freebsd-nq/sys/dev/virtio/scsi/virtio_scsi.c
Konstantin Belousov dd0b4fb6d5 Reform the busdma API so that new types may be added without modifying
every architecture's busdma_machdep.c.  It is done by unifying the
bus_dmamap_load_buffer() routines so that they may be called from MI
code.  The MD busdma is then given a chance to do any final processing
in the complete() callback.

The cam changes unify the bus_dmamap_load* handling in cam drivers.

The arm and mips implementations are updated to track virtual
addresses for sync().  Previously this was done in a type specific
way.  Now it is done in a generic way by recording the list of
virtuals in the map.

Submitted by:	jeff (sponsored by EMC/Isilon)
Reviewed by:	kan (previous version), scottl,
	mjacob (isp(4), no objections for target mode changes)
Discussed with:	     ian (arm changes)
Tested by:	marius (sparc64), mips (jmallet), isci(4) on x86 (jharris),
	amd64 (Fabian Keil <freebsd-listen@fabiankeil.de>)
2013-02-12 16:57:20 +00:00

2367 lines
56 KiB
C

/*-
* Copyright (c) 2012, Bryan Venteicher <bryanv@daemoninthecloset.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Driver for VirtIO SCSI devices. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/sglist.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/callout.h>
#include <sys/taskqueue.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <machine/stdarg.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <dev/virtio/virtio.h>
#include <dev/virtio/virtqueue.h>
#include <dev/virtio/scsi/virtio_scsi.h>
#include <dev/virtio/scsi/virtio_scsivar.h>
#include "virtio_if.h"
static int vtscsi_modevent(module_t, int, void *);
static int vtscsi_probe(device_t);
static int vtscsi_attach(device_t);
static int vtscsi_detach(device_t);
static int vtscsi_suspend(device_t);
static int vtscsi_resume(device_t);
static void vtscsi_negotiate_features(struct vtscsi_softc *);
static int vtscsi_maximum_segments(struct vtscsi_softc *, int);
static int vtscsi_alloc_virtqueues(struct vtscsi_softc *);
static void vtscsi_write_device_config(struct vtscsi_softc *);
static int vtscsi_reinit(struct vtscsi_softc *);
static int vtscsi_alloc_cam(struct vtscsi_softc *);
static int vtscsi_register_cam(struct vtscsi_softc *);
static void vtscsi_free_cam(struct vtscsi_softc *);
static void vtscsi_cam_async(void *, uint32_t, struct cam_path *, void *);
static int vtscsi_register_async(struct vtscsi_softc *);
static void vtscsi_deregister_async(struct vtscsi_softc *);
static void vtscsi_cam_action(struct cam_sim *, union ccb *);
static void vtscsi_cam_poll(struct cam_sim *);
static void vtscsi_cam_scsi_io(struct vtscsi_softc *, struct cam_sim *,
union ccb *);
static void vtscsi_cam_get_tran_settings(struct vtscsi_softc *,
union ccb *);
static void vtscsi_cam_reset_bus(struct vtscsi_softc *, union ccb *);
static void vtscsi_cam_reset_dev(struct vtscsi_softc *, union ccb *);
static void vtscsi_cam_abort(struct vtscsi_softc *, union ccb *);
static void vtscsi_cam_path_inquiry(struct vtscsi_softc *,
struct cam_sim *, union ccb *);
static int vtscsi_sg_append_scsi_buf(struct vtscsi_softc *,
struct sglist *, struct ccb_scsiio *);
static int vtscsi_fill_scsi_cmd_sglist(struct vtscsi_softc *,
struct vtscsi_request *, int *, int *);
static int vtscsi_execute_scsi_cmd(struct vtscsi_softc *,
struct vtscsi_request *);
static int vtscsi_start_scsi_cmd(struct vtscsi_softc *, union ccb *);
static void vtscsi_complete_abort_timedout_scsi_cmd(struct vtscsi_softc *,
struct vtscsi_request *);
static int vtscsi_abort_timedout_scsi_cmd(struct vtscsi_softc *,
struct vtscsi_request *);
static void vtscsi_timedout_scsi_cmd(void *);
static cam_status vtscsi_scsi_cmd_cam_status(struct virtio_scsi_cmd_resp *);
static cam_status vtscsi_complete_scsi_cmd_response(struct vtscsi_softc *,
struct ccb_scsiio *, struct virtio_scsi_cmd_resp *);
static void vtscsi_complete_scsi_cmd(struct vtscsi_softc *,
struct vtscsi_request *);
static void vtscsi_poll_ctrl_req(struct vtscsi_softc *,
struct vtscsi_request *);
static int vtscsi_execute_ctrl_req(struct vtscsi_softc *,
struct vtscsi_request *, struct sglist *, int, int, int);
static void vtscsi_complete_abort_task_cmd(struct vtscsi_softc *c,
struct vtscsi_request *);
static int vtscsi_execute_abort_task_cmd(struct vtscsi_softc *,
struct vtscsi_request *);
static int vtscsi_execute_reset_dev_cmd(struct vtscsi_softc *,
struct vtscsi_request *);
static void vtscsi_get_request_lun(uint8_t [], target_id_t *, lun_id_t *);
static void vtscsi_set_request_lun(struct ccb_hdr *, uint8_t []);
static void vtscsi_init_scsi_cmd_req(struct ccb_scsiio *,
struct virtio_scsi_cmd_req *);
static void vtscsi_init_ctrl_tmf_req(struct ccb_hdr *, uint32_t,
uintptr_t, struct virtio_scsi_ctrl_tmf_req *);
static void vtscsi_freeze_simq(struct vtscsi_softc *, int);
static int vtscsi_thaw_simq(struct vtscsi_softc *, int);
static void vtscsi_announce(struct vtscsi_softc *, uint32_t, target_id_t,
lun_id_t);
static void vtscsi_execute_rescan(struct vtscsi_softc *, target_id_t,
lun_id_t);
static void vtscsi_execute_rescan_bus(struct vtscsi_softc *);
static void vtscsi_handle_event(struct vtscsi_softc *,
struct virtio_scsi_event *);
static int vtscsi_enqueue_event_buf(struct vtscsi_softc *,
struct virtio_scsi_event *);
static int vtscsi_init_event_vq(struct vtscsi_softc *);
static void vtscsi_reinit_event_vq(struct vtscsi_softc *);
static void vtscsi_drain_event_vq(struct vtscsi_softc *);
static void vtscsi_complete_vqs_locked(struct vtscsi_softc *);
static void vtscsi_complete_vqs(struct vtscsi_softc *);
static void vtscsi_drain_vqs(struct vtscsi_softc *);
static void vtscsi_cancel_request(struct vtscsi_softc *,
struct vtscsi_request *);
static void vtscsi_drain_vq(struct vtscsi_softc *, struct virtqueue *);
static void vtscsi_stop(struct vtscsi_softc *);
static int vtscsi_reset_bus(struct vtscsi_softc *);
static void vtscsi_init_request(struct vtscsi_softc *,
struct vtscsi_request *);
static int vtscsi_alloc_requests(struct vtscsi_softc *);
static void vtscsi_free_requests(struct vtscsi_softc *);
static void vtscsi_enqueue_request(struct vtscsi_softc *,
struct vtscsi_request *);
static struct vtscsi_request * vtscsi_dequeue_request(struct vtscsi_softc *);
static void vtscsi_complete_request(struct vtscsi_request *);
static void vtscsi_complete_vq(struct vtscsi_softc *, struct virtqueue *);
static void vtscsi_control_vq_task(void *, int);
static void vtscsi_event_vq_task(void *, int);
static void vtscsi_request_vq_task(void *, int);
static int vtscsi_control_vq_intr(void *);
static int vtscsi_event_vq_intr(void *);
static int vtscsi_request_vq_intr(void *);
static void vtscsi_disable_vqs_intr(struct vtscsi_softc *);
static void vtscsi_enable_vqs_intr(struct vtscsi_softc *);
static void vtscsi_get_tunables(struct vtscsi_softc *);
static void vtscsi_add_sysctl(struct vtscsi_softc *);
static void vtscsi_printf_req(struct vtscsi_request *, const char *,
const char *, ...);
/* Global tunables. */
/*
* The current QEMU VirtIO SCSI implementation does not cancel in-flight
* IO during virtio_stop(). So in-flight requests still complete after the
* device reset. We would have to wait for all the in-flight IO to complete,
* which defeats the typical purpose of a bus reset. We could simulate the
* bus reset with either I_T_NEXUS_RESET of all the targets, or with
* LOGICAL_UNIT_RESET of all the LUNs (assuming there is space in the
* control virtqueue). But this isn't very useful if things really go off
* the rails, so default to disabled for now.
