARIANTS */
dp->di_ib[i] = 0;
}
return;
}
/*
* If we have zero'ed out the last allocated block of the file,
* roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
for (i = lastadp->ad_offset; i >= 0; i--)
if (dp->di_db[i] != 0)
break;
dp->di_size = (i + 1) * fs->fs_bsize;
}
/*
* The only dependencies are for indirect blocks.
*
* The file size for indirect block additions is not guaranteed.
* Such a guarantee would be non-trivial to achieve. The conventional
* synchronous write implementation also does not make this guarantee.
* Fsck should catch and fix discrepancies. Arguably, the file size
* can be over-estimated without destroying integrity when the file
* moves into the indirect blocks (i.e., is large). If we want to
* postpone fsck, we are stuck with this argument.
*/
for (; adp; adp = TAILQ_NEXT(adp, ad_next))
dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
}
/*
* Version of initiate_write_inodeblock that handles UFS2 dinodes.
* Note that any bug fixes made to this routine must be done in the
* version found above.
*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in an inodeblock. The buffer must be
* locked, thus, no I/O completion operations can occur while we
* are manipulating its associated dependencies.
*/
static void
initiate_write_inodeblock_ufs2(inodedep, bp)
struct inodedep *inodedep;
struct buf *bp; /* The inode block */
{
struct allocdirect *adp, *lastadp;
struct ufs2_dinode *dp;
struct ufs2_dinode *sip;
struct inoref *inoref;
struct ufsmount *ump;
struct fs *fs;
ufs_lbn_t i;
#ifdef INVARIANTS
ufs_lbn_t prevlbn = 0;
#endif
int deplist;
if (inodedep->id_state & IOSTARTED)
panic("initiate_write_inodeblock_ufs2: already started");
inodedep->id_state |= IOSTARTED;
fs = inodedep->id_fs;
ump = VFSTOUFS(inodedep->id_list.wk_mp);
LOCK_OWNED(ump);
dp = (struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, inodedep->id_ino);
/*
* If we're on the unlinked list but have not yet written our
* next pointer initialize it here.
*/
if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
struct inodedep *inon;
inon = TAILQ_NEXT(inodedep, id_unlinked);
dp->di_freelink = inon ? inon->id_ino : 0;
ffs_update_dinode_ckhash(fs, dp);
}
/*
* If the bitmap is not yet written, then the allocated
* inode cannot be written to disk.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
if (inodedep->id_savedino2 != NULL)
panic("initiate_write_inodeblock_ufs2: I/O underway");
FREE_LOCK(ump);
sip = malloc(sizeof(struct ufs2_dinode),
M_SAVEDINO, M_SOFTDEP_FLAGS);
ACQUIRE_LOCK(ump);
inodedep->id_savedino2 = sip;
*inodedep->id_savedino2 = *dp;
bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
dp->di_gen = inodedep->id_savedino2->di_gen;
dp->di_freelink = inodedep->id_savedino2->di_freelink;
return;
}
/*
* If no dependencies, then there is nothing to roll back.
*/
inodedep->id_savedsize = dp->di_size;
inodedep->id_savedextsize = dp->di_extsize;
inodedep->id_savednlink = dp->di_nlink;
if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
TAILQ_EMPTY(&inodedep->id_extupdt) &&
TAILQ_EMPTY(&inodedep->id_inoreflst))
return;
/*
* Revert the link count to that of the first unwritten journal entry.
*/
inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
if (inoref)
dp->di_nlink = inoref->if_nlink;
/*
* Set the ext data dependencies to busy.
*/
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef INVARIANTS
if (deplist != 0 && prevlbn >= adp->ad_offset)
panic("initiate_write_inodeblock_ufs2: lbn order");
prevlbn = adp->ad_offset;
if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs2: "
"ext pointer #%jd mismatch %jd != %jd",
(intmax_t)adp->ad_offset,
(intmax_t)dp->di_extb[adp->ad_offset],
(intmax_t)adp->ad_newblkno);
deplist |= 1 << adp->ad_offset;
if ((adp->ad_state & ATTACHED) == 0)
panic("initiate_write_inodeblock_ufs2: Unknown "
"state 0x%x", adp->ad_state);
#endif /* INVARIANTS */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the ext
* data which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
#ifdef INVARIANTS
if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
panic("initiate_write_inodeblock_ufs2: "
"lost dep1");
#endif /* INVARIANTS */
dp->di_extb[i] = 0;
}
lastadp = NULL;
break;
}
/*
* If we have zero'ed out the last allocated block of the ext
* data, roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
for (i = lastadp->ad_offset; i >= 0; i--)
if (dp->di_extb[i] != 0)
break;
dp->di_extsize = (i + 1) * fs->fs_bsize;
}
/*
* Set the file data dependencies to busy.
*/
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef INVARIANTS
if (deplist != 0 && prevlbn >= adp->ad_offset)
panic("softdep_write_inodeblock: lbn order");
if ((adp->ad_state & ATTACHED) == 0)
panic("inodedep %p and adp %p not attached", inodedep, adp);
prevlbn = adp->ad_offset;
if (adp->ad_offset < UFS_NDADDR &&
dp->di_db[adp->ad_offset] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs2: "
"direct pointer #%jd mismatch %jd != %jd",
(intmax_t)adp->ad_offset,
(intmax_t)dp->di_db[adp->ad_offset],
(intmax_t)adp->ad_newblkno);
if (adp->ad_offset >= UFS_NDADDR &&
dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs2: "
"indirect pointer #%jd mismatch %jd != %jd",
(intmax_t)adp->ad_offset - UFS_NDADDR,
(intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
(intmax_t)adp->ad_newblkno);
deplist |= 1 << adp->ad_offset;
if ((adp->ad_state & ATTACHED) == 0)
panic("initiate_write_inodeblock_ufs2: Unknown "
"state 0x%x", adp->ad_state);
#endif /* INVARIANTS */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_offset >= UFS_NDADDR)
break;
dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
#ifdef INVARIANTS
if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
panic("initiate_write_inodeblock_ufs2: "
"lost dep2");
#endif /* INVARIANTS */
dp->di_db[i] = 0;
}
for (i = 0; i < UFS_NIADDR; i++) {
#ifdef INVARIANTS
if (dp->di_ib[i] != 0 &&
(deplist & ((1 << UFS_NDADDR) << i)) == 0)
panic("initiate_write_inodeblock_ufs2: "
"lost dep3");
#endif /* INVARIANTS */
dp->di_ib[i] = 0;
}
ffs_update_dinode_ckhash(fs, dp);
return;
}
/*
* If we have zero'ed out the last allocated block of the file,
* roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
for (i = lastadp->ad_offset; i >= 0; i--)
if (dp->di_db[i] != 0)
break;
dp->di_size = (i + 1) * fs->fs_bsize;
}
/*
* The only dependencies are for indirect blocks.
*
* The file size for indirect block additions is not guaranteed.
* Such a guarantee would be non-trivial to achieve. The conventional
* synchronous write implementation also does not make this guarantee.
* Fsck should catch and fix discrepancies. Arguably, the file size
* can be over-estimated without destroying integrity when the file
* moves into the indirect blocks (i.e., is large). If we want to
* postpone fsck, we are stuck with this argument.
*/
for (; adp; adp = TAILQ_NEXT(adp, ad_next))
dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
ffs_update_dinode_ckhash(fs, dp);
}
/*
* Cancel an indirdep as a result of truncation. Release all of the
* children allocindirs and place their journal work on the appropriate
* list.
*/
static void
cancel_indirdep(indirdep, bp, freeblks)
struct indirdep *indirdep;
struct buf *bp;
struct freeblks *freeblks;
{
struct allocindir *aip;
/*
* None of the indirect pointers will ever be visible,
* so they can simply be tossed. GOINGAWAY ensures
* that allocated pointers will be saved in the buffer
* cache until they are freed. Note that they will
* only be able to be found by their physical address
* since the inode mapping the logical address will
* be gone. The save buffer used for the safe copy
* was allocated in setup_allocindir_phase2 using
* the physical address so it could be used for this
* purpose. Hence we swap the safe copy with the real
* copy, allowing the safe copy to be freed and holding
* on to the real copy for later use in indir_trunc.
*/
if (indirdep->ir_state & GOINGAWAY)
panic("cancel_indirdep: already gone");
if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
indirdep->ir_state |= DEPCOMPLETE;
LIST_REMOVE(indirdep, ir_next);
}
indirdep->ir_state |= GOINGAWAY;
/*
* Pass in bp for blocks still have journal writes
* pending so we can cancel them on their own.
*/
while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
cancel_allocindir(aip, bp, freeblks, 0);
while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
cancel_allocindir(aip, NULL, freeblks, 0);
while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
cancel_allocindir(aip, NULL, freeblks, 0);
while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
cancel_allocindir(aip, NULL, freeblks, 0);
/*
* If there are pending partial truncations we need to keep the
* old block copy around until they complete. This is because
* the current b_data is not a perfect superset of the available
* blocks.
*/
if (TAILQ_EMPTY(&indirdep->ir_trunc))
bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
else
bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
WORKLIST_REMOVE(&indirdep->ir_list);
WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
indirdep->ir_bp = NULL;
indirdep->ir_freeblks = freeblks;
}
/*
* Free an indirdep once it no longer has new pointers to track.
*/
static void
free_indirdep(indirdep)
struct indirdep *indirdep;
{
KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
("free_indirdep: Indir trunc list not empty."));
KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
("free_indirdep: Complete head not empty."));
KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
("free_indirdep: write head not empty."));
KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
("free_indirdep: done head not empty."));
KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
("free_indirdep: deplist head not empty."));
KASSERT((indirdep->ir_state & DEPCOMPLETE),
("free_indirdep: %p still on newblk list.", indirdep));
KASSERT(indirdep->ir_saveddata == NULL,
("free_indirdep: %p still has saved data.", indirdep));
if (indirdep->ir_state & ONWORKLIST)
WORKLIST_REMOVE(&indirdep->ir_list);
WORKITEM_FREE(indirdep, D_INDIRDEP);
}
/*
* Called before a write to an indirdep. This routine is responsible for
* rolling back pointers to a safe state which includes only those
* allocindirs which have been completed.
*/
static void
initiate_write_indirdep(indirdep, bp)
struct indirdep *indirdep;
struct buf *bp;
{
struct ufsmount *ump;
indirdep->ir_state |= IOSTARTED;
if (indirdep->ir_state & GOINGAWAY)
panic("disk_io_initiation: indirdep gone");
/*
* If there are no remaining dependencies, this will be writing
* the real pointers.
*/
if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
TAILQ_EMPTY(&indirdep->ir_trunc))
return;
/*
* Replace up-to-date version with safe version.
*/
if (indirdep->ir_saveddata == NULL) {
ump = VFSTOUFS(indirdep->ir_list.wk_mp);
LOCK_OWNED(ump);
FREE_LOCK(ump);
indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
M_SOFTDEP_FLAGS);
ACQUIRE_LOCK(ump);
}
indirdep->ir_state &= ~ATTACHED;
indirdep->ir_state |= UNDONE;
bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
bcopy(indirdep->ir_savebp->b_data, bp->b_data,
bp->b_bcount);
}
/*
* Called when an inode has been cleared in a cg bitmap. This finally
* eliminates any canceled jaddrefs
*/
void
softdep_setup_inofree(mp, bp, ino, wkhd)
struct mount *mp;
struct buf *bp;
ino_t ino;
struct workhead *wkhd;
{
struct worklist *wk, *wkn;
struct inodedep *inodedep;
struct ufsmount *ump;
uint8_t *inosused;
struct cg *cgp;
struct fs *fs;
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_inofree called on non-softdep filesystem"));
ump = VFSTOUFS(mp);
ACQUIRE_LOCK(ump);
fs = ump->um_fs;
cgp = (struct cg *)bp->b_data;
inosused = cg_inosused(cgp);
if (isset(inosused, ino % fs->fs_ipg))
panic("softdep_setup_inofree: inode %ju not freed.",
(uintmax_t)ino);
if (inodedep_lookup(mp, ino, 0, &inodedep))
panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
(uintmax_t)ino, inodedep);
if (wkhd) {
LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
if (wk->wk_type != D_JADDREF)
continue;
WORKLIST_REMOVE(wk);
/*
* We can free immediately even if the jaddref
* isn't attached in a background write as now
* the bitmaps are reconciled.
*/
wk->wk_state |= COMPLETE | ATTACHED;
free_jaddref(WK_JADDREF(wk));
}
jwork_move(&bp->b_dep, wkhd);
}
FREE_LOCK(ump);
}
/*
* Called via ffs_blkfree() after a set of frags has been cleared from a cg
* map. Any dependencies waiting for the write to clear are added to the
* buf's list and any jnewblks that are being canceled are discarded
* immediately.
*/
void
softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
struct mount *mp;
struct buf *bp;
ufs2_daddr_t blkno;
int frags;
struct workhead *wkhd;
{
struct bmsafemap *bmsafemap;
struct jnewblk *jnewblk;
struct ufsmount *ump;
struct worklist *wk;
struct fs *fs;
#ifdef SUJ_DEBUG
uint8_t *blksfree;
struct cg *cgp;
ufs2_daddr_t jstart;
ufs2_daddr_t jend;
ufs2_daddr_t end;
long bno;
int i;
#endif
CTR3(KTR_SUJ,
"softdep_setup_blkfree: blkno %jd frags %d wk head %p",
blkno, frags, wkhd);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_setup_blkfree called on non-softdep filesystem"));
ACQUIRE_LOCK(ump);
/* Lookup the bmsafemap so we track when it is dirty. */
fs = ump->um_fs;
bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
/*
* Detach any jnewblks which have been canceled. They must linger
* until the bitmap is cleared again by ffs_blkfree() to prevent
* an unjournaled allocation from hitting the disk.
