freebsd-nq/sys/x86/iommu/intel_ctx.c
Konstantin Belousov 6b7c46afec Right now, for non-coherent DMARs, page table update code flushes the
cache for whole page containing modified pte, and more, only last page
in the series of the consequtive pages is flushed (i.e. the affected
mappings should be larger than 2MB).

Avoid excessive flushing and do missed neccessary flushing, by
splitting invalidation and unmapping.  For now, flush exactly the
range of the changed pte.  This is still somewhat bigger than
neccessary, since pte is 8 bytes, while cache flush line is at least
32 bytes.

The originator of the issue reports that after the change,
'dmar_bus_dmamap_unload went from 13,288 cycles down to
3,257. dmar_bus_dmamap_load_buffer went from 9,686 cycles down to
3,517.  and I am now able to get line 1GbE speed with Netperf TCP
(even with 1K message size).'

Diagnosed and tested by:	Nadav Amit <nadav.amit@gmail.com>
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2015-01-11 20:27:15 +00:00

651 lines
17 KiB
C

/*-
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/uio.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_map.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include <x86/include/busdma_impl.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/busdma_dmar.h>
#include <x86/iommu/intel_dmar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
static MALLOC_DEFINE(M_DMAR_CTX, "dmar_ctx", "Intel DMAR Context");
static void dmar_ctx_unload_task(void *arg, int pending);
static void
dmar_ensure_ctx_page(struct dmar_unit *dmar, int bus)
{
struct sf_buf *sf;
dmar_root_entry_t *re;
vm_page_t ctxm;
/*
* Allocated context page must be linked.
*/
ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, DMAR_PGF_NOALLOC);
if (ctxm != NULL)
return;
/*
* Page not present, allocate and link. Note that other
* thread might execute this sequence in parallel. This
* should be safe, because the context entries written by both
* threads are equal.
*/
TD_PREP_PINNED_ASSERT;
ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, DMAR_PGF_ZERO |
DMAR_PGF_WAITOK);
re = dmar_map_pgtbl(dmar->ctx_obj, 0, DMAR_PGF_NOALLOC, &sf);
re += bus;
dmar_pte_store(&re->r1, DMAR_ROOT_R1_P | (DMAR_ROOT_R1_CTP_MASK &
VM_PAGE_TO_PHYS(ctxm)));
dmar_flush_root_to_ram(dmar, re);
dmar_unmap_pgtbl(sf);
TD_PINNED_ASSERT;
}
static dmar_ctx_entry_t *
dmar_map_ctx_entry(struct dmar_ctx *ctx, struct sf_buf **sfp)
{
dmar_ctx_entry_t *ctxp;
ctxp = dmar_map_pgtbl(ctx->dmar->ctx_obj, 1 + PCI_RID2BUS(ctx->rid),
DMAR_PGF_NOALLOC | DMAR_PGF_WAITOK, sfp);
ctxp += ctx->rid & 0xff;
return (ctxp);
}
static void
ctx_tag_init(struct dmar_ctx *ctx, device_t dev)
{
bus_addr_t maxaddr;
maxaddr = MIN(ctx->end, BUS_SPACE_MAXADDR);
ctx->ctx_tag.common.ref_count = 1; /* Prevent free */
ctx->ctx_tag.common.impl = &bus_dma_dmar_impl;
ctx->ctx_tag.common.boundary = PCI_DMA_BOUNDARY;
ctx->ctx_tag.common.lowaddr = maxaddr;
ctx->ctx_tag.common.highaddr = maxaddr;
ctx->ctx_tag.common.maxsize = maxaddr;
ctx->ctx_tag.common.nsegments = BUS_SPACE_UNRESTRICTED;
ctx->ctx_tag.common.maxsegsz = maxaddr;
ctx->ctx_tag.ctx = ctx;
ctx->ctx_tag.owner = dev;
/* XXXKIB initialize tag further */
}
static void
ctx_id_entry_init(struct dmar_ctx *ctx, dmar_ctx_entry_t *ctxp)
{
struct dmar_unit *unit;
vm_page_t ctx_root;
unit = ctx->dmar;
KASSERT(ctxp->ctx1 == 0 && ctxp->ctx2 == 0,
("dmar%d: initialized ctx entry %d:%d:%d 0x%jx 0x%jx",
unit->unit, pci_get_bus(ctx->ctx_tag.owner),
pci_get_slot(ctx->ctx_tag.owner),
pci_get_function(ctx->ctx_tag.owner),
ctxp->ctx1,
ctxp->ctx2));
ctxp->ctx2 = DMAR_CTX2_DID(ctx->domain);
ctxp->ctx2 |= ctx->awlvl;
