3978 lines
151 KiB
C++

//===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECL_H
#define LLVM_CLANG_AST_DECL_H
#include "clang/AST/APValue.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PragmaKinds.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TrailingObjects.h"
namespace clang {
struct ASTTemplateArgumentListInfo;
class CXXTemporary;
class CompoundStmt;
class DependentFunctionTemplateSpecializationInfo;
class Expr;
class FunctionTemplateDecl;
class FunctionTemplateSpecializationInfo;
class LabelStmt;
class MemberSpecializationInfo;
class NestedNameSpecifier;
class ParmVarDecl;
class Stmt;
class StringLiteral;
class TemplateArgumentList;
class TemplateParameterList;
class TypeAliasTemplateDecl;
class TypeLoc;
class UnresolvedSetImpl;
class VarTemplateDecl;
/// \brief A container of type source information.
///
/// A client can read the relevant info using TypeLoc wrappers, e.g:
/// @code
/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
/// TL.getStartLoc().print(OS, SrcMgr);
/// @endcode
///
class TypeSourceInfo {
QualType Ty;
// Contains a memory block after the class, used for type source information,
// allocated by ASTContext.
friend class ASTContext;
TypeSourceInfo(QualType ty) : Ty(ty) { }
public:
/// \brief Return the type wrapped by this type source info.
QualType getType() const { return Ty; }
/// \brief Return the TypeLoc wrapper for the type source info.
TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
/// \brief Override the type stored in this TypeSourceInfo. Use with caution!
void overrideType(QualType T) { Ty = T; }
};
/// TranslationUnitDecl - The top declaration context.
class TranslationUnitDecl : public Decl, public DeclContext {
virtual void anchor();
ASTContext &Ctx;
/// The (most recently entered) anonymous namespace for this
/// translation unit, if one has been created.
NamespaceDecl *AnonymousNamespace;
explicit TranslationUnitDecl(ASTContext &ctx);
public:
ASTContext &getASTContext() const { return Ctx; }
NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
static TranslationUnitDecl *Create(ASTContext &C);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TranslationUnit; }
static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
}
static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
}
};
/// \brief Represents a `#pragma comment` line. Always a child of
/// TranslationUnitDecl.
class PragmaCommentDecl final
: public Decl,
private llvm::TrailingObjects<PragmaCommentDecl, char> {
virtual void anchor();
PragmaMSCommentKind CommentKind;
friend TrailingObjects;
friend class ASTDeclReader;
friend class ASTDeclWriter;
PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
PragmaMSCommentKind CommentKind)
: Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
public:
static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
SourceLocation CommentLoc,
PragmaMSCommentKind CommentKind,
StringRef Arg);
static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned ArgSize);
PragmaMSCommentKind getCommentKind() const { return CommentKind; }
StringRef getArg() const { return getTrailingObjects<char>(); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == PragmaComment; }
};
/// \brief Represents a `#pragma detect_mismatch` line. Always a child of
/// TranslationUnitDecl.
class PragmaDetectMismatchDecl final
: public Decl,
private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
virtual void anchor();
size_t ValueStart;
friend TrailingObjects;
friend class ASTDeclReader;
friend class ASTDeclWriter;
PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
size_t ValueStart)
: Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
public:
static PragmaDetectMismatchDecl *Create(const ASTContext &C,
TranslationUnitDecl *DC,
SourceLocation Loc, StringRef Name,
StringRef Value);
static PragmaDetectMismatchDecl *
CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
StringRef getName() const { return getTrailingObjects<char>(); }
StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
};
/// \brief Declaration context for names declared as extern "C" in C++. This
/// is neither the semantic nor lexical context for such declarations, but is
/// used to check for conflicts with other extern "C" declarations. Example:
///
/// \code
/// namespace N { extern "C" void f(); } // #1
/// void N::f() {} // #2
/// namespace M { extern "C" void f(); } // #3
/// \endcode
///
/// The semantic context of #1 is namespace N and its lexical context is the
/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
/// context is the TU. However, both declarations are also visible in the
/// extern "C" context.