*/
if (wkhd) {
while ((wk = LIST_FIRST(wkhd)) != NULL) {
CTR2(KTR_SUJ,
"softdep_setup_blkfree: blkno %jd wk type %d",
blkno, wk->wk_type);
WORKLIST_REMOVE(wk);
if (wk->wk_type != D_JNEWBLK) {
WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
continue;
}
jnewblk = WK_JNEWBLK(wk);
KASSERT(jnewblk->jn_state & GOINGAWAY,
("softdep_setup_blkfree: jnewblk not canceled."));
#ifdef SUJ_DEBUG
/*
* Assert that this block is free in the bitmap
* before we discard the jnewblk.
*/
cgp = (struct cg *)bp->b_data;
blksfree = cg_blksfree(cgp);
bno = dtogd(fs, jnewblk->jn_blkno);
for (i = jnewblk->jn_oldfrags;
i < jnewblk->jn_frags; i++) {
if (isset(blksfree, bno + i))
continue;
panic("softdep_setup_blkfree: not free");
}
#endif
/*
* Even if it's not attached we can free immediately
* as the new bitmap is correct.
*/
wk->wk_state |= COMPLETE | ATTACHED;
free_jnewblk(jnewblk);
}
}
#ifdef SUJ_DEBUG
/*
* Assert that we are not freeing a block which has an outstanding
* allocation dependency.
*/
fs = VFSTOUFS(mp)->um_fs;
bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
end = blkno + frags;
LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
/*
* Don't match against blocks that will be freed when the
* background write is done.
*/
if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
(COMPLETE | DEPCOMPLETE))
continue;
jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
jend = jnewblk->jn_blkno + jnewblk->jn_frags;
if ((blkno >= jstart && blkno < jend) ||
(end > jstart && end <= jend)) {
printf("state 0x%X %jd - %d %d dep %p\n",
jnewblk->jn_state, jnewblk->jn_blkno,
jnewblk->jn_oldfrags, jnewblk->jn_frags,
jnewblk->jn_dep);
panic("softdep_setup_blkfree: "
"%jd-%jd(%d) overlaps with %jd-%jd",
blkno, end, frags, jstart, jend);
}
}
#endif
FREE_LOCK(ump);
}
/*
* Revert a block allocation when the journal record that describes it
* is not yet written.
*/
static int
jnewblk_rollback(jnewblk, fs, cgp, blksfree)
struct jnewblk *jnewblk;
struct fs *fs;
struct cg *cgp;
uint8_t *blksfree;
{
ufs1_daddr_t fragno;
long cgbno, bbase;
int frags, blk;
int i;
frags = 0;
cgbno = dtogd(fs, jnewblk->jn_blkno);
/*
* We have to test which frags need to be rolled back. We may
* be operating on a stale copy when doing background writes.
*/
for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
if (isclr(blksfree, cgbno + i))
frags++;
if (frags == 0)
return (0);
/*
* This is mostly ffs_blkfree() sans some validation and
* superblock updates.
*/
if (frags == fs->fs_frag) {
fragno = fragstoblks(fs, cgbno);
ffs_setblock(fs, blksfree, fragno);
ffs_clusteracct(fs, cgp, fragno, 1);
cgp->cg_cs.cs_nbfree++;
} else {
cgbno += jnewblk->jn_oldfrags;
bbase = cgbno - fragnum(fs, cgbno);
/* Decrement the old frags. */
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
/* Deallocate the fragment */
for (i = 0; i < frags; i++)
setbit(blksfree, cgbno + i);
cgp->cg_cs.cs_nffree += frags;
/* Add back in counts associated with the new frags */
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
/* If a complete block has been reassembled, account for it. */
fragno = fragstoblks(fs, bbase);
if (ffs_isblock(fs, blksfree, fragno)) {
cgp->cg_cs.cs_nffree -= fs->fs_frag;
ffs_clusteracct(fs, cgp, fragno, 1);
cgp->cg_cs.cs_nbfree++;
}
}
stat_jnewblk++;
jnewblk->jn_state &= ~ATTACHED;
jnewblk->jn_state |= UNDONE;
return (frags);
}
static void
initiate_write_bmsafemap(bmsafemap, bp)
struct bmsafemap *bmsafemap;
struct buf *bp; /* The cg block. */
{
struct jaddref *jaddref;
struct jnewblk *jnewblk;
uint8_t *inosused;
uint8_t *blksfree;
struct cg *cgp;
struct fs *fs;
ino_t ino;
/*
* If this is a background write, we did this at the time that
* the copy was made, so do not need to do it again.
*/
if (bmsafemap->sm_state & IOSTARTED)
return;
bmsafemap->sm_state |= IOSTARTED;
/*
* Clear any inode allocations which are pending journal writes.
*/
if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
cgp = (struct cg *)bp->b_data;
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
inosused = cg_inosused(cgp);
LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
ino = jaddref->ja_ino % fs->fs_ipg;
if (isset(inosused, ino)) {
if ((jaddref->ja_mode & IFMT) == IFDIR)
cgp->cg_cs.cs_ndir--;
cgp->cg_cs.cs_nifree++;
clrbit(inosused, ino);
jaddref->ja_state &= ~ATTACHED;
jaddref->ja_state |= UNDONE;
stat_jaddref++;
} else
panic("initiate_write_bmsafemap: inode %ju "
"marked free", (uintmax_t)jaddref->ja_ino);
}
}
/*
* Clear any block allocations which are pending journal writes.
*/
if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
cgp = (struct cg *)bp->b_data;
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
blksfree = cg_blksfree(cgp);
LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
continue;
panic("initiate_write_bmsafemap: block %jd "
"marked free", jnewblk->jn_blkno);
}
}
/*
* Move allocation lists to the written lists so they can be
* cleared once the block write is complete.
*/
LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
inodedep, id_deps);
LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
newblk, nb_deps);
LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
wk_list);
}
/*
* This routine is called during the completion interrupt
* service routine for a disk write (from the procedure called
* by the device driver to inform the filesystem caches of
* a request completion). It should be called early in this
* procedure, before the block is made available to other
* processes or other routines are called.
*
*/
static void
softdep_disk_write_complete(bp)
struct buf *bp; /* describes the completed disk write */
{
struct worklist *wk;
struct worklist *owk;
struct ufsmount *ump;
struct workhead reattach;
struct freeblks *freeblks;
struct buf *sbp;
ump = softdep_bp_to_mp(bp);
if (ump == NULL)
return;
sbp = NULL;
/*
* If an error occurred while doing the write, then the data
* has not hit the disk and the dependencies cannot be processed.
* But we do have to go through and roll forward any dependencies
* that were rolled back before the disk write.
*/
ACQUIRE_LOCK(ump);
if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
switch (wk->wk_type) {
case D_PAGEDEP:
handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
continue;
case D_INODEDEP:
handle_written_inodeblock(WK_INODEDEP(wk),
bp, 0);
continue;
case D_BMSAFEMAP:
handle_written_bmsafemap(WK_BMSAFEMAP(wk),
bp, 0);
continue;
case D_INDIRDEP:
handle_written_indirdep(WK_INDIRDEP(wk),
bp, &sbp, 0);
continue;
default:
/* nothing to roll forward */
continue;
}
}
FREE_LOCK(ump);
return;
}
LIST_INIT(&reattach);
/*
* Ump SU lock must not be released anywhere in this code segment.
*/
owk = NULL;
while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
WORKLIST_REMOVE(wk);
atomic_add_long(&dep_write[wk->wk_type], 1);
if (wk == owk)
panic("duplicate worklist: %p\n", wk);
owk = wk;
switch (wk->wk_type) {
case D_PAGEDEP:
if (handle_written_filepage(WK_PAGEDEP(wk), bp,
WRITESUCCEEDED))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_INODEDEP:
if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
WRITESUCCEEDED))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_BMSAFEMAP:
if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
WRITESUCCEEDED))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_MKDIR:
handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
continue;
case D_ALLOCDIRECT:
wk->wk_state |= COMPLETE;
handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
continue;
case D_ALLOCINDIR:
wk->wk_state |= COMPLETE;
handle_allocindir_partdone(WK_ALLOCINDIR(wk));
continue;
case D_INDIRDEP:
if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
WRITESUCCEEDED))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_FREEBLKS:
wk->wk_state |= COMPLETE;
freeblks = WK_FREEBLKS(wk);
if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
LIST_EMPTY(&freeblks->fb_jblkdephd))
add_to_worklist(wk, WK_NODELAY);
continue;
case D_FREEWORK:
handle_written_freework(WK_FREEWORK(wk));
break;
case D_JSEGDEP:
free_jsegdep(WK_JSEGDEP(wk));
continue;
case D_JSEG:
handle_written_jseg(WK_JSEG(wk), bp);
continue;
case D_SBDEP:
if (handle_written_sbdep(WK_SBDEP(wk), bp))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_FREEDEP:
free_freedep(WK_FREEDEP(wk));
continue;
default:
panic("handle_disk_write_complete: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
/*
* Reattach any requests that must be redone.
*/
while ((wk = LIST_FIRST(&reattach)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&bp->b_dep, wk);
}
FREE_LOCK(ump);
if (sbp)
brelse(sbp);
}
/*
* Called from within softdep_disk_write_complete above. Note that
* this routine is always called from interrupt level with further
* splbio interrupts blocked.
*/
static void
handle_allocdirect_partdone(adp, wkhd)
struct allocdirect *adp; /* the completed allocdirect */
struct workhead *wkhd; /* Work to do when inode is writtne. */
{
struct allocdirectlst *listhead;
struct allocdirect *listadp;
struct inodedep *inodedep;
long bsize;
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem. Thus, we cannot free any
* allocdirects after one whose ad_oldblkno claims a fragment as
* these blocks must be rolled back to zero before writing the inode.
* We check the currently active set of allocdirects in id_inoupdt
* or id_extupdt as appropriate.
*/
inodedep = adp->ad_inodedep;
bsize = inodedep->id_fs->fs_bsize;
if (adp->ad_state & EXTDATA)
listhead = &inodedep->id_extupdt;
else
listhead = &inodedep->id_inoupdt;
TAILQ_FOREACH(listadp, listhead, ad_next) {
/* found our block */
if (listadp == adp)
break;
/* continue if ad_oldlbn is not a fragment */
if (listadp->ad_oldsize == 0 ||
listadp->ad_oldsize == bsize)
continue;
/* hit a fragment */
return;
}
/*
* If we have reached the end of the current list without
* finding the just finished dependency, then it must be
* on the future dependency list. Future dependencies cannot
* be freed until they are moved to the current list.
*/
if (listadp == NULL) {
#ifdef DEBUG
if (adp->ad_state & EXTDATA)
listhead = &inodedep->id_newextupdt;
else
listhead = &inodedep->id_newinoupdt;
TAILQ_FOREACH(listadp, listhead, ad_next)
/* found our block */
if (listadp == adp)
break;
if (listadp == NULL)
panic("handle_allocdirect_partdone: lost dep");
#endif /* DEBUG */
return;
}
/*
* If we have found the just finished dependency, then queue
* it along with anything that follows it that is complete.
* Since the pointer has not yet been written in the inode
* as the dependency prevents it, place the allocdirect on the
* bufwait list where it will be freed once the pointer is
* valid.
*/
if (wkhd == NULL)
wkhd = &inodedep->id_bufwait;
for (; adp; adp = listadp) {
listadp = TAILQ_NEXT(adp, ad_next);
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
TAILQ_REMOVE(listhead, adp, ad_next);
WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
}
}
/*
* Called from within softdep_disk_write_complete above. This routine
* completes successfully written allocindirs.
*/
static void
handle_allocindir_partdone(aip)
struct allocindir *aip; /* the completed allocindir */
{
struct indirdep *indirdep;
if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
indirdep = aip->ai_indirdep;
LIST_REMOVE(aip, ai_next);
/*
* Don't set a pointer while the buffer is undergoing IO or while
* we have active truncations.
*/
if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
return;
}
if (indirdep->ir_state & UFS1FMT)
((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
aip->ai_newblkno;
else
((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
aip->ai_newblkno;
/*
* Await the pointer write before freeing the allocindir.
*/
LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
}
/*
* Release segments held on a jwork list.
*/
static void
handle_jwork(wkhd)
struct workhead *wkhd;
{
struct worklist *wk;
while ((wk = LIST_FIRST(wkhd)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_JSEGDEP:
free_jsegdep(WK_JSEGDEP(wk));
continue;
case D_FREEDEP:
free_freedep(WK_FREEDEP(wk));
continue;
case D_FREEFRAG:
rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
WORKITEM_FREE(wk, D_FREEFRAG);
continue;
case D_FREEWORK:
handle_written_freework(WK_FREEWORK(wk));
continue;
default:
panic("handle_jwork: Unknown type %s\n",
TYPENAME(wk->wk_type));
}
}
}
/*
* Handle the bufwait list on an inode when it is safe to release items
* held there. This normally happens after an inode block is written but
* may be delayed and handled later if there are pending journal items that
* are not yet safe to be released.
*/
static struct freefile *
handle_bufwait(inodedep, refhd)
struct inodedep *inodedep;
struct workhead *refhd;
{
struct jaddref *jaddref;
struct freefile *freefile;
struct worklist *wk;
freefile = NULL;
while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_FREEFILE:
/*
* We defer adding freefile to the worklist
* until all other additions have been made to
* ensure that it will be done after all the
* old blocks have been freed.