if ((ctx->flags & DMAR_CTX_IDMAP) != 0 &&
(unit->hw_ecap & DMAR_ECAP_PT) != 0) {
KASSERT(ctx->pgtbl_obj == NULL,
("ctx %p non-null pgtbl_obj", ctx));
dmar_pte_store(&ctxp->ctx1, DMAR_CTX1_T_PASS | DMAR_CTX1_P);
} else {
ctx_root = dmar_pgalloc(ctx->pgtbl_obj, 0, DMAR_PGF_NOALLOC);
dmar_pte_store(&ctxp->ctx1, DMAR_CTX1_T_UNTR |
(DMAR_CTX1_ASR_MASK & VM_PAGE_TO_PHYS(ctx_root)) |
DMAR_CTX1_P);
}
dmar_flush_ctx_to_ram(unit, ctxp);
}
static int
ctx_init_rmrr(struct dmar_ctx *ctx, device_t dev)
{
struct dmar_map_entries_tailq rmrr_entries;
struct dmar_map_entry *entry, *entry1;
vm_page_t *ma;
dmar_gaddr_t start, end;
vm_pindex_t size, i;
int error, error1;
error = 0;
TAILQ_INIT(&rmrr_entries);
dmar_ctx_parse_rmrr(ctx, dev, &rmrr_entries);
TAILQ_FOREACH_SAFE(entry, &rmrr_entries, unroll_link, entry1) {
/*
* VT-d specification requires that the start of an
* RMRR entry is 4k-aligned. Buggy BIOSes put
* anything into the start and end fields. Truncate
* and round as neccesary.
*
* We also allow the overlapping RMRR entries, see
* dmar_gas_alloc_region().
*/
start = entry->start;
end = entry->end;
entry->start = trunc_page(start);
entry->end = round_page(end);
if (entry->start == entry->end) {
/* Workaround for some AMI (?) BIOSes */
if (bootverbose) {
device_printf(dev, "BIOS bug: dmar%d RMRR "
"region (%jx, %jx) corrected\n",
ctx->dmar->unit, start, end);
}
entry->end += DMAR_PAGE_SIZE * 0x20;
}
size = OFF_TO_IDX(entry->end - entry->start);
ma = malloc(sizeof(vm_page_t) * size, M_TEMP, M_WAITOK);
for (i = 0; i < size; i++) {
ma[i] = vm_page_getfake(entry->start + PAGE_SIZE * i,
VM_MEMATTR_DEFAULT);
}
error1 = dmar_gas_map_region(ctx, entry, DMAR_MAP_ENTRY_READ |
DMAR_MAP_ENTRY_WRITE, DMAR_GM_CANWAIT, ma);
/*
* Non-failed RMRR entries are owned by context rb
* tree. Get rid of the failed entry, but do not stop
* the loop. Rest of the parsed RMRR entries are
* loaded and removed on the context destruction.
*/
if (error1 == 0 && entry->end != entry->start) {
DMAR_LOCK(ctx->dmar);
ctx->flags |= DMAR_CTX_RMRR;
DMAR_UNLOCK(ctx->dmar);
} else {
if (error1 != 0) {
device_printf(dev,
"dmar%d failed to map RMRR region (%jx, %jx) %d\n",
ctx->dmar->unit, start, end, error1);
error = error1;
}
TAILQ_REMOVE(&rmrr_entries, entry, unroll_link);
dmar_gas_free_entry(ctx, entry);
}
for (i = 0; i < size; i++)
vm_page_putfake(ma[i]);
free(ma, M_TEMP);
}
return (error);
}
static struct dmar_ctx *
dmar_get_ctx_alloc(struct dmar_unit *dmar, uint16_t rid)
{
struct dmar_ctx *ctx;
ctx = malloc(sizeof(*ctx), M_DMAR_CTX, M_WAITOK | M_ZERO);
RB_INIT(&ctx->rb_root);
TAILQ_INIT(&ctx->unload_entries);
TASK_INIT(&ctx->unload_task, 0, dmar_ctx_unload_task, ctx);
mtx_init(&ctx->lock, "dmarctx", NULL, MTX_DEF);
ctx->dmar = dmar;
ctx->rid = rid;
return (ctx);
}
static void
dmar_ctx_dtr(struct dmar_ctx *ctx, bool gas_inited, bool pgtbl_inited)
{
if (gas_inited) {
DMAR_CTX_LOCK(ctx);
dmar_gas_fini_ctx(ctx);
DMAR_CTX_UNLOCK(ctx);
}
if (pgtbl_inited) {
if (ctx->pgtbl_obj != NULL)
DMAR_CTX_PGLOCK(ctx);
ctx_free_pgtbl(ctx);
}
mtx_destroy(&ctx->lock);
free(ctx, M_DMAR_CTX);
}
struct dmar_ctx *
dmar_get_ctx(struct dmar_unit *dmar, device_t dev, uint16_t rid, bool id_mapped,
bool rmrr_init)
{
struct dmar_ctx *ctx, *ctx1;
dmar_ctx_entry_t *ctxp;
struct sf_buf *sf;
int bus, slot, func, error, mgaw;
bool enable;
bus = pci_get_bus(dev);
slot = pci_get_slot(dev);
func = pci_get_function(dev);
enable = false;
TD_PREP_PINNED_ASSERT;
DMAR_LOCK(dmar);
ctx = dmar_find_ctx_locked(dmar, rid);
error = 0;
if (ctx == NULL) {
/*
* Perform the allocations which require sleep or have
* higher chance to succeed if the sleep is allowed.