///
/// The declaration at #3 finds it is a redeclaration of \c N::f through
/// lookup in the extern "C" context.
class ExternCContextDecl : public Decl, public DeclContext {
virtual void anchor();
explicit ExternCContextDecl(TranslationUnitDecl *TU)
: Decl(ExternCContext, TU, SourceLocation()),
DeclContext(ExternCContext) {}
public:
static ExternCContextDecl *Create(const ASTContext &C,
TranslationUnitDecl *TU);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ExternCContext; }
static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
}
static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
}
};
/// NamedDecl - This represents a decl with a name. Many decls have names such
/// as ObjCMethodDecl, but not \@class, etc.
class NamedDecl : public Decl {
virtual void anchor();
/// Name - The name of this declaration, which is typically a normal
/// identifier but may also be a special kind of name (C++
/// constructor, Objective-C selector, etc.)
DeclarationName Name;
private:
NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
protected:
NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
: Decl(DK, DC, L), Name(N) { }
public:
/// getIdentifier - Get the identifier that names this declaration,
/// if there is one. This will return NULL if this declaration has
/// no name (e.g., for an unnamed class) or if the name is a special
/// name (C++ constructor, Objective-C selector, etc.).
IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
/// getName - Get the name of identifier for this declaration as a StringRef.
/// This requires that the declaration have a name and that it be a simple
/// identifier.
StringRef getName() const {
assert(Name.isIdentifier() && "Name is not a simple identifier");
return getIdentifier() ? getIdentifier()->getName() : "";
}
/// getNameAsString - Get a human-readable name for the declaration, even if
/// it is one of the special kinds of names (C++ constructor, Objective-C
/// selector, etc). Creating this name requires expensive string
/// manipulation, so it should be called only when performance doesn't matter.
/// For simple declarations, getNameAsCString() should suffice.
//
// FIXME: This function should be renamed to indicate that it is not just an
// alternate form of getName(), and clients should move as appropriate.
//
// FIXME: Deprecated, move clients to getName().
std::string getNameAsString() const { return Name.getAsString(); }
virtual void printName(raw_ostream &os) const;
/// getDeclName - Get the actual, stored name of the declaration,
/// which may be a special name.
DeclarationName getDeclName() const { return Name; }
/// \brief Set the name of this declaration.
void setDeclName(DeclarationName N) { Name = N; }
/// printQualifiedName - Returns human-readable qualified name for
/// declaration, like A::B::i, for i being member of namespace A::B.
/// If declaration is not member of context which can be named (record,
/// namespace), it will return same result as printName().
/// Creating this name is expensive, so it should be called only when
/// performance doesn't matter.
void printQualifiedName(raw_ostream &OS) const;
void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
// FIXME: Remove string version.
std::string getQualifiedNameAsString() const;
/// getNameForDiagnostic - Appends a human-readable name for this
/// declaration into the given stream.
///
/// This is the method invoked by Sema when displaying a NamedDecl
/// in a diagnostic. It does not necessarily produce the same
/// result as printName(); for example, class template
/// specializations are printed with their template arguments.
virtual void getNameForDiagnostic(raw_ostream &OS,
const PrintingPolicy &Policy,
bool Qualified) const;
/// \brief Determine whether this declaration, if
/// known to be well-formed within its context, will replace the
/// declaration OldD if introduced into scope. A declaration will
/// replace another declaration if, for example, it is a
/// redeclaration of the same variable or function, but not if it is
/// a declaration of a different kind (function vs. class) or an
/// overloaded function.
///
/// \param IsKnownNewer \c true if this declaration is known to be newer
/// than \p OldD (for instance, if this declaration is newly-created).
bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
/// \brief Determine whether this declaration has linkage.
bool hasLinkage() const;
using Decl::isModulePrivate;
using Decl::setModulePrivate;
/// \brief Determine whether this declaration is hidden from name lookup.
bool isHidden() const { return Hidden; }
/// \brief Set whether this declaration is hidden from name lookup.
void setHidden(bool Hide) {
assert((!Hide || isFromASTFile() || hasLocalOwningModuleStorage()) &&
"declaration with no owning module can't be hidden");
Hidden = Hide;
}
/// \brief Determine whether this declaration is a C++ class member.
bool isCXXClassMember() const {
const DeclContext *DC = getDeclContext();
// C++0x [class.mem]p1:
// The enumerators of an unscoped enumeration defined in
// the class are members of the class.
if (isa<EnumDecl>(DC))
DC = DC->getRedeclContext();
return DC->isRecord();
}
/// \brief Determine whether the given declaration is an instance member of
/// a C++ class.
bool isCXXInstanceMember() const;
/// \brief Determine what kind of linkage this entity has.