*/
if (freefile != NULL)
panic("handle_bufwait: freefile");
freefile = WK_FREEFILE(wk);
continue;
case D_MKDIR:
handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
continue;
case D_DIRADD:
diradd_inode_written(WK_DIRADD(wk), inodedep);
continue;
case D_FREEFRAG:
wk->wk_state |= COMPLETE;
if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
add_to_worklist(wk, 0);
continue;
case D_DIRREM:
wk->wk_state |= COMPLETE;
add_to_worklist(wk, 0);
continue;
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
free_newblk(WK_NEWBLK(wk));
continue;
case D_JNEWBLK:
wk->wk_state |= COMPLETE;
free_jnewblk(WK_JNEWBLK(wk));
continue;
/*
* Save freed journal segments and add references on
* the supplied list which will delay their release
* until the cg bitmap is cleared on disk.
*/
case D_JSEGDEP:
if (refhd == NULL)
free_jsegdep(WK_JSEGDEP(wk));
else
WORKLIST_INSERT(refhd, wk);
continue;
case D_JADDREF:
jaddref = WK_JADDREF(wk);
TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
/*
* Transfer any jaddrefs to the list to be freed with
* the bitmap if we're handling a removed file.
*/
if (refhd == NULL) {
wk->wk_state |= COMPLETE;
free_jaddref(jaddref);
} else
WORKLIST_INSERT(refhd, wk);
continue;
default:
panic("handle_bufwait: Unknown type %p(%s)",
wk, TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
return (freefile);
}
/*
* Called from within softdep_disk_write_complete above to restore
* in-memory inode block contents to their most up-to-date state. Note
* that this routine is always called from interrupt level with further
* interrupts from this device blocked.
*
* If the write did not succeed, we will do all the roll-forward
* operations, but we will not take the actions that will allow its
* dependencies to be processed.
*/
static int
handle_written_inodeblock(inodedep, bp, flags)
struct inodedep *inodedep;
struct buf *bp; /* buffer containing the inode block */
int flags;
{
struct freefile *freefile;
struct allocdirect *adp, *nextadp;
struct ufs1_dinode *dp1 = NULL;
struct ufs2_dinode *dp2 = NULL;
struct workhead wkhd;
int hadchanges, fstype;
ino_t freelink;
LIST_INIT(&wkhd);
hadchanges = 0;
freefile = NULL;
if ((inodedep->id_state & IOSTARTED) == 0)
panic("handle_written_inodeblock: not started");
inodedep->id_state &= ~IOSTARTED;
if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
fstype = UFS1;
dp1 = (struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
freelink = dp1->di_freelink;
} else {
fstype = UFS2;
dp2 = (struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
freelink = dp2->di_freelink;
}
/*
* Leave this inodeblock dirty until it's in the list.
*/
if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
(flags & WRITESUCCEEDED)) {
struct inodedep *inon;
inon = TAILQ_NEXT(inodedep, id_unlinked);
if ((inon == NULL && freelink == 0) ||
(inon && inon->id_ino == freelink)) {
if (inon)
inon->id_state |= UNLINKPREV;
inodedep->id_state |= UNLINKNEXT;
}
hadchanges = 1;
}
/*
* If we had to rollback the inode allocation because of
* bitmaps being incomplete, then simply restore it.
* Keep the block dirty so that it will not be reclaimed until
* all associated dependencies have been cleared and the
* corresponding updates written to disk.
*/
if (inodedep->id_savedino1 != NULL) {
hadchanges = 1;
if (fstype == UFS1)
*dp1 = *inodedep->id_savedino1;
else
*dp2 = *inodedep->id_savedino2;
free(inodedep->id_savedino1, M_SAVEDINO);
inodedep->id_savedino1 = NULL;
if ((bp->b_flags & B_DELWRI) == 0)
stat_inode_bitmap++;
bdirty(bp);
/*
* If the inode is clear here and GOINGAWAY it will never
* be written. Process the bufwait and clear any pending
* work which may include the freefile.
*/
if (inodedep->id_state & GOINGAWAY)
goto bufwait;
return (1);
}
if (flags & WRITESUCCEEDED)
inodedep->id_state |= COMPLETE;
/*
* Roll forward anything that had to be rolled back before
* the inode could be updated.
*/
for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
nextadp = TAILQ_NEXT(adp, ad_next);
if (adp->ad_state & ATTACHED)
panic("handle_written_inodeblock: new entry");
if (fstype == UFS1) {
if (adp->ad_offset < UFS_NDADDR) {
if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
panic("%s %s #%jd mismatch %d != %jd",
"handle_written_inodeblock:",
"direct pointer",
(intmax_t)adp->ad_offset,
dp1->di_db[adp->ad_offset],
(intmax_t)adp->ad_oldblkno);
dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
} else {
if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
0)
panic("%s: %s #%jd allocated as %d",
"handle_written_inodeblock",
"indirect pointer",
(intmax_t)adp->ad_offset -
UFS_NDADDR,
dp1->di_ib[adp->ad_offset -
UFS_NDADDR]);
dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
adp->ad_newblkno;
}
} else {
if (adp->ad_offset < UFS_NDADDR) {
if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
panic("%s: %s #%jd %s %jd != %jd",
"handle_written_inodeblock",
"direct pointer",
(intmax_t)adp->ad_offset, "mismatch",
(intmax_t)dp2->di_db[adp->ad_offset],
(intmax_t)adp->ad_oldblkno);
dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
} else {
if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
0)
panic("%s: %s #%jd allocated as %jd",
"handle_written_inodeblock",
"indirect pointer",
(intmax_t)adp->ad_offset -
UFS_NDADDR,
(intmax_t)
dp2->di_ib[adp->ad_offset -
UFS_NDADDR]);
dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
adp->ad_newblkno;
}
}
adp->ad_state &= ~UNDONE;
adp->ad_state |= ATTACHED;
hadchanges = 1;
}
for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
nextadp = TAILQ_NEXT(adp, ad_next);
if (adp->ad_state & ATTACHED)
panic("handle_written_inodeblock: new entry");
if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
panic("%s: direct pointers #%jd %s %jd != %jd",
"handle_written_inodeblock",
(intmax_t)adp->ad_offset, "mismatch",
(intmax_t)dp2->di_extb[adp->ad_offset],
(intmax_t)adp->ad_oldblkno);
dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
adp->ad_state &= ~UNDONE;
adp->ad_state |= ATTACHED;
hadchanges = 1;
}
if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
stat_direct_blk_ptrs++;
/*
* Reset the file size to its most up-to-date value.
*/
if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
panic("handle_written_inodeblock: bad size");
if (inodedep->id_savednlink > UFS_LINK_MAX)
panic("handle_written_inodeblock: Invalid link count "
"%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
inodedep);
if (fstype == UFS1) {
if (dp1->di_nlink != inodedep->id_savednlink) {
dp1->di_nlink = inodedep->id_savednlink;
hadchanges = 1;
}
if (dp1->di_size != inodedep->id_savedsize) {
dp1->di_size = inodedep->id_savedsize;
hadchanges = 1;
}
} else {
if (dp2->di_nlink != inodedep->id_savednlink) {
dp2->di_nlink = inodedep->id_savednlink;
hadchanges = 1;
}
if (dp2->di_size != inodedep->id_savedsize) {
dp2->di_size = inodedep->id_savedsize;
hadchanges = 1;
}
if (dp2->di_extsize != inodedep->id_savedextsize) {
dp2->di_extsize = inodedep->id_savedextsize;
hadchanges = 1;
}
}
inodedep->id_savedsize = -1;
inodedep->id_savedextsize = -1;
inodedep->id_savednlink = -1;
/*
* If there were any rollbacks in the inode block, then it must be
* marked dirty so that its will eventually get written back in
* its correct form.
*/
if (hadchanges) {
if (fstype == UFS2)
ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
bdirty(bp);
}
bufwait:
/*
* If the write did not succeed, we have done all the roll-forward
* operations, but we cannot take the actions that will allow its
* dependencies to be processed.
*/
if ((flags & WRITESUCCEEDED) == 0)
return (hadchanges);
/*
* Process any allocdirects that completed during the update.
*/
if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
handle_allocdirect_partdone(adp, &wkhd);
if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
handle_allocdirect_partdone(adp, &wkhd);
/*
* Process deallocations that were held pending until the
* inode had been written to disk. Freeing of the inode
* is delayed until after all blocks have been freed to
* avoid creation of new <vfsid, inum, lbn> triples
* before the old ones have been deleted. Completely
* unlinked inodes are not processed until the unlinked
* inode list is written or the last reference is removed.
*/
if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
freefile = handle_bufwait(inodedep, NULL);
if (freefile && !LIST_EMPTY(&wkhd)) {
WORKLIST_INSERT(&wkhd, &freefile->fx_list);
freefile = NULL;
}
}
/*
* Move rolled forward dependency completions to the bufwait list
* now that those that were already written have been processed.
*/
if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
panic("handle_written_inodeblock: bufwait but no changes");
jwork_move(&inodedep->id_bufwait, &wkhd);
if (freefile != NULL) {
/*
* If the inode is goingaway it was never written. Fake up
* the state here so free_inodedep() can succeed.
*/
if (inodedep->id_state & GOINGAWAY)
inodedep->id_state |= COMPLETE | DEPCOMPLETE;
if (free_inodedep(inodedep) == 0)
panic("handle_written_inodeblock: live inodedep %p",
inodedep);
add_to_worklist(&freefile->fx_list, 0);
return (0);
}
/*
* If no outstanding dependencies, free it.
*/
if (free_inodedep(inodedep) ||
(TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
LIST_FIRST(&inodedep->id_bufwait) == 0))
return (0);
return (hadchanges);
}
/*
* Perform needed roll-forwards and kick off any dependencies that
* can now be processed.
*
* If the write did not succeed, we will do all the roll-forward
* operations, but we will not take the actions that will allow its
* dependencies to be processed.
*/
static int
handle_written_indirdep(indirdep, bp, bpp, flags)
struct indirdep *indirdep;
struct buf *bp;
struct buf **bpp;
int flags;
{
struct allocindir *aip;
struct buf *sbp;
int chgs;
if (indirdep->ir_state & GOINGAWAY)
panic("handle_written_indirdep: indirdep gone");
if ((indirdep->ir_state & IOSTARTED) == 0)
panic("handle_written_indirdep: IO not started");
chgs = 0;
/*
* If there were rollbacks revert them here.
*/
if (indirdep->ir_saveddata) {
bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
free(indirdep->ir_saveddata, M_INDIRDEP);
indirdep->ir_saveddata = NULL;
}
chgs = 1;
}
indirdep->ir_state &= ~(UNDONE | IOSTARTED);
indirdep->ir_state |= ATTACHED;
/*
* If the write did not succeed, we have done all the roll-forward
* operations, but we cannot take the actions that will allow its
* dependencies to be processed.
*/
if ((flags & WRITESUCCEEDED) == 0) {
stat_indir_blk_ptrs++;
bdirty(bp);
return (1);
}
/*
* Move allocindirs with written pointers to the completehd if
* the indirdep's pointer is not yet written. Otherwise
* free them here.
*/
while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
LIST_REMOVE(aip, ai_next);
if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
ai_next);
newblk_freefrag(&aip->ai_block);
continue;
}
free_newblk(&aip->ai_block);
}
/*
* Move allocindirs that have finished dependency processing from
* the done list to the write list after updating the pointers.
*/
if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
handle_allocindir_partdone(aip);
if (aip == LIST_FIRST(&indirdep->ir_donehd))
panic("disk_write_complete: not gone");
chgs = 1;
}
}
/*
* Preserve the indirdep if there were any changes or if it is not
* yet valid on disk.
*/
if (chgs) {
stat_indir_blk_ptrs++;
bdirty(bp);
return (1);
}
/*
* If there were no changes we can discard the savedbp and detach
* ourselves from the buf. We are only carrying completed pointers
* in this case.
*/
sbp = indirdep->ir_savebp;
sbp->b_flags |= B_INVAL | B_NOCACHE;
indirdep->ir_savebp = NULL;
indirdep->ir_bp = NULL;
if (*bpp != NULL)
panic("handle_written_indirdep: bp already exists.");
*bpp = sbp;
/*
* The indirdep may not be freed until its parent points at it.
*/
if (indirdep->ir_state & DEPCOMPLETE)
free_indirdep(indirdep);
return (0);
}
/*
* Process a diradd entry after its dependent inode has been written.
* This routine must be called with splbio interrupts blocked.
*/
static void
diradd_inode_written(dap, inodedep)
struct diradd *dap;
struct inodedep *inodedep;
{
dap->da_state |= COMPLETE;
complete_diradd(dap);
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
}
/*
* Returns true if the bmsafemap will have rollbacks when written. Must only
* be called with the per-filesystem lock and the buf lock on the cg held.
*/
static int
bmsafemap_backgroundwrite(bmsafemap, bp)
struct bmsafemap *bmsafemap;
struct buf *bp;
{
int dirty;
LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
!LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
/*
* If we're initiating a background write we need to process the
* rollbacks as they exist now, not as they exist when IO starts.
* No other consumers will look at the contents of the shadowed
* buf so this is safe to do here.
*/
if (bp->b_xflags & BX_BKGRDMARKER)
initiate_write_bmsafemap(bmsafemap, bp);
return (dirty);
}
/*
* Re-apply an allocation when a cg write is complete.