*/
DMAR_UNLOCK(dmar);
dmar_ensure_ctx_page(dmar, PCI_RID2BUS(rid));
ctx1 = dmar_get_ctx_alloc(dmar, rid);
if (id_mapped) {
/*
* For now, use the maximal usable physical
* address of the installed memory to
* calculate the mgaw. It is useful for the
* identity mapping, and less so for the
* virtualized bus address space.
*/
ctx1->end = ptoa(Maxmem);
mgaw = dmar_maxaddr2mgaw(dmar, ctx1->end, false);
error = ctx_set_agaw(ctx1, mgaw);
if (error != 0) {
dmar_ctx_dtr(ctx1, false, false);
TD_PINNED_ASSERT;
return (NULL);
}
} else {
ctx1->end = BUS_SPACE_MAXADDR;
mgaw = dmar_maxaddr2mgaw(dmar, ctx1->end, true);
error = ctx_set_agaw(ctx1, mgaw);
if (error != 0) {
dmar_ctx_dtr(ctx1, false, false);
TD_PINNED_ASSERT;
return (NULL);
}
/* Use all supported address space for remapping. */
ctx1->end = 1ULL << (ctx1->agaw - 1);
}
dmar_gas_init_ctx(ctx1);
if (id_mapped) {
if ((dmar->hw_ecap & DMAR_ECAP_PT) == 0) {
ctx1->pgtbl_obj = ctx_get_idmap_pgtbl(ctx1,
ctx1->end);
}
ctx1->flags |= DMAR_CTX_IDMAP;
} else {
error = ctx_alloc_pgtbl(ctx1);
if (error != 0) {
dmar_ctx_dtr(ctx1, true, false);
TD_PINNED_ASSERT;
return (NULL);
}
/* Disable local apic region access */
error = dmar_gas_reserve_region(ctx1, 0xfee00000,
0xfeefffff + 1);
if (error != 0) {
dmar_ctx_dtr(ctx1, true, true);
TD_PINNED_ASSERT;
return (NULL);
}
error = ctx_init_rmrr(ctx1, dev);
if (error != 0) {
dmar_ctx_dtr(ctx1, true, true);
TD_PINNED_ASSERT;
return (NULL);
}
}
ctxp = dmar_map_ctx_entry(ctx1, &sf);
DMAR_LOCK(dmar);
/*
* Recheck the contexts, other thread might have
* already allocated needed one.
*/
ctx = dmar_find_ctx_locked(dmar, rid);
if (ctx == NULL) {
ctx = ctx1;
ctx->ctx_tag.owner = dev;
ctx->domain = alloc_unrl(dmar->domids);
if (ctx->domain == -1) {
DMAR_UNLOCK(dmar);
dmar_unmap_pgtbl(sf);
dmar_ctx_dtr(ctx, true, true);
TD_PINNED_ASSERT;
return (NULL);
}
ctx_tag_init(ctx, dev);
/*
* This is the first activated context for the
* DMAR unit. Enable the translation after
* everything is set up.
