freebsd-nq/sys/dev/usb/usb_request.c
Hans Petter Selasky f6bd103ef0 Fix for VirtualBox 4.x and other virtual machines that fail
to generate a port reset change event.

MFC after:	1 weeks
2011-07-16 12:50:30 +00:00

2155 lines
56 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc. All rights reserved.
* Copyright (c) 1998 Lennart Augustsson. All rights reserved.
* Copyright (c) 2008 Hans Petter Selasky. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usb_ioctl.h>
#include <dev/usb/usbhid.h>
#define USB_DEBUG_VAR usb_debug
#include <dev/usb/usb_core.h>
#include <dev/usb/usb_busdma.h>
#include <dev/usb/usb_request.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/usb_transfer.h>
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_device.h>
#include <dev/usb/usb_util.h>
#include <dev/usb/usb_dynamic.h>
#include <dev/usb/usb_controller.h>
#include <dev/usb/usb_bus.h>
#include <sys/ctype.h>
#ifdef USB_DEBUG
static int usb_pr_poll_delay = USB_PORT_RESET_DELAY;
static int usb_pr_recovery_delay = USB_PORT_RESET_RECOVERY;
SYSCTL_INT(_hw_usb, OID_AUTO, pr_poll_delay, CTLFLAG_RW,
&usb_pr_poll_delay, 0, "USB port reset poll delay in ms");
SYSCTL_INT(_hw_usb, OID_AUTO, pr_recovery_delay, CTLFLAG_RW,
&usb_pr_recovery_delay, 0, "USB port reset recovery delay in ms");
#ifdef USB_REQ_DEBUG
/* The following structures are used in connection to fault injection. */
struct usb_ctrl_debug {
int bus_index; /* target bus */
int dev_index; /* target address */
int ds_fail; /* fail data stage */
int ss_fail; /* fail data stage */
int ds_delay; /* data stage delay in ms */
int ss_delay; /* status stage delay in ms */
int bmRequestType_value;
int bRequest_value;
};
struct usb_ctrl_debug_bits {
uint16_t ds_delay;
uint16_t ss_delay;
uint8_t ds_fail:1;
uint8_t ss_fail:1;
uint8_t enabled:1;
};
/* The default is to disable fault injection. */
static struct usb_ctrl_debug usb_ctrl_debug = {
.bus_index = -1,
.dev_index = -1,
.bmRequestType_value = -1,
.bRequest_value = -1,
};
SYSCTL_INT(_hw_usb, OID_AUTO, ctrl_bus_fail, CTLFLAG_RW,
&usb_ctrl_debug.bus_index, 0, "USB controller index to fail");
SYSCTL_INT(_hw_usb, OID_AUTO, ctrl_dev_fail, CTLFLAG_RW,
&usb_ctrl_debug.dev_index, 0, "USB device address to fail");
SYSCTL_INT(_hw_usb, OID_AUTO, ctrl_ds_fail, CTLFLAG_RW,
&usb_ctrl_debug.ds_fail, 0, "USB fail data stage");
SYSCTL_INT(_hw_usb, OID_AUTO, ctrl_ss_fail, CTLFLAG_RW,
&usb_ctrl_debug.ss_fail, 0, "USB fail status stage");
SYSCTL_INT(_hw_usb, OID_AUTO, ctrl_ds_delay, CTLFLAG_RW,
&usb_ctrl_debug.ds_delay, 0, "USB data stage delay in ms");
SYSCTL_INT(_hw_usb, OID_AUTO, ctrl_ss_delay, CTLFLAG_RW,
&usb_ctrl_debug.ss_delay, 0, "USB status stage delay in ms");
SYSCTL_INT(_hw_usb, OID_AUTO, ctrl_rt_fail, CTLFLAG_RW,
&usb_ctrl_debug.bmRequestType_value, 0, "USB bmRequestType to fail");
SYSCTL_INT(_hw_usb, OID_AUTO, ctrl_rv_fail, CTLFLAG_RW,
&usb_ctrl_debug.bRequest_value, 0, "USB bRequest to fail");
/*------------------------------------------------------------------------*
* usbd_get_debug_bits
*
* This function is only useful in USB host mode.
*------------------------------------------------------------------------*/
static void
usbd_get_debug_bits(struct usb_device *udev, struct usb_device_request *req,
struct usb_ctrl_debug_bits *dbg)
{
int temp;
memset(dbg, 0, sizeof(*dbg));
/* Compute data stage delay */
temp = usb_ctrl_debug.ds_delay;
if (temp < 0)
temp = 0;
else if (temp > (16*1024))
temp = (16*1024);
dbg->ds_delay = temp;
/* Compute status stage delay */
temp = usb_ctrl_debug.ss_delay;
if (temp < 0)
temp = 0;
else if (temp > (16*1024))
temp = (16*1024);
dbg->ss_delay = temp;
/* Check if this control request should be failed */
if (usbd_get_bus_index(udev) != usb_ctrl_debug.bus_index)
return;
if (usbd_get_device_index(udev) != usb_ctrl_debug.dev_index)
return;
temp = usb_ctrl_debug.bmRequestType_value;
if ((temp != req->bmRequestType) && (temp >= 0) && (temp <= 255))
return;
temp = usb_ctrl_debug.bRequest_value;
if ((temp != req->bRequest) && (temp >= 0) && (temp <= 255))
return;
temp = usb_ctrl_debug.ds_fail;
if (temp)
dbg->ds_fail = 1;
temp = usb_ctrl_debug.ss_fail;
if (temp)
dbg->ss_fail = 1;
dbg->enabled = 1;
}
#endif /* USB_REQ_DEBUG */
#endif /* USB_DEBUG */
/*------------------------------------------------------------------------*
* usbd_do_request_callback
*
* This function is the USB callback for generic USB Host control
* transfers.
*------------------------------------------------------------------------*/
void
usbd_do_request_callback(struct usb_xfer *xfer, usb_error_t error)
{
; /* workaround for a bug in "indent" */
DPRINTF("st=%u\n", USB_GET_STATE(xfer));
switch (USB_GET_STATE(xfer)) {
case USB_ST_SETUP:
usbd_transfer_submit(xfer);
break;
default:
cv_signal(&xfer->xroot->udev->ctrlreq_cv);
break;
}
}
/*------------------------------------------------------------------------*
* usb_do_clear_stall_callback
*
* This function is the USB callback for generic clear stall requests.