/// This is not the linkage as defined by the standard or the codegen notion
/// of linkage. It is just an implementation detail that is used to compute
/// those.
Linkage getLinkageInternal() const;
/// \brief Get the linkage from a semantic point of view. Entities in
/// anonymous namespaces are external (in c++98).
Linkage getFormalLinkage() const {
return clang::getFormalLinkage(getLinkageInternal());
}
/// \brief True if this decl has external linkage.
bool hasExternalFormalLinkage() const {
return isExternalFormalLinkage(getLinkageInternal());
}
bool isExternallyVisible() const {
return clang::isExternallyVisible(getLinkageInternal());
}
/// \brief Determines the visibility of this entity.
Visibility getVisibility() const {
return getLinkageAndVisibility().getVisibility();
}
/// \brief Determines the linkage and visibility of this entity.
LinkageInfo getLinkageAndVisibility() const;
/// Kinds of explicit visibility.
enum ExplicitVisibilityKind {
VisibilityForType,
VisibilityForValue
};
/// \brief If visibility was explicitly specified for this
/// declaration, return that visibility.
Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const;
/// \brief True if the computed linkage is valid. Used for consistency
/// checking. Should always return true.
bool isLinkageValid() const;
/// \brief True if something has required us to compute the linkage
/// of this declaration.
///
/// Language features which can retroactively change linkage (like a
/// typedef name for linkage purposes) may need to consider this,
/// but hopefully only in transitory ways during parsing.
bool hasLinkageBeenComputed() const {
return hasCachedLinkage();
}
/// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for
/// the underlying named decl.
NamedDecl *getUnderlyingDecl() {
// Fast-path the common case.
if (this->getKind() != UsingShadow &&
this->getKind() != ConstructorUsingShadow &&
this->getKind() != ObjCCompatibleAlias &&
this->getKind() != NamespaceAlias)
return this;
return getUnderlyingDeclImpl();
}
const NamedDecl *getUnderlyingDecl() const {
return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
}
NamedDecl *getMostRecentDecl() {
return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
}
const NamedDecl *getMostRecentDecl() const {
return const_cast<NamedDecl*>(this)->getMostRecentDecl();
}
ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
};
inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
ND.printName(OS);
return OS;
}
/// LabelDecl - Represents the declaration of a label. Labels also have a
/// corresponding LabelStmt, which indicates the position that the label was
/// defined at. For normal labels, the location of the decl is the same as the
/// location of the statement. For GNU local labels (__label__), the decl
/// location is where the __label__ is.
class LabelDecl : public NamedDecl {
void anchor() override;
LabelStmt *TheStmt;
StringRef MSAsmName;
bool MSAsmNameResolved;
/// LocStart - For normal labels, this is the same as the main declaration
/// label, i.e., the location of the identifier; for GNU local labels,
/// this is the location of the __label__ keyword.
SourceLocation LocStart;
LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
LabelStmt *S, SourceLocation StartL)
: NamedDecl(Label, DC, IdentL, II),
TheStmt(S),
MSAsmNameResolved(false),
LocStart(StartL) {}
public:
static LabelDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II);
static LabelDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II,
SourceLocation GnuLabelL);
static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
LabelStmt *getStmt() const { return TheStmt; }
void setStmt(LabelStmt *T) { TheStmt = T; }
bool isGnuLocal() const { return LocStart != getLocation(); }
void setLocStart(SourceLocation L) { LocStart = L; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(LocStart, getLocation());
}
bool isMSAsmLabel() const { return MSAsmName.size() != 0; }
bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
void setMSAsmLabel(StringRef Name);
StringRef getMSAsmLabel() const { return MSAsmName; }
void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Label; }
};
/// NamespaceDecl - Represent a C++ namespace.
class NamespaceDecl : public NamedDecl, public DeclContext,
public Redeclarable<NamespaceDecl>
{
/// LocStart - The starting location of the source range, pointing
/// to either the namespace or the inline keyword.
SourceLocation LocStart;
/// RBraceLoc - The ending location of the source range.
