freebsd-nq/sys/arm/mv/mv_common.c
Marcin Wojtas 526de79be2 Make get_tclk and get_cpu_freq generic for Marvell armv7 SoCs
In GENERIC kernel choosing proper get_tclk and get_cpu_freq implementation must
be done in runtime. Kernel for both SoC need to have implementation of each
other functions, so common file list mv/files.arm7 is added.
Marvell armv5 SoC have their own non-generic implementation of those function.

Submitted by: Rafal Kozik <rk@semihalf.com>
Obtained from: Semihalf
Sponsored by: Stormshield
Differential Revision: https://reviews.freebsd.org/D14739
2018-04-03 22:10:50 +00:00

3016 lines
71 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (C) 2008-2011 MARVELL INTERNATIONAL LTD.
* All rights reserved.
*
* Developed by Semihalf.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of MARVELL nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/kdb.h>
#include <sys/reboot.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <machine/fdt.h>
#include <machine/vmparam.h>
#include <machine/intr.h>
#include <arm/mv/mvreg.h>
#include <arm/mv/mvvar.h>
#include <arm/mv/mvwin.h>
MALLOC_DEFINE(M_IDMA, "idma", "idma dma test memory");
#define IDMA_DEBUG
#undef IDMA_DEBUG
#define MAX_CPU_WIN 5
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
#ifdef DEBUG
#define MV_DUMP_WIN 1
#else
#define MV_DUMP_WIN 0
#endif
static enum soc_family soc_family;
static int mv_win_cesa_attr(int wng_sel);
static int mv_win_cesa_attr_armv5(int eng_sel);
static int mv_win_cesa_attr_armada38x(int eng_sel);
static int mv_win_cesa_attr_armadaxp(int eng_sel);
uint32_t read_cpu_ctrl_armv5(uint32_t reg);
uint32_t read_cpu_ctrl_armv7(uint32_t reg);
void write_cpu_ctrl_armv5(uint32_t reg, uint32_t val);
void write_cpu_ctrl_armv7(uint32_t reg, uint32_t val);
static int win_eth_can_remap(int i);
static int decode_win_cesa_valid(void);
static int decode_win_cpu_valid(void);
static int decode_win_usb_valid(void);
static int decode_win_usb3_valid(void);
static int decode_win_eth_valid(void);
static int decode_win_pcie_valid(void);
static int decode_win_sata_valid(void);
static int decode_win_sdhci_valid(void);
static int decode_win_idma_valid(void);
static int decode_win_xor_valid(void);
static void decode_win_cpu_setup(void);
static int decode_win_sdram_fixup(void);
static void decode_win_cesa_setup(u_long);
static void decode_win_usb_setup(u_long);
static void decode_win_usb3_setup(u_long);
static void decode_win_eth_setup(u_long);
static void decode_win_neta_setup(u_long);
static void decode_win_sata_setup(u_long);
static void decode_win_ahci_setup(u_long);
static void decode_win_sdhci_setup(u_long);
static void decode_win_idma_setup(u_long);
static void decode_win_xor_setup(u_long);
static void decode_win_cesa_dump(u_long);
static void decode_win_usb_dump(u_long);
static void decode_win_usb3_dump(u_long);
static void decode_win_eth_dump(u_long base);
static void decode_win_neta_dump(u_long base);
static void decode_win_idma_dump(u_long base);
static void decode_win_xor_dump(u_long base);
static void decode_win_ahci_dump(u_long base);
static void decode_win_sdhci_dump(u_long);
static void decode_win_pcie_dump(u_long);
static uint32_t win_cpu_cr_read(int);
static uint32_t win_cpu_armv5_cr_read(int);
static uint32_t win_cpu_armv7_cr_read(int);
static uint32_t win_cpu_br_read(int);
static uint32_t win_cpu_armv5_br_read(int);
static uint32_t win_cpu_armv7_br_read(int);
static uint32_t win_cpu_remap_l_read(int);
static uint32_t win_cpu_armv5_remap_l_read(int);
static uint32_t win_cpu_armv7_remap_l_read(int);
static uint32_t win_cpu_remap_h_read(int);
static uint32_t win_cpu_armv5_remap_h_read(int);
static uint32_t win_cpu_armv7_remap_h_read(int);
static void win_cpu_cr_write(int, uint32_t);
static void win_cpu_armv5_cr_write(int, uint32_t);
static void win_cpu_armv7_cr_write(int, uint32_t);
static void win_cpu_br_write(int, uint32_t);
static void win_cpu_armv5_br_write(int, uint32_t);
static void win_cpu_armv7_br_write(int, uint32_t);
static void win_cpu_remap_l_write(int, uint32_t);
static void win_cpu_armv5_remap_l_write(int, uint32_t);
static void win_cpu_armv7_remap_l_write(int, uint32_t);
static void win_cpu_remap_h_write(int, uint32_t);
static void win_cpu_armv5_remap_h_write(int, uint32_t);
static void win_cpu_armv7_remap_h_write(int, uint32_t);
static uint32_t ddr_br_read(int);
static uint32_t ddr_sz_read(int);
static uint32_t ddr_armv5_br_read(int);
static uint32_t ddr_armv5_sz_read(int);
static uint32_t ddr_armv7_br_read(int);
static uint32_t ddr_armv7_sz_read(int);
static void ddr_br_write(int, uint32_t);
static void ddr_sz_write(int, uint32_t);
static void ddr_armv5_br_write(int, uint32_t);
static void ddr_armv5_sz_write(int, uint32_t);
static void ddr_armv7_br_write(int, uint32_t);
static void ddr_armv7_sz_write(int, uint32_t);
static int fdt_get_ranges(const char *, void *, int, int *, int *);
int gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt,
int *trig, int *pol);
static int win_cpu_from_dt(void);
static int fdt_win_setup(void);
static uint32_t dev_mask = 0;
static int cpu_wins_no = 0;
static int eth_port = 0;
static int usb_port = 0;
static boolean_t platform_io_coherent = false;
static struct decode_win cpu_win_tbl[MAX_CPU_WIN];
const struct decode_win *cpu_wins = cpu_win_tbl;
typedef void (*decode_win_setup_t)(u_long);
typedef void (*dump_win_t)(u_long);
typedef int (*valid_t)(void);
/*
* The power status of device feature is only supported on
* Kirkwood and Discovery SoCs.
*/
#if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
#define SOC_MV_POWER_STAT_SUPPORTED 1
#else
#define SOC_MV_POWER_STAT_SUPPORTED 0
#endif
struct soc_node_spec {
const char *compat;
decode_win_setup_t decode_handler;
dump_win_t dump_handler;
valid_t valid_handler;
};
static struct soc_node_spec soc_nodes[] = {
{ "mrvl,ge", &decode_win_eth_setup, &decode_win_eth_dump, &decode_win_eth_valid},
{ "marvell,armada-370-neta", &decode_win_neta_setup,
&decode_win_neta_dump, NULL },
{ "mrvl,usb-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid},
{ "marvell,orion-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid },
{ "marvell,armada-380-xhci", &decode_win_usb3_setup,
&decode_win_usb3_dump, &decode_win_usb3_valid },
{ "marvell,armada-380-ahci", &decode_win_ahci_setup,
&decode_win_ahci_dump, NULL },
{ "marvell,armada-380-sdhci", &decode_win_sdhci_setup,
&decode_win_sdhci_dump, &decode_win_sdhci_valid},
{ "mrvl,sata", &decode_win_sata_setup, NULL, &decode_win_sata_valid},
{ "mrvl,xor", &decode_win_xor_setup, &decode_win_xor_dump, &decode_win_xor_valid},
{ "mrvl,idma", &decode_win_idma_setup, &decode_win_idma_dump, &decode_win_idma_valid},
{ "mrvl,cesa", &decode_win_cesa_setup, &decode_win_cesa_dump, &decode_win_cesa_valid},
{ "mrvl,pcie", &decode_win_pcie_setup, &decode_win_pcie_dump, &decode_win_pcie_valid},
{ NULL, NULL, NULL, NULL },
};
typedef uint32_t(*read_cpu_ctrl_t)(uint32_t);
typedef void(*write_cpu_ctrl_t)(uint32_t, uint32_t);
typedef uint32_t (*win_read_t)(int);
typedef void (*win_write_t)(int, uint32_t);
typedef int (*win_cesa_attr_t)(int);
typedef uint32_t (*get_t)(void);
struct decode_win_spec {
read_cpu_ctrl_t read_cpu_ctrl;
write_cpu_ctrl_t write_cpu_ctrl;
win_read_t cr_read;
win_read_t br_read;
win_read_t remap_l_read;
win_read_t remap_h_read;
win_write_t cr_write;
win_write_t br_write;
win_write_t remap_l_write;
win_write_t remap_h_write;
uint32_t mv_win_cpu_max;
win_cesa_attr_t win_cesa_attr;
int win_cesa_target;
win_read_t ddr_br_read;
win_read_t ddr_sz_read;
win_write_t ddr_br_write;
win_write_t ddr_sz_write;
#if __ARM_ARCH >= 6
get_t get_tclk;
get_t get_cpu_freq;
#endif
};
struct decode_win_spec *soc_decode_win_spec;
static struct decode_win_spec decode_win_specs[] =
{
{
&read_cpu_ctrl_armv7,
&write_cpu_ctrl_armv7,
&win_cpu_armv7_cr_read,
&win_cpu_armv7_br_read,
&win_cpu_armv7_remap_l_read,
&win_cpu_armv7_remap_h_read,
&win_cpu_armv7_cr_write,
&win_cpu_armv7_br_write,
&win_cpu_armv7_remap_l_write,
&win_cpu_armv7_remap_h_write,
MV_WIN_CPU_MAX_ARMV7,
&mv_win_cesa_attr_armada38x,
MV_WIN_CESA_TARGET_ARMADA38X,
&ddr_armv7_br_read,
&ddr_armv7_sz_read,
&ddr_armv7_br_write,
&ddr_armv7_sz_write,
#if __ARM_ARCH >= 6
&get_tclk_armada38x,
&get_cpu_freq_armada38x,
#endif
},
{
&read_cpu_ctrl_armv7,
&write_cpu_ctrl_armv7,
&win_cpu_armv7_cr_read,
&win_cpu_armv7_br_read,
&win_cpu_armv7_remap_l_read,
&win_cpu_armv7_remap_h_read,
&win_cpu_armv7_cr_write,
&win_cpu_armv7_br_write,
&win_cpu_armv7_remap_l_write,
&win_cpu_armv7_remap_h_write,
MV_WIN_CPU_MAX_ARMV7,
&mv_win_cesa_attr_armadaxp,
MV_WIN_CESA_TARGET_ARMADAXP,
&ddr_armv7_br_read,
&ddr_armv7_sz_read,
&ddr_armv7_br_write,
&ddr_armv7_sz_write,
#if __ARM_ARCH >= 6
&get_tclk_armadaxp,
&get_cpu_freq_armadaxp,
#endif
},
{
&read_cpu_ctrl_armv5,
&write_cpu_ctrl_armv5,
&win_cpu_armv5_cr_read,
&win_cpu_armv5_br_read,
&win_cpu_armv5_remap_l_read,
&win_cpu_armv5_remap_h_read,
&win_cpu_armv5_cr_write,
&win_cpu_armv5_br_write,
&win_cpu_armv5_remap_l_write,
&win_cpu_armv5_remap_h_write,
MV_WIN_CPU_MAX,
&mv_win_cesa_attr_armv5,
MV_WIN_CESA_TARGET,
&ddr_armv5_br_read,
&ddr_armv5_sz_read,
&ddr_armv5_br_write,
&ddr_armv5_sz_write,
#if __ARM_ARCH >= 6
NULL,
NULL,
#endif
},
};
struct fdt_pm_mask_entry {
char *compat;
uint32_t mask;
};
static struct fdt_pm_mask_entry fdt_pm_mask_table[] = {
{ "mrvl,ge", CPU_PM_CTRL_GE(0) },
{ "mrvl,ge", CPU_PM_CTRL_GE(1) },
{ "mrvl,usb-ehci", CPU_PM_CTRL_USB(0) },
{ "mrvl,usb-ehci", CPU_PM_CTRL_USB(1) },
{ "mrvl,usb-ehci", CPU_PM_CTRL_USB(2) },
{ "mrvl,xor", CPU_PM_CTRL_XOR },
{ "mrvl,sata", CPU_PM_CTRL_SATA },
{ NULL, 0 }
};
static __inline int
pm_is_disabled(uint32_t mask)
{
#if SOC_MV_POWER_STAT_SUPPORTED
return (soc_power_ctrl_get(mask) == mask ? 0 : 1);
#else
return (0);
#endif
}
/*
* Disable device using power management register.