*------------------------------------------------------------------------*/
void
usb_do_clear_stall_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct usb_device_request req;
struct usb_device *udev;
struct usb_endpoint *ep;
struct usb_endpoint *ep_end;
struct usb_endpoint *ep_first;
uint8_t to;
udev = xfer->xroot->udev;
USB_BUS_LOCK(udev->bus);
/* round robin endpoint clear stall */
ep = udev->ep_curr;
ep_end = udev->endpoints + udev->endpoints_max;
ep_first = udev->endpoints;
to = udev->endpoints_max;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
/* reset error counter */
udev->clear_stall_errors = 0;
if (ep == NULL)
goto tr_setup; /* device was unconfigured */
if (ep->edesc &&
ep->is_stalled) {
ep->toggle_next = 0;
ep->is_stalled = 0;
/* some hardware needs a callback to clear the data toggle */
usbd_clear_stall_locked(udev, ep);
/* start up the current or next transfer, if any */
usb_command_wrapper(&ep->endpoint_q,
ep->endpoint_q.curr);
}
ep++;
case USB_ST_SETUP:
tr_setup:
if (to == 0)
break; /* no endpoints - nothing to do */
if ((ep < ep_first) || (ep >= ep_end))
ep = ep_first; /* endpoint wrapped around */
if (ep->edesc &&
ep->is_stalled) {
/* setup a clear-stall packet */
req.bmRequestType = UT_WRITE_ENDPOINT;
req.bRequest = UR_CLEAR_FEATURE;
USETW(req.wValue, UF_ENDPOINT_HALT);
req.wIndex[0] = ep->edesc->bEndpointAddress;
req.wIndex[1] = 0;
USETW(req.wLength, 0);
/* copy in the transfer */
usbd_copy_in(xfer->frbuffers, 0, &req, sizeof(req));
/* set length */
usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
xfer->nframes = 1;
USB_BUS_UNLOCK(udev->bus);
usbd_transfer_submit(xfer);
USB_BUS_LOCK(udev->bus);
break;
}
ep++;
to--;
goto tr_setup;
default:
if (error == USB_ERR_CANCELLED)
break;
DPRINTF("Clear stall failed.\n");
if (udev->clear_stall_errors == USB_CS_RESET_LIMIT)
goto tr_setup;
if (error == USB_ERR_TIMEOUT) {
udev->clear_stall_errors = USB_CS_RESET_LIMIT;
DPRINTF("Trying to re-enumerate.\n");
usbd_start_re_enumerate(udev);
} else {
udev->clear_stall_errors++;
if (udev->clear_stall_errors == USB_CS_RESET_LIMIT) {
DPRINTF("Trying to re-enumerate.\n");
usbd_start_re_enumerate(udev);
}
}
goto tr_setup;
}
/* store current endpoint */
udev->ep_curr = ep;
USB_BUS_UNLOCK(udev->bus);
}
static usb_handle_req_t *
usbd_get_hr_func(struct usb_device *udev)
{
/* figure out if there is a Handle Request function */
if (udev->flags.usb_mode == USB_MODE_DEVICE)
return (usb_temp_get_desc_p);
else if (udev->parent_hub == NULL)
return (udev->bus->methods->roothub_exec);
else
return (NULL);
}
/*------------------------------------------------------------------------*
* usbd_do_request_flags and usbd_do_request
*
* Description of arguments passed to these functions:
*
* "udev" - this is the "usb_device" structure pointer on which the
* request should be performed. It is possible to call this function
* in both Host Side mode and Device Side mode.
*
* "mtx" - if this argument is non-NULL the mutex pointed to by it
* will get dropped and picked up during the execution of this
* function, hence this function sometimes needs to sleep. If this
* argument is NULL it has no effect.
*
* "req" - this argument must always be non-NULL and points to an
* 8-byte structure holding the USB request to be done. The USB
* request structure has a bit telling the direction of the USB
* request, if it is a read or a write.
*
* "data" - if the "wLength" part of the structure pointed to by "req"
* is non-zero this argument must point to a valid kernel buffer which
* can hold at least "wLength" bytes. If "wLength" is zero "data" can
* be NULL.
*
* "flags" - here is a list of valid flags:
*
* o USB_SHORT_XFER_OK: allows the data transfer to be shorter than
* specified
*
* o USB_DELAY_STATUS_STAGE: allows the status stage to be performed
* at a later point in time. This is tunable by the "hw.usb.ss_delay"
* sysctl. This flag is mostly useful for debugging.
*
* o USB_USER_DATA_PTR: treat the "data" pointer like a userland
* pointer.
*
* "actlen" - if non-NULL the actual transfer length will be stored in
* the 16-bit unsigned integer pointed to by "actlen". This
* information is mostly useful when the "USB_SHORT_XFER_OK" flag is
* used.
*
* "timeout" - gives the timeout for the control transfer in
* milliseconds. A "timeout" value less than 50 milliseconds is
* treated like a 50 millisecond timeout. A "timeout" value greater
* than 30 seconds is treated like a 30 second timeout. This USB stack
* does not allow control requests without a timeout.
*
* NOTE: This function is thread safe. All calls to
* "usbd_do_request_flags" will be serialised by the use of an
* internal "sx_lock".
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_do_request_flags(struct usb_device *udev, struct mtx *mtx,
struct usb_device_request *req, void *data, uint16_t flags,
uint16_t *actlen, usb_timeout_t timeout)
{
#ifdef USB_REQ_DEBUG
struct usb_ctrl_debug_bits dbg;
#endif
usb_handle_req_t *hr_func;
struct usb_xfer *xfer;
const void *desc;
int err = 0;
usb_ticks_t start_ticks;
usb_ticks_t delta_ticks;
usb_ticks_t max_ticks;
uint16_t length;
uint16_t temp;
uint16_t acttemp;
uint8_t enum_locked;
if (timeout < 50) {
/* timeout is too small */
timeout = 50;
}
if (timeout > 30000) {
/* timeout is too big */
timeout = 30000;
}
length = UGETW(req->wLength);
enum_locked = usbd_enum_is_locked(udev);
DPRINTFN(5, "udev=%p bmRequestType=0x%02x bRequest=0x%02x "
"wValue=0x%02x%02x wIndex=0x%02x%02x wLength=0x%02x%02x\n",
udev, req->bmRequestType, req->bRequest,
req->wValue[1], req->wValue[0],
req->wIndex[1], req->wIndex[0],
req->wLength[1], req->wLength[0]);
/* Check if the device is still alive */
if (udev->state < USB_STATE_POWERED) {
DPRINTF("usb device has gone\n");
return (USB_ERR_NOT_CONFIGURED);
}
/*
* Set "actlen" to a known value in case the caller does not
* check the return value:
*/
if (actlen)
*actlen = 0;
#if (USB_HAVE_USER_IO == 0)
if (flags & USB_USER_DATA_PTR)
return (USB_ERR_INVAL);
#endif
if ((mtx != NULL) && (mtx != &Giant)) {
mtx_unlock(mtx);
mtx_assert(mtx, MA_NOTOWNED);
}
/*
* We need to allow suspend and resume at this point, else the
* control transfer will timeout if the device is suspended!