SourceLocation RBraceLoc;
/// \brief A pointer to either the anonymous namespace that lives just inside
/// this namespace or to the first namespace in the chain (the latter case
/// only when this is not the first in the chain), along with a
/// boolean value indicating whether this is an inline namespace.
llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, NamespaceDecl *PrevDecl);
typedef Redeclarable<NamespaceDecl> redeclarable_base;
NamespaceDecl *getNextRedeclarationImpl() override;
NamespaceDecl *getPreviousDeclImpl() override;
NamespaceDecl *getMostRecentDeclImpl() override;
public:
static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
bool Inline, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
NamespaceDecl *PrevDecl);
static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
typedef redeclarable_base::redecl_range redecl_range;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
/// \brief Returns true if this is an anonymous namespace declaration.
///
/// For example:
/// \code
/// namespace {
/// ...
/// };
/// \endcode
/// q.v. C++ [namespace.unnamed]
bool isAnonymousNamespace() const {
return !getIdentifier();
}
/// \brief Returns true if this is an inline namespace declaration.
bool isInline() const {
return AnonOrFirstNamespaceAndInline.getInt();
}
/// \brief Set whether this is an inline namespace declaration.
void setInline(bool Inline) {
AnonOrFirstNamespaceAndInline.setInt(Inline);
}
/// \brief Get the original (first) namespace declaration.
NamespaceDecl *getOriginalNamespace();
/// \brief Get the original (first) namespace declaration.
const NamespaceDecl *getOriginalNamespace() const;
/// \brief Return true if this declaration is an original (first) declaration
/// of the namespace. This is false for non-original (subsequent) namespace
/// declarations and anonymous namespaces.
bool isOriginalNamespace() const;
/// \brief Retrieve the anonymous namespace nested inside this namespace,
/// if any.
NamespaceDecl *getAnonymousNamespace() const {
return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
}
void setAnonymousNamespace(NamespaceDecl *D) {
getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
}
/// Retrieves the canonical declaration of this namespace.
NamespaceDecl *getCanonicalDecl() override {
return getOriginalNamespace();
}
const NamespaceDecl *getCanonicalDecl() const {
return getOriginalNamespace();
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(LocStart, RBraceLoc);
}
SourceLocation getLocStart() const LLVM_READONLY { return LocStart; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setLocStart(SourceLocation L) { LocStart = L; }
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Namespace; }
static DeclContext *castToDeclContext(const NamespaceDecl *D) {
return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
}
static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// ValueDecl - Represent the declaration of a variable (in which case it is
/// an lvalue) a function (in which case it is a function designator) or
/// an enum constant.
class ValueDecl : public NamedDecl {
void anchor() override;
QualType DeclType;
protected:
ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T)
: NamedDecl(DK, DC, L, N), DeclType(T) {}
public:
QualType getType() const { return DeclType; }
void setType(QualType newType) { DeclType = newType; }
/// \brief Determine whether this symbol is weakly-imported,
/// or declared with the weak or weak-ref attr.
bool isWeak() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
};
/// QualifierInfo - A struct with extended info about a syntactic
/// name qualifier, to be used for the case of out-of-line declarations.
struct QualifierInfo {
NestedNameSpecifierLoc QualifierLoc;
/// NumTemplParamLists - The number of "outer" template parameter lists.
/// The count includes all of the template parameter lists that were matched
/// against the template-ids occurring into the NNS and possibly (in the
/// case of an explicit specialization) a final "template <>".
unsigned NumTemplParamLists;
/// TemplParamLists - A new-allocated array of size NumTemplParamLists,
/// containing pointers to the "outer" template parameter lists.
/// It includes all of the template parameter lists that were matched
/// against the template-ids occurring into the NNS and possibly (in the
/// case of an explicit specialization) a final "template <>".
TemplateParameterList** TemplParamLists;
/// Default constructor.
QualifierInfo()
: QualifierLoc(), NumTemplParamLists(0), TemplParamLists(nullptr) {}
/// setTemplateParameterListsInfo - Sets info about "outer" template
/// parameter lists.
void setTemplateParameterListsInfo(ASTContext &Context,
ArrayRef<TemplateParameterList *> TPLists);
private:
// Copy constructor and copy assignment are disabled.
QualifierInfo(const QualifierInfo&) = delete;
QualifierInfo& operator=(const QualifierInfo&) = delete;
};
/// \brief Represents a ValueDecl that came out of a declarator.
/// Contains type source information through TypeSourceInfo.
class DeclaratorDecl : public ValueDecl {
// A struct representing both a TInfo and a syntactic qualifier,
// to be used for the (uncommon) case of out-of-line declarations.
struct ExtInfo : public QualifierInfo {
TypeSourceInfo *TInfo;
};
llvm::PointerUnion<TypeSourceInfo*, ExtInfo*> DeclInfo;
/// InnerLocStart - The start of the source range for this declaration,
/// ignoring outer template declarations.