*/
static int vtscsi_bus_reset_disable = 1;
TUNABLE_INT("hw.vtscsi.bus_reset_disable", &vtscsi_bus_reset_disable);
static struct virtio_feature_desc vtscsi_feature_desc[] = {
{ VIRTIO_SCSI_F_INOUT, "InOut" },
{ VIRTIO_SCSI_F_HOTPLUG, "Hotplug" },
{ 0, NULL }
};
static device_method_t vtscsi_methods[] = {
/* Device methods. */
DEVMETHOD(device_probe, vtscsi_probe),
DEVMETHOD(device_attach, vtscsi_attach),
DEVMETHOD(device_detach, vtscsi_detach),
DEVMETHOD(device_suspend, vtscsi_suspend),
DEVMETHOD(device_resume, vtscsi_resume),
DEVMETHOD_END
};
static driver_t vtscsi_driver = {
"vtscsi",
vtscsi_methods,
sizeof(struct vtscsi_softc)
};
static devclass_t vtscsi_devclass;
DRIVER_MODULE(virtio_scsi, virtio_pci, vtscsi_driver, vtscsi_devclass,
vtscsi_modevent, 0);
MODULE_VERSION(virtio_scsi, 1);
MODULE_DEPEND(virtio_scsi, virtio, 1, 1, 1);
MODULE_DEPEND(virtio_scsi, cam, 1, 1, 1);
static int
vtscsi_modevent(module_t mod, int type, void *unused)
{
int error;
switch (type) {
case MOD_LOAD:
case MOD_QUIESCE:
case MOD_UNLOAD:
case MOD_SHUTDOWN:
error = 0;
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
static int
vtscsi_probe(device_t dev)
{
if (virtio_get_device_type(dev) != VIRTIO_ID_SCSI)
return (ENXIO);
device_set_desc(dev, "VirtIO SCSI Adapter");
return (BUS_PROBE_DEFAULT);
}
static int
vtscsi_attach(device_t dev)
{
struct vtscsi_softc *sc;
struct virtio_scsi_config scsicfg;
int error;
sc = device_get_softc(dev);
sc->vtscsi_dev = dev;
VTSCSI_LOCK_INIT(sc, device_get_nameunit(dev));
TAILQ_INIT(&sc->vtscsi_req_free);
vtscsi_get_tunables(sc);
vtscsi_add_sysctl(sc);
virtio_set_feature_desc(dev, vtscsi_feature_desc);
vtscsi_negotiate_features(sc);
if (virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC))
sc->vtscsi_flags |= VTSCSI_FLAG_INDIRECT;
if (virtio_with_feature(dev, VIRTIO_SCSI_F_INOUT))
sc->vtscsi_flags |= VTSCSI_FLAG_BIDIRECTIONAL;
if (virtio_with_feature(dev, VIRTIO_SCSI_F_HOTPLUG))
sc->vtscsi_flags |= VTSCSI_FLAG_HOTPLUG;
virtio_read_device_config(dev, 0, &scsicfg,
sizeof(struct virtio_scsi_config));
sc->vtscsi_max_channel = scsicfg.max_channel;
sc->vtscsi_max_target = scsicfg.max_target;
sc->vtscsi_max_lun = scsicfg.max_lun;
sc->vtscsi_event_buf_size = scsicfg.event_info_size;
vtscsi_write_device_config(sc);
sc->vtscsi_max_nsegs = vtscsi_maximum_segments(sc, scsicfg.seg_max);
sc->vtscsi_sglist = sglist_alloc(sc->vtscsi_max_nsegs, M_NOWAIT);
if (sc->vtscsi_sglist == NULL) {
error = ENOMEM;
device_printf(dev, "cannot allocate sglist\n");
goto fail;
}
error = vtscsi_alloc_virtqueues(sc);
if (error) {
device_printf(dev, "cannot allocate virtqueues\n");
goto fail;
}
error = vtscsi_init_event_vq(sc);
if (error) {
device_printf(dev, "cannot populate the eventvq\n");
goto fail;
}
error = vtscsi_alloc_requests(sc);
if (error) {
device_printf(dev, "cannot allocate requests\n");
goto fail;
}
error = vtscsi_alloc_cam(sc);
if (error) {
device_printf(dev, "cannot allocate CAM structures\n");
goto fail;
}
TASK_INIT(&sc->vtscsi_control_intr_task, 0,
vtscsi_control_vq_task, sc);
TASK_INIT(&sc->vtscsi_event_intr_task, 0,
vtscsi_event_vq_task, sc);
TASK_INIT(&sc->vtscsi_request_intr_task, 0,
vtscsi_request_vq_task, sc);
sc->vtscsi_tq = taskqueue_create_fast("vtscsi_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->vtscsi_tq);
if (sc->vtscsi_tq == NULL) {
error = ENOMEM;
device_printf(dev, "cannot allocate taskqueue\n");
goto fail;
}
error = virtio_setup_intr(dev, INTR_TYPE_CAM);
if (error) {
device_printf(dev, "cannot setup virtqueue interrupts\n");
goto fail;
}
taskqueue_start_threads(&sc->vtscsi_tq, 1, PI_DISK, "%s taskq",
device_get_nameunit(dev));
vtscsi_enable_vqs_intr(sc);
/*
* Register with CAM after interrupts are enabled so we will get
* notified of the probe responses.
*/
error = vtscsi_register_cam(sc);
if (error) {
device_printf(dev, "cannot register with CAM\n");
goto fail;
}
fail:
if (error)
vtscsi_detach(dev);
return (error);
}
static int
vtscsi_detach(device_t dev)
{
struct vtscsi_softc *sc;
sc = device_get_softc(dev);
VTSCSI_LOCK(sc);
sc->vtscsi_flags |= VTSCSI_FLAG_DETACH;
if (device_is_attached(dev))
vtscsi_stop(sc);
VTSCSI_UNLOCK(sc);
if (sc->vtscsi_tq != NULL) {
taskqueue_drain(sc->vtscsi_tq, &sc->vtscsi_control_intr_task);
taskqueue_drain(sc->vtscsi_tq, &sc->vtscsi_event_intr_task);
taskqueue_drain(sc->vtscsi_tq, &sc->vtscsi_request_intr_task);
taskqueue_free(sc->vtscsi_tq);
sc->vtscsi_tq = NULL;
}
vtscsi_complete_vqs(sc);
vtscsi_drain_vqs(sc);
vtscsi_free_cam(sc);
vtscsi_free_requests(sc);
if (sc->vtscsi_sglist != NULL) {
sglist_free(sc->vtscsi_sglist);
sc->vtscsi_sglist = NULL;
}
VTSCSI_LOCK_DESTROY(sc);
return (0);
}
static int
vtscsi_suspend(device_t dev)
{
return (0);
}
static int
vtscsi_resume(device_t dev)
{
return (0);
}
static void
vtscsi_negotiate_features(struct vtscsi_softc *sc)
{
device_t dev;
uint64_t features;
dev = sc->vtscsi_dev;
features = virtio_negotiate_features(dev, VTSCSI_FEATURES);
sc->vtscsi_features = features;
}
static int
vtscsi_maximum_segments(struct vtscsi_softc *sc, int seg_max)
{
int nsegs;
nsegs = VTSCSI_MIN_SEGMENTS;
if (seg_max > 0) {
nsegs += MIN(seg_max, MAXPHYS / PAGE_SIZE + 1);
if (sc->vtscsi_flags & VTSCSI_FLAG_INDIRECT)
nsegs = MIN(nsegs, VIRTIO_MAX_INDIRECT);
} else
nsegs += 1;
return (nsegs);
}
static int
vtscsi_alloc_virtqueues(struct vtscsi_softc *sc)
{
device_t dev;
struct vq_alloc_info vq_info[3];
int nvqs;
dev = sc->vtscsi_dev;
nvqs = 3;
VQ_ALLOC_INFO_INIT(&vq_info[0], 0, vtscsi_control_vq_intr, sc,
&sc->vtscsi_control_vq, "%s control", device_get_nameunit(dev));
VQ_ALLOC_INFO_INIT(&vq_info[1], 0, vtscsi_event_vq_intr, sc,
&sc->vtscsi_event_vq, "%s event", device_get_nameunit(dev));
VQ_ALLOC_INFO_INIT(&vq_info[2], sc->vtscsi_max_nsegs,
vtscsi_request_vq_intr, sc, &sc->vtscsi_request_vq,
"%s request", device_get_nameunit(dev));
return (virtio_alloc_virtqueues(dev, 0, nvqs, vq_info));
}
static void
vtscsi_write_device_config(struct vtscsi_softc *sc)
{
virtio_write_dev_config_4(sc->vtscsi_dev,
offsetof(struct virtio_scsi_config, sense_size),
VIRTIO_SCSI_SENSE_SIZE);
/*
* This is the size in the virtio_scsi_cmd_req structure. Note
* this value (32) is larger than the maximum CAM CDB size (16).