*/
if (enum_locked)
usbd_sr_unlock(udev);
/*
* Grab the default sx-lock so that serialisation
* is achieved when multiple threads are involved:
*/
sx_xlock(&udev->ctrl_sx);
hr_func = usbd_get_hr_func(udev);
if (hr_func != NULL) {
DPRINTF("Handle Request function is set\n");
desc = NULL;
temp = 0;
if (!(req->bmRequestType & UT_READ)) {
if (length != 0) {
DPRINTFN(1, "The handle request function "
"does not support writing data!\n");
err = USB_ERR_INVAL;
goto done;
}
}
/* The root HUB code needs the BUS lock locked */
USB_BUS_LOCK(udev->bus);
err = (hr_func) (udev, req, &desc, &temp);
USB_BUS_UNLOCK(udev->bus);
if (err)
goto done;
if (length > temp) {
if (!(flags & USB_SHORT_XFER_OK)) {
err = USB_ERR_SHORT_XFER;
goto done;
}
length = temp;
}
if (actlen)
*actlen = length;
if (length > 0) {
#if USB_HAVE_USER_IO
if (flags & USB_USER_DATA_PTR) {
if (copyout(desc, data, length)) {
err = USB_ERR_INVAL;
goto done;
}
} else
#endif
bcopy(desc, data, length);
}
goto done; /* success */
}
/*
* Setup a new USB transfer or use the existing one, if any:
*/
usbd_ctrl_transfer_setup(udev);
xfer = udev->ctrl_xfer[0];
if (xfer == NULL) {
/* most likely out of memory */
err = USB_ERR_NOMEM;
goto done;
}
#ifdef USB_REQ_DEBUG
/* Get debug bits */
usbd_get_debug_bits(udev, req, &dbg);
/* Check for fault injection */
if (dbg.enabled)
flags |= USB_DELAY_STATUS_STAGE;
#endif
USB_XFER_LOCK(xfer);
if (flags & USB_DELAY_STATUS_STAGE)
xfer->flags.manual_status = 1;
else
xfer->flags.manual_status = 0;
if (flags & USB_SHORT_XFER_OK)
xfer->flags.short_xfer_ok = 1;
else
xfer->flags.short_xfer_ok = 0;
xfer->timeout = timeout;
start_ticks = ticks;
max_ticks = USB_MS_TO_TICKS(timeout);
usbd_copy_in(xfer->frbuffers, 0, req, sizeof(*req));
usbd_xfer_set_frame_len(xfer, 0, sizeof(*req));
while (1) {
temp = length;
if (temp > usbd_xfer_max_len(xfer)) {
temp = usbd_xfer_max_len(xfer);
}
#ifdef USB_REQ_DEBUG
if (xfer->flags.manual_status) {
if (usbd_xfer_frame_len(xfer, 0) != 0) {
/* Execute data stage separately */
temp = 0;
} else if (temp > 0) {
if (dbg.ds_fail) {
err = USB_ERR_INVAL;
break;
}
if (dbg.ds_delay > 0) {
usb_pause_mtx(
xfer->xroot->xfer_mtx,
USB_MS_TO_TICKS(dbg.ds_delay));
/* make sure we don't time out */
start_ticks = ticks;
}
}
}
#endif
usbd_xfer_set_frame_len(xfer, 1, temp);
if (temp > 0) {
if (!(req->bmRequestType & UT_READ)) {
#if USB_HAVE_USER_IO
if (flags & USB_USER_DATA_PTR) {
USB_XFER_UNLOCK(xfer);
err = usbd_copy_in_user(xfer->frbuffers + 1,
0, data, temp);
USB_XFER_LOCK(xfer);
if (err) {
err = USB_ERR_INVAL;
break;
}
} else
#endif
usbd_copy_in(xfer->frbuffers + 1,
0, data, temp);
}
usbd_xfer_set_frames(xfer, 2);
} else {
if (usbd_xfer_frame_len(xfer, 0) == 0) {
if (xfer->flags.manual_status) {
#ifdef USB_REQ_DEBUG
if (dbg.ss_fail) {
err = USB_ERR_INVAL;
break;
}
if (dbg.ss_delay > 0) {
usb_pause_mtx(
xfer->xroot->xfer_mtx,
USB_MS_TO_TICKS(dbg.ss_delay));
/* make sure we don't time out */
start_ticks = ticks;
}
#endif
xfer->flags.manual_status = 0;
} else {
break;
}
}
usbd_xfer_set_frames(xfer, 1);
}
usbd_transfer_start(xfer);
while (usbd_transfer_pending(xfer)) {
cv_wait(&udev->ctrlreq_cv,
xfer->xroot->xfer_mtx);
}
err = xfer->error;
if (err) {
break;
}
/* get actual length of DATA stage */
if (xfer->aframes < 2) {
acttemp = 0;
} else {
acttemp = usbd_xfer_frame_len(xfer, 1);
}
/* check for short packet */
if (temp > acttemp) {
temp = acttemp;
length = temp;
}
if (temp > 0) {
if (req->bmRequestType & UT_READ) {
#if USB_HAVE_USER_IO
if (flags & USB_USER_DATA_PTR) {
USB_XFER_UNLOCK(xfer);
err = usbd_copy_out_user(xfer->frbuffers + 1,
0, data, temp);
USB_XFER_LOCK(xfer);
if (err) {
err = USB_ERR_INVAL;
break;
}
} else
#endif
usbd_copy_out(xfer->frbuffers + 1,
0, data, temp);
}
}
/*
* Clear "frlengths[0]" so that we don't send the setup
* packet again:
*/
usbd_xfer_set_frame_len(xfer, 0, 0);
/* update length and data pointer */
length -= temp;
data = USB_ADD_BYTES(data, temp);
if (actlen) {
(*actlen) += temp;
}
/* check for timeout */
delta_ticks = ticks - start_ticks;
if (delta_ticks > max_ticks) {
if (!err) {
err = USB_ERR_TIMEOUT;
}
}
if (err) {
break;
}
}
if (err) {
/*
* Make sure that the control endpoint is no longer
* blocked in case of a non-transfer related error:
*/
usbd_transfer_stop(xfer);
}
USB_XFER_UNLOCK(xfer);
done:
sx_xunlock(&udev->ctrl_sx);
if (enum_locked)
usbd_sr_lock(udev);
if ((mtx != NULL) && (mtx != &Giant))
mtx_lock(mtx);
return ((usb_error_t)err);
}
/*------------------------------------------------------------------------*
* usbd_do_request_proc - factored out code
*
* This function is factored out code. It does basically the same like
* usbd_do_request_flags, except it will check the status of the
* passed process argument before doing the USB request. If the
* process is draining the USB_ERR_IOERROR code will be returned. It
* is assumed that the mutex associated with the process is locked
* when calling this function.