SourceLocation InnerLocStart;
bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
protected:
DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo,
SourceLocation StartL)
: ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {
}
public:
TypeSourceInfo *getTypeSourceInfo() const {
return hasExtInfo()
? getExtInfo()->TInfo
: DeclInfo.get<TypeSourceInfo*>();
}
void setTypeSourceInfo(TypeSourceInfo *TI) {
if (hasExtInfo())
getExtInfo()->TInfo = TI;
else
DeclInfo = TI;
}
/// getInnerLocStart - Return SourceLocation representing start of source
/// range ignoring outer template declarations.
SourceLocation getInnerLocStart() const { return InnerLocStart; }
void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
/// getOuterLocStart - Return SourceLocation representing start of source
/// range taking into account any outer template declarations.
SourceLocation getOuterLocStart() const;
SourceRange getSourceRange() const override LLVM_READONLY;
SourceLocation getLocStart() const LLVM_READONLY {
return getOuterLocStart();
}
/// \brief Retrieve the nested-name-specifier that qualifies the name of this
/// declaration, if it was present in the source.
NestedNameSpecifier *getQualifier() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
: nullptr;
}
/// \brief Retrieve the nested-name-specifier (with source-location
/// information) that qualifies the name of this declaration, if it was
/// present in the source.
NestedNameSpecifierLoc getQualifierLoc() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc
: NestedNameSpecifierLoc();
}
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
unsigned getNumTemplateParameterLists() const {
return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
}
TemplateParameterList *getTemplateParameterList(unsigned index) const {
assert(index < getNumTemplateParameterLists());
return getExtInfo()->TemplParamLists[index];
}
void setTemplateParameterListsInfo(ASTContext &Context,
ArrayRef<TemplateParameterList *> TPLists);
SourceLocation getTypeSpecStartLoc() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstDeclarator && K <= lastDeclarator;
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// \brief Structure used to store a statement, the constant value to
/// which it was evaluated (if any), and whether or not the statement
/// is an integral constant expression (if known).
struct EvaluatedStmt {
EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
CheckingICE(false), IsICE(false) { }
/// \brief Whether this statement was already evaluated.
bool WasEvaluated : 1;
/// \brief Whether this statement is being evaluated.
bool IsEvaluating : 1;
/// \brief Whether we already checked whether this statement was an
/// integral constant expression.
bool CheckedICE : 1;
/// \brief Whether we are checking whether this statement is an
/// integral constant expression.
bool CheckingICE : 1;
/// \brief Whether this statement is an integral constant expression,
/// or in C++11, whether the statement is a constant expression. Only
/// valid if CheckedICE is true.
bool IsICE : 1;
Stmt *Value;
APValue Evaluated;
};
/// VarDecl - An instance of this class is created to represent a variable
/// declaration or definition.
class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
public:
/// getStorageClassSpecifierString - Return the string used to
/// specify the storage class \p SC.
///
/// It is illegal to call this function with SC == None.
static const char *getStorageClassSpecifierString(StorageClass SC);
/// \brief Initialization styles.
enum InitializationStyle {
CInit, ///< C-style initialization with assignment
CallInit, ///< Call-style initialization (C++98)
ListInit ///< Direct list-initialization (C++11)
};
/// \brief Kinds of thread-local storage.
enum TLSKind {
TLS_None, ///< Not a TLS variable.
TLS_Static, ///< TLS with a known-constant initializer.
TLS_Dynamic ///< TLS with a dynamic initializer.
};
protected:
// A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
// have allocated the auxiliary struct of information there.