*/
static int
jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
struct jnewblk *jnewblk;
struct fs *fs;
struct cg *cgp;
uint8_t *blksfree;
{
ufs1_daddr_t fragno;
ufs2_daddr_t blkno;
long cgbno, bbase;
int frags, blk;
int i;
frags = 0;
cgbno = dtogd(fs, jnewblk->jn_blkno);
for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
if (isclr(blksfree, cgbno + i))
panic("jnewblk_rollforward: re-allocated fragment");
frags++;
}
if (frags == fs->fs_frag) {
blkno = fragstoblks(fs, cgbno);
ffs_clrblock(fs, blksfree, (long)blkno);
ffs_clusteracct(fs, cgp, blkno, -1);
cgp->cg_cs.cs_nbfree--;
} else {
bbase = cgbno - fragnum(fs, cgbno);
cgbno += jnewblk->jn_oldfrags;
/* If a complete block had been reassembled, account for it. */
fragno = fragstoblks(fs, bbase);
if (ffs_isblock(fs, blksfree, fragno)) {
cgp->cg_cs.cs_nffree += fs->fs_frag;
ffs_clusteracct(fs, cgp, fragno, -1);
cgp->cg_cs.cs_nbfree--;
}
/* Decrement the old frags. */
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
/* Allocate the fragment */
for (i = 0; i < frags; i++)
clrbit(blksfree, cgbno + i);
cgp->cg_cs.cs_nffree -= frags;
/* Add back in counts associated with the new frags */
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
}
return (frags);
}
/*
* Complete a write to a bmsafemap structure. Roll forward any bitmap
* changes if it's not a background write. Set all written dependencies
* to DEPCOMPLETE and free the structure if possible.
*
* If the write did not succeed, we will do all the roll-forward
* operations, but we will not take the actions that will allow its
* dependencies to be processed.
*/
static int
handle_written_bmsafemap(bmsafemap, bp, flags)
struct bmsafemap *bmsafemap;
struct buf *bp;
int flags;
{
struct newblk *newblk;
struct inodedep *inodedep;
struct jaddref *jaddref, *jatmp;
struct jnewblk *jnewblk, *jntmp;
struct ufsmount *ump;
uint8_t *inosused;
uint8_t *blksfree;
struct cg *cgp;
struct fs *fs;
ino_t ino;
int foreground;
int chgs;
if ((bmsafemap->sm_state & IOSTARTED) == 0)
panic("handle_written_bmsafemap: Not started\n");
ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
chgs = 0;
bmsafemap->sm_state &= ~IOSTARTED;
foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
/*
* If write was successful, release journal work that was waiting
* on the write. Otherwise move the work back.
*/
if (flags & WRITESUCCEEDED)
handle_jwork(&bmsafemap->sm_freewr);
else
LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
worklist, wk_list);
/*
* Restore unwritten inode allocation pending jaddref writes.
*/
if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
cgp = (struct cg *)bp->b_data;
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
inosused = cg_inosused(cgp);
LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
ja_bmdeps, jatmp) {
if ((jaddref->ja_state & UNDONE) == 0)
continue;
ino = jaddref->ja_ino % fs->fs_ipg;
if (isset(inosused, ino))
panic("handle_written_bmsafemap: "
"re-allocated inode");
/* Do the roll-forward only if it's a real copy. */
if (foreground) {
if ((jaddref->ja_mode & IFMT) == IFDIR)
cgp->cg_cs.cs_ndir++;
cgp->cg_cs.cs_nifree--;
setbit(inosused, ino);
chgs = 1;
}
jaddref->ja_state &= ~UNDONE;
jaddref->ja_state |= ATTACHED;
free_jaddref(jaddref);
}
}
/*
* Restore any block allocations which are pending journal writes.
*/
if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
cgp = (struct cg *)bp->b_data;
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
blksfree = cg_blksfree(cgp);
LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
jntmp) {
if ((jnewblk->jn_state & UNDONE) == 0)
continue;
/* Do the roll-forward only if it's a real copy. */
if (foreground &&
jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
chgs = 1;
jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
jnewblk->jn_state |= ATTACHED;
free_jnewblk(jnewblk);
}
}
/*
* If the write did not succeed, we have done all the roll-forward
* operations, but we cannot take the actions that will allow its
* dependencies to be processed.
*/
if ((flags & WRITESUCCEEDED) == 0) {
LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
newblk, nb_deps);
LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
worklist, wk_list);
if (foreground)
bdirty(bp);
return (1);
}
while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
newblk->nb_state |= DEPCOMPLETE;
newblk->nb_state &= ~ONDEPLIST;
newblk->nb_bmsafemap = NULL;
LIST_REMOVE(newblk, nb_deps);
if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
handle_allocdirect_partdone(
WK_ALLOCDIRECT(&newblk->nb_list), NULL);
else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
handle_allocindir_partdone(
WK_ALLOCINDIR(&newblk->nb_list));
else if (newblk->nb_list.wk_type != D_NEWBLK)
panic("handle_written_bmsafemap: Unexpected type: %s",
TYPENAME(newblk->nb_list.wk_type));
}
while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
inodedep->id_state |= DEPCOMPLETE;
inodedep->id_state &= ~ONDEPLIST;
LIST_REMOVE(inodedep, id_deps);
inodedep->id_bmsafemap = NULL;
}
LIST_REMOVE(bmsafemap, sm_next);
if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
LIST_EMPTY(&bmsafemap->sm_freehd)) {
LIST_REMOVE(bmsafemap, sm_hash);
WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
return (0);
}
LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
if (foreground)
bdirty(bp);
return (1);
}
/*
* Try to free a mkdir dependency.
*/
static void
complete_mkdir(mkdir)
struct mkdir *mkdir;
{
struct diradd *dap;
if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
LIST_REMOVE(mkdir, md_mkdirs);
dap = mkdir->md_diradd;
dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
dap->da_state |= DEPCOMPLETE;
complete_diradd(dap);
}
WORKITEM_FREE(mkdir, D_MKDIR);
}
/*
* Handle the completion of a mkdir dependency.
*/
static void
handle_written_mkdir(mkdir, type)
struct mkdir *mkdir;
int type;
{
if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
panic("handle_written_mkdir: bad type");
mkdir->md_state |= COMPLETE;
complete_mkdir(mkdir);
}
static int
free_pagedep(pagedep)
struct pagedep *pagedep;
{
int i;
if (pagedep->pd_state & NEWBLOCK)
return (0);
if (!LIST_EMPTY(&pagedep->pd_dirremhd))
return (0);
for (i = 0; i < DAHASHSZ; i++)
if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
return (0);
if (!LIST_EMPTY(&pagedep->pd_pendinghd))
return (0);
if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
return (0);
if (pagedep->pd_state & ONWORKLIST)
WORKLIST_REMOVE(&pagedep->pd_list);
LIST_REMOVE(pagedep, pd_hash);
WORKITEM_FREE(pagedep, D_PAGEDEP);
return (1);
}
/*
* Called from within softdep_disk_write_complete above.
* A write operation was just completed. Removed inodes can
* now be freed and associated block pointers may be committed.
* Note that this routine is always called from interrupt level
* with further interrupts from this device blocked.
*
* If the write did not succeed, we will do all the roll-forward
* operations, but we will not take the actions that will allow its
* dependencies to be processed.
*/
static int
handle_written_filepage(pagedep, bp, flags)
struct pagedep *pagedep;
struct buf *bp; /* buffer containing the written page */
int flags;
{
struct dirrem *dirrem;
struct diradd *dap, *nextdap;
struct direct *ep;
int i, chgs;
if ((pagedep->pd_state & IOSTARTED) == 0)
panic("handle_written_filepage: not started");
pagedep->pd_state &= ~IOSTARTED;
if ((flags & WRITESUCCEEDED) == 0)
goto rollforward;
/*
* Process any directory removals that have been committed.
*/
while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
LIST_REMOVE(dirrem, dm_next);
dirrem->dm_state |= COMPLETE;
dirrem->dm_dirinum = pagedep->pd_ino;
KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
("handle_written_filepage: Journal entries not written."));
add_to_worklist(&dirrem->dm_list, 0);
}
/*
* Free any directory additions that have been committed.
* If it is a newly allocated block, we have to wait until
* the on-disk directory inode claims the new block.
*/
if ((pagedep->pd_state & NEWBLOCK) == 0)
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
free_diradd(dap, NULL);
rollforward:
/*
* Uncommitted directory entries must be restored.
*/
for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
dap = nextdap) {
nextdap = LIST_NEXT(dap, da_pdlist);
if (dap->da_state & ATTACHED)
panic("handle_written_filepage: attached");
ep = (struct direct *)
((char *)bp->b_data + dap->da_offset);
ep->d_ino = dap->da_newinum;
dap->da_state &= ~UNDONE;
dap->da_state |= ATTACHED;
chgs = 1;
/*
* If the inode referenced by the directory has
* been written out, then the dependency can be
* moved to the pending list.
*/
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
da_pdlist);
}
}
}
/*
* If there were any rollbacks in the directory, then it must be
* marked dirty so that its will eventually get written back in
* its correct form.
*/
if (chgs || (flags & WRITESUCCEEDED) == 0) {
if ((bp->b_flags & B_DELWRI) == 0)
stat_dir_entry++;
bdirty(bp);
return (1);
}
/*
* If we are not waiting for a new directory block to be
* claimed by its inode, then the pagedep will be freed.
* Otherwise it will remain to track any new entries on
* the page in case they are fsync'ed.
*/
free_pagedep(pagedep);
return (0);
}
/*
* Writing back in-core inode structures.
*
* The filesystem only accesses an inode's contents when it occupies an
* "in-core" inode structure. These "in-core" structures are separate from
* the page frames used to cache inode blocks. Only the latter are
* transferred to/from the disk. So, when the updated contents of the
* "in-core" inode structure are copied to the corresponding in-memory inode
* block, the dependencies are also transferred. The following procedure is
* called when copying a dirty "in-core" inode to a cached inode block.
*/
/*
* Called when an inode is loaded from disk. If the effective link count
* differed from the actual link count when it was last flushed, then we
* need to ensure that the correct effective link count is put back.
*/
void
softdep_load_inodeblock(ip)
struct inode *ip; /* the "in_core" copy of the inode */
{
struct inodedep *inodedep;
struct ufsmount *ump;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_load_inodeblock called on non-softdep filesystem"));
/*
* Check for alternate nlink count.
*/
ip->i_effnlink = ip->i_nlink;
ACQUIRE_LOCK(ump);
if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(ump);
return;
}
ip->i_effnlink -= inodedep->id_nlinkdelta;
FREE_LOCK(ump);
}
/*
* This routine is called just before the "in-core" inode
* information is to be copied to the in-memory inode block.
* Recall that an inode block contains several inodes. If
* the force flag is set, then the dependencies will be
* cleared so that the update can always be made. Note that
* the buffer is locked when this routine is called, so we
* will never be in the middle of writing the inode block
* to disk.
*/
void
softdep_update_inodeblock(ip, bp, waitfor)
struct inode *ip; /* the "in_core" copy of the inode */
struct buf *bp; /* the buffer containing the inode block */
int waitfor; /* nonzero => update must be allowed */
{
struct inodedep *inodedep;
struct inoref *inoref;
struct ufsmount *ump;
struct worklist *wk;
struct mount *mp;
struct buf *ibp;
struct fs *fs;
int error;
ump = ITOUMP(ip);
mp = UFSTOVFS(ump);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_update_inodeblock called on non-softdep filesystem"));
fs = ump->um_fs;
/*
* Preserve the freelink that is on disk. clear_unlinked_inodedep()
* does not have access to the in-core ip so must write directly into
* the inode block buffer when setting freelink.
*/
if (fs->fs_magic == FS_UFS1_MAGIC)
DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number))->di_freelink);
else
DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number))->di_freelink);
/*
* If the effective link count is not equal to the actual link
* count, then we must track the difference in an inodedep while
* the inode is (potentially) tossed out of the cache. Otherwise,
* if there is no existing inodedep, then there are no dependencies
* to track.
*/
ACQUIRE_LOCK(ump);
again:
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(ump);
if (ip->i_effnlink != ip->i_nlink)
panic("softdep_update_inodeblock: bad link count");
return;
}
if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
panic("softdep_update_inodeblock: bad delta");
/*
* If we're flushing all dependencies we must also move any waiting
* for journal writes onto the bufwait list prior to I/O.
*/
if (waitfor) {
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
== DEPCOMPLETE) {
jwait(&inoref->if_list, MNT_WAIT);
goto again;
}
}
}
/*
* Changes have been initiated. Anything depending on these
* changes cannot occur until this inode has been written.
*/
inodedep->id_state &= ~COMPLETE;
if ((inodedep->id_state & ONWORKLIST) == 0)
WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
/*
* Any new dependencies associated with the incore inode must
* now be moved to the list associated with the buffer holding
* the in-memory copy of the inode. Once merged process any
* allocdirects that are completed by the merger.
*/
merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
NULL);
merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
if (!TAILQ_EMPTY(&inodedep->id_extupdt))
handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
NULL);
/*
* Now that the inode has been pushed into the buffer, the
* operations dependent on the inode being written to disk
* can be moved to the id_bufwait so that they will be
* processed when the buffer I/O completes.
*/
while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&inodedep->id_bufwait, wk);
}
/*
* Newly allocated inodes cannot be written until the bitmap
* that allocates them have been written (indicated by
* DEPCOMPLETE being set in id_state). If we are doing a
* forced sync (e.g., an fsync on a file), we force the bitmap
* to be written so that the update can be done.
*/
if (waitfor == 0) {
FREE_LOCK(ump);
return;
}
retry:
if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
FREE_LOCK(ump);
return;
}
ibp = inodedep->id_bmsafemap->sm_buf;
ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
if (ibp == NULL) {
/*
* If ibp came back as NULL, the dependency could have been
* freed while we slept. Look it up again, and check to see
* that it has completed.