*/
if (LIST_EMPTY(&dmar->contexts))
enable = true;
LIST_INSERT_HEAD(&dmar->contexts, ctx, link);
ctx_id_entry_init(ctx, ctxp);
device_printf(dev,
"dmar%d pci%d:%d:%d:%d rid %x domain %d mgaw %d "
"agaw %d %s-mapped\n",
dmar->unit, dmar->segment, bus, slot,
func, rid, ctx->domain, ctx->mgaw, ctx->agaw,
id_mapped ? "id" : "re");
} else {
dmar_ctx_dtr(ctx1, true, true);
}
dmar_unmap_pgtbl(sf);
}
ctx->refs++;
if ((ctx->flags & DMAR_CTX_RMRR) != 0)
ctx->refs++; /* XXXKIB */
/*
* If dmar declares Caching Mode as Set, follow 11.5 "Caching
* Mode Consideration" and do the (global) invalidation of the
* negative TLB entries.
*/
if ((dmar->hw_cap & DMAR_CAP_CM) != 0 || enable) {
if (dmar->qi_enabled) {
dmar_qi_invalidate_ctx_glob_locked(dmar);
if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0)
dmar_qi_invalidate_iotlb_glob_locked(dmar);
} else {
error = dmar_inv_ctx_glob(dmar);
if (error == 0 &&
(dmar->hw_ecap & DMAR_ECAP_DI) != 0)
error = dmar_inv_iotlb_glob(dmar);
if (error != 0) {
dmar_free_ctx_locked(dmar, ctx);
TD_PINNED_ASSERT;
return (NULL);
}
}
}
/*
* The dmar lock was potentially dropped between check for the
* empty context list and now. Recheck the state of GCMD_TE
* to avoid unneeded command.
*/
if (enable && !rmrr_init && (dmar->hw_gcmd & DMAR_GCMD_TE) == 0) {
error = dmar_enable_translation(dmar);
if (error != 0) {
dmar_free_ctx_locked(dmar, ctx);
TD_PINNED_ASSERT;
return (NULL);
}
}
DMAR_UNLOCK(dmar);
TD_PINNED_ASSERT;
return (ctx);
}
void
dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx)
{
struct sf_buf *sf;
dmar_ctx_entry_t *ctxp;
DMAR_ASSERT_LOCKED(dmar);
KASSERT(ctx->refs >= 1,
("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs));
/*
* If our reference is not last, only the dereference should
* be performed.
*/
if (ctx->refs > 1) {
ctx->refs--;
DMAR_UNLOCK(dmar);
return;
}
KASSERT((ctx->flags & DMAR_CTX_RMRR) == 0,
("lost ref on RMRR ctx %p", ctx));
KASSERT((ctx->flags & DMAR_CTX_DISABLED) == 0,
("lost ref on disabled ctx %p", ctx));
/*
* Otherwise, the context entry must be cleared before the
* page table is destroyed. The mapping of the context
* entries page could require sleep, unlock the dmar.
*/
DMAR_UNLOCK(dmar);
TD_PREP_PINNED_ASSERT;
ctxp = dmar_map_ctx_entry(ctx, &sf);
DMAR_LOCK(dmar);
KASSERT(ctx->refs >= 1,
("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs));
/*
* Other thread might have referenced the context, in which
* case again only the dereference should be performed.
*/
if (ctx->refs > 1) {
ctx->refs--;
DMAR_UNLOCK(dmar);
dmar_unmap_pgtbl(sf);
TD_PINNED_ASSERT;
return;
}
KASSERT((ctx->flags & DMAR_CTX_RMRR) == 0,
("lost ref on RMRR ctx %p", ctx));
KASSERT((ctx->flags & DMAR_CTX_DISABLED) == 0,
("lost ref on disabled ctx %p", ctx));
/*
* Clear the context pointer and flush the caches.
* XXXKIB: cannot do this if any RMRR entries are still present.
*/
dmar_pte_clear(&ctxp->ctx1);
ctxp->ctx2 = 0;
dmar_flush_ctx_to_ram(dmar, ctxp);
dmar_inv_ctx_glob(dmar);
if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0) {
if (dmar->qi_enabled)
dmar_qi_invalidate_iotlb_glob_locked(dmar);
else
dmar_inv_iotlb_glob(dmar);
}
LIST_REMOVE(ctx, link);
DMAR_UNLOCK(dmar);
/*
* The rest of the destruction is invisible for other users of
* the dmar unit.