//
// TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
// this as *many* VarDecls are ParmVarDecls that don't have default
// arguments. We could save some space by moving this pointer union to be
// allocated in trailing space when necessary.
typedef llvm::PointerUnion<Stmt *, EvaluatedStmt *> InitType;
/// \brief The initializer for this variable or, for a ParmVarDecl, the
/// C++ default argument.
mutable InitType Init;
private:
class VarDeclBitfields {
friend class VarDecl;
friend class ASTDeclReader;
unsigned SClass : 3;
unsigned TSCSpec : 2;
unsigned InitStyle : 2;
};
enum { NumVarDeclBits = 7 };
friend class ASTDeclReader;
friend class StmtIteratorBase;
friend class ASTNodeImporter;
protected:
enum { NumParameterIndexBits = 8 };
enum DefaultArgKind {
DAK_None,
DAK_Unparsed,
DAK_Uninstantiated,
DAK_Normal
};
class ParmVarDeclBitfields {
friend class ParmVarDecl;
friend class ASTDeclReader;
unsigned : NumVarDeclBits;
/// Whether this parameter inherits a default argument from a
/// prior declaration.
unsigned HasInheritedDefaultArg : 1;
/// Describes the kind of default argument for this parameter. By default
/// this is none. If this is normal, then the default argument is stored in
/// the \c VarDecl initializer expression unless we were unable to parse
/// (even an invalid) expression for the default argument.
unsigned DefaultArgKind : 2;
/// Whether this parameter undergoes K&R argument promotion.
unsigned IsKNRPromoted : 1;
/// Whether this parameter is an ObjC method parameter or not.
unsigned IsObjCMethodParam : 1;
/// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
/// Otherwise, the number of function parameter scopes enclosing
/// the function parameter scope in which this parameter was
/// declared.
unsigned ScopeDepthOrObjCQuals : 7;
/// The number of parameters preceding this parameter in the
/// function parameter scope in which it was declared.
unsigned ParameterIndex : NumParameterIndexBits;
};
class NonParmVarDeclBitfields {
friend class VarDecl;
friend class ASTDeclReader;
unsigned : NumVarDeclBits;
// FIXME: We need something similar to CXXRecordDecl::DefinitionData.
/// \brief Whether this variable is a definition which was demoted due to
/// module merge.
unsigned IsThisDeclarationADemotedDefinition : 1;
/// \brief Whether this variable is the exception variable in a C++ catch
/// or an Objective-C @catch statement.
unsigned ExceptionVar : 1;
/// \brief Whether this local variable could be allocated in the return
/// slot of its function, enabling the named return value optimization
/// (NRVO).
unsigned NRVOVariable : 1;
/// \brief Whether this variable is the for-range-declaration in a C++0x
/// for-range statement.
unsigned CXXForRangeDecl : 1;
/// \brief Whether this variable is an ARC pseudo-__strong
/// variable; see isARCPseudoStrong() for details.
unsigned ARCPseudoStrong : 1;
/// \brief Whether this variable is (C++1z) inline.
unsigned IsInline : 1;
/// \brief Whether this variable has (C++1z) inline explicitly specified.
unsigned IsInlineSpecified : 1;
/// \brief Whether this variable is (C++0x) constexpr.
unsigned IsConstexpr : 1;
/// \brief Whether this variable is the implicit variable for a lambda
/// init-capture.
unsigned IsInitCapture : 1;
/// \brief Whether this local extern variable's previous declaration was
/// declared in the same block scope. This controls whether we should merge
/// the type of this declaration with its previous declaration.
unsigned PreviousDeclInSameBlockScope : 1;
};
union {
unsigned AllBits;
VarDeclBitfields VarDeclBits;
ParmVarDeclBitfields ParmVarDeclBits;
NonParmVarDeclBitfields NonParmVarDeclBits;
};
VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, StorageClass SC);
typedef Redeclarable<VarDecl> redeclarable_base;
VarDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
VarDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
VarDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
public:
typedef redeclarable_base::redecl_range redecl_range;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
static VarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
StorageClass S);
static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// \brief Returns the storage class as written in the source. For the
/// computed linkage of symbol, see getLinkage.
StorageClass getStorageClass() const {
return (StorageClass) VarDeclBits.SClass;
}
void setStorageClass(StorageClass SC);
void setTSCSpec(ThreadStorageClassSpecifier TSC) {
VarDeclBits.TSCSpec = TSC;
assert(VarDeclBits.TSCSpec == TSC && "truncation");
}
ThreadStorageClassSpecifier getTSCSpec() const {
return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
}
TLSKind getTLSKind() const;
/// hasLocalStorage - Returns true if a variable with function scope
/// is a non-static local variable.
bool hasLocalStorage() const {
if (getStorageClass() == SC_None)
// Second check is for C++11 [dcl.stc]p4.
return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
// Global Named Register (GNU extension)
if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
return false;
// Return true for: Auto, Register.
// Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
return getStorageClass() >= SC_Auto;
}
/// isStaticLocal - Returns true if a variable with function scope is a
/// static local variable.
bool isStaticLocal() const {
return (getStorageClass() == SC_Static ||
// C++11 [dcl.stc]p4
(getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
&& !isFileVarDecl();
}
/// \brief Returns true if a variable has extern or __private_extern__
/// storage.
bool hasExternalStorage() const {
return getStorageClass() == SC_Extern ||
getStorageClass() == SC_PrivateExtern;
}
/// \brief Returns true for all variables that do not have local storage.
///
/// This includes all global variables as well as static variables declared
/// within a function.
bool hasGlobalStorage() const { return !hasLocalStorage(); }
/// \brief Get the storage duration of this variable, per C++ [basic.stc].
StorageDuration getStorageDuration() const {
return hasLocalStorage() ? SD_Automatic :
getTSCSpec() ? SD_Thread : SD_Static;
}
/// \brief Compute the language linkage.
LanguageLinkage getLanguageLinkage() const;
/// \brief Determines whether this variable is a variable with
/// external, C linkage.
bool isExternC() const;
/// \brief Determines whether this variable's context is, or is nested within,
/// a C++ extern "C" linkage spec.
bool isInExternCContext() const;
/// \brief Determines whether this variable's context is, or is nested within,
/// a C++ extern "C++" linkage spec.
bool isInExternCXXContext() const;
/// isLocalVarDecl - Returns true for local variable declarations
/// other than parameters. Note that this includes static variables
/// inside of functions. It also includes variables inside blocks.
///
/// void foo() { int x; static int y; extern int z; }
///
bool isLocalVarDecl() const {
if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
return false;
if (const DeclContext *DC = getLexicalDeclContext())
return DC->getRedeclContext()->isFunctionOrMethod();
return false;
}
/// \brief Similar to isLocalVarDecl but also includes parameters.
bool isLocalVarDeclOrParm() const {
return isLocalVarDecl() || getKind() == Decl::ParmVar;
}
/// isFunctionOrMethodVarDecl - Similar to isLocalVarDecl, but
/// excludes variables declared in blocks.
bool isFunctionOrMethodVarDecl() const {
if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
return false;
const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
}
/// \brief Determines whether this is a static data member.
///
/// This will only be true in C++, and applies to, e.g., the
/// variable 'x' in:
/// \code
/// struct S {
/// static int x;
/// };
/// \endcode
bool isStaticDataMember() const {
// If it wasn't static, it would be a FieldDecl.
return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
}
VarDecl *getCanonicalDecl() override;
const VarDecl *getCanonicalDecl() const {
return const_cast<VarDecl*>(this)->getCanonicalDecl();
}
enum DefinitionKind {
DeclarationOnly, ///< This declaration is only a declaration.
TentativeDefinition, ///< This declaration is a tentative definition.
Definition ///< This declaration is definitely a definition.
};
/// \brief Check whether this declaration is a definition. If this could be
/// a tentative definition (in C), don't check whether there's an overriding
/// definition.
DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
DefinitionKind isThisDeclarationADefinition() const {
return isThisDeclarationADefinition(getASTContext());
}
/// \brief Check whether this variable is defined in this
/// translation unit.
DefinitionKind hasDefinition(ASTContext &) const;
DefinitionKind hasDefinition() const {
return hasDefinition(getASTContext());
}
/// \brief Get the tentative definition that acts as the real definition in
/// a TU. Returns null if there is a proper definition available.
VarDecl *getActingDefinition();
const VarDecl *getActingDefinition() const {
return const_cast<VarDecl*>(this)->getActingDefinition();
}
/// \brief Get the real (not just tentative) definition for this declaration.
VarDecl *getDefinition(ASTContext &);
const VarDecl *getDefinition(ASTContext &C) const {
return const_cast<VarDecl*>(this)->getDefinition(C);
}
VarDecl *getDefinition() {
return getDefinition(getASTContext());
}
const VarDecl *getDefinition() const {
return const_cast<VarDecl*>(this)->getDefinition();
}
/// \brief Determine whether this is or was instantiated from an out-of-line
/// definition of a static data member.
bool isOutOfLine() const override;
/// isFileVarDecl - Returns true for file scoped variable declaration.
bool isFileVarDecl() const {
Kind K = getKind();
if (K == ParmVar || K == ImplicitParam)
return false;
if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
return true;
if (isStaticDataMember())
return true;
return false;
}
/// getAnyInitializer - Get the initializer for this variable, no matter which
/// declaration it is attached to.
const Expr *getAnyInitializer() const {
const VarDecl *D;
return getAnyInitializer(D);
}
/// getAnyInitializer - Get the initializer for this variable, no matter which
/// declaration it is attached to. Also get that declaration.
const Expr *getAnyInitializer(const VarDecl *&D) const;
bool hasInit() const;
const Expr *getInit() const {
return const_cast<VarDecl *>(this)->getInit();
}
Expr *getInit();
/// \brief Retrieve the address of the initializer expression.