*------------------------------------------------------------------------*/
usb_error_t
usbd_do_request_proc(struct usb_device *udev, struct usb_process *pproc,
struct usb_device_request *req, void *data, uint16_t flags,
uint16_t *actlen, usb_timeout_t timeout)
{
usb_error_t err;
uint16_t len;
/* get request data length */
len = UGETW(req->wLength);
/* check if the device is being detached */
if (usb_proc_is_gone(pproc)) {
err = USB_ERR_IOERROR;
goto done;
}
/* forward the USB request */
err = usbd_do_request_flags(udev, pproc->up_mtx,
req, data, flags, actlen, timeout);
done:
/* on failure we zero the data */
/* on short packet we zero the unused data */
if ((len != 0) && (req->bmRequestType & UE_DIR_IN)) {
if (err)
memset(data, 0, len);
else if (actlen && *actlen != len)
memset(((uint8_t *)data) + *actlen, 0, len - *actlen);
}
return (err);
}
/*------------------------------------------------------------------------*
* usbd_req_reset_port
*
* This function will instruct a USB HUB to perform a reset sequence
* on the specified port number.
*
* Returns:
* 0: Success. The USB device should now be at address zero.
* Else: Failure. No USB device is present and the USB port should be
* disabled.
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_reset_port(struct usb_device *udev, struct mtx *mtx, uint8_t port)
{
struct usb_port_status ps;
usb_error_t err;
uint16_t n;
#ifdef USB_DEBUG
uint16_t pr_poll_delay;
uint16_t pr_recovery_delay;
#endif
/* clear any leftover port reset changes first */
usbd_req_clear_port_feature(
udev, mtx, port, UHF_C_PORT_RESET);
/* assert port reset on the given port */
err = usbd_req_set_port_feature(
udev, mtx, port, UHF_PORT_RESET);
/* check for errors */
if (err)
goto done;
#ifdef USB_DEBUG
/* range check input parameters */
pr_poll_delay = usb_pr_poll_delay;
if (pr_poll_delay < 1) {
pr_poll_delay = 1;
} else if (pr_poll_delay > 1000) {
pr_poll_delay = 1000;
}
pr_recovery_delay = usb_pr_recovery_delay;
if (pr_recovery_delay > 1000) {
pr_recovery_delay = 1000;
}
#endif
n = 0;
while (1) {
uint16_t status;
uint16_t change;
#ifdef USB_DEBUG
/* wait for the device to recover from reset */
usb_pause_mtx(mtx, USB_MS_TO_TICKS(pr_poll_delay));
n += pr_poll_delay;
#else
/* wait for the device to recover from reset */
usb_pause_mtx(mtx, USB_MS_TO_TICKS(USB_PORT_RESET_DELAY));
n += USB_PORT_RESET_DELAY;
#endif
err = usbd_req_get_port_status(udev, mtx, &ps, port);
if (err) {
goto done;
}
status = UGETW(ps.wPortStatus);
change = UGETW(ps.wPortChange);
/* if the device disappeared, just give up */
if (!(status & UPS_CURRENT_CONNECT_STATUS))
goto done;
/* check if reset is complete */
if (change & UPS_C_PORT_RESET)
break;
/*
* Some Virtual Machines like VirtualBox 4.x fail to
* generate a port reset change event. Check if reset
* is no longer asserted.
*/
if (!(status & UPS_RESET))
break;
/* check for timeout */
if (n > 1000) {
n = 0;
break;
}
}
/* clear port reset first */
err = usbd_req_clear_port_feature(
udev, mtx, port, UHF_C_PORT_RESET);
if (err) {
goto done;
}
/* check for timeout */
if (n == 0) {
err = USB_ERR_TIMEOUT;
goto done;
}
#ifdef USB_DEBUG
/* wait for the device to recover from reset */
usb_pause_mtx(mtx, USB_MS_TO_TICKS(pr_recovery_delay));
#else
/* wait for the device to recover from reset */
usb_pause_mtx(mtx, USB_MS_TO_TICKS(USB_PORT_RESET_RECOVERY));
#endif
done:
DPRINTFN(2, "port %d reset returning error=%s\n",
port, usbd_errstr(err));
return (err);
}
/*------------------------------------------------------------------------*
* usbd_req_warm_reset_port
*
* This function will instruct an USB HUB to perform a warm reset
* sequence on the specified port number. This kind of reset is not
* mandatory for LOW-, FULL- and HIGH-speed USB HUBs and is targeted
* for SUPER-speed USB HUBs.
*
* Returns:
* 0: Success. The USB device should now be available again.
* Else: Failure. No USB device is present and the USB port should be
* disabled.
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_warm_reset_port(struct usb_device *udev, struct mtx *mtx, uint8_t port)
{
struct usb_port_status ps;
usb_error_t err;
uint16_t n;
#ifdef USB_DEBUG
uint16_t pr_poll_delay;
uint16_t pr_recovery_delay;
#endif
err = usbd_req_set_port_feature(udev, mtx, port, UHF_BH_PORT_RESET);
if (err) {
goto done;
}
#ifdef USB_DEBUG
/* range check input parameters */
pr_poll_delay = usb_pr_poll_delay;
if (pr_poll_delay < 1) {
pr_poll_delay = 1;
} else if (pr_poll_delay > 1000) {
pr_poll_delay = 1000;
}
pr_recovery_delay = usb_pr_recovery_delay;
if (pr_recovery_delay > 1000) {
pr_recovery_delay = 1000;
}
#endif
n = 0;
while (1) {
#ifdef USB_DEBUG
/* wait for the device to recover from reset */
usb_pause_mtx(mtx, USB_MS_TO_TICKS(pr_poll_delay));
n += pr_poll_delay;
#else
/* wait for the device to recover from reset */
usb_pause_mtx(mtx, USB_MS_TO_TICKS(USB_PORT_RESET_DELAY));
n += USB_PORT_RESET_DELAY;
#endif
err = usbd_req_get_port_status(udev, mtx, &ps, port);
if (err) {
goto done;
}
/* if the device disappeared, just give up */
if (!(UGETW(ps.wPortStatus) & UPS_CURRENT_CONNECT_STATUS)) {
goto done;
}
/* check if reset is complete */
if (UGETW(ps.wPortChange) & UPS_C_BH_PORT_RESET) {
break;