*/
virtio_write_dev_config_4(sc->vtscsi_dev,
offsetof(struct virtio_scsi_config, cdb_size),
VIRTIO_SCSI_CDB_SIZE);
}
static int
vtscsi_reinit(struct vtscsi_softc *sc)
{
device_t dev;
int error;
dev = sc->vtscsi_dev;
error = virtio_reinit(dev, sc->vtscsi_features);
if (error == 0) {
vtscsi_write_device_config(sc);
vtscsi_reinit_event_vq(sc);
virtio_reinit_complete(dev);
vtscsi_enable_vqs_intr(sc);
}
vtscsi_dprintf(sc, VTSCSI_TRACE, "error=%d\n", error);
return (error);
}
static int
vtscsi_alloc_cam(struct vtscsi_softc *sc)
{
device_t dev;
struct cam_devq *devq;
int openings;
dev = sc->vtscsi_dev;
openings = sc->vtscsi_nrequests - VTSCSI_RESERVED_REQUESTS;
devq = cam_simq_alloc(openings);
if (devq == NULL) {
device_printf(dev, "cannot allocate SIM queue\n");
return (ENOMEM);
}
sc->vtscsi_sim = cam_sim_alloc(vtscsi_cam_action, vtscsi_cam_poll,
"vtscsi", sc, device_get_unit(dev), VTSCSI_MTX(sc), 1,
openings, devq);
if (sc->vtscsi_sim == NULL) {
cam_simq_free(devq);
device_printf(dev, "cannot allocate SIM\n");
return (ENOMEM);
}
return (0);
}
static int
vtscsi_register_cam(struct vtscsi_softc *sc)
{
device_t dev;
int registered, error;
dev = sc->vtscsi_dev;
registered = 0;
VTSCSI_LOCK(sc);
if (xpt_bus_register(sc->vtscsi_sim, dev, 0) != CAM_SUCCESS) {
error = ENOMEM;
device_printf(dev, "cannot register XPT bus\n");
goto fail;
}
registered = 1;
if (xpt_create_path(&sc->vtscsi_path, NULL,
cam_sim_path(sc->vtscsi_sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
error = ENOMEM;
device_printf(dev, "cannot create bus path\n");
goto fail;
}
VTSCSI_UNLOCK(sc);
/*
* The async register apparently needs to be done without
* the lock held, otherwise it can recurse on the lock.
*/
if (vtscsi_register_async(sc) != CAM_REQ_CMP) {
error = EIO;
device_printf(dev, "cannot register async callback\n");
VTSCSI_LOCK(sc);
goto fail;
}
return (0);
fail:
if (sc->vtscsi_path != NULL) {
xpt_free_path(sc->vtscsi_path);
sc->vtscsi_path = NULL;
}
if (registered != 0)
xpt_bus_deregister(cam_sim_path(sc->vtscsi_sim));
VTSCSI_UNLOCK(sc);
return (error);
}
static void
vtscsi_free_cam(struct vtscsi_softc *sc)
{
VTSCSI_LOCK(sc);
if (sc->vtscsi_path != NULL) {
vtscsi_deregister_async(sc);
xpt_free_path(sc->vtscsi_path);
sc->vtscsi_path = NULL;
xpt_bus_deregister(cam_sim_path(sc->vtscsi_sim));
}
if (sc->vtscsi_sim != NULL) {
cam_sim_free(sc->vtscsi_sim, 1);
sc->vtscsi_sim = NULL;
}
VTSCSI_UNLOCK(sc);
}
static void
vtscsi_cam_async(void *cb_arg, uint32_t code, struct cam_path *path, void *arg)
{
struct cam_sim *sim;
struct vtscsi_softc *sc;
sim = cb_arg;
sc = cam_sim_softc(sim);
vtscsi_dprintf(sc, VTSCSI_TRACE, "code=%u\n", code);
/*
* TODO Once QEMU supports event reporting, we should
* (un)subscribe to events here.
*/
switch (code) {
case AC_FOUND_DEVICE:
break;
case AC_LOST_DEVICE:
break;
}
}
static int
vtscsi_register_async(struct vtscsi_softc *sc)
{
struct ccb_setasync csa;
VTSCSI_LOCK_NOTOWNED(sc);
xpt_setup_ccb(&csa.ccb_h, sc->vtscsi_path, 5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE | AC_FOUND_DEVICE;
csa.callback = vtscsi_cam_async;
csa.callback_arg = sc->vtscsi_sim;
xpt_action((union ccb *) &csa);
return (csa.ccb_h.status);
}
static void
vtscsi_deregister_async(struct vtscsi_softc *sc)
{
struct ccb_setasync csa;
xpt_setup_ccb(&csa.ccb_h, sc->vtscsi_path, 5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = 0;
csa.callback = vtscsi_cam_async;
csa.callback_arg = sc->vtscsi_sim;
xpt_action((union ccb *) &csa);
}
static void
vtscsi_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct vtscsi_softc *sc;
struct ccb_hdr *ccbh;
sc = cam_sim_softc(sim);
ccbh = &ccb->ccb_h;
VTSCSI_LOCK_OWNED(sc);
if (sc->vtscsi_flags & VTSCSI_FLAG_DETACH) {
/*
* The VTSCSI_MTX is briefly dropped between setting
* VTSCSI_FLAG_DETACH and deregistering with CAM, so
* drop any CCBs that come in during that window.
*/
ccbh->status = CAM_NO_HBA;
xpt_done(ccb);
return;
}
switch (ccbh->func_code) {
case XPT_SCSI_IO:
vtscsi_cam_scsi_io(sc, sim, ccb);
break;
case XPT_SET_TRAN_SETTINGS:
ccbh->status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
break;
case XPT_GET_TRAN_SETTINGS:
vtscsi_cam_get_tran_settings(sc, ccb);
break;
case XPT_RESET_BUS:
vtscsi_cam_reset_bus(sc, ccb);
break;
case XPT_RESET_DEV:
vtscsi_cam_reset_dev(sc, ccb);
break;
case XPT_ABORT:
vtscsi_cam_abort(sc, ccb);
break;
case XPT_CALC_GEOMETRY:
cam_calc_geometry(&ccb->ccg, 1);
xpt_done(ccb);
break;
case XPT_PATH_INQ:
vtscsi_cam_path_inquiry(sc, sim, ccb);
break;
default:
vtscsi_dprintf(sc, VTSCSI_ERROR,
"invalid ccb=%p func=%#x\n", ccb, ccbh->func_code);
ccbh->status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
vtscsi_cam_poll(struct cam_sim *sim)
{
struct vtscsi_softc *sc;
sc = cam_sim_softc(sim);
vtscsi_complete_vqs_locked(sc);
}
static void
vtscsi_cam_scsi_io(struct vtscsi_softc *sc, struct cam_sim *sim,
union ccb *ccb)
{
struct ccb_hdr *ccbh;
struct ccb_scsiio *csio;
int error;
ccbh = &ccb->ccb_h;
csio = &ccb->csio;
if (csio->cdb_len > VIRTIO_SCSI_CDB_SIZE) {
error = EINVAL;
ccbh->status = CAM_REQ_INVALID;
goto done;
}
if ((ccbh->flags & CAM_DIR_MASK) == CAM_DIR_BOTH &&
(sc->vtscsi_flags & VTSCSI_FLAG_BIDIRECTIONAL) == 0) {
error = EINVAL;
ccbh->status = CAM_REQ_INVALID;
goto done;
}
error = vtscsi_start_scsi_cmd(sc, ccb);
done:
if (error) {
vtscsi_dprintf(sc, VTSCSI_ERROR,
"error=%d ccb=%p status=%#x\n", error, ccb, ccbh->status);
xpt_done(ccb);
}
}
static void
vtscsi_cam_get_tran_settings(struct vtscsi_softc *sc, union ccb *ccb)
{
struct ccb_trans_settings *cts;
struct ccb_trans_settings_scsi *scsi;
cts = &ccb->cts;
scsi = &cts->proto_specific.scsi;
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_SPC3;
cts->transport = XPORT_SAS;
cts->transport_version = 0;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
}
static void
vtscsi_cam_reset_bus(struct vtscsi_softc *sc, union ccb *ccb)
{
int error;
error = vtscsi_reset_bus(sc);
if (error == 0)
ccb->ccb_h.status = CAM_REQ_CMP;
else
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
vtscsi_dprintf(sc, VTSCSI_TRACE, "error=%d ccb=%p status=%#x\n",
error, ccb, ccb->ccb_h.status);
xpt_done(ccb);
}
static void
vtscsi_cam_reset_dev(struct vtscsi_softc *sc, union ccb *ccb)
{
struct ccb_hdr *ccbh;
struct vtscsi_request *req;
int error;
ccbh = &ccb->ccb_h;
req = vtscsi_dequeue_request(sc);
if (req == NULL) {
error = EAGAIN;
vtscsi_freeze_simq(sc, VTSCSI_REQUEST);
goto fail;
}
req->vsr_ccb = ccb;