*/
taskqueue_drain(dmar->delayed_taskqueue, &ctx->unload_task);
KASSERT(TAILQ_EMPTY(&ctx->unload_entries),
("unfinished unloads %p", ctx));
dmar_unmap_pgtbl(sf);
free_unr(dmar->domids, ctx->domain);
dmar_ctx_dtr(ctx, true, true);
TD_PINNED_ASSERT;
}
void
dmar_free_ctx(struct dmar_ctx *ctx)
{
struct dmar_unit *dmar;
dmar = ctx->dmar;
DMAR_LOCK(dmar);
dmar_free_ctx_locked(dmar, ctx);
}
struct dmar_ctx *
dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid)
{
struct dmar_ctx *ctx;
DMAR_ASSERT_LOCKED(dmar);
LIST_FOREACH(ctx, &dmar->contexts, link) {
if (ctx->rid == rid)
return (ctx);
}
return (NULL);
}
void
dmar_ctx_free_entry(struct dmar_map_entry *entry, bool free)
{
struct dmar_ctx *ctx;
ctx = entry->ctx;
DMAR_CTX_LOCK(ctx);
if ((entry->flags & DMAR_MAP_ENTRY_RMRR) != 0)
dmar_gas_free_region(ctx, entry);
else
dmar_gas_free_space(ctx, entry);
DMAR_CTX_UNLOCK(ctx);
if (free)
dmar_gas_free_entry(ctx, entry);
else
entry->flags = 0;
}
void
dmar_ctx_unload_entry(struct dmar_map_entry *entry, bool free)
{
struct dmar_unit *unit;
unit = entry->ctx->dmar;
if (unit->qi_enabled) {
DMAR_LOCK(unit);
dmar_qi_invalidate_locked(entry->ctx, entry->start,
entry->end - entry->start, &entry->gseq);
if (!free)
entry->flags |= DMAR_MAP_ENTRY_QI_NF;
TAILQ_INSERT_TAIL(&unit->tlb_flush_entries, entry, dmamap_link);
DMAR_UNLOCK(unit);
} else {
ctx_flush_iotlb_sync(entry->ctx, entry->start, entry->end -
entry->start);
dmar_ctx_free_entry(entry, free);
}
}
void
dmar_ctx_unload(struct dmar_ctx *ctx, struct dmar_map_entries_tailq *entries,
bool cansleep)
{
struct dmar_unit *unit;
struct dmar_map_entry *entry, *entry1;
struct dmar_qi_genseq gseq;
int error;
unit = ctx->dmar;
TAILQ_FOREACH_SAFE(entry, entries, dmamap_link, entry1) {
KASSERT((entry->flags & DMAR_MAP_ENTRY_MAP) != 0,
("not mapped entry %p %p", ctx, entry));
error = ctx_unmap_buf(ctx, entry->start, entry->end -
entry->start, cansleep ? DMAR_PGF_WAITOK : 0);
KASSERT(error == 0, ("unmap %p error %d", ctx, error));
if (!unit->qi_enabled) {
ctx_flush_iotlb_sync(ctx, entry->start,
entry->end - entry->start);
TAILQ_REMOVE(entries, entry, dmamap_link);
dmar_ctx_free_entry(entry, true);
}
}
if (TAILQ_EMPTY(entries))
return;
KASSERT(unit->qi_enabled, ("loaded entry left"));
DMAR_LOCK(unit);
TAILQ_FOREACH(entry, entries, dmamap_link) {
entry->gseq.gen = 0;
entry->gseq.seq = 0;
dmar_qi_invalidate_locked(ctx, entry->start, entry->end -
entry->start, TAILQ_NEXT(entry, dmamap_link) == NULL ?
&gseq : NULL);
}
TAILQ_FOREACH_SAFE(entry, entries, dmamap_link, entry1) {
entry->gseq = gseq;
TAILQ_REMOVE(entries, entry, dmamap_link);
TAILQ_INSERT_TAIL(&unit->tlb_flush_entries, entry, dmamap_link);
}
DMAR_UNLOCK(unit);
}
static void
dmar_ctx_unload_task(void *arg, int pending)
{
struct dmar_ctx *ctx;
struct dmar_map_entries_tailq entries;
ctx = arg;
TAILQ_INIT(&entries);
for (;;) {
DMAR_CTX_LOCK(ctx);
TAILQ_SWAP(&ctx->unload_entries, &entries, dmar_map_entry,
dmamap_link);
DMAR_CTX_UNLOCK(ctx);
if (TAILQ_EMPTY(&entries))
break;
dmar_ctx_unload(ctx, &entries, true);
}
}