*/
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
goto retry;
FREE_LOCK(ump);
return;
}
FREE_LOCK(ump);
if ((error = bwrite(ibp)) != 0)
softdep_error("softdep_update_inodeblock: bwrite", error);
}
/*
* Merge the a new inode dependency list (such as id_newinoupdt) into an
* old inode dependency list (such as id_inoupdt). This routine must be
* called with splbio interrupts blocked.
*/
static void
merge_inode_lists(newlisthead, oldlisthead)
struct allocdirectlst *newlisthead;
struct allocdirectlst *oldlisthead;
{
struct allocdirect *listadp, *newadp;
newadp = TAILQ_FIRST(newlisthead);
for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
if (listadp->ad_offset < newadp->ad_offset) {
listadp = TAILQ_NEXT(listadp, ad_next);
continue;
}
TAILQ_REMOVE(newlisthead, newadp, ad_next);
TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
if (listadp->ad_offset == newadp->ad_offset) {
allocdirect_merge(oldlisthead, newadp,
listadp);
listadp = newadp;
}
newadp = TAILQ_FIRST(newlisthead);
}
while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
TAILQ_REMOVE(newlisthead, newadp, ad_next);
TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
}
}
/*
* If we are doing an fsync, then we must ensure that any directory
* entries for the inode have been written after the inode gets to disk.
*/
int
softdep_fsync(vp)
struct vnode *vp; /* the "in_core" copy of the inode */
{
struct inodedep *inodedep;
struct pagedep *pagedep;
struct inoref *inoref;
struct ufsmount *ump;
struct worklist *wk;
struct diradd *dap;
struct mount *mp;
struct vnode *pvp;
struct inode *ip;
struct buf *bp;
struct fs *fs;
struct thread *td = curthread;
int error, flushparent, pagedep_new_block;
ino_t parentino;
ufs_lbn_t lbn;
ip = VTOI(vp);
mp = vp->v_mount;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
if (MOUNTEDSOFTDEP(mp) == 0)
return (0);
ACQUIRE_LOCK(ump);
restart:
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(ump);
return (0);
}
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
== DEPCOMPLETE) {
jwait(&inoref->if_list, MNT_WAIT);
goto restart;
}
}
if (!LIST_EMPTY(&inodedep->id_inowait) ||
!TAILQ_EMPTY(&inodedep->id_extupdt) ||
!TAILQ_EMPTY(&inodedep->id_newextupdt) ||
!TAILQ_EMPTY(&inodedep->id_inoupdt) ||
!TAILQ_EMPTY(&inodedep->id_newinoupdt))
panic("softdep_fsync: pending ops %p", inodedep);
for (error = 0, flushparent = 0; ; ) {
if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
break;
if (wk->wk_type != D_DIRADD)
panic("softdep_fsync: Unexpected type %s",
TYPENAME(wk->wk_type));
dap = WK_DIRADD(wk);
/*
* Flush our parent if this directory entry has a MKDIR_PARENT
* dependency or is contained in a newly allocated block.
*/
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
parentino = pagedep->pd_ino;
lbn = pagedep->pd_lbn;
if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
panic("softdep_fsync: dirty");
if ((dap->da_state & MKDIR_PARENT) ||
(pagedep->pd_state & NEWBLOCK))
flushparent = 1;
else
flushparent = 0;
/*
* If we are being fsync'ed as part of vgone'ing this vnode,
* then we will not be able to release and recover the
* vnode below, so we just have to give up on writing its
* directory entry out. It will eventually be written, just
* not now, but then the user was not asking to have it
* written, so we are not breaking any promises.
*/
if (vp->v_iflag & VI_DOOMED)
break;
/*
* We prevent deadlock by always fetching inodes from the
* root, moving down the directory tree. Thus, when fetching
* our parent directory, we first try to get the lock. If
* that fails, we must unlock ourselves before requesting
* the lock on our parent. See the comment in ufs_lookup
* for details on possible races.
*/
FREE_LOCK(ump);
if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
FFSV_FORCEINSMQ)) {
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0) {
vfs_ref(mp);
VOP_UNLOCK(vp, 0);
error = vfs_busy(mp, 0);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
vfs_rel(mp);
if (error != 0)
return (ENOENT);
if (vp->v_iflag & VI_DOOMED) {
vfs_unbusy(mp);
return (ENOENT);
}
}
VOP_UNLOCK(vp, 0);
error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
&pvp, FFSV_FORCEINSMQ);
vfs_unbusy(mp);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (vp->v_iflag & VI_DOOMED) {
if (error == 0)
vput(pvp);
error = ENOENT;
}
if (error != 0)
return (error);
}
/*
* All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
* that are contained in direct blocks will be resolved by
* doing a ffs_update. Pagedeps contained in indirect blocks
* may require a complete sync'ing of the directory. So, we
* try the cheap and fast ffs_update first, and if that fails,
* then we do the slower ffs_syncvnode of the directory.
*/
if (flushparent) {
int locked;
if ((error = ffs_update(pvp, 1)) != 0) {
vput(pvp);
return (error);
}
ACQUIRE_LOCK(ump);
locked = 1;
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
if (wk->wk_type != D_DIRADD)
panic("softdep_fsync: Unexpected type %s",
TYPENAME(wk->wk_type));
dap = WK_DIRADD(wk);
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
pagedep_new_block = pagedep->pd_state & NEWBLOCK;
FREE_LOCK(ump);
locked = 0;
if (pagedep_new_block && (error =
ffs_syncvnode(pvp, MNT_WAIT, 0))) {
vput(pvp);
return (error);
}
}
}
if (locked)
FREE_LOCK(ump);
}
/*
* Flush directory page containing the inode's name.
*/
error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
&bp);
if (error == 0)
error = bwrite(bp);
else
brelse(bp);
vput(pvp);
if (error != 0)
return (error);
ACQUIRE_LOCK(ump);
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
break;
}
FREE_LOCK(ump);
return (0);
}
/*
* Flush all the dirty bitmaps associated with the block device
* before flushing the rest of the dirty blocks so as to reduce
* the number of dependencies that will have to be rolled back.
*
* XXX Unused?
*/
void
softdep_fsync_mountdev(vp)
struct vnode *vp;
{
struct buf *bp, *nbp;
struct worklist *wk;
struct bufobj *bo;
if (!vn_isdisk(vp, NULL))
panic("softdep_fsync_mountdev: vnode not a disk");
bo = &vp->v_bufobj;
restart:
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
/*
* If it is already scheduled, skip to the next buffer.
*/
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
continue;
if ((bp->b_flags & B_DELWRI) == 0)
panic("softdep_fsync_mountdev: not dirty");
/*
* We are only interested in bitmaps with outstanding
* dependencies.
*/
if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
wk->wk_type != D_BMSAFEMAP ||
(bp->b_vflags & BV_BKGRDINPROG)) {
BUF_UNLOCK(bp);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
(void) bawrite(bp);
goto restart;
}
drain_output(vp);
BO_UNLOCK(bo);
}
/*
* Sync all cylinder groups that were dirty at the time this function is
* called. Newly dirtied cgs will be inserted before the sentinel. This
* is used to flush freedep activity that may be holding up writes to a
* indirect block.
*/
static int
sync_cgs(mp, waitfor)
struct mount *mp;
int waitfor;
{
struct bmsafemap *bmsafemap;
struct bmsafemap *sentinel;
struct ufsmount *ump;
struct buf *bp;
int error;
sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
sentinel->sm_cg = -1;
ump = VFSTOUFS(mp);
error = 0;
ACQUIRE_LOCK(ump);
LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
bmsafemap = LIST_NEXT(sentinel, sm_next)) {
/* Skip sentinels and cgs with no work to release. */
if (bmsafemap->sm_cg == -1 ||
(LIST_EMPTY(&bmsafemap->sm_freehd) &&
LIST_EMPTY(&bmsafemap->sm_freewr))) {
LIST_REMOVE(sentinel, sm_next);
LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
continue;
}
/*
* If we don't get the lock and we're waiting try again, if
* not move on to the next buf and try to sync it.
*/
bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
if (bp == NULL && waitfor == MNT_WAIT)
continue;
LIST_REMOVE(sentinel, sm_next);
LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
if (bp == NULL)
continue;
FREE_LOCK(ump);
if (waitfor == MNT_NOWAIT)
bawrite(bp);
else
error = bwrite(bp);
ACQUIRE_LOCK(ump);
if (error)
break;
}
LIST_REMOVE(sentinel, sm_next);
FREE_LOCK(ump);
free(sentinel, M_BMSAFEMAP);
return (error);
}
/*
* This routine is called when we are trying to synchronously flush a
* file. This routine must eliminate any filesystem metadata dependencies
* so that the syncing routine can succeed.
*/
int
softdep_sync_metadata(struct vnode *vp)
{
struct inode *ip;
int error;
ip = VTOI(vp);
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
("softdep_sync_metadata called on non-softdep filesystem"));
/*
* Ensure that any direct block dependencies have been cleared,
* truncations are started, and inode references are journaled.
*/
ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
/*
* Write all journal records to prevent rollbacks on devvp.
*/
if (vp->v_type == VCHR)
softdep_flushjournal(vp->v_mount);
error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
/*
* Ensure that all truncates are written so we won't find deps on
* indirect blocks.
*/
process_truncates(vp);
FREE_LOCK(VFSTOUFS(vp->v_mount));
return (error);
}
/*
* This routine is called when we are attempting to sync a buf with
* dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any
* other IO it can but returns EBUSY if the buffer is not yet able to
* be written. Dependencies which will not cause rollbacks will always
* return 0.
*/
int
softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
{
struct indirdep *indirdep;
struct pagedep *pagedep;
struct allocindir *aip;
struct newblk *newblk;
struct ufsmount *ump;
struct buf *nbp;
struct worklist *wk;
int i, error;
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
("softdep_sync_buf called on non-softdep filesystem"));
/*
* For VCHR we just don't want to force flush any dependencies that
* will cause rollbacks.
*/
if (vp->v_type == VCHR) {
if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
return (EBUSY);
return (0);
}
ump = VFSTOUFS(vp->v_mount);
ACQUIRE_LOCK(ump);
/*
* As we hold the buffer locked, none of its dependencies
* will disappear.
*/
error = 0;
top:
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
switch (wk->wk_type) {
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
newblk = WK_NEWBLK(wk);
if (newblk->nb_jnewblk != NULL) {
if (waitfor == MNT_NOWAIT) {
error = EBUSY;
goto out_unlock;
}
jwait(&newblk->nb_jnewblk->jn_list, waitfor);
goto top;
}
if (newblk->nb_state & DEPCOMPLETE ||
waitfor == MNT_NOWAIT)
continue;
nbp = newblk->nb_bmsafemap->sm_buf;
nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
if (nbp == NULL)
goto top;
FREE_LOCK(ump);
if ((error = bwrite(nbp)) != 0)
goto out;
ACQUIRE_LOCK(ump);
continue;
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
if (waitfor == MNT_NOWAIT) {
if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
!LIST_EMPTY(&indirdep->ir_deplisthd)) {
error = EBUSY;
goto out_unlock;
}
}
if (!TAILQ_EMPTY(&indirdep->ir_trunc))
panic("softdep_sync_buf: truncation pending.");
restart:
LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
newblk = (struct newblk *)aip;
if (newblk->nb_jnewblk != NULL) {
jwait(&newblk->nb_jnewblk->jn_list,
waitfor);
goto restart;
}
if (newblk->nb_state & DEPCOMPLETE)
continue;
nbp = newblk->nb_bmsafemap->sm_buf;
nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
if (nbp == NULL)
goto restart;
FREE_LOCK(ump);
if ((error = bwrite(nbp)) != 0)
goto out;
ACQUIRE_LOCK(ump);
goto restart;
}
continue;
case D_PAGEDEP:
/*
* Only flush directory entries in synchronous passes.
*/
if (waitfor != MNT_WAIT) {
error = EBUSY;
goto out_unlock;
}
/*
* While syncing snapshots, we must allow recursive
* lookups.
*/
BUF_AREC(bp);
/*
* We are trying to sync a directory that may
* have dependencies on both its own metadata
* and/or dependencies on the inodes of any
* recently allocated files. We walk its diradd
* lists pushing out the associated inode.
*/
pagedep = WK_PAGEDEP(wk);
for (i = 0; i < DAHASHSZ; i++) {
if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
continue;
if ((error = flush_pagedep_deps(vp, wk->wk_mp,
&pagedep->pd_diraddhd[i]))) {
BUF_NOREC(bp);
goto out_unlock;
}
}
BUF_NOREC(bp);
continue;
case D_FREEWORK:
case D_FREEDEP:
case D_JSEGDEP:
case D_JNEWBLK:
continue;
default:
panic("softdep_sync_buf: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
out_unlock:
FREE_LOCK(ump);
out:
return (error);
}
/*
* Flush the dependencies associated with an inodedep.
* Called with splbio blocked.
*/
static int
flush_inodedep_deps(vp, mp, ino)
struct vnode *vp;
struct mount *mp;
ino_t ino;
{
struct inodedep *inodedep;
struct inoref *inoref;
struct ufsmount *ump;
int error, waitfor;
/*
* This work is done in two passes. The first pass grabs most
* of the buffers and begins asynchronously writing them. The
* only way to wait for these asynchronous writes is to sleep
* on the filesystem vnode which may stay busy for a long time
* if the filesystem is active. So, instead, we make a second
* pass over the dependencies blocking on each write. In the
* usual case we will be blocking against a write that we
* initiated, so when it is done the dependency will have been
* resolved. Thus the second pass is expected to end quickly.