}
/* check for timeout */
if (n > 1000) {
n = 0;
break;
}
}
/* clear port reset first */
err = usbd_req_clear_port_feature(
udev, mtx, port, UHF_C_BH_PORT_RESET);
if (err) {
goto done;
}
/* check for timeout */
if (n == 0) {
err = USB_ERR_TIMEOUT;
goto done;
}
#ifdef USB_DEBUG
/* wait for the device to recover from reset */
usb_pause_mtx(mtx, USB_MS_TO_TICKS(pr_recovery_delay));
#else
/* wait for the device to recover from reset */
usb_pause_mtx(mtx, USB_MS_TO_TICKS(USB_PORT_RESET_RECOVERY));
#endif
done:
DPRINTFN(2, "port %d warm reset returning error=%s\n",
port, usbd_errstr(err));
return (err);
}
/*------------------------------------------------------------------------*
* usbd_req_get_desc
*
* This function can be used to retrieve USB descriptors. It contains
* some additional logic like zeroing of missing descriptor bytes and
* retrying an USB descriptor in case of failure. The "min_len"
* argument specifies the minimum descriptor length. The "max_len"
* argument specifies the maximum descriptor length. If the real
* descriptor length is less than the minimum length the missing
* byte(s) will be zeroed. The type field, the second byte of the USB
* descriptor, will get forced to the correct type. If the "actlen"
* pointer is non-NULL, the actual length of the transfer will get
* stored in the 16-bit unsigned integer which it is pointing to. The
* first byte of the descriptor will not get updated. If the "actlen"
* pointer is NULL the first byte of the descriptor will get updated
* to reflect the actual length instead. If "min_len" is not equal to
* "max_len" then this function will try to retrive the beginning of
* the descriptor and base the maximum length on the first byte of the
* descriptor.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_desc(struct usb_device *udev,
struct mtx *mtx, uint16_t *actlen, void *desc,
uint16_t min_len, uint16_t max_len,
uint16_t id, uint8_t type, uint8_t index,
uint8_t retries)
{
struct usb_device_request req;
uint8_t *buf;
usb_error_t err;
DPRINTFN(4, "id=%d, type=%d, index=%d, max_len=%d\n",
id, type, index, max_len);
req.bmRequestType = UT_READ_DEVICE;
req.bRequest = UR_GET_DESCRIPTOR;
USETW2(req.wValue, type, index);
USETW(req.wIndex, id);
while (1) {
if ((min_len < 2) || (max_len < 2)) {
err = USB_ERR_INVAL;
goto done;
}
USETW(req.wLength, min_len);
err = usbd_do_request_flags(udev, mtx, &req,
desc, 0, NULL, 1000);
if (err) {
if (!retries) {
goto done;
}
retries--;
usb_pause_mtx(mtx, hz / 5);
continue;
}
buf = desc;
if (min_len == max_len) {
/* enforce correct length */
if ((buf[0] > min_len) && (actlen == NULL))
buf[0] = min_len;
/* enforce correct type */
buf[1] = type;
goto done;
}
/* range check */
if (max_len > buf[0]) {
max_len = buf[0];
}
/* zero minimum data */
while (min_len > max_len) {
min_len--;
buf[min_len] = 0;
}
/* set new minimum length */
min_len = max_len;
}
done:
if (actlen != NULL) {
if (err)
*actlen = 0;
else
*actlen = min_len;
}
return (err);
}
/*------------------------------------------------------------------------*
* usbd_req_get_string_any
*
* This function will return the string given by "string_index"
* using the first language ID. The maximum length "len" includes
* the terminating zero. The "len" argument should be twice as
* big pluss 2 bytes, compared with the actual maximum string length !
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_string_any(struct usb_device *udev, struct mtx *mtx, char *buf,
uint16_t len, uint8_t string_index)
{
char *s;
uint8_t *temp;
uint16_t i;
uint16_t n;
uint16_t c;
uint8_t swap;
usb_error_t err;
if (len == 0) {
/* should not happen */
return (USB_ERR_NORMAL_COMPLETION);
}
if (string_index == 0) {
/* this is the language table */
buf[0] = 0;
return (USB_ERR_INVAL);
}
if (udev->flags.no_strings) {
buf[0] = 0;
return (USB_ERR_STALLED);
}
err = usbd_req_get_string_desc
(udev, mtx, buf, len, udev->langid, string_index);
if (err) {
buf[0] = 0;
return (err);
}
temp = (uint8_t *)buf;
if (temp[0] < 2) {
/* string length is too short */
buf[0] = 0;
return (USB_ERR_INVAL);
}
/* reserve one byte for terminating zero */
len--;
/* find maximum length */
s = buf;
n = (temp[0] / 2) - 1;
if (n > len) {
n = len;
}
/* skip descriptor header */
temp += 2;
/* reset swap state */
swap = 3;
/* convert and filter */
for (i = 0; (i != n); i++) {
c = UGETW(temp + (2 * i));
/* convert from Unicode, handle buggy strings */
if (((c & 0xff00) == 0) && (swap & 1)) {
/* Little Endian, default */
*s = c;
swap = 1;
} else if (((c & 0x00ff) == 0) && (swap & 2)) {
/* Big Endian */
*s = c >> 8;
swap = 2;
} else {
/* silently skip bad character */
continue;
}
/*
* Filter by default - We only allow alphanumerical
* and a few more to avoid any problems with scripts
* and daemons.
*/
if (isalpha(*s) ||
isdigit(*s) ||
*s == '-' ||
*s == '+' ||
*s == ' ' ||
*s == '.' ||
*s == ',') {
/* allowed */
s++;
}
/* silently skip bad character */
}
*s = 0; /* zero terminate resulting string */
return (USB_ERR_NORMAL_COMPLETION);
}
/*------------------------------------------------------------------------*
* usbd_req_get_string_desc
*
* If you don't know the language ID, consider using
* "usbd_req_get_string_any()".