error = vtscsi_execute_reset_dev_cmd(sc, req);
if (error == 0)
return;
vtscsi_enqueue_request(sc, req);
fail:
vtscsi_dprintf(sc, VTSCSI_ERROR, "error=%d req=%p ccb=%p\n",
error, req, ccb);
if (error == EAGAIN)
ccbh->status = CAM_RESRC_UNAVAIL;
else
ccbh->status = CAM_REQ_CMP_ERR;
xpt_done(ccb);
}
static void
vtscsi_cam_abort(struct vtscsi_softc *sc, union ccb *ccb)
{
struct vtscsi_request *req;
struct ccb_hdr *ccbh;
int error;
ccbh = &ccb->ccb_h;
req = vtscsi_dequeue_request(sc);
if (req == NULL) {
error = EAGAIN;
vtscsi_freeze_simq(sc, VTSCSI_REQUEST);
goto fail;
}
req->vsr_ccb = ccb;
error = vtscsi_execute_abort_task_cmd(sc, req);
if (error == 0)
return;
vtscsi_enqueue_request(sc, req);
fail:
vtscsi_dprintf(sc, VTSCSI_ERROR, "error=%d req=%p ccb=%p\n",
error, req, ccb);
if (error == EAGAIN)
ccbh->status = CAM_RESRC_UNAVAIL;
else
ccbh->status = CAM_REQ_CMP_ERR;
xpt_done(ccb);
}
static void
vtscsi_cam_path_inquiry(struct vtscsi_softc *sc, struct cam_sim *sim,
union ccb *ccb)
{
device_t dev;
struct ccb_pathinq *cpi;
dev = sc->vtscsi_dev;
cpi = &ccb->cpi;
vtscsi_dprintf(sc, VTSCSI_TRACE, "sim=%p ccb=%p\n", sim, ccb);
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_SEQSCAN;
if (vtscsi_bus_reset_disable != 0)
cpi->hba_misc |= PIM_NOBUSRESET;
cpi->hba_eng_cnt = 0;
cpi->max_target = sc->vtscsi_max_target;
cpi->max_lun = sc->vtscsi_max_lun;
cpi->initiator_id = VTSCSI_INITIATOR_ID;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "VirtIO", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 300000;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_SPC3;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->maxio = (sc->vtscsi_max_nsegs - VTSCSI_MIN_SEGMENTS - 1) *
PAGE_SIZE;
cpi->hba_vendor = virtio_get_vendor(dev);
cpi->hba_device = virtio_get_device(dev);
cpi->hba_subvendor = virtio_get_subvendor(dev);
cpi->hba_subdevice = virtio_get_subdevice(dev);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
}
static int
vtscsi_sg_append_scsi_buf(struct vtscsi_softc *sc, struct sglist *sg,
struct ccb_scsiio *csio)
{
struct ccb_hdr *ccbh;
struct bus_dma_segment *dseg;
int i, error;
ccbh = &csio->ccb_h;
error = 0;
switch ((ccbh->flags & CAM_DATA_MASK)) {
case CAM_DATA_VADDR:
error = sglist_append(sg, csio->data_ptr, csio->dxfer_len);
break;
case CAM_DATA_PADDR:
error = sglist_append_phys(sg,
(vm_paddr_t)(vm_offset_t) csio->data_ptr, csio->dxfer_len);
break;
case CAM_DATA_SG:
for (i = 0; i < csio->sglist_cnt && error == 0; i++) {
dseg = &((struct bus_dma_segment *)csio->data_ptr)[i];
error = sglist_append(sg,
(void *)(vm_offset_t) dseg->ds_addr, dseg->ds_len);
}
break;
case CAM_DATA_SG_PADDR:
for (i = 0; i < csio->sglist_cnt && error == 0; i++) {
dseg = &((struct bus_dma_segment *)csio->data_ptr)[i];
error = sglist_append_phys(sg,
(vm_paddr_t) dseg->ds_addr, dseg->ds_len);
}
break;
default:
error = EINVAL;
break;
}
return (error);
}
static int
vtscsi_fill_scsi_cmd_sglist(struct vtscsi_softc *sc, struct vtscsi_request *req,
int *readable, int *writable)
{
struct sglist *sg;
struct ccb_hdr *ccbh;
struct ccb_scsiio *csio;
struct virtio_scsi_cmd_req *cmd_req;
struct virtio_scsi_cmd_resp *cmd_resp;
int error;
sg = sc->vtscsi_sglist;
csio = &req->vsr_ccb->csio;
ccbh = &csio->ccb_h;
cmd_req = &req->vsr_cmd_req;
cmd_resp = &req->vsr_cmd_resp;
sglist_reset(sg);
sglist_append(sg, cmd_req, sizeof(struct virtio_scsi_cmd_req));
if ((ccbh->flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
error = vtscsi_sg_append_scsi_buf(sc, sg, csio);
/* At least one segment must be left for the response. */
if (error || sg->sg_nseg == sg->sg_maxseg)
goto fail;
}
*readable = sg->sg_nseg;
sglist_append(sg, cmd_resp, sizeof(struct virtio_scsi_cmd_resp));
if ((ccbh->flags & CAM_DIR_MASK) == CAM_DIR_IN) {
error = vtscsi_sg_append_scsi_buf(sc, sg, csio);
if (error)
goto fail;
}
*writable = sg->sg_nseg - *readable;
vtscsi_dprintf(sc, VTSCSI_TRACE, "req=%p ccb=%p readable=%d "
"writable=%d\n", req, ccbh, *readable, *writable);
return (0);
fail:
/*
* This should never happen unless maxio was incorrectly set.
*/
vtscsi_set_ccb_status(ccbh, CAM_REQ_TOO_BIG, 0);
vtscsi_dprintf(sc, VTSCSI_ERROR, "error=%d req=%p ccb=%p "
"nseg=%d maxseg=%d\n",
error, req, ccbh, sg->sg_nseg, sg->sg_maxseg);
return (EFBIG);
}
static int
vtscsi_execute_scsi_cmd(struct vtscsi_softc *sc, struct vtscsi_request *req)
{
struct sglist *sg;
struct virtqueue *vq;
struct ccb_scsiio *csio;
struct ccb_hdr *ccbh;
struct virtio_scsi_cmd_req *cmd_req;
struct virtio_scsi_cmd_resp *cmd_resp;
int readable, writable, error;
sg = sc->vtscsi_sglist;
vq = sc->vtscsi_request_vq;
csio = &req->vsr_ccb->csio;
ccbh = &csio->ccb_h;
cmd_req = &req->vsr_cmd_req;
cmd_resp = &req->vsr_cmd_resp;
vtscsi_init_scsi_cmd_req(csio, cmd_req);
error = vtscsi_fill_scsi_cmd_sglist(sc, req, &readable, &writable);
if (error)
return (error);
req->vsr_complete = vtscsi_complete_scsi_cmd;
cmd_resp->response = -1;
error = virtqueue_enqueue(vq, req, sg, readable, writable);
if (error) {
vtscsi_dprintf(sc, VTSCSI_ERROR,
"enqueue error=%d req=%p ccb=%p\n", error, req, ccbh);
ccbh->status = CAM_REQUEUE_REQ;
vtscsi_freeze_simq(sc, VTSCSI_REQUEST_VQ);
return (error);
}
ccbh->status |= CAM_SIM_QUEUED;
ccbh->ccbh_vtscsi_req = req;
virtqueue_notify(vq);
if (ccbh->timeout != CAM_TIME_INFINITY) {
req->vsr_flags |= VTSCSI_REQ_FLAG_TIMEOUT_SET;
callout_reset(&req->vsr_callout, ccbh->timeout * hz / 1000,
vtscsi_timedout_scsi_cmd, req);
}
vtscsi_dprintf_req(req, VTSCSI_TRACE, "enqueued req=%p ccb=%p\n",
req, ccbh);
return (0);
}
static int
vtscsi_start_scsi_cmd(struct vtscsi_softc *sc, union ccb *ccb)
{
struct vtscsi_request *req;
int error;
req = vtscsi_dequeue_request(sc);
if (req == NULL) {
ccb->ccb_h.status = CAM_REQUEUE_REQ;
vtscsi_freeze_simq(sc, VTSCSI_REQUEST);
return (ENOBUFS);
}
req->vsr_ccb = ccb;
error = vtscsi_execute_scsi_cmd(sc, req);
if (error)
vtscsi_enqueue_request(sc, req);
return (error);
}
static void
vtscsi_complete_abort_timedout_scsi_cmd(struct vtscsi_softc *sc,
struct vtscsi_request *req)
{
struct virtio_scsi_ctrl_tmf_resp *tmf_resp;
struct vtscsi_request *to_req;
uint8_t response;
tmf_resp = &req->vsr_tmf_resp;
response = tmf_resp->response;
to_req = req->vsr_timedout_req;
vtscsi_dprintf(sc, VTSCSI_TRACE, "req=%p to_req=%p response=%d\n",
req, to_req, response);
vtscsi_enqueue_request(sc, req);
/*
* The timedout request could have completed between when the
* abort task was sent and when the host processed it.