* We give a brief window at the top of the loop to allow
* any pending I/O to complete.
*/
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
for (error = 0, waitfor = MNT_NOWAIT; ; ) {
if (error)
return (error);
FREE_LOCK(ump);
ACQUIRE_LOCK(ump);
restart:
if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
return (0);
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
== DEPCOMPLETE) {
jwait(&inoref->if_list, MNT_WAIT);
goto restart;
}
}
if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
continue;
/*
* If pass2, we are done, otherwise do pass 2.
*/
if (waitfor == MNT_WAIT)
break;
waitfor = MNT_WAIT;
}
/*
* Try freeing inodedep in case all dependencies have been removed.
*/
if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
(void) free_inodedep(inodedep);
return (0);
}
/*
* Flush an inode dependency list.
* Called with splbio blocked.
*/
static int
flush_deplist(listhead, waitfor, errorp)
struct allocdirectlst *listhead;
int waitfor;
int *errorp;
{
struct allocdirect *adp;
struct newblk *newblk;
struct ufsmount *ump;
struct buf *bp;
if ((adp = TAILQ_FIRST(listhead)) == NULL)
return (0);
ump = VFSTOUFS(adp->ad_list.wk_mp);
LOCK_OWNED(ump);
TAILQ_FOREACH(adp, listhead, ad_next) {
newblk = (struct newblk *)adp;
if (newblk->nb_jnewblk != NULL) {
jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
return (1);
}
if (newblk->nb_state & DEPCOMPLETE)
continue;
bp = newblk->nb_bmsafemap->sm_buf;
bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
if (bp == NULL) {
if (waitfor == MNT_NOWAIT)
continue;
return (1);
}
FREE_LOCK(ump);
if (waitfor == MNT_NOWAIT)
bawrite(bp);
else
*errorp = bwrite(bp);
ACQUIRE_LOCK(ump);
return (1);
}
return (0);
}
/*
* Flush dependencies associated with an allocdirect block.
*/
static int
flush_newblk_dep(vp, mp, lbn)
struct vnode *vp;
struct mount *mp;
ufs_lbn_t lbn;
{
struct newblk *newblk;
struct ufsmount *ump;
struct bufobj *bo;
struct inode *ip;
struct buf *bp;
ufs2_daddr_t blkno;
int error;
error = 0;
bo = &vp->v_bufobj;
ip = VTOI(vp);
blkno = DIP(ip, i_db[lbn]);
if (blkno == 0)
panic("flush_newblk_dep: Missing block");
ump = VFSTOUFS(mp);
ACQUIRE_LOCK(ump);
/*
* Loop until all dependencies related to this block are satisfied.
* We must be careful to restart after each sleep in case a write
* completes some part of this process for us.
*/
for (;;) {
if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
FREE_LOCK(ump);
break;
}
if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
panic("flush_newblk_dep: Bad newblk %p", newblk);
/*
* Flush the journal.
*/
if (newblk->nb_jnewblk != NULL) {
jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
continue;
}
/*
* Write the bitmap dependency.
*/
if ((newblk->nb_state & DEPCOMPLETE) == 0) {
bp = newblk->nb_bmsafemap->sm_buf;
bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
if (bp == NULL)
continue;
FREE_LOCK(ump);
error = bwrite(bp);
if (error)
break;
ACQUIRE_LOCK(ump);
continue;
}
/*
* Write the buffer.
*/
FREE_LOCK(ump);
BO_LOCK(bo);
bp = gbincore(bo, lbn);
if (bp != NULL) {
error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
LK_INTERLOCK, BO_LOCKPTR(bo));
if (error == ENOLCK) {
ACQUIRE_LOCK(ump);
error = 0;
continue; /* Slept, retry */
}
if (error != 0)
break; /* Failed */
if (bp->b_flags & B_DELWRI) {
bremfree(bp);
error = bwrite(bp);
if (error)
break;
} else
BUF_UNLOCK(bp);
} else
BO_UNLOCK(bo);
/*
* We have to wait for the direct pointers to
* point at the newdirblk before the dependency
* will go away.
*/
error = ffs_update(vp, 1);
if (error)
break;
ACQUIRE_LOCK(ump);
}
return (error);
}
/*
* Eliminate a pagedep dependency by flushing out all its diradd dependencies.
* Called with splbio blocked.
*/
static int
flush_pagedep_deps(pvp, mp, diraddhdp)
struct vnode *pvp;
struct mount *mp;
struct diraddhd *diraddhdp;
{
struct inodedep *inodedep;
struct inoref *inoref;
struct ufsmount *ump;
struct diradd *dap;
struct vnode *vp;
int error = 0;
struct buf *bp;
ino_t inum;
struct diraddhd unfinished;
LIST_INIT(&unfinished);
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
restart:
while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
/*
* Flush ourselves if this directory entry
* has a MKDIR_PARENT dependency.
*/
if (dap->da_state & MKDIR_PARENT) {
FREE_LOCK(ump);
if ((error = ffs_update(pvp, 1)) != 0)
break;
ACQUIRE_LOCK(ump);
/*
* If that cleared dependencies, go on to next.
*/
if (dap != LIST_FIRST(diraddhdp))
continue;
/*
* All MKDIR_PARENT dependencies and all the
* NEWBLOCK pagedeps that are contained in direct
* blocks were resolved by doing above ffs_update.
* Pagedeps contained in indirect blocks may
* require a complete sync'ing of the directory.
* We are in the midst of doing a complete sync,
* so if they are not resolved in this pass we
* defer them for now as they will be sync'ed by
* our caller shortly.
*/
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
continue;
}
/*
* A newly allocated directory must have its "." and
* ".." entries written out before its name can be
* committed in its parent.
*/
inum = dap->da_newinum;
if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
panic("flush_pagedep_deps: lost inode1");
/*
* Wait for any pending journal adds to complete so we don't
* cause rollbacks while syncing.
*/
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
== DEPCOMPLETE) {
jwait(&inoref->if_list, MNT_WAIT);
goto restart;
}
}
if (dap->da_state & MKDIR_BODY) {
FREE_LOCK(ump);
if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
FFSV_FORCEINSMQ)))
break;
error = flush_newblk_dep(vp, mp, 0);
/*
* If we still have the dependency we might need to
* update the vnode to sync the new link count to
* disk.
*/
if (error == 0 && dap == LIST_FIRST(diraddhdp))
error = ffs_update(vp, 1);
vput(vp);
if (error != 0)
break;
ACQUIRE_LOCK(ump);
/*
* If that cleared dependencies, go on to next.
*/
if (dap != LIST_FIRST(diraddhdp))
continue;
if (dap->da_state & MKDIR_BODY) {
inodedep_lookup(UFSTOVFS(ump), inum, 0,
&inodedep);
panic("flush_pagedep_deps: MKDIR_BODY "
"inodedep %p dap %p vp %p",
inodedep, dap, vp);
}
}
/*
* Flush the inode on which the directory entry depends.
* Having accounted for MKDIR_PARENT and MKDIR_BODY above,
* the only remaining dependency is that the updated inode
* count must get pushed to disk. The inode has already
* been pushed into its inode buffer (via VOP_UPDATE) at
* the time of the reference count change. So we need only
* locate that buffer, ensure that there will be no rollback
* caused by a bitmap dependency, then write the inode buffer.
*/
retry:
if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
panic("flush_pagedep_deps: lost inode");
/*
* If the inode still has bitmap dependencies,
* push them to disk.
*/
if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
bp = inodedep->id_bmsafemap->sm_buf;
bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
if (bp == NULL)
goto retry;
FREE_LOCK(ump);
if ((error = bwrite(bp)) != 0)
break;
ACQUIRE_LOCK(ump);
if (dap != LIST_FIRST(diraddhdp))
continue;
}
/*
* If the inode is still sitting in a buffer waiting
* to be written or waiting for the link count to be
* adjusted update it here to flush it to disk.
*/
if (dap == LIST_FIRST(diraddhdp)) {
FREE_LOCK(ump);
if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
FFSV_FORCEINSMQ)))
break;
error = ffs_update(vp, 1);
vput(vp);
if (error)
break;
ACQUIRE_LOCK(ump);
}
/*
* If we have failed to get rid of all the dependencies
* then something is seriously wrong.
*/
if (dap == LIST_FIRST(diraddhdp)) {
inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
panic("flush_pagedep_deps: failed to flush "
"inodedep %p ino %ju dap %p",
inodedep, (uintmax_t)inum, dap);
}
}
if (error)
ACQUIRE_LOCK(ump);
while ((dap = LIST_FIRST(&unfinished)) != NULL) {
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
}
return (error);
}
/*
* A large burst of file addition or deletion activity can drive the
* memory load excessively high. First attempt to slow things down
* using the techniques below. If that fails, this routine requests
* the offending operations to fall back to running synchronously
* until the memory load returns to a reasonable level.
*/
int
softdep_slowdown(vp)
struct vnode *vp;
{
struct ufsmount *ump;
int jlow;
int max_softdeps_hard;
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
("softdep_slowdown called on non-softdep filesystem"));
ump = VFSTOUFS(vp->v_mount);
ACQUIRE_LOCK(ump);
jlow = 0;
/*
* Check for journal space if needed.
*/
if (DOINGSUJ(vp)) {
if (journal_space(ump, 0) == 0)
jlow = 1;
}
/*
* If the system is under its limits and our filesystem is
* not responsible for more than our share of the usage and
* we are not low on journal space, then no need to slow down.
*/
max_softdeps_hard = max_softdeps * 11 / 10;
if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
dep_current[D_INODEDEP] < max_softdeps_hard &&
dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
ump->softdep_curdeps[D_DIRREM] <
(max_softdeps_hard / 2) / stat_flush_threads &&
ump->softdep_curdeps[D_INODEDEP] <
max_softdeps_hard / stat_flush_threads &&
ump->softdep_curdeps[D_INDIRDEP] <
(max_softdeps_hard / 1000) / stat_flush_threads &&
ump->softdep_curdeps[D_FREEBLKS] <
max_softdeps_hard / stat_flush_threads) {
FREE_LOCK(ump);
return (0);
}
/*
* If the journal is low or our filesystem is over its limit
* then speedup the cleanup.
*/
if (ump->softdep_curdeps[D_INDIRDEP] <
(max_softdeps_hard / 1000) / stat_flush_threads || jlow)
softdep_speedup(ump);
stat_sync_limit_hit += 1;
FREE_LOCK(ump);
/*
* We only slow down the rate at which new dependencies are
* generated if we are not using journaling. With journaling,
* the cleanup should always be sufficient to keep things
* under control.
*/
if (DOINGSUJ(vp))
return (0);
return (1);
}
/*
* Called by the allocation routines when they are about to fail
* in the hope that we can free up the requested resource (inodes
* or disk space).
*
* First check to see if the work list has anything on it. If it has,
* clean up entries until we successfully free the requested resource.
* Because this process holds inodes locked, we cannot handle any remove
* requests that might block on a locked inode as that could lead to
* deadlock. If the worklist yields none of the requested resource,
* start syncing out vnodes to free up the needed space.
*/
int
softdep_request_cleanup(fs, vp, cred, resource)
struct fs *fs;
struct vnode *vp;
struct ucred *cred;
int resource;
{
struct ufsmount *ump;
struct mount *mp;
long starttime;
ufs2_daddr_t needed;
int error, failed_vnode;
/*
* If we are being called because of a process doing a
* copy-on-write, then it is not safe to process any
* worklist items as we will recurse into the copyonwrite
* routine. This will result in an incoherent snapshot.
* If the vnode that we hold is a snapshot, we must avoid
* handling other resources that could cause deadlock.
*/
if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
return (0);
if (resource == FLUSH_BLOCKS_WAIT)
stat_cleanup_blkrequests += 1;
else
stat_cleanup_inorequests += 1;
mp = vp->v_mount;
ump = VFSTOUFS(mp);
mtx_assert(UFS_MTX(ump), MA_OWNED);
UFS_UNLOCK(ump);
error = ffs_update(vp, 1);
if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
UFS_LOCK(ump);
return (0);
}
/*
* If we are in need of resources, start by cleaning up
* any block removals associated with our inode.
*/
ACQUIRE_LOCK(ump);
process_removes(vp);
process_truncates(vp);
FREE_LOCK(ump);
/*
* Now clean up at least as many resources as we will need.
*
* When requested to clean up inodes, the number that are needed
* is set by the number of simultaneous writers (mnt_writeopcount)
* plus a bit of slop (2) in case some more writers show up while
* we are cleaning.
*
* When requested to free up space, the amount of space that
* we need is enough blocks to allocate a full-sized segment
* (fs_contigsumsize). The number of such segments that will
* be needed is set by the number of simultaneous writers
* (mnt_writeopcount) plus a bit of slop (2) in case some more
* writers show up while we are cleaning.
*
* Additionally, if we are unpriviledged and allocating space,
* we need to ensure that we clean up enough blocks to get the
* needed number of blocks over the threshold of the minimum
* number of blocks required to be kept free by the filesystem
* (fs_minfree).