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_string_desc(struct usb_device *udev, struct mtx *mtx, void *sdesc,
uint16_t max_len, uint16_t lang_id,
uint8_t string_index)
{
return (usbd_req_get_desc(udev, mtx, NULL, sdesc, 2, max_len, lang_id,
UDESC_STRING, string_index, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_get_config_desc_ptr
*
* This function is used in device side mode to retrieve the pointer
* to the generated config descriptor. This saves allocating space for
* an additional config descriptor when setting the configuration.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_descriptor_ptr(struct usb_device *udev,
struct usb_config_descriptor **ppcd, uint16_t wValue)
{
struct usb_device_request req;
usb_handle_req_t *hr_func;
const void *ptr;
uint16_t len;
usb_error_t err;
req.bmRequestType = UT_READ_DEVICE;
req.bRequest = UR_GET_DESCRIPTOR;
USETW(req.wValue, wValue);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
ptr = NULL;
len = 0;
hr_func = usbd_get_hr_func(udev);
if (hr_func == NULL)
err = USB_ERR_INVAL;
else {
USB_BUS_LOCK(udev->bus);
err = (hr_func) (udev, &req, &ptr, &len);
USB_BUS_UNLOCK(udev->bus);
}
if (err)
ptr = NULL;
else if (ptr == NULL)
err = USB_ERR_INVAL;
*ppcd = __DECONST(struct usb_config_descriptor *, ptr);
return (err);
}
/*------------------------------------------------------------------------*
* usbd_req_get_config_desc
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_config_desc(struct usb_device *udev, struct mtx *mtx,
struct usb_config_descriptor *d, uint8_t conf_index)
{
usb_error_t err;
DPRINTFN(4, "confidx=%d\n", conf_index);
err = usbd_req_get_desc(udev, mtx, NULL, d, sizeof(*d),
sizeof(*d), 0, UDESC_CONFIG, conf_index, 0);
if (err) {
goto done;
}
/* Extra sanity checking */
if (UGETW(d->wTotalLength) < sizeof(*d)) {
err = USB_ERR_INVAL;
}
done:
return (err);
}
/*------------------------------------------------------------------------*
* usbd_req_get_config_desc_full
*
* This function gets the complete USB configuration descriptor and
* ensures that "wTotalLength" is correct.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_config_desc_full(struct usb_device *udev, struct mtx *mtx,
struct usb_config_descriptor **ppcd, struct malloc_type *mtype,
uint8_t index)
{
struct usb_config_descriptor cd;
struct usb_config_descriptor *cdesc;
uint16_t len;
usb_error_t err;
DPRINTFN(4, "index=%d\n", index);
*ppcd = NULL;
err = usbd_req_get_config_desc(udev, mtx, &cd, index);
if (err) {
return (err);
}
/* get full descriptor */
len = UGETW(cd.wTotalLength);
if (len < sizeof(*cdesc)) {
/* corrupt descriptor */
return (USB_ERR_INVAL);
}
cdesc = malloc(len, mtype, M_WAITOK);
if (cdesc == NULL) {
return (USB_ERR_NOMEM);
}
err = usbd_req_get_desc(udev, mtx, NULL, cdesc, len, len, 0,
UDESC_CONFIG, index, 3);
if (err) {
free(cdesc, mtype);
return (err);
}
/* make sure that the device is not fooling us: */
USETW(cdesc->wTotalLength, len);
*ppcd = cdesc;
return (0); /* success */
}
/*------------------------------------------------------------------------*
* usbd_req_get_device_desc
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_device_desc(struct usb_device *udev, struct mtx *mtx,
struct usb_device_descriptor *d)
{
DPRINTFN(4, "\n");
return (usbd_req_get_desc(udev, mtx, NULL, d, sizeof(*d),
sizeof(*d), 0, UDESC_DEVICE, 0, 3));
}
/*------------------------------------------------------------------------*
* usbd_req_get_alt_interface_no
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_alt_interface_no(struct usb_device *udev, struct mtx *mtx,
uint8_t *alt_iface_no, uint8_t iface_index)
{
struct usb_interface *iface = usbd_get_iface(udev, iface_index);
struct usb_device_request req;
if ((iface == NULL) || (iface->idesc == NULL))
return (USB_ERR_INVAL);
req.bmRequestType = UT_READ_INTERFACE;
req.bRequest = UR_GET_INTERFACE;
USETW(req.wValue, 0);
req.wIndex[0] = iface->idesc->bInterfaceNumber;
req.wIndex[1] = 0;
USETW(req.wLength, 1);
return (usbd_do_request(udev, mtx, &req, alt_iface_no));
}
/*------------------------------------------------------------------------*
* usbd_req_set_alt_interface_no
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_alt_interface_no(struct usb_device *udev, struct mtx *mtx,
uint8_t iface_index, uint8_t alt_no)
{
struct usb_interface *iface = usbd_get_iface(udev, iface_index);
struct usb_device_request req;
if ((iface == NULL) || (iface->idesc == NULL))
return (USB_ERR_INVAL);
req.bmRequestType = UT_WRITE_INTERFACE;
req.bRequest = UR_SET_INTERFACE;
req.wValue[0] = alt_no;
req.wValue[1] = 0;
req.wIndex[0] = iface->idesc->bInterfaceNumber;
req.wIndex[1] = 0;
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_get_device_status
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_device_status(struct usb_device *udev, struct mtx *mtx,
struct usb_status *st)
{
struct usb_device_request req;
req.bmRequestType = UT_READ_DEVICE;
req.bRequest = UR_GET_STATUS;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, sizeof(*st));
return (usbd_do_request(udev, mtx, &req, st));
}
/*------------------------------------------------------------------------*
* usbd_req_get_hub_descriptor
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_hub_descriptor(struct usb_device *udev, struct mtx *mtx,
struct usb_hub_descriptor *hd, uint8_t nports)
{
struct usb_device_request req;
uint16_t len = (nports + 7 + (8 * 8)) / 8;
req.bmRequestType = UT_READ_CLASS_DEVICE;
req.bRequest = UR_GET_DESCRIPTOR;
USETW2(req.wValue, UDESC_HUB, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (usbd_do_request(udev, mtx, &req, hd));
}
/*------------------------------------------------------------------------*
* usbd_req_get_ss_hub_descriptor
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_ss_hub_descriptor(struct usb_device *udev, struct mtx *mtx,
struct usb_hub_ss_descriptor *hd, uint8_t nports)
{
struct usb_device_request req;
uint16_t len = sizeof(*hd) - 32 + 1 + ((nports + 7) / 8);
req.bmRequestType = UT_READ_CLASS_DEVICE;
req.bRequest = UR_GET_DESCRIPTOR;
USETW2(req.wValue, UDESC_SS_HUB, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (usbd_do_request(udev, mtx, &req, hd));
}
/*------------------------------------------------------------------------*
* usbd_req_get_hub_status
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_hub_status(struct usb_device *udev, struct mtx *mtx,
struct usb_hub_status *st)
{
struct usb_device_request req;
req.bmRequestType = UT_READ_CLASS_DEVICE;
req.bRequest = UR_GET_STATUS;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, sizeof(struct usb_hub_status));
return (usbd_do_request(udev, mtx, &req, st));
}
/*------------------------------------------------------------------------*
* usbd_req_set_address
*
* This function is used to set the address for an USB device. After
* port reset the USB device will respond at address zero.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_address(struct usb_device *udev, struct mtx *mtx, uint16_t addr)
{
struct usb_device_request req;
usb_error_t err;
DPRINTFN(6, "setting device address=%d\n", addr);
req.bmRequestType = UT_WRITE_DEVICE;
req.bRequest = UR_SET_ADDRESS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
err = USB_ERR_INVAL;
/* check if USB controller handles set address */
if (udev->bus->methods->set_address != NULL)
err = (udev->bus->methods->set_address) (udev, mtx, addr);
if (err != USB_ERR_INVAL)
goto done;
/* Setting the address should not take more than 1 second ! */
err = usbd_do_request_flags(udev, mtx, &req, NULL,
USB_DELAY_STATUS_STAGE, NULL, 1000);
done:
/* allow device time to set new address */
usb_pause_mtx(mtx,
USB_MS_TO_TICKS(USB_SET_ADDRESS_SETTLE));
return (err);
}