* 1 - Device Power On
* 0 - Device Power Off
* Mask can be set in loader.
* EXAMPLE:
* loader> set hw.pm-disable-mask=0x2
*
* Common mask:
* |-------------------------------|
* | Device | Kirkwood | Discovery |
* |-------------------------------|
* | USB0 | 0x00008 | 0x020000 |
* |-------------------------------|
* | USB1 | - | 0x040000 |
* |-------------------------------|
* | USB2 | - | 0x080000 |
* |-------------------------------|
* | GE0 | 0x00001 | 0x000002 |
* |-------------------------------|
* | GE1 | - | 0x000004 |
* |-------------------------------|
* | IDMA | - | 0x100000 |
* |-------------------------------|
* | XOR | 0x10000 | 0x200000 |
* |-------------------------------|
* | CESA | 0x20000 | 0x400000 |
* |-------------------------------|
* | SATA | 0x04000 | 0x004000 |
* --------------------------------|
* This feature can be used only on Kirkwood and Discovery
* machines.
*/
static int mv_win_cesa_attr(int eng_sel)
{
if (soc_decode_win_spec->win_cesa_attr != NULL)
return (soc_decode_win_spec->win_cesa_attr(eng_sel));
return (-1);
}
static int mv_win_cesa_attr_armv5(int eng_sel)
{
return MV_WIN_CESA_ATTR(eng_sel);
}
static int mv_win_cesa_attr_armada38x(int eng_sel)
{
return MV_WIN_CESA_ATTR_ARMADA38X(eng_sel);
}
static int mv_win_cesa_attr_armadaxp(int eng_sel)
{
return MV_WIN_CESA_ATTR_ARMADAXP(eng_sel);
}
enum soc_family
mv_check_soc_family()
{
uint32_t dev, rev;
soc_id(&dev, &rev);
switch (dev) {
case MV_DEV_MV78230:
case MV_DEV_MV78260:
case MV_DEV_MV78460:
soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_XP];
soc_family = MV_SOC_ARMADA_XP;
return (MV_SOC_ARMADA_XP);
case MV_DEV_88F6828:
case MV_DEV_88F6820:
case MV_DEV_88F6810:
soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_38X];
soc_family = MV_SOC_ARMADA_38X;
return (MV_SOC_ARMADA_38X);
case MV_DEV_88F5181:
case MV_DEV_88F5182:
case MV_DEV_88F5281:
case MV_DEV_88F6281:
case MV_DEV_88RC8180:
case MV_DEV_88RC9480:
case MV_DEV_88RC9580:
case MV_DEV_88F6781:
case MV_DEV_88F6282:
case MV_DEV_MV78100_Z0:
case MV_DEV_MV78100:
case MV_DEV_MV78160:
soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMV5];
soc_family = MV_SOC_ARMV5;
return (MV_SOC_ARMV5);
default:
soc_family = MV_SOC_UNSUPPORTED;
return (MV_SOC_UNSUPPORTED);
}
}
static __inline void
pm_disable_device(int mask)
{
#ifdef DIAGNOSTIC
uint32_t reg;
reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
printf("Power Management Register: 0%x\n", reg);
reg &= ~mask;
soc_power_ctrl_set(reg);
printf("Device %x is disabled\n", mask);
reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
printf("Power Management Register: 0%x\n", reg);
#endif
}
int
fdt_pm(phandle_t node)
{
uint32_t cpu_pm_ctrl;
int i, ena, compat;
ena = 1;
cpu_pm_ctrl = read_cpu_ctrl(CPU_PM_CTRL);
for (i = 0; fdt_pm_mask_table[i].compat != NULL; i++) {
if (dev_mask & (1 << i))
continue;
compat = ofw_bus_node_is_compatible(node,
fdt_pm_mask_table[i].compat);
#if defined(SOC_MV_KIRKWOOD)
if (compat && (cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
dev_mask |= (1 << i);
ena = 0;
break;
} else if (compat) {
dev_mask |= (1 << i);
break;
}
#else
if (compat && (~cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
dev_mask |= (1 << i);
ena = 0;
break;
} else if (compat) {
dev_mask |= (1 << i);
break;
}
#endif
}
return (ena);
}
uint32_t
read_cpu_ctrl(uint32_t reg)
{
if (soc_decode_win_spec->read_cpu_ctrl != NULL)
return (soc_decode_win_spec->read_cpu_ctrl(reg));
return (-1);
}
uint32_t
read_cpu_ctrl_armv5(uint32_t reg)
{
return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg));
}
uint32_t
read_cpu_ctrl_armv7(uint32_t reg)
{
return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg));
}
void
write_cpu_ctrl(uint32_t reg, uint32_t val)
{
if (soc_decode_win_spec->write_cpu_ctrl != NULL)
soc_decode_win_spec->write_cpu_ctrl(reg, val);
}
void
write_cpu_ctrl_armv5(uint32_t reg, uint32_t val)
{
bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg, val);
}
void
write_cpu_ctrl_armv7(uint32_t reg, uint32_t val)
{
bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg, val);
}
uint32_t
read_cpu_mp_clocks(uint32_t reg)
{
return (bus_space_read_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg));
}
void
write_cpu_mp_clocks(uint32_t reg, uint32_t val)
{
bus_space_write_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg, val);
}
uint32_t
read_cpu_misc(uint32_t reg)
{
return (bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE, reg));
}
void
write_cpu_misc(uint32_t reg, uint32_t val)
{
bus_space_write_4(fdtbus_bs_tag, MV_MISC_BASE, reg, val);
}
void
cpu_reset(void)
{
#if defined(SOC_MV_ARMADAXP) || defined (SOC_MV_ARMADA38X)
write_cpu_misc(RSTOUTn_MASK, SOFT_RST_OUT_EN);
write_cpu_misc(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
#else
write_cpu_ctrl(RSTOUTn_MASK, SOFT_RST_OUT_EN);
write_cpu_ctrl(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
#endif
while (1);
}
uint32_t
cpu_extra_feat(void)
{
uint32_t dev, rev;
uint32_t ef = 0;
soc_id(&dev, &rev);
switch (dev) {
case MV_DEV_88F6281:
case MV_DEV_88F6282:
case MV_DEV_88RC8180:
case MV_DEV_MV78100_Z0:
case MV_DEV_MV78100:
__asm __volatile("mrc p15, 1, %0, c15, c1, 0" : "=r" (ef));
break;
case MV_DEV_88F5182:
case MV_DEV_88F5281:
__asm __volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (ef));
break;
default:
if (bootverbose)
printf("This ARM Core does not support any extra features\n");
}
return (ef);
}
/*
* Get the power status of device. This feature is only supported on
* Kirkwood and Discovery SoCs.
*/
uint32_t
soc_power_ctrl_get(uint32_t mask)
{
#if SOC_MV_POWER_STAT_SUPPORTED
if (mask != CPU_PM_CTRL_NONE)
mask &= read_cpu_ctrl(CPU_PM_CTRL);
return (mask);
#else
return (mask);
#endif
}
/*
* Set the power status of device. This feature is only supported on
* Kirkwood and Discovery SoCs.
*/
void
soc_power_ctrl_set(uint32_t mask)
{
#if !defined(SOC_MV_ORION)
if (mask != CPU_PM_CTRL_NONE)
write_cpu_ctrl(CPU_PM_CTRL, mask);
#endif
}
void
soc_id(uint32_t *dev, uint32_t *rev)
{
uint64_t mv_pcie_base = MV_PCIE_BASE;
phandle_t node;
/*
* Notice: system identifiers are available in the registers range of
* PCIE controller, so using this function is only allowed (and
* possible) after the internal registers range has been mapped in via
* devmap_bootstrap().