*/
if (resource == FLUSH_INODES_WAIT) {
needed = vp->v_mount->mnt_writeopcount + 2;
} else if (resource == FLUSH_BLOCKS_WAIT) {
needed = (vp->v_mount->mnt_writeopcount + 2) *
fs->fs_contigsumsize;
if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
needed += fragstoblks(fs,
roundup((fs->fs_dsize * fs->fs_minfree / 100) -
fs->fs_cstotal.cs_nffree, fs->fs_frag));
} else {
UFS_LOCK(ump);
printf("softdep_request_cleanup: Unknown resource type %d\n",
resource);
return (0);
}
starttime = time_second;
retry:
if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
fs->fs_cstotal.cs_nbfree <= needed) ||
(resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
fs->fs_cstotal.cs_nifree <= needed)) {
ACQUIRE_LOCK(ump);
if (ump->softdep_on_worklist > 0 &&
process_worklist_item(UFSTOVFS(ump),
ump->softdep_on_worklist, LK_NOWAIT) != 0)
stat_worklist_push += 1;
FREE_LOCK(ump);
}
/*
* If we still need resources and there are no more worklist
* entries to process to obtain them, we have to start flushing
* the dirty vnodes to force the release of additional requests
* to the worklist that we can then process to reap addition
* resources. We walk the vnodes associated with the mount point
* until we get the needed worklist requests that we can reap.
*
* If there are several threads all needing to clean the same
* mount point, only one is allowed to walk the mount list.
* When several threads all try to walk the same mount list,
* they end up competing with each other and often end up in
* livelock. This approach ensures that forward progress is
* made at the cost of occational ENOSPC errors being returned
* that might otherwise have been avoided.
*/
error = 1;
if ((resource == FLUSH_BLOCKS_WAIT &&
fs->fs_cstotal.cs_nbfree <= needed) ||
(resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
fs->fs_cstotal.cs_nifree <= needed)) {
ACQUIRE_LOCK(ump);
if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
FREE_LOCK(ump);
failed_vnode = softdep_request_cleanup_flush(mp, ump);
ACQUIRE_LOCK(ump);
ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
FREE_LOCK(ump);
if (ump->softdep_on_worklist > 0) {
stat_cleanup_retries += 1;
if (!failed_vnode)
goto retry;
}
} else {
FREE_LOCK(ump);
error = 0;
}
stat_cleanup_failures += 1;
}
if (time_second - starttime > stat_cleanup_high_delay)
stat_cleanup_high_delay = time_second - starttime;
UFS_LOCK(ump);
return (error);
}
/*
* Scan the vnodes for the specified mount point flushing out any
* vnodes that can be locked without waiting. Finally, try to flush
* the device associated with the mount point if it can be locked
* without waiting.
*
* We return 0 if we were able to lock every vnode in our scan.
* If we had to skip one or more vnodes, we return 1.
*/
static int
softdep_request_cleanup_flush(mp, ump)
struct mount *mp;
struct ufsmount *ump;
{
struct thread *td;
struct vnode *lvp, *mvp;
int failed_vnode;
failed_vnode = 0;
td = curthread;
MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
VI_UNLOCK(lvp);
continue;
}
if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
td) != 0) {
failed_vnode = 1;
continue;
}
if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */
vput(lvp);
continue;
}
(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
vput(lvp);
}
lvp = ump->um_devvp;
if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
VOP_FSYNC(lvp, MNT_NOWAIT, td);
VOP_UNLOCK(lvp, 0);
}
return (failed_vnode);
}
static bool
softdep_excess_items(struct ufsmount *ump, int item)
{
KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
return (dep_current[item] > max_softdeps &&
ump->softdep_curdeps[item] > max_softdeps /
stat_flush_threads);
}
static void
schedule_cleanup(struct mount *mp)
{
struct ufsmount *ump;
struct thread *td;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
FREE_LOCK(ump);
td = curthread;
if ((td->td_pflags & TDP_KTHREAD) != 0 &&
(td->td_proc->p_flag2 & P2_AST_SU) == 0) {
/*
* No ast is delivered to kernel threads, so nobody
* would deref the mp. Some kernel threads
* explicitely check for AST, e.g. NFS daemon does
* this in the serving loop.
*/
return;
}
if (td->td_su != NULL)
vfs_rel(td->td_su);
vfs_ref(mp);
td->td_su = mp;
thread_lock(td);
td->td_flags |= TDF_ASTPENDING;
thread_unlock(td);
}
static void
softdep_ast_cleanup_proc(struct thread *td)
{
struct mount *mp;
struct ufsmount *ump;
int error;
bool req;
while ((mp = td->td_su) != NULL) {
td->td_su = NULL;
error = vfs_busy(mp, MBF_NOWAIT);
vfs_rel(mp);
if (error != 0)
return;
if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
ump = VFSTOUFS(mp);
for (;;) {
req = false;
ACQUIRE_LOCK(ump);
if (softdep_excess_items(ump, D_INODEDEP)) {
req = true;
request_cleanup(mp, FLUSH_INODES);
}
if (softdep_excess_items(ump, D_DIRREM)) {
req = true;
request_cleanup(mp, FLUSH_BLOCKS);
}
FREE_LOCK(ump);
if (softdep_excess_items(ump, D_NEWBLK) ||
softdep_excess_items(ump, D_ALLOCDIRECT) ||
softdep_excess_items(ump, D_ALLOCINDIR)) {
error = vn_start_write(NULL, &mp,
V_WAIT);
if (error == 0) {
req = true;
VFS_SYNC(mp, MNT_WAIT);
vn_finished_write(mp);
}
}
if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
break;
}
}
vfs_unbusy(mp);
}
if ((mp = td->td_su) != NULL) {
td->td_su = NULL;
vfs_rel(mp);
}
}
/*
* If memory utilization has gotten too high, deliberately slow things
* down and speed up the I/O processing.
*/
static int
request_cleanup(mp, resource)
struct mount *mp;
int resource;
{
struct thread *td = curthread;
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
/*
* We never hold up the filesystem syncer or buf daemon.
*/
if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
return (0);
/*
* First check to see if the work list has gotten backlogged.
* If it has, co-opt this process to help clean up two entries.
* Because this process may hold inodes locked, we cannot
* handle any remove requests that might block on a locked
* inode as that could lead to deadlock. We set TDP_SOFTDEP
* to avoid recursively processing the worklist.
*/
if (ump->softdep_on_worklist > max_softdeps / 10) {
td->td_pflags |= TDP_SOFTDEP;
process_worklist_item(mp, 2, LK_NOWAIT);
td->td_pflags &= ~TDP_SOFTDEP;
stat_worklist_push += 2;
return(1);
}
/*
* Next, we attempt to speed up the syncer process. If that
* is successful, then we allow the process to continue.
*/
if (softdep_speedup(ump) &&
resource != FLUSH_BLOCKS_WAIT &&
resource != FLUSH_INODES_WAIT)
return(0);
/*
* If we are resource constrained on inode dependencies, try
* flushing some dirty inodes. Otherwise, we are constrained
* by file deletions, so try accelerating flushes of directories
* with removal dependencies. We would like to do the cleanup
* here, but we probably hold an inode locked at this point and
* that might deadlock against one that we try to clean. So,
* the best that we can do is request the syncer daemon to do
* the cleanup for us.
*/
switch (resource) {
case FLUSH_INODES:
case FLUSH_INODES_WAIT:
ACQUIRE_GBLLOCK(&lk);
stat_ino_limit_push += 1;
req_clear_inodedeps += 1;
FREE_GBLLOCK(&lk);
stat_countp = &stat_ino_limit_hit;
break;
case FLUSH_BLOCKS:
case FLUSH_BLOCKS_WAIT:
ACQUIRE_GBLLOCK(&lk);
stat_blk_limit_push += 1;
req_clear_remove += 1;
FREE_GBLLOCK(&lk);
stat_countp = &stat_blk_limit_hit;
break;
default:
panic("request_cleanup: unknown type");
}
/*
* Hopefully the syncer daemon will catch up and awaken us.
* We wait at most tickdelay before proceeding in any case.
*/
ACQUIRE_GBLLOCK(&lk);
FREE_LOCK(ump);
proc_waiting += 1;
if (callout_pending(&softdep_callout) == FALSE)
callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
pause_timer, 0);
if ((td->td_pflags & TDP_KTHREAD) == 0)
msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
proc_waiting -= 1;
FREE_GBLLOCK(&lk);
ACQUIRE_LOCK(ump);
return (1);
}
/*
* Awaken processes pausing in request_cleanup and clear proc_waiting
* to indicate that there is no longer a timer running. Pause_timer
* will be called with the global softdep mutex (&lk) locked.
*/
static void
pause_timer(arg)
void *arg;
{
GBLLOCK_OWNED(&lk);
/*
* The callout_ API has acquired mtx and will hold it around this
* function call.
*/
*stat_countp += proc_waiting;
wakeup(&proc_waiting);
}
/*
* If requested, try removing inode or removal dependencies.
*/
static void
check_clear_deps(mp)
struct mount *mp;
{
/*
* If we are suspended, it may be because of our using
* too many inodedeps, so help clear them out.
*/
if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
clear_inodedeps(mp);
/*
* General requests for cleanup of backed up dependencies
*/
ACQUIRE_GBLLOCK(&lk);
if (req_clear_inodedeps) {
req_clear_inodedeps -= 1;
FREE_GBLLOCK(&lk);
clear_inodedeps(mp);
ACQUIRE_GBLLOCK(&lk);
wakeup(&proc_waiting);
}
if (req_clear_remove) {
req_clear_remove -= 1;
FREE_GBLLOCK(&lk);
clear_remove(mp);
ACQUIRE_GBLLOCK(&lk);
wakeup(&proc_waiting);
}
FREE_GBLLOCK(&lk);
}
/*
* Flush out a directory with at least one removal dependency in an effort to
* reduce the number of dirrem, freefile, and freeblks dependency structures.
*/
static void
clear_remove(mp)
struct mount *mp;
{
struct pagedep_hashhead *pagedephd;
struct pagedep *pagedep;
struct ufsmount *ump;
struct vnode *vp;
struct bufobj *bo;
int error, cnt;
ino_t ino;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
if (ump->pagedep_nextclean > ump->pagedep_hash_size)
ump->pagedep_nextclean = 0;
LIST_FOREACH(pagedep, pagedephd, pd_hash) {
if (LIST_EMPTY(&pagedep->pd_dirremhd))
continue;
ino = pagedep->pd_ino;
if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
continue;
FREE_LOCK(ump);
/*
* Let unmount clear deps
*/
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0)
goto finish_write;
error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
FFSV_FORCEINSMQ);
vfs_unbusy(mp);
if (error != 0) {
softdep_error("clear_remove: vget", error);
goto finish_write;
}
if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
softdep_error("clear_remove: fsync", error);
bo = &vp->v_bufobj;
BO_LOCK(bo);
drain_output(vp);
BO_UNLOCK(bo);
vput(vp);
finish_write:
vn_finished_write(mp);
ACQUIRE_LOCK(ump);
return;
}
}
}
/*
* Clear out a block of dirty inodes in an effort to reduce
* the number of inodedep dependency structures.
*/
static void
clear_inodedeps(mp)
struct mount *mp;
{
struct inodedep_hashhead *inodedephd;
struct inodedep *inodedep;
struct ufsmount *ump;
struct vnode *vp;
struct fs *fs;
int error, cnt;
ino_t firstino, lastino, ino;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
LOCK_OWNED(ump);
/*
* Pick a random inode dependency to be cleared.
* We will then gather up all the inodes in its block
* that have dependencies and flush them out.
*/
for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
if (ump->inodedep_nextclean > ump->inodedep_hash_size)
ump->inodedep_nextclean = 0;
if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
break;
}
if (inodedep == NULL)
return;
/*
* Find the last inode in the block with dependencies.
*/
firstino = rounddown2(inodedep->id_ino, INOPB(fs));
for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
break;
/*
* Asynchronously push all but the last inode with dependencies.
* Synchronously push the last inode with dependencies to ensure
* that the inode block gets written to free up the inodedeps.
*/
for (ino = firstino; ino <= lastino; ino++) {
if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
continue;
if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
continue;
FREE_LOCK(ump);
error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
if (error != 0) {
vn_finished_write(mp);
ACQUIRE_LOCK(ump);
return;
}
if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
FFSV_FORCEINSMQ)) != 0) {
softdep_error("clear_inodedeps: vget", error);
vfs_unbusy(mp);
vn_finished_write(mp);
ACQUIRE_LOCK(ump);
return;
}
vfs_unbusy(mp);
if (ino == lastino) {
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
softdep_error("clear_inodedeps: fsync1", error);
} else {
if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
softdep_error("clear_inodedeps: fsync2", error);
BO_LOCK(&vp->v_bufobj);
drain_output(vp);
BO_UNLOCK(&vp->v_bufobj);
}
vput(vp);
vn_finished_write(mp);
ACQUIRE_LOCK(ump);
}
}
void
softdep_buf_append(bp, wkhd)
struct buf *bp;
struct workhead *wkhd;
{
struct worklist *wk;
struct ufsmount *ump;
if ((wk = LIST_FIRST(wkhd)) == NULL)
return;
KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
("softdep_buf_append called on non-softdep filesystem"));
ump = VFSTOUFS(wk->wk_mp);
ACQUIRE_LOCK(ump);
while ((wk = LIST_FIRST(wkhd)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&bp->b_dep, wk);
}
FREE_LOCK(ump);
}
void
softdep_inode_append(ip, cred, wkhd)
struct inode *ip;
struct ucred *cred;
struct workhead *wkhd;
{
struct buf *bp;
struct fs *fs;
struct ufsmount *ump;
int error;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_inode_append called on non-softdep filesystem"));
fs = ump->um_fs;
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, cred, &bp);
if (error) {
bqrelse(bp);
softdep_freework(wkhd);
return;
}
softdep_buf_append(bp, wkhd);
bqrelse(bp);
}
void
softdep_freework(wkhd)
struct workhead *wkhd;
{
struct worklist *wk;
struct ufsmount *ump;
if ((wk = LIST_FIRST(wkhd)) == NULL)
return;
KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
("softdep_freework called on non-softdep filesystem"));
ump = VFSTOUFS(wk->wk_mp);
ACQUIRE_LOCK(ump);
handle_jwork(wkhd);
FREE_LOCK(ump);
}
static struct ufsmount *
softdep_bp_to_mp(bp)
struct buf *bp;
{
struct mount *mp;
struct vnode *vp;
if (LIST_EMPTY(&bp->b_dep))
return (NULL);
vp = bp->b_vp;
/*
* The ump mount point is stable after we get a correct
* pointer, since bp is locked and this prevents unmount from
* proceeding. But to get to it, we cannot dereference bp->b_dep
* head wk_mp, because we do not yet own SU ump lock and
* workitem might be freed while dereferenced.