/*------------------------------------------------------------------------*
* usbd_req_get_port_status
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_port_status(struct usb_device *udev, struct mtx *mtx,
struct usb_port_status *ps, uint8_t port)
{
struct usb_device_request req;
req.bmRequestType = UT_READ_CLASS_OTHER;
req.bRequest = UR_GET_STATUS;
USETW(req.wValue, 0);
req.wIndex[0] = port;
req.wIndex[1] = 0;
USETW(req.wLength, sizeof *ps);
return (usbd_do_request(udev, mtx, &req, ps));
}
/*------------------------------------------------------------------------*
* usbd_req_clear_hub_feature
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_clear_hub_feature(struct usb_device *udev, struct mtx *mtx,
uint16_t sel)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_CLASS_DEVICE;
req.bRequest = UR_CLEAR_FEATURE;
USETW(req.wValue, sel);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_set_hub_feature
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_hub_feature(struct usb_device *udev, struct mtx *mtx,
uint16_t sel)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_CLASS_DEVICE;
req.bRequest = UR_SET_FEATURE;
USETW(req.wValue, sel);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_set_hub_u1_timeout
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_hub_u1_timeout(struct usb_device *udev, struct mtx *mtx,
uint8_t port, uint8_t timeout)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_CLASS_OTHER;
req.bRequest = UR_SET_FEATURE;
USETW(req.wValue, UHF_PORT_U1_TIMEOUT);
req.wIndex[0] = port;
req.wIndex[1] = timeout;
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_set_hub_u2_timeout
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_hub_u2_timeout(struct usb_device *udev, struct mtx *mtx,
uint8_t port, uint8_t timeout)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_CLASS_OTHER;
req.bRequest = UR_SET_FEATURE;
USETW(req.wValue, UHF_PORT_U2_TIMEOUT);
req.wIndex[0] = port;
req.wIndex[1] = timeout;
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_set_hub_depth
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_hub_depth(struct usb_device *udev, struct mtx *mtx,
uint16_t depth)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_CLASS_DEVICE;
req.bRequest = UR_SET_HUB_DEPTH;
USETW(req.wValue, depth);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_clear_port_feature
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_clear_port_feature(struct usb_device *udev, struct mtx *mtx,
uint8_t port, uint16_t sel)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_CLASS_OTHER;
req.bRequest = UR_CLEAR_FEATURE;
USETW(req.wValue, sel);
req.wIndex[0] = port;
req.wIndex[1] = 0;
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_set_port_feature
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_port_feature(struct usb_device *udev, struct mtx *mtx,
uint8_t port, uint16_t sel)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_CLASS_OTHER;
req.bRequest = UR_SET_FEATURE;
USETW(req.wValue, sel);
req.wIndex[0] = port;
req.wIndex[1] = 0;
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_set_protocol
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_protocol(struct usb_device *udev, struct mtx *mtx,
uint8_t iface_index, uint16_t report)
{
struct usb_interface *iface = usbd_get_iface(udev, iface_index);
struct usb_device_request req;
if ((iface == NULL) || (iface->idesc == NULL)) {
return (USB_ERR_INVAL);
}
DPRINTFN(5, "iface=%p, report=%d, endpt=%d\n",
iface, report, iface->idesc->bInterfaceNumber);
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UR_SET_PROTOCOL;
USETW(req.wValue, report);
req.wIndex[0] = iface->idesc->bInterfaceNumber;
req.wIndex[1] = 0;
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_set_report
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_report(struct usb_device *udev, struct mtx *mtx, void *data, uint16_t len,
uint8_t iface_index, uint8_t type, uint8_t id)
{
struct usb_interface *iface = usbd_get_iface(udev, iface_index);
struct usb_device_request req;
if ((iface == NULL) || (iface->idesc == NULL)) {
return (USB_ERR_INVAL);
}
DPRINTFN(5, "len=%d\n", len);
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UR_SET_REPORT;
USETW2(req.wValue, type, id);
req.wIndex[0] = iface->idesc->bInterfaceNumber;
req.wIndex[1] = 0;
USETW(req.wLength, len);
return (usbd_do_request(udev, mtx, &req, data));
}
/*------------------------------------------------------------------------*
* usbd_req_get_report
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_report(struct usb_device *udev, struct mtx *mtx, void *data,
uint16_t len, uint8_t iface_index, uint8_t type, uint8_t id)
{
struct usb_interface *iface = usbd_get_iface(udev, iface_index);
struct usb_device_request req;
if ((iface == NULL) || (iface->idesc == NULL) || (id == 0)) {
return (USB_ERR_INVAL);
}
DPRINTFN(5, "len=%d\n", len);
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = UR_GET_REPORT;
USETW2(req.wValue, type, id);
req.wIndex[0] = iface->idesc->bInterfaceNumber;
req.wIndex[1] = 0;
USETW(req.wLength, len);
return (usbd_do_request(udev, mtx, &req, data));
}
/*------------------------------------------------------------------------*
* usbd_req_set_idle
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_idle(struct usb_device *udev, struct mtx *mtx,
uint8_t iface_index, uint8_t duration, uint8_t id)
{
struct usb_interface *iface = usbd_get_iface(udev, iface_index);
struct usb_device_request req;
if ((iface == NULL) || (iface->idesc == NULL)) {
return (USB_ERR_INVAL);
}
DPRINTFN(5, "%d %d\n", duration, id);
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UR_SET_IDLE;
USETW2(req.wValue, duration, id);
req.wIndex[0] = iface->idesc->bInterfaceNumber;
req.wIndex[1] = 0;
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_get_report_descriptor
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_report_descriptor(struct usb_device *udev, struct mtx *mtx,
void *d, uint16_t size, uint8_t iface_index)
{
struct usb_interface *iface = usbd_get_iface(udev, iface_index);
struct usb_device_request req;
if ((iface == NULL) || (iface->idesc == NULL)) {
return (USB_ERR_INVAL);
}
req.bmRequestType = UT_READ_INTERFACE;
req.bRequest = UR_GET_DESCRIPTOR;
USETW2(req.wValue, UDESC_REPORT, 0); /* report id should be 0 */
req.wIndex[0] = iface->idesc->bInterfaceNumber;
req.wIndex[1] = 0;
USETW(req.wLength, size);
return (usbd_do_request(udev, mtx, &req, d));
}
/*------------------------------------------------------------------------*
* usbd_req_set_config
*
* This function is used to select the current configuration number in
* both USB device side mode and USB host side mode. When setting the
* configuration the function of the interfaces can change.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_config(struct usb_device *udev, struct mtx *mtx, uint8_t conf)
{
struct usb_device_request req;
DPRINTF("setting config %d\n", conf);
/* do "set configuration" request */
req.bmRequestType = UT_WRITE_DEVICE;
req.bRequest = UR_SET_CONFIG;
req.wValue[0] = conf;
req.wValue[1] = 0;
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_get_config
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_get_config(struct usb_device *udev, struct mtx *mtx, uint8_t *pconf)
{
struct usb_device_request req;
req.bmRequestType = UT_READ_DEVICE;
req.bRequest = UR_GET_CONFIG;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, 1);
return (usbd_do_request(udev, mtx, &req, pconf));
}
/*------------------------------------------------------------------------*
* usbd_setup_device_desc
*------------------------------------------------------------------------*/
usb_error_t
usbd_setup_device_desc(struct usb_device *udev, struct mtx *mtx)
{
usb_error_t err;
/*
* Get the first 8 bytes of the device descriptor !