*/
if (to_req->vsr_state != VTSCSI_REQ_STATE_TIMEDOUT)
return;
/* The timedout request was successfully aborted. */
if (response == VIRTIO_SCSI_S_FUNCTION_COMPLETE)
return;
/* Don't bother if the device is going away. */
if (sc->vtscsi_flags & VTSCSI_FLAG_DETACH)
return;
/* The timedout request will be aborted by the reset. */
if (sc->vtscsi_flags & VTSCSI_FLAG_RESET)
return;
vtscsi_reset_bus(sc);
}
static int
vtscsi_abort_timedout_scsi_cmd(struct vtscsi_softc *sc,
struct vtscsi_request *to_req)
{
struct sglist *sg;
struct ccb_hdr *to_ccbh;
struct vtscsi_request *req;
struct virtio_scsi_ctrl_tmf_req *tmf_req;
struct virtio_scsi_ctrl_tmf_resp *tmf_resp;
int error;
sg = sc->vtscsi_sglist;
to_ccbh = &to_req->vsr_ccb->ccb_h;
req = vtscsi_dequeue_request(sc);
if (req == NULL) {
error = ENOBUFS;
goto fail;
}
tmf_req = &req->vsr_tmf_req;
tmf_resp = &req->vsr_tmf_resp;
vtscsi_init_ctrl_tmf_req(to_ccbh, VIRTIO_SCSI_T_TMF_ABORT_TASK,
(uintptr_t) to_ccbh, tmf_req);
sglist_reset(sg);
sglist_append(sg, tmf_req, sizeof(struct virtio_scsi_ctrl_tmf_req));
sglist_append(sg, tmf_resp, sizeof(struct virtio_scsi_ctrl_tmf_resp));
req->vsr_timedout_req = to_req;
req->vsr_complete = vtscsi_complete_abort_timedout_scsi_cmd;
tmf_resp->response = -1;
error = vtscsi_execute_ctrl_req(sc, req, sg, 1, 1,
VTSCSI_EXECUTE_ASYNC);
if (error == 0)
return (0);
vtscsi_enqueue_request(sc, req);
fail:
vtscsi_dprintf(sc, VTSCSI_ERROR, "error=%d req=%p "
"timedout req=%p ccb=%p\n", error, req, to_req, to_ccbh);
return (error);
}
static void
vtscsi_timedout_scsi_cmd(void *xreq)
{
struct vtscsi_softc *sc;
struct vtscsi_request *to_req;
to_req = xreq;
sc = to_req->vsr_softc;
vtscsi_dprintf(sc, VTSCSI_INFO, "timedout req=%p ccb=%p state=%#x\n",
to_req, to_req->vsr_ccb, to_req->vsr_state);
/* Don't bother if the device is going away. */
if (sc->vtscsi_flags & VTSCSI_FLAG_DETACH)
return;
/*
* Bail if the request is not in use. We likely raced when
* stopping the callout handler or it has already been aborted.
*/
if (to_req->vsr_state != VTSCSI_REQ_STATE_INUSE ||
(to_req->vsr_flags & VTSCSI_REQ_FLAG_TIMEOUT_SET) == 0)
return;
/*
* Complete the request queue in case the timedout request is
* actually just pending.
*/
vtscsi_complete_vq(sc, sc->vtscsi_request_vq);
if (to_req->vsr_state == VTSCSI_REQ_STATE_FREE)
return;
sc->vtscsi_stats.scsi_cmd_timeouts++;
to_req->vsr_state = VTSCSI_REQ_STATE_TIMEDOUT;
if (vtscsi_abort_timedout_scsi_cmd(sc, to_req) == 0)
return;
vtscsi_dprintf(sc, VTSCSI_ERROR, "resetting bus\n");
vtscsi_reset_bus(sc);
}
static cam_status
vtscsi_scsi_cmd_cam_status(struct virtio_scsi_cmd_resp *cmd_resp)
{
cam_status status;
switch (cmd_resp->response) {
case VIRTIO_SCSI_S_OK:
status = CAM_REQ_CMP;
break;
case VIRTIO_SCSI_S_OVERRUN:
status = CAM_DATA_RUN_ERR;
break;
case VIRTIO_SCSI_S_ABORTED:
status = CAM_REQ_ABORTED;
break;
case VIRTIO_SCSI_S_BAD_TARGET:
status = CAM_TID_INVALID;
break;
case VIRTIO_SCSI_S_RESET:
status = CAM_SCSI_BUS_RESET;
break;
case VIRTIO_SCSI_S_BUSY:
status = CAM_SCSI_BUSY;
break;
case VIRTIO_SCSI_S_TRANSPORT_FAILURE:
case VIRTIO_SCSI_S_TARGET_FAILURE:
case VIRTIO_SCSI_S_NEXUS_FAILURE:
status = CAM_SCSI_IT_NEXUS_LOST;
break;
default: /* VIRTIO_SCSI_S_FAILURE */
status = CAM_REQ_CMP_ERR;
break;
}
return (status);
}
static cam_status
vtscsi_complete_scsi_cmd_response(struct vtscsi_softc *sc,
struct ccb_scsiio *csio, struct virtio_scsi_cmd_resp *cmd_resp)
{
cam_status status;
csio->scsi_status = cmd_resp->status;
csio->resid = cmd_resp->resid;
if (csio->scsi_status == SCSI_STATUS_OK)
status = CAM_REQ_CMP;
else
status = CAM_SCSI_STATUS_ERROR;
if (cmd_resp->sense_len > 0) {
status |= CAM_AUTOSNS_VALID;
if (cmd_resp->sense_len < csio->sense_len)
csio->sense_resid = csio->sense_len -
cmd_resp->sense_len;
else
csio->sense_resid = 0;
bzero(&csio->sense_data, sizeof(csio->sense_data));
memcpy(cmd_resp->sense, &csio->sense_data,
csio->sense_len - csio->sense_resid);
}
vtscsi_dprintf(sc, status == CAM_REQ_CMP ? VTSCSI_TRACE : VTSCSI_ERROR,
"ccb=%p scsi_status=%#x resid=%u sense_resid=%u\n",
csio, csio->scsi_status, csio->resid, csio->sense_resid);
return (status);
}
static void
vtscsi_complete_scsi_cmd(struct vtscsi_softc *sc, struct vtscsi_request *req)
{
struct ccb_hdr *ccbh;
struct ccb_scsiio *csio;
struct virtio_scsi_cmd_resp *cmd_resp;
cam_status status;
csio = &req->vsr_ccb->csio;
ccbh = &csio->ccb_h;
cmd_resp = &req->vsr_cmd_resp;
KASSERT(ccbh->ccbh_vtscsi_req == req,
("ccb %p req mismatch %p/%p", ccbh, ccbh->ccbh_vtscsi_req, req));
if (req->vsr_flags & VTSCSI_REQ_FLAG_TIMEOUT_SET)
callout_stop(&req->vsr_callout);
status = vtscsi_scsi_cmd_cam_status(cmd_resp);
if (status == CAM_REQ_ABORTED) {
if (req->vsr_state == VTSCSI_REQ_STATE_TIMEDOUT)
status = CAM_CMD_TIMEOUT;
} else if (status == CAM_REQ_CMP)
status = vtscsi_complete_scsi_cmd_response(sc, csio, cmd_resp);
if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccbh->path, 1);
}
if (vtscsi_thaw_simq(sc, VTSCSI_REQUEST | VTSCSI_REQUEST_VQ) != 0)
status |= CAM_RELEASE_SIMQ;
vtscsi_dprintf(sc, VTSCSI_TRACE, "req=%p ccb=%p status=%#x\n",
req, ccbh, status);
ccbh->status = status;
xpt_done(req->vsr_ccb);
vtscsi_enqueue_request(sc, req);
}
static void
vtscsi_poll_ctrl_req(struct vtscsi_softc *sc, struct vtscsi_request *req)
{
/* XXX We probably shouldn't poll forever. */
req->vsr_flags |= VTSCSI_REQ_FLAG_POLLED;
do
vtscsi_complete_vq(sc, sc->vtscsi_control_vq);
while ((req->vsr_flags & VTSCSI_REQ_FLAG_COMPLETE) == 0);
req->vsr_flags &= ~VTSCSI_REQ_FLAG_POLLED;
}
static int
vtscsi_execute_ctrl_req(struct vtscsi_softc *sc, struct vtscsi_request *req,
struct sglist *sg, int readable, int writable, int flag)
{
struct virtqueue *vq;
int error;
vq = sc->vtscsi_control_vq;
MPASS(flag == VTSCSI_EXECUTE_POLL || req->vsr_complete != NULL);
error = virtqueue_enqueue(vq, req, sg, readable, writable);
if (error) {
/*
* Return EAGAIN when the virtqueue does not have enough
* descriptors available.