*/
*dev = 0;
*rev = 0;
if ((node = OF_finddevice("/")) == -1)
return;
if (ofw_bus_node_is_compatible(node, "marvell,armada380"))
mv_pcie_base = MV_PCIE_BASE_ARMADA38X;
*dev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 0) >> 16;
*rev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 8) & 0xff;
}
static void
soc_identify(void)
{
uint32_t d, r, size, mode, freq;
const char *dev;
const char *rev;
soc_id(&d, &r);
printf("SOC: ");
if (bootverbose)
printf("(0x%4x:0x%02x) ", d, r);
rev = "";
switch (d) {
case MV_DEV_88F5181:
dev = "Marvell 88F5181";
if (r == 3)
rev = "B1";
break;
case MV_DEV_88F5182:
dev = "Marvell 88F5182";
if (r == 2)
rev = "A2";
break;
case MV_DEV_88F5281:
dev = "Marvell 88F5281";
if (r == 4)
rev = "D0";
else if (r == 5)
rev = "D1";
else if (r == 6)
rev = "D2";
break;
case MV_DEV_88F6281:
dev = "Marvell 88F6281";
if (r == 0)
rev = "Z0";
else if (r == 2)
rev = "A0";
else if (r == 3)
rev = "A1";
break;
case MV_DEV_88RC8180:
dev = "Marvell 88RC8180";
break;
case MV_DEV_88RC9480:
dev = "Marvell 88RC9480";
break;
case MV_DEV_88RC9580:
dev = "Marvell 88RC9580";
break;
case MV_DEV_88F6781:
dev = "Marvell 88F6781";
if (r == 2)
rev = "Y0";
break;
case MV_DEV_88F6282:
dev = "Marvell 88F6282";
if (r == 0)
rev = "A0";
else if (r == 1)
rev = "A1";
break;
case MV_DEV_88F6828:
dev = "Marvell 88F6828";
break;
case MV_DEV_88F6820:
dev = "Marvell 88F6820";
break;
case MV_DEV_88F6810:
dev = "Marvell 88F6810";
break;
case MV_DEV_MV78100_Z0:
dev = "Marvell MV78100 Z0";
break;
case MV_DEV_MV78100:
dev = "Marvell MV78100";
break;
case MV_DEV_MV78160:
dev = "Marvell MV78160";
break;
case MV_DEV_MV78260:
dev = "Marvell MV78260";
break;
case MV_DEV_MV78460:
dev = "Marvell MV78460";
break;
default:
dev = "UNKNOWN";
break;
}
printf("%s", dev);
if (*rev != '\0')
printf(" rev %s", rev);
printf(", TClock %dMHz", get_tclk() / 1000 / 1000);
freq = get_cpu_freq();
if (freq != 0)
printf(", Frequency %dMHz", freq / 1000 / 1000);
printf("\n");
mode = read_cpu_ctrl(CPU_CONFIG);
printf(" Instruction cache prefetch %s, data cache prefetch %s\n",
(mode & CPU_CONFIG_IC_PREF) ? "enabled" : "disabled",
(mode & CPU_CONFIG_DC_PREF) ? "enabled" : "disabled");
switch (d) {
case MV_DEV_88F6281:
case MV_DEV_88F6282:
mode = read_cpu_ctrl(CPU_L2_CONFIG) & CPU_L2_CONFIG_MODE;
printf(" 256KB 4-way set-associative %s unified L2 cache\n",
mode ? "write-through" : "write-back");
break;
case MV_DEV_MV78100:
mode = read_cpu_ctrl(CPU_CONTROL);
size = mode & CPU_CONTROL_L2_SIZE;
mode = mode & CPU_CONTROL_L2_MODE;
printf(" %s set-associative %s unified L2 cache\n",
size ? "256KB 4-way" : "512KB 8-way",
mode ? "write-through" : "write-back");
break;
default:
break;
}
}
static void
platform_identify(void *dummy)
{
soc_identify();
/*
* XXX Board identification e.g. read out from FPGA or similar should
* go here
*/
}
SYSINIT(platform_identify, SI_SUB_CPU, SI_ORDER_SECOND, platform_identify,
NULL);
#ifdef KDB
static void
mv_enter_debugger(void *dummy)
{
if (boothowto & RB_KDB)
kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
}
SYSINIT(mv_enter_debugger, SI_SUB_CPU, SI_ORDER_ANY, mv_enter_debugger, NULL);
#endif
int
soc_decode_win(void)
{
uint32_t dev, rev;
int mask, err;
mask = 0;
TUNABLE_INT_FETCH("hw.pm-disable-mask", &mask);
if (mask != 0)
pm_disable_device(mask);
/* Retrieve data about physical addresses from device tree. */
if ((err = win_cpu_from_dt()) != 0)
return (err);
/* Retrieve our ID: some windows facilities vary between SoC models */
soc_id(&dev, &rev);
if (soc_family == MV_SOC_ARMADA_XP)
if ((err = decode_win_sdram_fixup()) != 0)
return(err);
decode_win_cpu_setup();
if (MV_DUMP_WIN)
soc_dump_decode_win();
eth_port = 0;
usb_port = 0;
if ((err = fdt_win_setup()) != 0)
return (err);
return (0);
}
/**************************************************************************
* Decode windows registers accessors
**************************************************************************/
WIN_REG_IDX_RD(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_RD(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_RD(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_RD(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_WR(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_WR(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_WR(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_WR(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_RD(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_RD(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_RD(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_RD(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_WR(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_WR(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_WR(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE)
WIN_REG_IDX_WR(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE)
static uint32_t
win_cpu_cr_read(int i)
{
if (soc_decode_win_spec->cr_read != NULL)
return (soc_decode_win_spec->cr_read(i));
return (-1);
}
static uint32_t
win_cpu_br_read(int i)
{
if (soc_decode_win_spec->br_read != NULL)
return (soc_decode_win_spec->br_read(i));
return (-1);
}
static uint32_t
win_cpu_remap_l_read(int i)
{
if (soc_decode_win_spec->remap_l_read != NULL)
return (soc_decode_win_spec->remap_l_read(i));
return (-1);
}
static uint32_t
win_cpu_remap_h_read(int i)
{
if (soc_decode_win_spec->remap_h_read != NULL)
return soc_decode_win_spec->remap_h_read(i);
return (-1);
}
static void
win_cpu_cr_write(int i, uint32_t val)
{
if (soc_decode_win_spec->cr_write != NULL)
soc_decode_win_spec->cr_write(i, val);
}
static void
win_cpu_br_write(int i, uint32_t val)
{
if (soc_decode_win_spec->br_write != NULL)
soc_decode_win_spec->br_write(i, val);
}
static void
win_cpu_remap_l_write(int i, uint32_t val)
{
if (soc_decode_win_spec->remap_l_write != NULL)
soc_decode_win_spec->remap_l_write(i, val);
}
static void
win_cpu_remap_h_write(int i, uint32_t val)
{
if (soc_decode_win_spec->remap_h_write != NULL)
soc_decode_win_spec->remap_h_write(i, val);
}
WIN_REG_BASE_IDX_RD(win_cesa, cr, MV_WIN_CESA_CTRL)
WIN_REG_BASE_IDX_RD(win_cesa, br, MV_WIN_CESA_BASE)
WIN_REG_BASE_IDX_WR(win_cesa, cr, MV_WIN_CESA_CTRL)
WIN_REG_BASE_IDX_WR(win_cesa, br, MV_WIN_CESA_BASE)
WIN_REG_BASE_IDX_RD(win_usb, cr, MV_WIN_USB_CTRL)
WIN_REG_BASE_IDX_RD(win_usb, br, MV_WIN_USB_BASE)
WIN_REG_BASE_IDX_WR(win_usb, cr, MV_WIN_USB_CTRL)
WIN_REG_BASE_IDX_WR(win_usb, br, MV_WIN_USB_BASE)
WIN_REG_BASE_IDX_RD(win_usb3, cr, MV_WIN_USB3_CTRL)
WIN_REG_BASE_IDX_RD(win_usb3, br, MV_WIN_USB3_BASE)
WIN_REG_BASE_IDX_WR(win_usb3, cr, MV_WIN_USB3_CTRL)
WIN_REG_BASE_IDX_WR(win_usb3, br, MV_WIN_USB3_BASE)
WIN_REG_BASE_IDX_RD(win_eth, br, MV_WIN_ETH_BASE)
WIN_REG_BASE_IDX_RD(win_eth, sz, MV_WIN_ETH_SIZE)
WIN_REG_BASE_IDX_RD(win_eth, har, MV_WIN_ETH_REMAP)
WIN_REG_BASE_IDX_WR(win_eth, br, MV_WIN_ETH_BASE)
WIN_REG_BASE_IDX_WR(win_eth, sz, MV_WIN_ETH_SIZE)
WIN_REG_BASE_IDX_WR(win_eth, har, MV_WIN_ETH_REMAP)
WIN_REG_BASE_IDX_RD2(win_xor, br, MV_WIN_XOR_BASE)
WIN_REG_BASE_IDX_RD2(win_xor, sz, MV_WIN_XOR_SIZE)
WIN_REG_BASE_IDX_RD2(win_xor, har, MV_WIN_XOR_REMAP)
WIN_REG_BASE_IDX_RD2(win_xor, ctrl, MV_WIN_XOR_CTRL)
WIN_REG_BASE_IDX_WR2(win_xor, br, MV_WIN_XOR_BASE)
WIN_REG_BASE_IDX_WR2(win_xor, sz, MV_WIN_XOR_SIZE)
WIN_REG_BASE_IDX_WR2(win_xor, har, MV_WIN_XOR_REMAP)
WIN_REG_BASE_IDX_WR2(win_xor, ctrl, MV_WIN_XOR_CTRL)
WIN_REG_BASE_RD(win_eth, bare, 0x290)
WIN_REG_BASE_RD(win_eth, epap, 0x294)
WIN_REG_BASE_WR(win_eth, bare, 0x290)
WIN_REG_BASE_WR(win_eth, epap, 0x294)
WIN_REG_BASE_IDX_RD(win_pcie, cr, MV_WIN_PCIE_CTRL);
WIN_REG_BASE_IDX_RD(win_pcie, br, MV_WIN_PCIE_BASE);
WIN_REG_BASE_IDX_RD(win_pcie, remap, MV_WIN_PCIE_REMAP);
WIN_REG_BASE_IDX_WR(win_pcie, cr, MV_WIN_PCIE_CTRL);
WIN_REG_BASE_IDX_WR(win_pcie, br, MV_WIN_PCIE_BASE);
WIN_REG_BASE_IDX_WR(win_pcie, remap, MV_WIN_PCIE_REMAP);
WIN_REG_BASE_IDX_RD(pcie_bar, br, MV_PCIE_BAR_BASE);
WIN_REG_BASE_IDX_RD(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
WIN_REG_BASE_IDX_RD(pcie_bar, cr, MV_PCIE_BAR_CTRL);
WIN_REG_BASE_IDX_WR(pcie_bar, br, MV_PCIE_BAR_BASE);
WIN_REG_BASE_IDX_WR(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
WIN_REG_BASE_IDX_WR(pcie_bar, cr, MV_PCIE_BAR_CTRL);
WIN_REG_BASE_IDX_RD(win_idma, br, MV_WIN_IDMA_BASE)
WIN_REG_BASE_IDX_RD(win_idma, sz, MV_WIN_IDMA_SIZE)
WIN_REG_BASE_IDX_RD(win_idma, har, MV_WIN_IDMA_REMAP)
WIN_REG_BASE_IDX_RD(win_idma, cap, MV_WIN_IDMA_CAP)
WIN_REG_BASE_IDX_WR(win_idma, br, MV_WIN_IDMA_BASE)
WIN_REG_BASE_IDX_WR(win_idma, sz, MV_WIN_IDMA_SIZE)
WIN_REG_BASE_IDX_WR(win_idma, har, MV_WIN_IDMA_REMAP)
WIN_REG_BASE_IDX_WR(win_idma, cap, MV_WIN_IDMA_CAP)
WIN_REG_BASE_RD(win_idma, bare, 0xa80)
WIN_REG_BASE_WR(win_idma, bare, 0xa80)
WIN_REG_BASE_IDX_RD(win_sata, cr, MV_WIN_SATA_CTRL);
WIN_REG_BASE_IDX_RD(win_sata, br, MV_WIN_SATA_BASE);
WIN_REG_BASE_IDX_WR(win_sata, cr, MV_WIN_SATA_CTRL);
WIN_REG_BASE_IDX_WR(win_sata, br, MV_WIN_SATA_BASE);
WIN_REG_BASE_IDX_RD(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X);
WIN_REG_BASE_IDX_WR(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X);
WIN_REG_BASE_IDX_RD(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X);
WIN_REG_BASE_IDX_RD(win_sata_armada38x, br, MV_WIN_SATA_BASE_ARMADA38X);
WIN_REG_BASE_IDX_WR(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X);
WIN_REG_BASE_IDX_WR(win_sata_armada38x, br, MV_WIN_SATA_BASE_ARMADA38X);
WIN_REG_BASE_IDX_RD(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
WIN_REG_BASE_IDX_RD(win_sdhci, br, MV_WIN_SDHCI_BASE);
WIN_REG_BASE_IDX_WR(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
WIN_REG_BASE_IDX_WR(win_sdhci, br, MV_WIN_SDHCI_BASE);
#ifndef SOC_MV_DOVE
WIN_REG_IDX_RD(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
WIN_REG_IDX_RD(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
WIN_REG_IDX_WR(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
WIN_REG_IDX_WR(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
WIN_REG_IDX_RD(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7)
WIN_REG_IDX_RD(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7)
WIN_REG_IDX_WR(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7)
WIN_REG_IDX_WR(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7)
static inline uint32_t
ddr_br_read(int i)
{
if (soc_decode_win_spec->ddr_br_read != NULL)
return (soc_decode_win_spec->ddr_br_read(i));
return (-1);
}
static inline uint32_t
ddr_sz_read(int i)
{
if (soc_decode_win_spec->ddr_sz_read != NULL)
return (soc_decode_win_spec->ddr_sz_read(i));
return (-1);
}
static inline void
ddr_br_write(int i, uint32_t val)
{
if (soc_decode_win_spec->ddr_br_write != NULL)
soc_decode_win_spec->ddr_br_write(i, val);
}
static inline void
ddr_sz_write(int i, uint32_t val)
{
if (soc_decode_win_spec->ddr_sz_write != NULL)
soc_decode_win_spec->ddr_sz_write(i, val);
}
#else
/*
* On 88F6781 (Dove) SoC DDR Controller is accessed through
* single MBUS <-> AXI bridge. In this case we provide emulated
* ddr_br_read() and ddr_sz_read() functions to keep compatibility
* with common decoding windows setup code.