*/
retry:
if (vp->v_type == VCHR) {
VI_LOCK(vp);
mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
VI_UNLOCK(vp);
if (mp == NULL)
goto retry;
} else if (vp->v_type == VREG || vp->v_type == VDIR ||
vp->v_type == VLNK) {
mp = vp->v_mount;
} else {
return (NULL);
}
return (VFSTOUFS(mp));
}
/*
* Function to determine if the buffer has outstanding dependencies
* that will cause a roll-back if the buffer is written. If wantcount
* is set, return number of dependencies, otherwise just yes or no.
*/
static int
softdep_count_dependencies(bp, wantcount)
struct buf *bp;
int wantcount;
{
struct worklist *wk;
struct ufsmount *ump;
struct bmsafemap *bmsafemap;
struct freework *freework;
struct inodedep *inodedep;
struct indirdep *indirdep;
struct freeblks *freeblks;
struct allocindir *aip;
struct pagedep *pagedep;
struct dirrem *dirrem;
struct newblk *newblk;
struct mkdir *mkdir;
struct diradd *dap;
int i, retval;
ump = softdep_bp_to_mp(bp);
if (ump == NULL)
return (0);
retval = 0;
ACQUIRE_LOCK(ump);
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
switch (wk->wk_type) {
case D_INODEDEP:
inodedep = WK_INODEDEP(wk);
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
/* bitmap allocation dependency */
retval += 1;
if (!wantcount)
goto out;
}
if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
/* direct block pointer dependency */
retval += 1;
if (!wantcount)
goto out;
}
if (TAILQ_FIRST(&inodedep->id_extupdt)) {
/* direct block pointer dependency */
retval += 1;
if (!wantcount)
goto out;
}
if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
/* Add reference dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
/* indirect truncation dependency */
retval += 1;
if (!wantcount)
goto out;
}
LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
/* indirect block pointer dependency */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_PAGEDEP:
pagedep = WK_PAGEDEP(wk);
LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
/* Journal remove ref dependency. */
retval += 1;
if (!wantcount)
goto out;
}
}
for (i = 0; i < DAHASHSZ; i++) {
LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
/* directory entry dependency */
retval += 1;
if (!wantcount)
goto out;
}
}
continue;
case D_BMSAFEMAP:
bmsafemap = WK_BMSAFEMAP(wk);
if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
/* Add reference dependency. */
retval += 1;
if (!wantcount)
goto out;
}
if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
/* Allocate block dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_FREEBLKS:
freeblks = WK_FREEBLKS(wk);
if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
/* Freeblk journal dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
newblk = WK_NEWBLK(wk);
if (newblk->nb_jnewblk) {
/* Journal allocate dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_MKDIR:
mkdir = WK_MKDIR(wk);
if (mkdir->md_jaddref) {
/* Journal reference dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_FREEWORK:
case D_FREEDEP:
case D_JSEGDEP:
case D_JSEG:
case D_SBDEP:
/* never a dependency on these blocks */
continue;
default:
panic("softdep_count_dependencies: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
out:
FREE_LOCK(ump);
return (retval);
}
/*
* Acquire exclusive access to a buffer.
* Must be called with a locked mtx parameter.
* Return acquired buffer or NULL on failure.
*/
static struct buf *
getdirtybuf(bp, lock, waitfor)
struct buf *bp;
struct rwlock *lock;
int waitfor;
{
int error;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
if (waitfor != MNT_WAIT)
return (NULL);
error = BUF_LOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
/*
* Even if we successfully acquire bp here, we have dropped
* lock, which may violates our guarantee.
*/
if (error == 0)
BUF_UNLOCK(bp);
else if (error != ENOLCK)
panic("getdirtybuf: inconsistent lock: %d", error);
rw_wlock(lock);
return (NULL);
}
if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
rw_wunlock(lock);
BO_LOCK(bp->b_bufobj);
BUF_UNLOCK(bp);
if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
bp->b_vflags |= BV_BKGRDWAIT;
msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
PRIBIO | PDROP, "getbuf", 0);
} else
BO_UNLOCK(bp->b_bufobj);
rw_wlock(lock);
return (NULL);
}
BUF_UNLOCK(bp);
if (waitfor != MNT_WAIT)
return (NULL);
#ifdef DEBUG_VFS_LOCKS
if (bp->b_vp->v_type != VCHR)
ASSERT_BO_WLOCKED(bp->b_bufobj);
#endif
bp->b_vflags |= BV_BKGRDWAIT;
rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
return (NULL);
}
if ((bp->b_flags & B_DELWRI) == 0) {
BUF_UNLOCK(bp);
return (NULL);
}
bremfree(bp);
return (bp);
}
/*
* Check if it is safe to suspend the file system now. On entry,
* the vnode interlock for devvp should be held. Return 0 with
* the mount interlock held if the file system can be suspended now,
* otherwise return EAGAIN with the mount interlock held.
*/
int
softdep_check_suspend(struct mount *mp,
struct vnode *devvp,
int softdep_depcnt,
int softdep_accdepcnt,
int secondary_writes,
int secondary_accwrites)
{
struct bufobj *bo;
struct ufsmount *ump;
struct inodedep *inodedep;
int error, unlinked;
bo = &devvp->v_bufobj;
ASSERT_BO_WLOCKED(bo);
/*
* If we are not running with soft updates, then we need only
* deal with secondary writes as we try to suspend.
*/
if (MOUNTEDSOFTDEP(mp) == 0) {
MNT_ILOCK(mp);
while (mp->mnt_secondary_writes != 0) {
BO_UNLOCK(bo);
msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
(PUSER - 1) | PDROP, "secwr", 0);
BO_LOCK(bo);
MNT_ILOCK(mp);
}
/*
* Reasons for needing more work before suspend:
* - Dirty buffers on devvp.
* - Secondary writes occurred after start of vnode sync loop
*/
error = 0;
if (bo->bo_numoutput > 0 ||
bo->bo_dirty.bv_cnt > 0 ||
secondary_writes != 0 ||
mp->mnt_secondary_writes != 0 ||
secondary_accwrites != mp->mnt_secondary_accwrites)
error = EAGAIN;
BO_UNLOCK(bo);
return (error);
}
/*
* If we are running with soft updates, then we need to coordinate
* with them as we try to suspend.
*/
ump = VFSTOUFS(mp);
for (;;) {
if (!TRY_ACQUIRE_LOCK(ump)) {
BO_UNLOCK(bo);
ACQUIRE_LOCK(ump);
FREE_LOCK(ump);
BO_LOCK(bo);
continue;
}
MNT_ILOCK(mp);
if (mp->mnt_secondary_writes != 0) {
FREE_LOCK(ump);
BO_UNLOCK(bo);
msleep(&mp->mnt_secondary_writes,
MNT_MTX(mp),
(PUSER - 1) | PDROP, "secwr", 0);
BO_LOCK(bo);
continue;
}
break;
}
unlinked = 0;
if (MOUNTEDSUJ(mp)) {
for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
inodedep != NULL;
inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
UNLINKONLIST) ||
!check_inodedep_free(inodedep))
continue;
unlinked++;
}
}
/*
* Reasons for needing more work before suspend:
* - Dirty buffers on devvp.
* - Softdep activity occurred after start of vnode sync loop
* - Secondary writes occurred after start of vnode sync loop
*/
error = 0;
if (bo->bo_numoutput > 0 ||
bo->bo_dirty.bv_cnt > 0 ||
softdep_depcnt != unlinked ||
ump->softdep_deps != unlinked ||
softdep_accdepcnt != ump->softdep_accdeps ||
secondary_writes != 0 ||
mp->mnt_secondary_writes != 0 ||
secondary_accwrites != mp->mnt_secondary_accwrites)
error = EAGAIN;
FREE_LOCK(ump);
BO_UNLOCK(bo);
return (error);
}
/*
* Get the number of dependency structures for the file system, both
* the current number and the total number allocated. These will
* later be used to detect that softdep processing has occurred.
*/
void
softdep_get_depcounts(struct mount *mp,
int *softdep_depsp,
int *softdep_accdepsp)
{
struct ufsmount *ump;
if (MOUNTEDSOFTDEP(mp) == 0) {
*softdep_depsp = 0;
*softdep_accdepsp = 0;
return;
}
ump = VFSTOUFS(mp);
ACQUIRE_LOCK(ump);
*softdep_depsp = ump->softdep_deps;
*softdep_accdepsp = ump->softdep_accdeps;
FREE_LOCK(ump);
}
/*
* Wait for pending output on a vnode to complete.
*/
static void
drain_output(vp)
struct vnode *vp;
{
ASSERT_VOP_LOCKED(vp, "drain_output");
(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
}
/*
* Called whenever a buffer that is being invalidated or reallocated
* contains dependencies. This should only happen if an I/O error has
* occurred. The routine is called with the buffer locked.
*/
static void
softdep_deallocate_dependencies(bp)
struct buf *bp;
{
if ((bp->b_ioflags & BIO_ERROR) == 0)
panic("softdep_deallocate_dependencies: dangling deps");
if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
else
printf("softdep_deallocate_dependencies: "
"got error %d while accessing filesystem\n", bp->b_error);
if (bp->b_error != ENXIO)
panic("softdep_deallocate_dependencies: unrecovered I/O error");
}
/*
* Function to handle asynchronous write errors in the filesystem.
*/
static void
softdep_error(func, error)
char *func;
int error;
{
/* XXX should do something better! */
printf("%s: got error %d while accessing filesystem\n", func, error);
}
#ifdef DDB
static void
inodedep_print(struct inodedep *inodedep, int verbose)
{
db_printf("%p fs %p st %x ino %jd inoblk %jd delta %jd nlink %jd"
" saveino %p\n",
inodedep, inodedep->id_fs, inodedep->id_state,
(intmax_t)inodedep->id_ino,
(intmax_t)fsbtodb(inodedep->id_fs,
ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
(intmax_t)inodedep->id_nlinkdelta,
(intmax_t)inodedep->id_savednlink,
inodedep->id_savedino1);
if (verbose == 0)
return;
db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
"mkdiradd %p\n",
LIST_FIRST(&inodedep->id_pendinghd),
LIST_FIRST(&inodedep->id_bufwait),
LIST_FIRST(&inodedep->id_inowait),
TAILQ_FIRST(&inodedep->id_inoreflst),
inodedep->id_mkdiradd);
db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
TAILQ_FIRST(&inodedep->id_inoupdt),
TAILQ_FIRST(&inodedep->id_newinoupdt),
TAILQ_FIRST(&inodedep->id_extupdt),
TAILQ_FIRST(&inodedep->id_newextupdt));
}
DB_SHOW_COMMAND(inodedep, db_show_inodedep)
{
if (have_addr == 0) {
db_printf("Address required\n");
return;
}
inodedep_print((struct inodedep*)addr, 1);
}
DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
{
struct inodedep_hashhead *inodedephd;
struct inodedep *inodedep;
struct ufsmount *ump;
int cnt;
if (have_addr == 0) {
db_printf("Address required\n");
return;
}
ump = (struct ufsmount *)addr;
for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
inodedephd = &ump->inodedep_hashtbl[cnt];
LIST_FOREACH(inodedep, inodedephd, id_hash) {
inodedep_print(inodedep, 0);
}
}
}
DB_SHOW_COMMAND(worklist, db_show_worklist)
{
struct worklist *wk;
if (have_addr == 0) {
db_printf("Address required\n");
return;
}
wk = (struct worklist *)addr;
printf("worklist: %p type %s state 0x%X\n",
wk, TYPENAME(wk->wk_type), wk->wk_state);
}
DB_SHOW_COMMAND(workhead, db_show_workhead)
{
struct workhead *wkhd;
struct worklist *wk;
int i;
if (have_addr == 0) {
db_printf("Address required\n");
return;
}
wkhd = (struct workhead *)addr;
wk = LIST_FIRST(wkhd);
for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
db_printf("worklist: %p type %s state 0x%X",
wk, TYPENAME(wk->wk_type), wk->wk_state);
if (i == 100)
db_printf("workhead overflow");
printf("\n");
}
DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
{
struct mkdirlist *mkdirlisthd;
struct jaddref *jaddref;
struct diradd *diradd;
struct mkdir *mkdir;
if (have_addr == 0) {
db_printf("Address required\n");
return;
}
mkdirlisthd = (struct mkdirlist *)addr;
LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
diradd = mkdir->md_diradd;
db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
mkdir, mkdir->md_state, diradd, diradd->da_state);
if ((jaddref = mkdir->md_jaddref) != NULL)
db_printf(" jaddref %p jaddref state 0x%X",
jaddref, jaddref->ja_state);
db_printf("\n");
}
}
/* exported to ffs_vfsops.c */
extern void db_print_ffs(struct ufsmount *ump);
void
db_print_ffs(struct ufsmount *ump)
{
db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
ump->softdep_deps, ump->softdep_req);
}
#endif /* DDB */
#endif /* SOFTUPDATES */