*/
if (error == ENOSPC || error == EMSGSIZE)
error = EAGAIN;
return (error);
}
virtqueue_notify(vq);
if (flag == VTSCSI_EXECUTE_POLL)
vtscsi_poll_ctrl_req(sc, req);
return (0);
}
static void
vtscsi_complete_abort_task_cmd(struct vtscsi_softc *sc,
struct vtscsi_request *req)
{
union ccb *ccb;
struct ccb_hdr *ccbh;
struct virtio_scsi_ctrl_tmf_resp *tmf_resp;
ccb = req->vsr_ccb;
ccbh = &ccb->ccb_h;
tmf_resp = &req->vsr_tmf_resp;
switch (tmf_resp->response) {
case VIRTIO_SCSI_S_FUNCTION_COMPLETE:
ccbh->status = CAM_REQ_CMP;
break;
case VIRTIO_SCSI_S_FUNCTION_REJECTED:
ccbh->status = CAM_UA_ABORT;
break;
default:
ccbh->status = CAM_REQ_CMP_ERR;
break;
}
xpt_done(ccb);
vtscsi_enqueue_request(sc, req);
}
static int
vtscsi_execute_abort_task_cmd(struct vtscsi_softc *sc,
struct vtscsi_request *req)
{
struct sglist *sg;
struct ccb_abort *cab;
struct ccb_hdr *ccbh;
struct ccb_hdr *abort_ccbh;
struct vtscsi_request *abort_req;
struct virtio_scsi_ctrl_tmf_req *tmf_req;
struct virtio_scsi_ctrl_tmf_resp *tmf_resp;
int error;
sg = sc->vtscsi_sglist;
cab = &req->vsr_ccb->cab;
ccbh = &cab->ccb_h;
tmf_req = &req->vsr_tmf_req;
tmf_resp = &req->vsr_tmf_resp;
/* CCB header and request that's to be aborted. */
abort_ccbh = &cab->abort_ccb->ccb_h;
abort_req = abort_ccbh->ccbh_vtscsi_req;
if (abort_ccbh->func_code != XPT_SCSI_IO || abort_req == NULL) {
error = EINVAL;
goto fail;
}
/* Only attempt to abort requests that could be in-flight. */
if (abort_req->vsr_state != VTSCSI_REQ_STATE_INUSE) {
error = EALREADY;
goto fail;
}
abort_req->vsr_state = VTSCSI_REQ_STATE_ABORTED;
if (abort_req->vsr_flags & VTSCSI_REQ_FLAG_TIMEOUT_SET)
callout_stop(&abort_req->vsr_callout);
vtscsi_init_ctrl_tmf_req(ccbh, VIRTIO_SCSI_T_TMF_ABORT_TASK,
(uintptr_t) abort_ccbh, tmf_req);
sglist_reset(sg);
sglist_append(sg, tmf_req, sizeof(struct virtio_scsi_ctrl_tmf_req));
sglist_append(sg, tmf_resp, sizeof(struct virtio_scsi_ctrl_tmf_resp));
req->vsr_complete = vtscsi_complete_abort_task_cmd;
tmf_resp->response = -1;
error = vtscsi_execute_ctrl_req(sc, req, sg, 1, 1,
VTSCSI_EXECUTE_ASYNC);
fail:
vtscsi_dprintf(sc, VTSCSI_TRACE, "error=%d req=%p abort_ccb=%p "
"abort_req=%p\n", error, req, abort_ccbh, abort_req);
return (error);
}
static void
vtscsi_complete_reset_dev_cmd(struct vtscsi_softc *sc,
struct vtscsi_request *req)
{
union ccb *ccb;
struct ccb_hdr *ccbh;
struct virtio_scsi_ctrl_tmf_resp *tmf_resp;
ccb = req->vsr_ccb;
ccbh = &ccb->ccb_h;
tmf_resp = &req->vsr_tmf_resp;
vtscsi_dprintf(sc, VTSCSI_TRACE, "req=%p ccb=%p response=%d\n",
req, ccb, tmf_resp->response);
if (tmf_resp->response == VIRTIO_SCSI_S_FUNCTION_COMPLETE) {
ccbh->status = CAM_REQ_CMP;
vtscsi_announce(sc, AC_SENT_BDR, ccbh->target_id,
ccbh->target_lun);
} else
ccbh->status = CAM_REQ_CMP_ERR;
xpt_done(ccb);
vtscsi_enqueue_request(sc, req);
}
static int
vtscsi_execute_reset_dev_cmd(struct vtscsi_softc *sc,
struct vtscsi_request *req)
{
struct sglist *sg;
struct ccb_resetdev *crd;
struct ccb_hdr *ccbh;
struct virtio_scsi_ctrl_tmf_req *tmf_req;
struct virtio_scsi_ctrl_tmf_resp *tmf_resp;
uint32_t subtype;
int error;
sg = sc->vtscsi_sglist;
crd = &req->vsr_ccb->crd;
ccbh = &crd->ccb_h;
tmf_req = &req->vsr_tmf_req;
tmf_resp = &req->vsr_tmf_resp;
if (ccbh->target_lun == CAM_LUN_WILDCARD)
subtype = VIRTIO_SCSI_T_TMF_I_T_NEXUS_RESET;
else
subtype = VIRTIO_SCSI_T_TMF_LOGICAL_UNIT_RESET;
vtscsi_init_ctrl_tmf_req(ccbh, subtype, 0, tmf_req);
sglist_reset(sg);
sglist_append(sg, tmf_req, sizeof(struct virtio_scsi_ctrl_tmf_req));
sglist_append(sg, tmf_resp, sizeof(struct virtio_scsi_ctrl_tmf_resp));
req->vsr_complete = vtscsi_complete_reset_dev_cmd;
tmf_resp->response = -1;
error = vtscsi_execute_ctrl_req(sc, req, sg, 1, 1,
VTSCSI_EXECUTE_ASYNC);
vtscsi_dprintf(sc, VTSCSI_TRACE, "error=%d req=%p ccb=%p\n",
error, req, ccbh);
return (error);
}
static void
vtscsi_get_request_lun(uint8_t lun[], target_id_t *target_id, lun_id_t *lun_id)
{
*target_id = lun[1];
*lun_id = (lun[2] << 8) | lun[3];
}
static void
vtscsi_set_request_lun(struct ccb_hdr *ccbh, uint8_t lun[])
{
lun[0] = 1;
lun[1] = ccbh->target_id;
lun[2] = 0x40 | ((ccbh->target_lun >> 8) & 0x3F);
lun[3] = (ccbh->target_lun >> 8) & 0xFF;
}
static void
vtscsi_init_scsi_cmd_req(struct ccb_scsiio *csio,
struct virtio_scsi_cmd_req *cmd_req)
{
uint8_t attr;
switch (csio->tag_action) {
case MSG_HEAD_OF_Q_TAG:
attr = VIRTIO_SCSI_S_HEAD;
break;
case MSG_ORDERED_Q_TAG:
attr = VIRTIO_SCSI_S_ORDERED;
break;
case MSG_ACA_TASK:
attr = VIRTIO_SCSI_S_ACA;
break;
default: /* MSG_SIMPLE_Q_TAG */
attr = VIRTIO_SCSI_S_SIMPLE;
break;
}
vtscsi_set_request_lun(&csio->ccb_h, cmd_req->lun);
cmd_req->tag = (uintptr_t) csio;
cmd_req->task_attr = attr;
memcpy(cmd_req->cdb,
csio->ccb_h.flags & CAM_CDB_POINTER ?
csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes,
csio->cdb_len);
}
static void
vtscsi_init_ctrl_tmf_req(struct ccb_hdr *ccbh, uint32_t subtype,
uintptr_t tag, struct virtio_scsi_ctrl_tmf_req *tmf_req)
{
vtscsi_set_request_lun(ccbh, tmf_req->lun);
tmf_req->type = VIRTIO_SCSI_T_TMF;
tmf_req->subtype = subtype;
tmf_req->tag = tag;
}
static void
vtscsi_freeze_simq(struct vtscsi_softc *sc, int reason)
{
int frozen;
frozen = sc->vtscsi_frozen;
if (reason & VTSCSI_REQUEST &&
(sc->vtscsi_frozen & VTSCSI_FROZEN_NO_REQUESTS) == 0)
sc->vtscsi_frozen |= VTSCSI_FROZEN_NO_REQUESTS;
if (reason & VTSCSI_REQUEST_VQ &&
(sc->vtscsi_frozen & VTSCSI_FROZEN_REQUEST_VQ_FULL) == 0)
sc->vtscsi_frozen |= VTSCSI_FROZEN_REQUEST_VQ_FULL;
/* Freeze the SIMQ if transitioned to frozen. */
if (frozen == 0 && sc->vtscsi_frozen != 0) {
vtscsi_dprintf(sc, VTSCSI_INFO, "SIMQ frozen\n");
xpt_freeze_simq(sc->vtscsi_sim, 1);
}
}
static int
vtscsi_thaw_simq(struct vtscsi_softc *sc, int reason)
{
int thawed;
if (sc->vtscsi_frozen == 0 || reason == 0)
return (0);
if (reason & VTSCSI_REQUEST &&
sc->vtscsi_frozen & VTSCSI_FROZEN_NO_REQUESTS)
sc->vtscsi_frozen &= ~VTSCSI_FROZEN_NO_REQUESTS;
if (reason & VTSCSI_REQUEST_VQ &&
sc->vtscsi_frozen & VTSCSI_FROZEN_REQUEST_VQ_FULL)
sc->vtscsi_frozen &= ~VTSCSI_FROZEN_REQUEST_VQ_FULL;
thawed = sc->vtscsi_frozen == 0;
if (thawed != 0)
vtscsi_dprintf(sc, VTSCSI_INFO, "SIMQ thawed\n");
return (thawed);
}
static void
vtscsi_announce(struct vtscsi_softc *sc, uint32_t ac_code,
target_id_t target_id, lun_id_t lun_id)
{
struct cam_path *path;
/* Use the wildcard path from our softc for bus announcements. */
if (target_id == CAM_TARGET_WILDCARD && lun_id == CAM_LUN_WILDCARD) {
xpt_async(ac_code, sc->vtscsi_path, NULL);
return;
}
if (xpt_create_path(&path, NULL, cam_sim_path(sc->vtscsi_sim),
target_id, lun_id) != CAM_REQ_CMP) {
vtscsi_dprintf(sc, VTSCSI_ERROR, "cannot create path\n");
return;
}
xpt_async(ac_code, path, NULL);
xpt_free_path(path);
}
static void
vtscsi_execute_rescan(struct vtscsi_softc *sc, target_id_t target_id,
lun_id_t lun_id)
{
union ccb *ccb;
cam_status status;
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
vtscsi_dprintf(sc, VTSCSI_ERROR, "cannot allocate CCB\n");
return;
}
status = xpt_create_path(&ccb->ccb_h.path, xpt_periph,
cam_sim_path(sc->vtscsi_sim), target_id, lun_id);
if (status != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
return;
}
xpt_rescan(ccb);
}
static void
vtscsi_execute_rescan_bus(struct vtscsi_softc *sc)
{
vtscsi_execute_rescan(sc, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
}
static void
vtscsi_transport_reset_event(struct vtscsi_softc *sc,
struct virtio_scsi_event *event)
{
target_id_t target_id;
lun_id_t lun_id;
vtscsi_get_request_lun(event->lun, &target_id, &lun_id);
switch (event->reason) {
case VIRTIO_SCSI_EVT_RESET_RESCAN:
case VIRTIO_SCSI_EVT_RESET_REMOVED:
vtscsi_execute_rescan(sc, target_id, lun_id);
break;
default:
device_printf(sc->vtscsi_dev,
"unhandled transport event reason: %d\n", event->reason);
break;
}
}
static void
vtscsi_handle_event(struct vtscsi_softc *sc, struct virtio_scsi_event *event)
{
int error;
if ((event->event & VIRTIO_SCSI_T_EVENTS_MISSED) == 0) {
switch (event->event) {
case VIRTIO_SCSI_T_TRANSPORT_RESET:
vtscsi_transport_reset_event(sc, event);
break;
default:
device_printf(sc->vtscsi_dev,
"unhandled event: %d\n", event->event);
break;
}
} else
vtscsi_execute_rescan_bus(sc);
/*
* This should always be successful since the buffer
* was just dequeued.