*/
static inline uint32_t ddr_br_read(int i)
{
uint32_t mmap;
/* Read Memory Address Map Register for CS i */
mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
/* Return CS i base address */
return (mmap & 0xFF000000);
}
static inline uint32_t ddr_sz_read(int i)
{
uint32_t mmap, size;
/* Read Memory Address Map Register for CS i */
mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
/* Extract size of CS space in 64kB units */
size = (1 << ((mmap >> 16) & 0x0F));
/* Return CS size and enable/disable status */
return (((size - 1) << 16) | (mmap & 0x01));
}
#endif
/**************************************************************************
* Decode windows helper routines
**************************************************************************/
void
soc_dump_decode_win(void)
{
int i;
for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) {
printf("CPU window#%d: c 0x%08x, b 0x%08x", i,
win_cpu_cr_read(i),
win_cpu_br_read(i));
if (win_cpu_can_remap(i))
printf(", rl 0x%08x, rh 0x%08x",
win_cpu_remap_l_read(i),
win_cpu_remap_h_read(i));
printf("\n");
}
printf("Internal regs base: 0x%08x\n",
bus_space_read_4(fdtbus_bs_tag, MV_INTREGS_BASE, 0));
for (i = 0; i < MV_WIN_DDR_MAX; i++)
printf("DDR CS#%d: b 0x%08x, s 0x%08x\n", i,
ddr_br_read(i), ddr_sz_read(i));
}
/**************************************************************************
* CPU windows routines
**************************************************************************/
int
win_cpu_can_remap(int i)
{
uint32_t dev, rev;
soc_id(&dev, &rev);
/* Depending on the SoC certain windows have remap capability */
if ((dev == MV_DEV_88F5182 && i < 2) ||
(dev == MV_DEV_88F5281 && i < 4) ||
(dev == MV_DEV_88F6281 && i < 4) ||
(dev == MV_DEV_88F6282 && i < 4) ||
(dev == MV_DEV_88F6828 && i < 20) ||
(dev == MV_DEV_88F6820 && i < 20) ||
(dev == MV_DEV_88F6810 && i < 20) ||
(dev == MV_DEV_88RC8180 && i < 2) ||
(dev == MV_DEV_88F6781 && i < 4) ||
(dev == MV_DEV_MV78100_Z0 && i < 8) ||
((dev & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY && i < 8))
return (1);
return (0);
}
/* XXX This should check for overlapping remap fields too.. */
int
decode_win_overlap(int win, int win_no, const struct decode_win *wintab)
{
const struct decode_win *tab;
int i;
tab = wintab;
for (i = 0; i < win_no; i++, tab++) {
if (i == win)
/* Skip self */
continue;
if ((tab->base + tab->size - 1) < (wintab + win)->base)
continue;
else if (((wintab + win)->base + (wintab + win)->size - 1) <
tab->base)
continue;
else
return (i);
}
return (-1);
}
static int
decode_win_cpu_valid(void)
{
int i, j, rv;
uint32_t b, e, s;
if (cpu_wins_no > soc_decode_win_spec->mv_win_cpu_max) {
printf("CPU windows: too many entries: %d\n", cpu_wins_no);
return (0);
}
rv = 1;
for (i = 0; i < cpu_wins_no; i++) {
if (cpu_wins[i].target == 0) {
printf("CPU window#%d: DDR target window is not "
"supposed to be reprogrammed!\n", i);
rv = 0;
}
if (cpu_wins[i].remap != ~0 && win_cpu_can_remap(i) != 1) {
printf("CPU window#%d: not capable of remapping, but "
"val 0x%08x defined\n", i, cpu_wins[i].remap);
rv = 0;
}
s = cpu_wins[i].size;
b = cpu_wins[i].base;
e = b + s - 1;
if (s > (0xFFFFFFFF - b + 1)) {
/*
* XXX this boundary check should account for 64bit
* and remapping..
*/
printf("CPU window#%d: no space for size 0x%08x at "
"0x%08x\n", i, s, b);
rv = 0;
continue;
}
if (b != rounddown2(b, s)) {
printf("CPU window#%d: address 0x%08x is not aligned "
"to 0x%08x\n", i, b, s);
rv = 0;
continue;
}
j = decode_win_overlap(i, cpu_wins_no, &cpu_wins[0]);
if (j >= 0) {
printf("CPU window#%d: (0x%08x - 0x%08x) overlaps "
"with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
cpu_wins[j].base,
cpu_wins[j].base + cpu_wins[j].size - 1);
rv = 0;
}
}
return (rv);
}
int
decode_win_cpu_set(int target, int attr, vm_paddr_t base, uint32_t size,
vm_paddr_t remap)
{
uint32_t br, cr;
int win, i;
if (remap == ~0) {
win = soc_decode_win_spec->mv_win_cpu_max - 1;
i = -1;
} else {
win = 0;
i = 1;
}
while ((win >= 0) && (win < soc_decode_win_spec->mv_win_cpu_max)) {
cr = win_cpu_cr_read(win);
if ((cr & MV_WIN_CPU_ENABLE_BIT) == 0)
break;
if ((cr & ((0xff << MV_WIN_CPU_ATTR_SHIFT) |
(0x1f << MV_WIN_CPU_TARGET_SHIFT))) ==
((attr << MV_WIN_CPU_ATTR_SHIFT) |
(target << MV_WIN_CPU_TARGET_SHIFT)))
break;
win += i;
}
if ((win < 0) || (win >= soc_decode_win_spec->mv_win_cpu_max) ||
((remap != ~0) && (win_cpu_can_remap(win) == 0)))
return (-1);
br = base & 0xffff0000;
win_cpu_br_write(win, br);
if (win_cpu_can_remap(win)) {
if (remap != ~0) {
win_cpu_remap_l_write(win, remap & 0xffff0000);
win_cpu_remap_h_write(win, 0);
} else {
/*
* Remap function is not used for a given window
* (capable of remapping) - set remap field with the
* same value as base.
*/
win_cpu_remap_l_write(win, base & 0xffff0000);
win_cpu_remap_h_write(win, 0);
}
}
cr = ((size - 1) & 0xffff0000) | (attr << MV_WIN_CPU_ATTR_SHIFT) |
(target << MV_WIN_CPU_TARGET_SHIFT) | MV_WIN_CPU_ENABLE_BIT;
win_cpu_cr_write(win, cr);
return (0);
}
static void
decode_win_cpu_setup(void)
{
int i;
/* Disable all CPU windows */
for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) {
win_cpu_cr_write(i, 0);
win_cpu_br_write(i, 0);
if (win_cpu_can_remap(i)) {
win_cpu_remap_l_write(i, 0);
win_cpu_remap_h_write(i, 0);
}
}
for (i = 0; i < cpu_wins_no; i++)
if (cpu_wins[i].target > 0)
decode_win_cpu_set(cpu_wins[i].target,
cpu_wins[i].attr, cpu_wins[i].base,
cpu_wins[i].size, cpu_wins[i].remap);
}
static int
decode_win_sdram_fixup(void)
{
struct mem_region mr[FDT_MEM_REGIONS];
uint8_t window_valid[MV_WIN_DDR_MAX];
int mr_cnt, err, i, j;
uint32_t valid_win_num = 0;
/* Grab physical memory regions information from device tree. */
err = fdt_get_mem_regions(mr, &mr_cnt, NULL);
if (err != 0)
return (err);
for (i = 0; i < MV_WIN_DDR_MAX; i++)
window_valid[i] = 0;
/* Try to match entries from device tree with settings from u-boot */
for (i = 0; i < mr_cnt; i++) {
for (j = 0; j < MV_WIN_DDR_MAX; j++) {
if (ddr_is_active(j) &&
(ddr_base(j) == mr[i].mr_start) &&
(ddr_size(j) == mr[i].mr_size)) {
window_valid[j] = 1;
valid_win_num++;
}
}
}
if (mr_cnt != valid_win_num)
return (EINVAL);
/* Destroy windows without corresponding device tree entry */
for (j = 0; j < MV_WIN_DDR_MAX; j++) {
if (ddr_is_active(j) && (window_valid[j] != 1)) {
printf("Disabling SDRAM decoding window: %d\n", j);
ddr_disable(j);
}
}
return (0);
}
/*
* Check if we're able to cover all active DDR banks.