*
* NOTE: "usbd_do_request()" will check the device descriptor
* next time we do a request to see if the maximum packet size
* changed! The 8 first bytes of the device descriptor
* contains the maximum packet size to use on control endpoint
* 0. If this value is different from "USB_MAX_IPACKET" a new
* USB control request will be setup!
*/
switch (udev->speed) {
case USB_SPEED_FULL:
case USB_SPEED_LOW:
err = usbd_req_get_desc(udev, mtx, NULL, &udev->ddesc,
USB_MAX_IPACKET, USB_MAX_IPACKET, 0, UDESC_DEVICE, 0, 0);
if (err != 0) {
DPRINTFN(0, "getting device descriptor "
"at addr %d failed, %s\n", udev->address,
usbd_errstr(err));
return (err);
}
break;
default:
DPRINTF("Minimum MaxPacketSize is large enough "
"to hold the complete device descriptor\n");
break;
}
/* get the full device descriptor */
err = usbd_req_get_device_desc(udev, mtx, &udev->ddesc);
/* try one more time, if error */
if (err)
err = usbd_req_get_device_desc(udev, mtx, &udev->ddesc);
if (err) {
DPRINTF("addr=%d, getting full desc failed\n",
udev->address);
return (err);
}
DPRINTF("adding unit addr=%d, rev=%02x, class=%d, "
"subclass=%d, protocol=%d, maxpacket=%d, len=%d, speed=%d\n",
udev->address, UGETW(udev->ddesc.bcdUSB),
udev->ddesc.bDeviceClass,
udev->ddesc.bDeviceSubClass,
udev->ddesc.bDeviceProtocol,
udev->ddesc.bMaxPacketSize,
udev->ddesc.bLength,
udev->speed);
return (err);
}
/*------------------------------------------------------------------------*
* usbd_req_re_enumerate
*
* NOTE: After this function returns the hardware is in the
* unconfigured state! The application is responsible for setting a
* new configuration.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_re_enumerate(struct usb_device *udev, struct mtx *mtx)
{
struct usb_device *parent_hub;
usb_error_t err;
uint8_t old_addr;
uint8_t do_retry = 1;
if (udev->flags.usb_mode != USB_MODE_HOST) {
return (USB_ERR_INVAL);
}
old_addr = udev->address;
parent_hub = udev->parent_hub;
if (parent_hub == NULL) {
return (USB_ERR_INVAL);
}
retry:
/*
* Try to reset the High Speed parent HUB of a LOW- or FULL-
* speed device, if any.
*/
if (udev->parent_hs_hub != NULL &&
udev->speed != USB_SPEED_HIGH) {
DPRINTF("Trying to reset parent High Speed TT.\n");
err = usbd_req_reset_tt(udev->parent_hs_hub, NULL,
udev->hs_port_no);
if (err) {
DPRINTF("Resetting parent High "
"Speed TT failed (%s).\n",
usbd_errstr(err));
}
}
/* Try to reset the parent HUB port. */
err = usbd_req_reset_port(parent_hub, mtx, udev->port_no);
if (err) {
DPRINTFN(0, "addr=%d, port reset failed, %s\n",
old_addr, usbd_errstr(err));
goto done;
}
/*
* After that the port has been reset our device should be at
* address zero:
*/
udev->address = USB_START_ADDR;
/* reset "bMaxPacketSize" */
udev->ddesc.bMaxPacketSize = USB_MAX_IPACKET;
/* reset USB state */
usb_set_device_state(udev, USB_STATE_POWERED);
/*
* Restore device address:
*/
err = usbd_req_set_address(udev, mtx, old_addr);
if (err) {
/* XXX ignore any errors! */
DPRINTFN(0, "addr=%d, set address failed! (%s, ignored)\n",
old_addr, usbd_errstr(err));
}
/*
* Restore device address, if the controller driver did not
* set a new one:
*/
if (udev->address == USB_START_ADDR)
udev->address = old_addr;
/* setup the device descriptor and the initial "wMaxPacketSize" */
err = usbd_setup_device_desc(udev, mtx);
done:
if (err && do_retry) {
/* give the USB firmware some time to load */
usb_pause_mtx(mtx, hz / 2);
/* no more retries after this retry */
do_retry = 0;
/* try again */
goto retry;
}
/* restore address */
if (udev->address == USB_START_ADDR)
udev->address = old_addr;
/* update state, if successful */
if (err == 0)
usb_set_device_state(udev, USB_STATE_ADDRESSED);
return (err);
}
/*------------------------------------------------------------------------*
* usbd_req_clear_device_feature
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_clear_device_feature(struct usb_device *udev, struct mtx *mtx,
uint16_t sel)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_DEVICE;
req.bRequest = UR_CLEAR_FEATURE;
USETW(req.wValue, sel);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_set_device_feature
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_set_device_feature(struct usb_device *udev, struct mtx *mtx,
uint16_t sel)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_DEVICE;
req.bRequest = UR_SET_FEATURE;
USETW(req.wValue, sel);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_reset_tt
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_reset_tt(struct usb_device *udev, struct mtx *mtx,
uint8_t port)
{
struct usb_device_request req;
/* For single TT HUBs the port should be 1 */
if (udev->ddesc.bDeviceClass == UDCLASS_HUB &&
udev->ddesc.bDeviceProtocol == UDPROTO_HSHUBSTT)
port = 1;
req.bmRequestType = UT_WRITE_CLASS_OTHER;
req.bRequest = UR_RESET_TT;
USETW(req.wValue, 0);
req.wIndex[0] = port;
req.wIndex[1] = 0;
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}
/*------------------------------------------------------------------------*
* usbd_req_clear_tt_buffer
*
* For single TT HUBs the port should be 1.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_req_clear_tt_buffer(struct usb_device *udev, struct mtx *mtx,
uint8_t port, uint8_t addr, uint8_t type, uint8_t endpoint)
{
struct usb_device_request req;
uint16_t wValue;
/* For single TT HUBs the port should be 1 */
if (udev->ddesc.bDeviceClass == UDCLASS_HUB &&
udev->ddesc.bDeviceProtocol == UDPROTO_HSHUBSTT)
port = 1;
wValue = (endpoint & 0xF) | ((addr & 0x7F) << 4) |
((endpoint & 0x80) << 8) | ((type & 3) << 12);
req.bmRequestType = UT_WRITE_CLASS_OTHER;
req.bRequest = UR_CLEAR_TT_BUFFER;
USETW(req.wValue, wValue);
req.wIndex[0] = port;
req.wIndex[1] = 0;
USETW(req.wLength, 0);
return (usbd_do_request(udev, mtx, &req, 0));
}