*/
error = vtscsi_enqueue_event_buf(sc, event);
KASSERT(error == 0,
("cannot requeue event buffer: %d", error));
}
static int
vtscsi_enqueue_event_buf(struct vtscsi_softc *sc,
struct virtio_scsi_event *event)
{
struct sglist *sg;
struct virtqueue *vq;
int size, error;
sg = sc->vtscsi_sglist;
vq = sc->vtscsi_event_vq;
size = sc->vtscsi_event_buf_size;
bzero(event, size);
sglist_reset(sg);
error = sglist_append(sg, event, size);
if (error)
return (error);
error = virtqueue_enqueue(vq, event, sg, 0, sg->sg_nseg);
if (error)
return (error);
virtqueue_notify(vq);
return (0);
}
static int
vtscsi_init_event_vq(struct vtscsi_softc *sc)
{
struct virtio_scsi_event *event;
int i, size, error;
/*
* The first release of QEMU with VirtIO SCSI support would crash
* when attempting to notify the event virtqueue. This was fixed
* when hotplug support was added.
*/
if (sc->vtscsi_flags & VTSCSI_FLAG_HOTPLUG)
size = sc->vtscsi_event_buf_size;
else
size = 0;
if (size < sizeof(struct virtio_scsi_event))
return (0);
for (i = 0; i < VTSCSI_NUM_EVENT_BUFS; i++) {
event = &sc->vtscsi_event_bufs[i];
error = vtscsi_enqueue_event_buf(sc, event);
if (error)
break;
}
/*
* Even just one buffer is enough. Missed events are
* denoted with the VIRTIO_SCSI_T_EVENTS_MISSED flag.
*/
if (i > 0)
error = 0;
return (error);
}
static void
vtscsi_reinit_event_vq(struct vtscsi_softc *sc)
{
struct virtio_scsi_event *event;
int i, error;
if ((sc->vtscsi_flags & VTSCSI_FLAG_HOTPLUG) == 0 ||
sc->vtscsi_event_buf_size < sizeof(struct virtio_scsi_event))
return;
for (i = 0; i < VTSCSI_NUM_EVENT_BUFS; i++) {
event = &sc->vtscsi_event_bufs[i];
error = vtscsi_enqueue_event_buf(sc, event);
if (error)
break;
}
KASSERT(i > 0, ("cannot reinit event vq: %d", error));
}
static void
vtscsi_drain_event_vq(struct vtscsi_softc *sc)
{
struct virtqueue *vq;
int last;
vq = sc->vtscsi_event_vq;
last = 0;
while (virtqueue_drain(vq, &last) != NULL)
;
KASSERT(virtqueue_empty(vq), ("eventvq not empty"));
}
static void
vtscsi_complete_vqs_locked(struct vtscsi_softc *sc)
{
VTSCSI_LOCK_OWNED(sc);
if (sc->vtscsi_request_vq != NULL)
vtscsi_complete_vq(sc, sc->vtscsi_request_vq);
if (sc->vtscsi_control_vq != NULL)
vtscsi_complete_vq(sc, sc->vtscsi_control_vq);
}
static void
vtscsi_complete_vqs(struct vtscsi_softc *sc)
{
VTSCSI_LOCK(sc);
vtscsi_complete_vqs_locked(sc);
VTSCSI_UNLOCK(sc);
}
static void
vtscsi_cancel_request(struct vtscsi_softc *sc, struct vtscsi_request *req)
{
union ccb *ccb;
int detach;
ccb = req->vsr_ccb;
vtscsi_dprintf(sc, VTSCSI_TRACE, "req=%p ccb=%p\n", req, ccb);
/*
* The callout must be drained when detaching since the request is
* about to be freed. The VTSCSI_MTX must not be held for this in
* case the callout is pending because there is a deadlock potential.
* Otherwise, the virtqueue is being drained because of a bus reset
* so we only need to attempt to stop the callouts.
*/
detach = (sc->vtscsi_flags & VTSCSI_FLAG_DETACH) != 0;
if (detach != 0)
VTSCSI_LOCK_NOTOWNED(sc);
else
VTSCSI_LOCK_OWNED(sc);
if (req->vsr_flags & VTSCSI_REQ_FLAG_TIMEOUT_SET) {
if (detach != 0)
callout_drain(&req->vsr_callout);
else
callout_stop(&req->vsr_callout);
}
if (ccb != NULL) {
if (detach != 0) {
VTSCSI_LOCK(sc);
ccb->ccb_h.status = CAM_NO_HBA;
} else
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
if (detach != 0)
VTSCSI_UNLOCK(sc);
}
vtscsi_enqueue_request(sc, req);
}
static void
vtscsi_drain_vq(struct vtscsi_softc *sc, struct virtqueue *vq)
{
struct vtscsi_request *req;
int last;
last = 0;
vtscsi_dprintf(sc, VTSCSI_TRACE, "vq=%p\n", vq);
while ((req = virtqueue_drain(vq, &last)) != NULL)
vtscsi_cancel_request(sc, req);
KASSERT(virtqueue_empty(vq), ("virtqueue not empty"));
}
static void
vtscsi_drain_vqs(struct vtscsi_softc *sc)
{
if (sc->vtscsi_control_vq != NULL)
vtscsi_drain_vq(sc, sc->vtscsi_control_vq);
if (sc->vtscsi_request_vq != NULL)
vtscsi_drain_vq(sc, sc->vtscsi_request_vq);
if (sc->vtscsi_event_vq != NULL)
vtscsi_drain_event_vq(sc);
}
static void
vtscsi_stop(struct vtscsi_softc *sc)
{
vtscsi_disable_vqs_intr(sc);
virtio_stop(sc->vtscsi_dev);
}
static int
vtscsi_reset_bus(struct vtscsi_softc *sc)
{
int error;
VTSCSI_LOCK_OWNED(sc);
if (vtscsi_bus_reset_disable != 0) {
device_printf(sc->vtscsi_dev, "bus reset disabled\n");
return (0);
}
sc->vtscsi_flags |= VTSCSI_FLAG_RESET;
/*
* vtscsi_stop() will cause the in-flight requests to be canceled.
* Those requests are then completed here so CAM will retry them
* after the reset is complete.
*/
vtscsi_stop(sc);
vtscsi_complete_vqs_locked(sc);
/* Rid the virtqueues of any remaining requests. */
vtscsi_drain_vqs(sc);
/*
* Any resource shortage that froze the SIMQ cannot persist across
* a bus reset so ensure it gets thawed here.
*/
if (vtscsi_thaw_simq(sc, VTSCSI_REQUEST | VTSCSI_REQUEST_VQ) != 0)
xpt_release_simq(sc->vtscsi_sim, 0);
error = vtscsi_reinit(sc);
if (error) {
device_printf(sc->vtscsi_dev,
"reinitialization failed, stopping device...\n");
vtscsi_stop(sc);
} else
vtscsi_announce(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD);
sc->vtscsi_flags &= ~VTSCSI_FLAG_RESET;
return (error);
}
static void
vtscsi_init_request(struct vtscsi_softc *sc, struct vtscsi_request *req)
{
#ifdef INVARIANTS
int req_nsegs, resp_nsegs;
req_nsegs = sglist_count(&req->vsr_ureq, sizeof(req->vsr_ureq));
resp_nsegs = sglist_count(&req->vsr_uresp, sizeof(req->vsr_uresp));
KASSERT(req_nsegs == 1, ("request crossed page boundary"));
KASSERT(resp_nsegs == 1, ("response crossed page boundary"));
#endif
req->vsr_softc = sc;
callout_init_mtx(&req->vsr_callout, VTSCSI_MTX(sc), 0);
}
static int
vtscsi_alloc_requests(struct vtscsi_softc *sc)
{
struct vtscsi_request *req;
int i, nreqs;
/*
* Commands destined for either the request or control queues come
* from the same SIM queue. Use the size of the request virtqueue
* as it (should) be much more frequently used. Some additional
* requests are allocated for internal (TMF) use.