*/
static int
decode_win_can_cover_ddr(int max)
{
int i, c;
c = 0;
for (i = 0; i < MV_WIN_DDR_MAX; i++)
if (ddr_is_active(i))
c++;
if (c > max) {
printf("Unable to cover all active DDR banks: "
"%d, available windows: %d\n", c, max);
return (0);
}
return (1);
}
/**************************************************************************
* DDR windows routines
**************************************************************************/
int
ddr_is_active(int i)
{
if (ddr_sz_read(i) & 0x1)
return (1);
return (0);
}
void
ddr_disable(int i)
{
ddr_sz_write(i, 0);
ddr_br_write(i, 0);
}
uint32_t
ddr_base(int i)
{
return (ddr_br_read(i) & 0xff000000);
}
uint32_t
ddr_size(int i)
{
return ((ddr_sz_read(i) | 0x00ffffff) + 1);
}
uint32_t
ddr_attr(int i)
{
uint32_t dev, rev, attr;
soc_id(&dev, &rev);
if (dev == MV_DEV_88RC8180)
return ((ddr_sz_read(i) & 0xf0) >> 4);
if (dev == MV_DEV_88F6781)
return (0);
attr = (i == 0 ? 0xe :
(i == 1 ? 0xd :
(i == 2 ? 0xb :
(i == 3 ? 0x7 : 0xff))));
if (platform_io_coherent)
attr |= 0x10;
return (attr);
}
uint32_t
ddr_target(int i)
{
uint32_t dev, rev;
soc_id(&dev, &rev);
if (dev == MV_DEV_88RC8180) {
i = (ddr_sz_read(i) & 0xf0) >> 4;
return (i == 0xe ? 0xc :
(i == 0xd ? 0xd :
(i == 0xb ? 0xe :
(i == 0x7 ? 0xf : 0xc))));
}
/*
* On SOCs other than 88RC8180 Mbus unit ID for
* DDR SDRAM controller is always 0x0.
*/
return (0);
}
/**************************************************************************
* CESA windows routines
**************************************************************************/
static int
decode_win_cesa_valid(void)
{
return (decode_win_can_cover_ddr(MV_WIN_CESA_MAX));
}
static void
decode_win_cesa_dump(u_long base)
{
int i;
for (i = 0; i < MV_WIN_CESA_MAX; i++)
printf("CESA window#%d: c 0x%08x, b 0x%08x\n", i,
win_cesa_cr_read(base, i), win_cesa_br_read(base, i));
}
/*
* Set CESA decode windows.
*/
static void
decode_win_cesa_setup(u_long base)
{
uint32_t br, cr;
uint64_t size;
int i, j;
for (i = 0; i < MV_WIN_CESA_MAX; i++) {
win_cesa_cr_write(base, i, 0);
win_cesa_br_write(base, i, 0);
}
/* Only access to active DRAM banks is required */
for (i = 0; i < MV_WIN_DDR_MAX; i++) {
if (ddr_is_active(i)) {
br = ddr_base(i);
size = ddr_size(i);
/*
* Armada 38x SoC's equipped with 4GB DRAM
* suffer freeze during CESA operation, if
* MBUS window opened at given DRAM CS reaches
* end of the address space. Apply a workaround
* by setting the window size to the closest possible
* value, i.e. divide it by 2.
*/
if ((soc_family == MV_SOC_ARMADA_38X) &&
(size + ddr_base(i) == 0x100000000ULL))
size /= 2;
cr = (((size - 1) & 0xffff0000) |
(ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
(ddr_target(i) << IO_WIN_TGT_SHIFT) |
IO_WIN_ENA_MASK);
/* Set the first free CESA window */
for (j = 0; j < MV_WIN_CESA_MAX; j++) {
if (win_cesa_cr_read(base, j) & 0x1)
continue;
win_cesa_br_write(base, j, br);
win_cesa_cr_write(base, j, cr);
break;
}
}
}
}
/**************************************************************************
* USB windows routines
**************************************************************************/
static int
decode_win_usb_valid(void)
{
return (decode_win_can_cover_ddr(MV_WIN_USB_MAX));
}
static void
decode_win_usb_dump(u_long base)
{
int i;
if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port - 1)))
return;
for (i = 0; i < MV_WIN_USB_MAX; i++)
printf("USB window#%d: c 0x%08x, b 0x%08x\n", i,
win_usb_cr_read(base, i), win_usb_br_read(base, i));
}
/*
* Set USB decode windows.
*/
static void
decode_win_usb_setup(u_long base)
{
uint32_t br, cr;
int i, j;
if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port)))
return;
usb_port++;
for (i = 0; i < MV_WIN_USB_MAX; i++) {
win_usb_cr_write(base, i, 0);
win_usb_br_write(base, i, 0);
}
/* Only access to active DRAM banks is required */
for (i = 0; i < MV_WIN_DDR_MAX; i++) {
if (ddr_is_active(i)) {
br = ddr_base(i);
/*
* XXX for 6281 we should handle Mbus write
* burst limit field in the ctrl reg
*/
cr = (((ddr_size(i) - 1) & 0xffff0000) |
(ddr_attr(i) << 8) |
(ddr_target(i) << 4) | 1);
/* Set the first free USB window */
for (j = 0; j < MV_WIN_USB_MAX; j++) {
if (win_usb_cr_read(base, j) & 0x1)
continue;
win_usb_br_write(base, j, br);
win_usb_cr_write(base, j, cr);
break;
}
}
}
}
/**************************************************************************
* USB3 windows routines
**************************************************************************/
static int
decode_win_usb3_valid(void)
{
return (decode_win_can_cover_ddr(MV_WIN_USB3_MAX));
}
static void
decode_win_usb3_dump(u_long base)
{
int i;
for (i = 0; i < MV_WIN_USB3_MAX; i++)
printf("USB3.0 window#%d: c 0x%08x, b 0x%08x\n", i,
win_usb3_cr_read(base, i), win_usb3_br_read(base, i));
}
/*
* Set USB3 decode windows
*/
static void
decode_win_usb3_setup(u_long base)
{
uint32_t br, cr;
int i, j;
for (i = 0; i < MV_WIN_USB3_MAX; i++) {
win_usb3_cr_write(base, i, 0);
win_usb3_br_write(base, i, 0);
}
/* Only access to active DRAM banks is required */
for (i = 0; i < MV_WIN_DDR_MAX; i++) {
if (ddr_is_active(i)) {
br = ddr_base(i);
cr = (((ddr_size(i) - 1) &
(IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
(ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
(ddr_target(i) << IO_WIN_TGT_SHIFT) |
IO_WIN_ENA_MASK);
/* Set the first free USB3.0 window */
for (j = 0; j < MV_WIN_USB3_MAX; j++) {
if (win_usb3_cr_read(base, j) & IO_WIN_ENA_MASK)
continue;
win_usb3_br_write(base, j, br);
win_usb3_cr_write(base, j, cr);
break;
}
}
}
}
/**************************************************************************
* ETH windows routines
**************************************************************************/
static int
win_eth_can_remap(int i)
{
/* ETH encode windows 0-3 have remap capability */
if (i < 4)
return (1);
return (0);
}
static int
eth_bare_read(uint32_t base, int i)
{
uint32_t v;
v = win_eth_bare_read(base);
v &= (1 << i);
return (v >> i);
}
static void
eth_bare_write(uint32_t base, int i, int val)
{
uint32_t v;
v = win_eth_bare_read(base);
v &= ~(1 << i);
v |= (val << i);
win_eth_bare_write(base, v);
}
static void
eth_epap_write(uint32_t base, int i, int val)
{
uint32_t v;
v = win_eth_epap_read(base);
v &= ~(0x3 << (i * 2));
v |= (val << (i * 2));
win_eth_epap_write(base, v);
}
static void
decode_win_eth_dump(u_long base)
{
int i;
if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port - 1)))
return;
for (i = 0; i < MV_WIN_ETH_MAX; i++) {
printf("ETH window#%d: b 0x%08x, s 0x%08x", i,
win_eth_br_read(base, i),
win_eth_sz_read(base, i));
if (win_eth_can_remap(i))
printf(", ha 0x%08x",
win_eth_har_read(base, i));
printf("\n");
}
printf("ETH windows: bare 0x%08x, epap 0x%08x\n",
win_eth_bare_read(base),
win_eth_epap_read(base));
}
#define MV_WIN_ETH_DDR_TRGT(n) ddr_target(n)
static void
decode_win_eth_setup(u_long base)
{
uint32_t br, sz;
int i, j;
if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port)))
return;
eth_port++;
/* Disable, clear and revoke protection for all ETH windows */
for (i = 0; i < MV_WIN_ETH_MAX; i++) {
eth_bare_write(base, i, 1);
eth_epap_write(base, i, 0);
win_eth_br_write(base, i, 0);
win_eth_sz_write(base, i, 0);
if (win_eth_can_remap(i))
win_eth_har_write(base, i, 0);
}
/* Only access to active DRAM banks is required */
for (i = 0; i < MV_WIN_DDR_MAX; i++)
if (ddr_is_active(i)) {
br = ddr_base(i) | (ddr_attr(i) << 8) | MV_WIN_ETH_DDR_TRGT(i);
sz = ((ddr_size(i) - 1) & 0xffff0000);
/* Set the first free ETH window */
for (j = 0; j < MV_WIN_ETH_MAX; j++) {
if (eth_bare_read(base, j) == 0)
continue;
win_eth_br_write(base, j, br);
win_eth_sz_write(base, j, sz);
/* XXX remapping ETH windows not supported */
/* Set protection RW */
eth_epap_write(base, j, 0x3);
/* Enable window */
eth_bare_write(base, j, 0);
break;
}
}
}
static void
decode_win_neta_dump(u_long base)
{
decode_win_eth_dump(base + MV_WIN_NETA_OFFSET);
}
static void
decode_win_neta_setup(u_long base)
{
decode_win_eth_setup(base + MV_WIN_NETA_OFFSET);
}
static int
decode_win_eth_valid(void)
{
return (decode_win_can_cover_ddr(MV_WIN_ETH_MAX));
}
/**************************************************************************
* PCIE windows routines
**************************************************************************/
static void
decode_win_pcie_dump(u_long base)
{
int i;
printf("PCIE windows base 0x%08lx\n", base);
for (i = 0; i < MV_WIN_PCIE_MAX; i++)
printf("PCIE window#%d: cr 0x%08x br 0x%08x remap 0x%08x\n",
i, win_pcie_cr_read(base, i),
win_pcie_br_read(base, i), win_pcie_remap_read(base, i));
for (i = 0; i < MV_PCIE_BAR_MAX; i++)
printf("PCIE bar#%d: cr 0x%08x br 0x%08x brh 0x%08x\n",
i, pcie_bar_cr_read(base, i),
pcie_bar_br_read(base, i), pcie_bar_brh_read(base, i));
}
void
decode_win_pcie_setup(u_long base)
{
uint32_t size = 0, ddrbase = ~0;
uint32_t cr, br;
int i, j;
for (i = 0; i < MV_PCIE_BAR_MAX; i++) {
pcie_bar_br_write(base, i,
MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
if (i < 3)
pcie_bar_brh_write(base, i, 0);
if (i > 0)
pcie_bar_cr_write(base, i, 0);
}
for (i = 0; i < MV_WIN_PCIE_MAX; i++) {
win_pcie_cr_write(base, i, 0);
win_pcie_br_write(base, i, 0);
win_pcie_remap_write(base, i, 0);
}
/* On End-Point only set BAR size to 1MB regardless of DDR size */
if ((bus_space_read_4(fdtbus_bs_tag, base, MV_PCIE_CONTROL)
& MV_PCIE_ROOT_CMPLX) == 0) {
pcie_bar_cr_write(base, 1, 0xf0000 | 1);
return;
}
for (i = 0; i < MV_WIN_DDR_MAX; i++) {
if (ddr_is_active(i)) {
/* Map DDR to BAR 1 */
cr = (ddr_size(i) - 1) & 0xffff0000;
size += ddr_size(i) & 0xffff0000;
cr |= (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
br = ddr_base(i);
if (br < ddrbase)
ddrbase = br;
/* Use the first available PCIE window */
for (j = 0; j < MV_WIN_PCIE_MAX; j++) {
if (win_pcie_cr_read(base, j) != 0)
continue;
win_pcie_br_write(base, j, br);
win_pcie_cr_write(base, j, cr);
break;
}
}
}
/*
* Upper 16 bits in BAR register is interpreted as BAR size
* (in 64 kB units) plus 64kB, so subtract 0x10000
* form value passed to register to get correct value.
*/
size -= 0x10000;
pcie_bar_cr_write(base, 1, size | 1);
pcie_bar_br_write(base, 1, ddrbase |
MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
pcie_bar_br_write(base, 0, fdt_immr_pa |
MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
}
static int
decode_win_pcie_valid(void)
{
return (decode_win_can_cover_ddr(MV_WIN_PCIE_MAX));
}
/**************************************************************************
* IDMA windows routines
**************************************************************************/
#if defined(SOC_MV_ORION) || defined(SOC_MV_DISCOVERY)
static int
idma_bare_read(u_long base, int i)
{
uint32_t v;
v = win_idma_bare_read(base);
v &= (1 << i);
return (v >> i);
}
static void
idma_bare_write(u_long base, int i, int val)
{
uint32_t v;
v = win_idma_bare_read(base);
v &= ~(1 << i);
v |= (val << i);
win_idma_bare_write(base, v);
}
/*
* Sets channel protection 'val' for window 'w' on channel 'c'
*/
static void
idma_cap_write(u_long base, int c, int w, int val)
{
uint32_t v;
v = win_idma_cap_read(base, c);
v &= ~(0x3 << (w * 2));
v |= (val << (w * 2));
win_idma_cap_write(base, c, v);
}
/*
* Set protection 'val' on all channels for window 'w'
*/
static void
idma_set_prot(u_long base, int w, int val)
{
int c;
for (c = 0; c < MV_IDMA_CHAN_MAX; c++)
idma_cap_write(base, c, w, val);
}
static int
win_idma_can_remap(int i)
{
/* IDMA decode windows 0-3 have remap capability */
if (i < 4)
return (1);
return (0);
}
void
decode_win_idma_setup(u_long base)
{
uint32_t br, sz;
int i, j;
if (pm_is_disabled(CPU_PM_CTRL_IDMA))
return;
/*
* Disable and clear all IDMA windows, revoke protection for all channels
*/
for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
idma_bare_write(base, i, 1);
win_idma_br_write(base, i, 0);
win_idma_sz_write(base, i, 0);
if (win_idma_can_remap(i) == 1)
win_idma_har_write(base, i, 0);
}
for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
win_idma_cap_write(base, i, 0);
/*
* Set up access to all active DRAM banks
*/
for (i = 0; i < MV_WIN_DDR_MAX; i++)
if (ddr_is_active(i)) {
br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i);
sz = ((ddr_size(i) - 1) & 0xffff0000);
/* Place DDR entries in non-remapped windows */
for (j = 0; j < MV_WIN_IDMA_MAX; j++)
if (win_idma_can_remap(j) != 1 &&
idma_bare_read(base, j) == 1) {
/* Configure window */
win_idma_br_write(base, j, br);
win_idma_sz_write(base, j, sz);
/* Set protection RW on all channels */
idma_set_prot(base, j, 0x3);
/* Enable window */
idma_bare_write(base, j, 0);
break;
}
}
/*
* Remaining targets -- from statically defined table
*/
for (i = 0; i < idma_wins_no; i++)
if (idma_wins[i].target > 0) {
br = (idma_wins[i].base & 0xffff0000) |
(idma_wins[i].attr << 8) | idma_wins[i].target;
sz = ((idma_wins[i].size - 1) & 0xffff0000);
/* Set the first free IDMA window */
for (j = 0; j < MV_WIN_IDMA_MAX; j++) {
if (idma_bare_read(base, j) == 0)
continue;
/* Configure window */
win_idma_br_write(base, j, br);
win_idma_sz_write(base, j, sz);
if (win_idma_can_remap(j) &&
idma_wins[j].remap >= 0)
win_idma_har_write(base, j,
idma_wins[j].remap);
/* Set protection RW on all channels */
idma_set_prot(base, j, 0x3);
/* Enable window */
idma_bare_write(base, j, 0);
break;
}
}
}
int
decode_win_idma_valid(void)
{
const struct decode_win *wintab;
int c, i, j, rv;
uint32_t b, e, s;
if (idma_wins_no > MV_WIN_IDMA_MAX) {
printf("IDMA windows: too many entries: %d\n", idma_wins_no);
return (0);
}
for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
if (ddr_is_active(i))
c++;
if (idma_wins_no > (MV_WIN_IDMA_MAX - c)) {
printf("IDMA windows: too many entries: %d, available: %d\n",
idma_wins_no, MV_WIN_IDMA_MAX - c);
return (0);
}
wintab = idma_wins;
rv = 1;
for (i = 0; i < idma_wins_no; i++, wintab++) {
if (wintab->target == 0) {
printf("IDMA window#%d: DDR target window is not "
"supposed to be reprogrammed!\n", i);
rv = 0;
}
if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
printf("IDMA window#%d: not capable of remapping, but "
"val 0x%08x defined\n", i, wintab->remap);
rv = 0;
}
s = wintab->size;
b = wintab->base;
e = b + s - 1;
if (s > (0xFFFFFFFF - b + 1)) {
/* XXX this boundary check should account for 64bit and
* remapping.. */
printf("IDMA window#%d: no space for size 0x%08x at "
"0x%08x\n", i, s, b);
rv = 0;
continue;
}
j = decode_win_overlap(i, idma_wins_no, &idma_wins[0]);
if (j >= 0) {
printf("IDMA window#%d: (0x%08x - 0x%08x) overlaps "
"with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
idma_wins[j].base,
idma_wins[j].base + idma_wins[j].size - 1);
rv = 0;
}
}
return (rv);
}
void
decode_win_idma_dump(u_long base)
{
int i;
if (pm_is_disabled(CPU_PM_CTRL_IDMA))
return;
for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
printf("IDMA window#%d: b 0x%08x, s 0x%08x", i,
win_idma_br_read(base, i), win_idma_sz_read(base, i));
if (win_idma_can_remap(i))
printf(", ha 0x%08x", win_idma_har_read(base, i));
printf("\n");
}
for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
printf("IDMA channel#%d: ap 0x%08x\n", i,
win_idma_cap_read(base, i));
printf("IDMA windows: bare 0x%08x\n", win_idma_bare_read(base));
}
#else
/* Provide dummy functions to satisfy the build for SoCs not equipped with IDMA */
int
decode_win_idma_valid(void)
{
return (1);
}
void
decode_win_idma_setup(u_long base)
{
}
void
decode_win_idma_dump(u_long base)
{
}
#endif
/**************************************************************************
* XOR windows routines
**************************************************************************/
#if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
static int
xor_ctrl_read(u_long base, int i, int c, int e)
{
uint32_t v;
v = win_xor_ctrl_read(base, c, e);
v &= (1 << i);
return (v >> i);
}
static void
xor_ctrl_write(u_long base, int i, int c, int e, int val)
{
uint32_t v;
v = win_xor_ctrl_read(base, c, e);
v &= ~(1 << i);
v |= (val << i);
win_xor_ctrl_write(base, c, e, v);
}
/*
* Set channel protection 'val' for window 'w' on channel 'c'
*/
static void
xor_chan_write(u_long base, int c, int e, int w, int val)
{
uint32_t v;
v = win_xor_ctrl_read(base, c, e);
v &= ~(0x3 << (w * 2 + 16));
v |= (val << (w * 2 + 16));
win_xor_ctrl_write(base, c, e, v);
}
/*
* Set protection 'val' on all channels for window 'w' on engine 'e'
*/
static void
xor_set_prot(u_long base, int w, int e, int val)
{
int c;
for (c = 0; c < MV_XOR_CHAN_MAX; c++)
xor_chan_write(base, c, e, w, val);
}
static int
win_xor_can_remap(int i)
{
/* XOR decode windows 0-3 have remap capability */
if (i < 4)
return (1);
return (0);
}
static int
xor_max_eng(void)
{
uint32_t dev, rev;
soc_id(&dev, &rev);
switch (dev) {
case MV_DEV_88F6281:
case MV_DEV_88F6282:
case MV_DEV_MV78130:
case MV_DEV_MV78160:
case MV_DEV_MV78230:
case MV_DEV_MV78260:
case MV_DEV_MV78460:
return (2);
case MV_DEV_MV78100:
case MV_DEV_MV78100_Z0:
return (1);
default:
return (0);
}
}
static void
xor_active_dram(u_long base, int c, int e, int *window)
{
uint32_t br, sz;
int i, m, w;
/*
* Set up access to all active DRAM banks
*/
m = xor_max_eng();
for (i = 0; i < m; i++)
if (ddr_is_active(i)) {
br = ddr_base(i) | (ddr_attr(i) << 8) |
ddr_target(i);
sz = ((ddr_size(i) - 1) & 0xffff0000);
/* Place DDR entries in non-remapped windows */
for (w = 0; w < MV_WIN_XOR_MAX; w++)
if (win_xor_can_remap(w) != 1 &&
(xor_ctrl_read(base, w, c, e) == 0) &&
w > *window) {
/* Configure window */
win_xor_br_write(base, w, e, br);
win_xor_sz_write(base, w, e, sz);
/* Set protection RW on all channels */
xor_set_prot(base, w, e, 0x3);
/* Enable window */
xor_ctrl_write(base, w, c, e, 1);
(*window)++;
break;
}
}
}
void