*/
nreqs = virtqueue_size(sc->vtscsi_request_vq);
if ((sc->vtscsi_flags & VTSCSI_FLAG_INDIRECT) == 0)
nreqs /= VTSCSI_MIN_SEGMENTS;
nreqs += VTSCSI_RESERVED_REQUESTS;
for (i = 0; i < nreqs; i++) {
req = malloc(sizeof(struct vtscsi_request), M_DEVBUF,
M_NOWAIT);
if (req == NULL)
return (ENOMEM);
vtscsi_init_request(sc, req);
sc->vtscsi_nrequests++;
vtscsi_enqueue_request(sc, req);
}
return (0);
}
static void
vtscsi_free_requests(struct vtscsi_softc *sc)
{
struct vtscsi_request *req;
while ((req = vtscsi_dequeue_request(sc)) != NULL) {
KASSERT(callout_active(&req->vsr_callout) == 0,
("request callout still active"));
sc->vtscsi_nrequests--;
free(req, M_DEVBUF);
}
KASSERT(sc->vtscsi_nrequests == 0, ("leaked requests: %d",
sc->vtscsi_nrequests));
}
static void
vtscsi_enqueue_request(struct vtscsi_softc *sc, struct vtscsi_request *req)
{
KASSERT(req->vsr_softc == sc,
("non-matching request vsr_softc %p/%p", req->vsr_softc, sc));
vtscsi_dprintf(sc, VTSCSI_TRACE, "req=%p\n", req);
/* A request is available so the SIMQ could be released. */
if (vtscsi_thaw_simq(sc, VTSCSI_REQUEST) != 0)
xpt_release_simq(sc->vtscsi_sim, 1);
req->vsr_ccb = NULL;
req->vsr_complete = NULL;
req->vsr_ptr0 = NULL;
req->vsr_state = VTSCSI_REQ_STATE_FREE;
req->vsr_flags = 0;
bzero(&req->vsr_ureq, sizeof(req->vsr_ureq));
bzero(&req->vsr_uresp, sizeof(req->vsr_uresp));
/*
* We insert at the tail of the queue in order to make it
* very unlikely a request will be reused if we race with
* stopping its callout handler.
*/
TAILQ_INSERT_TAIL(&sc->vtscsi_req_free, req, vsr_link);
}
static struct vtscsi_request *
vtscsi_dequeue_request(struct vtscsi_softc *sc)
{
struct vtscsi_request *req;
req = TAILQ_FIRST(&sc->vtscsi_req_free);
if (req != NULL) {
req->vsr_state = VTSCSI_REQ_STATE_INUSE;
TAILQ_REMOVE(&sc->vtscsi_req_free, req, vsr_link);
} else
sc->vtscsi_stats.dequeue_no_requests++;
vtscsi_dprintf(sc, VTSCSI_TRACE, "req=%p\n", req);
return (req);
}
static void
vtscsi_complete_request(struct vtscsi_request *req)
{
if (req->vsr_flags & VTSCSI_REQ_FLAG_POLLED)
req->vsr_flags |= VTSCSI_REQ_FLAG_COMPLETE;
if (req->vsr_complete != NULL)
req->vsr_complete(req->vsr_softc, req);
}
static void
vtscsi_complete_vq(struct vtscsi_softc *sc, struct virtqueue *vq)
{
struct vtscsi_request *req;
VTSCSI_LOCK_OWNED(sc);
while ((req = virtqueue_dequeue(vq, NULL)) != NULL)
vtscsi_complete_request(req);
}
static void
vtscsi_control_vq_task(void *arg, int pending)
{
struct vtscsi_softc *sc;
struct virtqueue *vq;
sc = arg;
vq = sc->vtscsi_control_vq;
VTSCSI_LOCK(sc);
vtscsi_complete_vq(sc, sc->vtscsi_control_vq);
if (virtqueue_enable_intr(vq) != 0) {
virtqueue_disable_intr(vq);
VTSCSI_UNLOCK(sc);
taskqueue_enqueue_fast(sc->vtscsi_tq,
&sc->vtscsi_control_intr_task);
return;
}
VTSCSI_UNLOCK(sc);
}
static void
vtscsi_event_vq_task(void *arg, int pending)
{
struct vtscsi_softc *sc;
struct virtqueue *vq;
struct virtio_scsi_event *event;
sc = arg;
vq = sc->vtscsi_event_vq;
VTSCSI_LOCK(sc);
while ((event = virtqueue_dequeue(vq, NULL)) != NULL)
vtscsi_handle_event(sc, event);
if (virtqueue_enable_intr(vq) != 0) {
virtqueue_disable_intr(vq);
VTSCSI_UNLOCK(sc);
taskqueue_enqueue_fast(sc->vtscsi_tq,
&sc->vtscsi_control_intr_task);
return;
}
VTSCSI_UNLOCK(sc);
}
static void
vtscsi_request_vq_task(void *arg, int pending)
{
struct vtscsi_softc *sc;
struct virtqueue *vq;
sc = arg;
vq = sc->vtscsi_request_vq;
VTSCSI_LOCK(sc);
vtscsi_complete_vq(sc, sc->vtscsi_request_vq);
if (virtqueue_enable_intr(vq) != 0) {
virtqueue_disable_intr(vq);
VTSCSI_UNLOCK(sc);
taskqueue_enqueue_fast(sc->vtscsi_tq,
&sc->vtscsi_request_intr_task);
return;
}
VTSCSI_UNLOCK(sc);
}
static int
vtscsi_control_vq_intr(void *xsc)
{
struct vtscsi_softc *sc;
sc = xsc;
virtqueue_disable_intr(sc->vtscsi_control_vq);
taskqueue_enqueue_fast(sc->vtscsi_tq,
&sc->vtscsi_control_intr_task);
return (1);
}
static int
vtscsi_event_vq_intr(void *xsc)
{
struct vtscsi_softc *sc;
sc = xsc;
virtqueue_disable_intr(sc->vtscsi_event_vq);
taskqueue_enqueue_fast(sc->vtscsi_tq,
&sc->vtscsi_event_intr_task);
return (1);
}
static int
vtscsi_request_vq_intr(void *xsc)
{
struct vtscsi_softc *sc;
sc = xsc;
virtqueue_disable_intr(sc->vtscsi_request_vq);
taskqueue_enqueue_fast(sc->vtscsi_tq,
&sc->vtscsi_request_intr_task);
return (1);
}
static void
vtscsi_disable_vqs_intr(struct vtscsi_softc *sc)
{
virtqueue_disable_intr(sc->vtscsi_control_vq);
virtqueue_disable_intr(sc->vtscsi_event_vq);
virtqueue_disable_intr(sc->vtscsi_request_vq);
}
static void
vtscsi_enable_vqs_intr(struct vtscsi_softc *sc)
{
virtqueue_enable_intr(sc->vtscsi_control_vq);
virtqueue_enable_intr(sc->vtscsi_event_vq);
virtqueue_enable_intr(sc->vtscsi_request_vq);
}
static void
vtscsi_get_tunables(struct vtscsi_softc *sc)
{
char tmpstr[64];
TUNABLE_INT_FETCH("hw.vtscsi.debug_level", &sc->vtscsi_debug);
snprintf(tmpstr, sizeof(tmpstr), "dev.vtscsi.%d.debug_level",
device_get_unit(sc->vtscsi_dev));
TUNABLE_INT_FETCH(tmpstr, &sc->vtscsi_debug);
}
static void
vtscsi_add_sysctl(struct vtscsi_softc *sc)
{
device_t dev;
struct vtscsi_statistics *stats;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree;
struct sysctl_oid_list *child;
dev = sc->vtscsi_dev;
stats = &sc->vtscsi_stats;
ctx = device_get_sysctl_ctx(dev);
tree = device_get_sysctl_tree(dev);
child = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "debug_level",
CTLFLAG_RW, &sc->vtscsi_debug, 0,
"Debug level");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "scsi_cmd_timeouts",
CTLFLAG_RD, &stats->scsi_cmd_timeouts,
"SCSI command timeouts");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dequeue_no_requests",
CTLFLAG_RD, &stats->dequeue_no_requests,
"No available requests to dequeue");
}
static void
vtscsi_printf_req(struct vtscsi_request *req, const char *func,
const char *fmt, ...)
{
struct vtscsi_softc *sc;
union ccb *ccb;
struct sbuf sb;
va_list ap;
char str[192];
char path_str[64];
if (req == NULL)
return;
sc = req->vsr_softc;
ccb = req->vsr_ccb;
va_start(ap, fmt);
sbuf_new(&sb, str, sizeof(str), 0);
if (ccb == NULL) {
sbuf_printf(&sb, "(noperiph:%s%d:%u): ",
cam_sim_name(sc->vtscsi_sim), cam_sim_unit(sc->vtscsi_sim),
cam_sim_bus(sc->vtscsi_sim));
} else {
xpt_path_string(ccb->ccb_h.path, path_str, sizeof(path_str));
sbuf_cat(&sb, path_str);
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
scsi_command_string(&ccb->csio, &sb);
sbuf_printf(&sb, "length %d ", ccb->csio.dxfer_len);
}
}
sbuf_vprintf(&sb, fmt, ap);
va_end(ap);
sbuf_finish(&sb);
printf("%s: %s: %s", device_get_nameunit(sc->vtscsi_dev), func,
sbuf_data(&sb));
}