decode_win_xor_setup(u_long base)
{
uint32_t br, sz;
int i, j, z, e = 1, m, window;
if (pm_is_disabled(CPU_PM_CTRL_XOR))
return;
/*
* Disable and clear all XOR windows, revoke protection for all
* channels
*/
m = xor_max_eng();
for (j = 0; j < m; j++, e--) {
/* Number of non-remaped windows */
window = MV_XOR_NON_REMAP - 1;
for (i = 0; i < MV_WIN_XOR_MAX; i++) {
win_xor_br_write(base, i, e, 0);
win_xor_sz_write(base, i, e, 0);
}
if (win_xor_can_remap(i) == 1)
win_xor_har_write(base, i, e, 0);
for (i = 0; i < MV_XOR_CHAN_MAX; i++) {
win_xor_ctrl_write(base, i, e, 0);
xor_active_dram(base, i, e, &window);
}
/*
* Remaining targets -- from a statically defined table
*/
for (i = 0; i < xor_wins_no; i++)
if (xor_wins[i].target > 0) {
br = (xor_wins[i].base & 0xffff0000) |
(xor_wins[i].attr << 8) |
xor_wins[i].target;
sz = ((xor_wins[i].size - 1) & 0xffff0000);
/* Set the first free XOR window */
for (z = 0; z < MV_WIN_XOR_MAX; z++) {
if (xor_ctrl_read(base, z, 0, e) &&
xor_ctrl_read(base, z, 1, e))
continue;
/* Configure window */
win_xor_br_write(base, z, e, br);
win_xor_sz_write(base, z, e, sz);
if (win_xor_can_remap(z) &&
xor_wins[z].remap >= 0)
win_xor_har_write(base, z, e,
xor_wins[z].remap);
/* Set protection RW on all channels */
xor_set_prot(base, z, e, 0x3);
/* Enable window */
xor_ctrl_write(base, z, 0, e, 1);
xor_ctrl_write(base, z, 1, e, 1);
break;
}
}
}
}
int
decode_win_xor_valid(void)
{
const struct decode_win *wintab;
int c, i, j, rv;
uint32_t b, e, s;
if (xor_wins_no > MV_WIN_XOR_MAX) {
printf("XOR windows: too many entries: %d\n", xor_wins_no);
return (0);
}
for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
if (ddr_is_active(i))
c++;
if (xor_wins_no > (MV_WIN_XOR_MAX - c)) {
printf("XOR windows: too many entries: %d, available: %d\n",
xor_wins_no, MV_WIN_IDMA_MAX - c);
return (0);
}
wintab = xor_wins;
rv = 1;
for (i = 0; i < xor_wins_no; i++, wintab++) {
if (wintab->target == 0) {
printf("XOR window#%d: DDR target window is not "
"supposed to be reprogrammed!\n", i);
rv = 0;
}
if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
printf("XOR window#%d: not capable of remapping, but "
"val 0x%08x defined\n", i, wintab->remap);
rv = 0;
}
s = wintab->size;
b = wintab->base;
e = b + s - 1;
if (s > (0xFFFFFFFF - b + 1)) {
/*
* XXX this boundary check should account for 64bit
* and remapping..
*/
printf("XOR window#%d: no space for size 0x%08x at "
"0x%08x\n", i, s, b);
rv = 0;
continue;
}
j = decode_win_overlap(i, xor_wins_no, &xor_wins[0]);
if (j >= 0) {
printf("XOR window#%d: (0x%08x - 0x%08x) overlaps "
"with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
xor_wins[j].base,
xor_wins[j].base + xor_wins[j].size - 1);
rv = 0;
}
}
return (rv);
}
void
decode_win_xor_dump(u_long base)
{
int i, j;
int e = 1;
if (pm_is_disabled(CPU_PM_CTRL_XOR))
return;
for (j = 0; j < xor_max_eng(); j++, e--) {
for (i = 0; i < MV_WIN_XOR_MAX; i++) {
printf("XOR window#%d: b 0x%08x, s 0x%08x", i,
win_xor_br_read(base, i, e), win_xor_sz_read(base, i, e));
if (win_xor_can_remap(i))
printf(", ha 0x%08x", win_xor_har_read(base, i, e));
printf("\n");
}
for (i = 0; i < MV_XOR_CHAN_MAX; i++)
printf("XOR control#%d: 0x%08x\n", i,
win_xor_ctrl_read(base, i, e));
}
}
#else
/* Provide dummy functions to satisfy the build for SoCs not equipped with XOR */
static int
decode_win_xor_valid(void)
{
return (1);
}
static void
decode_win_xor_setup(u_long base)
{
}
static void
decode_win_xor_dump(u_long base)
{
}
#endif
/**************************************************************************
* SATA windows routines
**************************************************************************/
static void
decode_win_sata_setup(u_long base)
{
uint32_t cr, br;
int i, j;
if (pm_is_disabled(CPU_PM_CTRL_SATA))
return;
for (i = 0; i < MV_WIN_SATA_MAX; i++) {
win_sata_cr_write(base, i, 0);
win_sata_br_write(base, i, 0);
}
for (i = 0; i < MV_WIN_DDR_MAX; i++)
if (ddr_is_active(i)) {
cr = ((ddr_size(i) - 1) & 0xffff0000) |
(ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
br = ddr_base(i);
/* Use the first available SATA window */
for (j = 0; j < MV_WIN_SATA_MAX; j++) {
if ((win_sata_cr_read(base, j) & 1) != 0)
continue;
win_sata_br_write(base, j, br);
win_sata_cr_write(base, j, cr);
break;
}
}
}
/*
* Configure AHCI decoding windows
*/
static void
decode_win_ahci_setup(u_long base)
{
uint32_t br, cr, sz;
int i, j;
for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++) {
win_sata_armada38x_cr_write(base, i, 0);
win_sata_armada38x_br_write(base, i, 0);
win_sata_armada38x_sz_write(base, i, 0);
}
for (i = 0; i < MV_WIN_DDR_MAX; i++) {
if (ddr_is_active(i)) {
cr = (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
(ddr_target(i) << IO_WIN_TGT_SHIFT) |
IO_WIN_ENA_MASK;
br = ddr_base(i);
sz = (ddr_size(i) - 1) &
(IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT);
/* Use first available SATA window */
for (j = 0; j < MV_WIN_SATA_MAX_ARMADA38X; j++) {
if (win_sata_armada38x_cr_read(base, j) & IO_WIN_ENA_MASK)
continue;
/* BASE is set to DRAM base (0x00000000) */
win_sata_armada38x_br_write(base, j, br);
/* CTRL targets DRAM ctrl with 0x0E or 0x0D */
win_sata_armada38x_cr_write(base, j, cr);
/* SIZE is set to 16MB - max value */
win_sata_armada38x_sz_write(base, j, sz);
break;
}
}
}
}
static void
decode_win_ahci_dump(u_long base)
{
int i;
for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++)
printf("SATA window#%d: cr 0x%08x, br 0x%08x, sz 0x%08x\n", i,
win_sata_armada38x_cr_read(base, i), win_sata_br_read(base, i),
win_sata_armada38x_sz_read(base,i));
}
static int
decode_win_sata_valid(void)
{
uint32_t dev, rev;
soc_id(&dev, &rev);
if (dev == MV_DEV_88F5281)
return (1);
return (decode_win_can_cover_ddr(MV_WIN_SATA_MAX));
}
static void
decode_win_sdhci_setup(u_long base)
{
uint32_t cr, br;
int i, j;
for (i = 0; i < MV_WIN_SDHCI_MAX; i++) {
win_sdhci_cr_write(base, i, 0);
win_sdhci_br_write(base, i, 0);
}
for (i = 0; i < MV_WIN_DDR_MAX; i++)
if (ddr_is_active(i)) {
br = ddr_base(i);
cr = (((ddr_size(i) - 1) &
(IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
(ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
(ddr_target(i) << IO_WIN_TGT_SHIFT) |
IO_WIN_ENA_MASK);
/* Use the first available SDHCI window */
for (j = 0; j < MV_WIN_SDHCI_MAX; j++) {
if (win_sdhci_cr_read(base, j) & IO_WIN_ENA_MASK)
continue;
win_sdhci_cr_write(base, j, cr);
win_sdhci_br_write(base, j, br);
break;
}
}
}
static void
decode_win_sdhci_dump(u_long base)
{
int i;
for (i = 0; i < MV_WIN_SDHCI_MAX; i++)
printf("SDHCI window#%d: c 0x%08x, b 0x%08x\n", i,
win_sdhci_cr_read(base, i), win_sdhci_br_read(base, i));
}
static int
decode_win_sdhci_valid(void)
{
return (decode_win_can_cover_ddr(MV_WIN_SDHCI_MAX));
}
/**************************************************************************
* FDT parsing routines.
**************************************************************************/
static int
fdt_get_ranges(const char *nodename, void *buf, int size, int *tuples,
int *tuplesize)
{
phandle_t node;
pcell_t addr_cells, par_addr_cells, size_cells;
int len, tuple_size, tuples_count;
node = OF_finddevice(nodename);
if (node == -1)
return (EINVAL);
if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
return (ENXIO);
par_addr_cells = fdt_parent_addr_cells(node);
if (par_addr_cells > 2)
return (ERANGE);
tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
size_cells);
/* Note the OF_getprop_alloc() cannot be used at this early stage. */
len = OF_getprop(node, "ranges", buf, size);
/*
* XXX this does not handle the empty 'ranges;' case, which is
* legitimate and should be allowed.
*/
tuples_count = len / tuple_size;
if (tuples_count <= 0)
return (ERANGE);
if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
return (ERANGE);
*tuples = tuples_count;
*tuplesize = tuple_size;
return (0);
}
static int
win_cpu_from_dt(void)
{
pcell_t ranges[48];
phandle_t node;
int i, entry_size, err, t, tuple_size, tuples;
u_long sram_base, sram_size;
t = 0;
/* Retrieve 'ranges' property of '/localbus' node. */
if ((err = fdt_get_ranges("/localbus", ranges, sizeof(ranges),
&tuples, &tuple_size)) == 0) {
/*
* Fill CPU decode windows table.
*/
bzero((void *)&cpu_win_tbl, sizeof(cpu_win_tbl));
entry_size = tuple_size / sizeof(pcell_t);
cpu_wins_no = tuples;
/* Check range */
if (tuples > nitems(cpu_win_tbl)) {
debugf("too many tuples to fit into cpu_win_tbl\n");
return (ENOMEM);
}
for (i = 0, t = 0; t < tuples; i += entry_size, t++) {
cpu_win_tbl[t].target = 1;
cpu_win_tbl[t].attr = fdt32_to_cpu(ranges[i + 1]);
cpu_win_tbl[t].base = fdt32_to_cpu(ranges[i + 2]);
cpu_win_tbl[t].size = fdt32_to_cpu(ranges[i + 3]);
cpu_win_tbl[t].remap = ~0;
debugf("target = 0x%0x attr = 0x%0x base = 0x%0x "
"size = 0x%0x remap = 0x%0x\n",
cpu_win_tbl[t].target,
cpu_win_tbl[t].attr, cpu_win_tbl[t].base,
cpu_win_tbl[t].size, cpu_win_tbl[t].remap);
}
}
/*
* Retrieve CESA SRAM data.
*/
if ((node = OF_finddevice("sram")) != -1)
if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram"))
goto moveon;
if ((node = OF_finddevice("/")) == -1)
return (ENXIO);
if ((node = fdt_find_compatible(node, "mrvl,cesa-sram", 0)) == 0)
/* SRAM block is not always present. */
return (0);
moveon:
sram_base = sram_size = 0;
if (fdt_regsize(node, &sram_base, &sram_size) != 0)
return (EINVAL);
/* Check range */
if (t >= nitems(cpu_win_tbl)) {
debugf("cannot fit CESA tuple into cpu_win_tbl\n");
return (ENOMEM);
}
cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target;
if (soc_family == MV_SOC_ARMADA_38X)
cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(0);
else
cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1);
cpu_win_tbl[t].base = sram_base;
cpu_win_tbl[t].size = sram_size;
cpu_win_tbl[t].remap = ~0;
cpu_wins_no++;
debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
/* Check if there is a second CESA node */
while ((node = OF_peer(node)) != 0) {
if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram")) {
if (fdt_regsize(node, &sram_base, &sram_size) != 0)
return (EINVAL);
break;
}
}
if (node == 0)
return (0);
t++;
if (t >= nitems(cpu_win_tbl)) {
debugf("cannot fit CESA tuple into cpu_win_tbl\n");
return (ENOMEM);
}
/* Configure window for CESA1 */
cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target;
cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1);
cpu_win_tbl[t].base = sram_base;
cpu_win_tbl[t].size = sram_size;
cpu_win_tbl[t].remap = ~0;
cpu_wins_no++;
debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
return (0);
}
static int
fdt_win_process(phandle_t child)
{
int i;
struct soc_node_spec *soc_node;
int addr_cells, size_cells;
pcell_t reg[8];
u_long size, base;
for (i = 0; soc_nodes[i].compat != NULL; i++) {
soc_node = &soc_nodes[i];
/* Setup only for enabled devices */
if (ofw_bus_node_status_okay(child) == 0)
continue;
if (!ofw_bus_node_is_compatible(child, soc_node->compat))
continue;
if (fdt_addrsize_cells(OF_parent(child), &addr_cells,
&size_cells))
return (ENXIO);
if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
return (ENOMEM);
if (OF_getprop(child, "reg", &reg, sizeof(reg)) <= 0)
return (EINVAL);
if (addr_cells <= 2)
base = fdt_data_get(&reg[0], addr_cells);
else
base = fdt_data_get(&reg[addr_cells - 2], 2);
size = fdt_data_get(&reg[addr_cells], size_cells);
if (soc_node->valid_handler != NULL)
if (!soc_node->valid_handler())
return (EINVAL);
base = (base & 0x000fffff) | fdt_immr_va;
if (soc_node->decode_handler != NULL)
soc_node->decode_handler(base);
else
return (ENXIO);
if (MV_DUMP_WIN && (soc_node->dump_handler != NULL))
soc_node->dump_handler(base);
}
return (0);
}
static int
fdt_win_setup(void)
{
phandle_t node, child, sb;
phandle_t child_pci;
int err;
sb = 0;
node = OF_finddevice("/");
if (node == -1)
panic("fdt_win_setup: no root node");
/* Allow for coherent transactions on the A38x MBUS */
if (ofw_bus_node_is_compatible(node, "marvell,armada380"))
platform_io_coherent = true;
/*
* Traverse through all children of root and simple-bus nodes.
* For each found device retrieve decode windows data (if applicable).
*/
child = OF_child(node);
while (child != 0) {
/* Lookup for callback and run */
err = fdt_win_process(child);
if (err != 0)
return (err);
/* Process Marvell Armada-XP/38x PCIe controllers */
if (ofw_bus_node_is_compatible(child, "marvell,armada-370-pcie")) {
child_pci = OF_child(child);
while (child_pci != 0) {
err = fdt_win_process(child_pci);
if (err != 0)
return (err);
child_pci = OF_peer(child_pci);
}
}
/*
* Once done with root-level children let's move down to
* simple-bus and its children.
*/
child = OF_peer(child);
if ((child == 0) && (node == OF_finddevice("/"))) {
sb = node = fdt_find_compatible(node, "simple-bus", 0);
if (node == 0)
return (ENXIO);
child = OF_child(node);
}
/*
* Next, move one more level down to internal-regs node (if
* it is present) and its children. This node also have
* "simple-bus" compatible.
*/
if ((child == 0) && (node == sb)) {
node = fdt_find_compatible(node, "simple-bus", 0);
if (node == 0)
return (0);
child = OF_child(node);
}
}
return (0);
}
static void
fdt_fixup_busfreq(phandle_t root)
{
phandle_t sb;
pcell_t freq;
freq = cpu_to_fdt32(get_tclk());
/*
* Fix bus speed in cpu node
*/
if ((sb = OF_finddevice("cpu")) != -1)
if (fdt_is_compatible_strict(sb, "ARM,88VS584"))
OF_setprop(sb, "bus-frequency", (void *)&freq,
sizeof(freq));
/*
* This fixup sets the simple-bus bus-frequency property.
*/
if ((sb = fdt_find_compatible(root, "simple-bus", 1)) != 0)
OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq));
}
static void
fdt_fixup_ranges(phandle_t root)
{
phandle_t node;
pcell_t par_addr_cells, addr_cells, size_cells;
pcell_t ranges[3], reg[2], *rangesptr;
int len, tuple_size, tuples_count;
uint32_t base;
/* Fix-up SoC ranges according to real fdt_immr_pa */
if ((node = fdt_find_compatible(root, "simple-bus", 1)) != 0) {
if (fdt_addrsize_cells(node, &addr_cells, &size_cells) == 0 &&
(par_addr_cells = fdt_parent_addr_cells(node) <= 2)) {
tuple_size = sizeof(pcell_t) * (par_addr_cells +
addr_cells + size_cells);
len = OF_getprop(node, "ranges", ranges,
sizeof(ranges));
tuples_count = len / tuple_size;
/* Unexpected settings are not supported */
if (tuples_count != 1)
goto fixup_failed;
rangesptr = &ranges[0];
rangesptr += par_addr_cells;
base = fdt_data_get((void *)rangesptr, addr_cells);
*rangesptr = cpu_to_fdt32(fdt_immr_pa);
if (OF_setprop(node, "ranges", (void *)&ranges[0],
sizeof(ranges)) < 0)
goto fixup_failed;
}
}
/* Fix-up PCIe reg according to real PCIe registers' PA */
if ((node = fdt_find_compatible(root, "mrvl,pcie", 1)) != 0) {
if (fdt_addrsize_cells(OF_parent(node), &par_addr_cells,
&size_cells) == 0) {
tuple_size = sizeof(pcell_t) * (par_addr_cells +
size_cells);
len = OF_getprop(node, "reg", reg, sizeof(reg));
tuples_count = len / tuple_size;
/* Unexpected settings are not supported */
if (tuples_count != 1)
goto fixup_failed;
base = fdt_data_get((void *)&reg[0], par_addr_cells);
base &= ~0xFF000000;
base |= fdt_immr_pa;
reg[0] = cpu_to_fdt32(base);
if (OF_setprop(node, "reg", (void *)&reg[0],
sizeof(reg)) < 0)
goto fixup_failed;
}
}
/* Fix-up succeeded. May return and continue */
return;
fixup_failed:
while (1) {
/*
* In case of any error while fixing ranges just hang.
* 1. No message can be displayed yet since console
* is not initialized.
* 2. Going further will cause failure on bus_space_map()
* relying on the wrong ranges or data abort when
* accessing PCIe registers.
*/
}
}
struct fdt_fixup_entry fdt_fixup_table[] = {
{ "mrvl,DB-88F6281", &fdt_fixup_busfreq },
{ "mrvl,DB-78460", &fdt_fixup_busfreq },
{ "mrvl,DB-78460", &fdt_fixup_ranges },
{ NULL, NULL }
};
#if __ARM_ARCH >= 6
uint32_t
get_tclk(void)
{
if (soc_decode_win_spec->get_tclk != NULL)
return soc_decode_win_spec->get_tclk();
else
return -1;
}
uint32_t
get_cpu_freq(void)
{
if (soc_decode_win_spec->get_cpu_freq != NULL)
return soc_decode_win_spec->get_cpu_freq();
else
return -1;
}
#endif
#ifndef INTRNG
static int
fdt_pic_decode_ic(phandle_t node, pcell_t *intr, int *interrupt, int *trig,
int *pol)
{
if (!ofw_bus_node_is_compatible(node, "mrvl,pic") &&
!ofw_bus_node_is_compatible(node, "mrvl,mpic"))
return (ENXIO);
*interrupt = fdt32_to_cpu(intr[0]);
*trig = INTR_TRIGGER_CONFORM;
*pol = INTR_POLARITY_CONFORM;
return (0);
}
fdt_pic_decode_t fdt_pic_table[] = {
&fdt_pic_decode_ic,
NULL
};
#endif