Stmt **getInitAddress();
void setInit(Expr *I);
/// \brief Determine whether this variable's value can be used in a
/// constant expression, according to the relevant language standard.
/// This only checks properties of the declaration, and does not check
/// whether the initializer is in fact a constant expression.
bool isUsableInConstantExpressions(ASTContext &C) const;
EvaluatedStmt *ensureEvaluatedStmt() const;
/// \brief Attempt to evaluate the value of the initializer attached to this
/// declaration, and produce notes explaining why it cannot be evaluated or is
/// not a constant expression. Returns a pointer to the value if evaluation
/// succeeded, 0 otherwise.
APValue *evaluateValue() const;
APValue *evaluateValue(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
/// \brief Return the already-evaluated value of this variable's
/// initializer, or NULL if the value is not yet known. Returns pointer
/// to untyped APValue if the value could not be evaluated.
APValue *getEvaluatedValue() const;
/// \brief Determines whether it is already known whether the
/// initializer is an integral constant expression or not.
bool isInitKnownICE() const;
/// \brief Determines whether the initializer is an integral constant
/// expression, or in C++11, whether the initializer is a constant
/// expression.
///
/// \pre isInitKnownICE()
bool isInitICE() const;
/// \brief Determine whether the value of the initializer attached to this
/// declaration is an integral constant expression.
bool checkInitIsICE() const;
void setInitStyle(InitializationStyle Style) {
VarDeclBits.InitStyle = Style;
}
/// \brief The style of initialization for this declaration.
///
/// C-style initialization is "int x = 1;". Call-style initialization is
/// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
/// the expression inside the parens or a "ClassType(a,b,c)" class constructor
/// expression for class types. List-style initialization is C++11 syntax,
/// e.g. "int x{1};". Clients can distinguish between different forms of
/// initialization by checking this value. In particular, "int x = {1};" is
/// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
/// Init expression in all three cases is an InitListExpr.
InitializationStyle getInitStyle() const {
return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
}
/// \brief Whether the initializer is a direct-initializer (list or call).
bool isDirectInit() const {
return getInitStyle() != CInit;
}
/// \brief If this definition should pretend to be a declaration.
bool isThisDeclarationADemotedDefinition() const {
return isa<ParmVarDecl>(this) ? false :
NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
}
/// \brief This is a definition which should be demoted to a declaration.
///
/// In some cases (mostly module merging) we can end up with two visible
/// definitions one of which needs to be demoted to a declaration to keep
/// the AST invariants.
void demoteThisDefinitionToDeclaration() {
assert (isThisDeclarationADefinition() && "Not a definition!");
assert (!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
}
/// \brief Determine whether this variable is the exception variable in a
/// C++ catch statememt or an Objective-C \@catch statement.
bool isExceptionVariable() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
}
void setExceptionVariable(bool EV) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.ExceptionVar = EV;
}
/// \brief Determine whether this local variable can be used with the named
/// return value optimization (NRVO).
///
/// The named return value optimization (NRVO) works by marking certain
/// non-volatile local variables of class type as NRVO objects. These
/// locals can be allocated within the return slot of their containing
/// function, in which case there is no need to copy the object to the
/// return slot when returning from the function. Within the function body,
/// each return that returns the NRVO object will have this variable as its
/// NRVO candidate.
bool isNRVOVariable() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
}
void setNRVOVariable(bool NRVO) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.NRVOVariable = NRVO;
}
/// \brief Determine whether this variable is the for-range-declaration in
/// a C++0x for-range statement.
bool isCXXForRangeDecl() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
}
void setCXXForRangeDecl(bool FRD) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.CXXForRangeDecl = FRD;
}
/// \brief Determine whether this variable is an ARC pseudo-__strong
/// variable. A pseudo-__strong variable has a __strong-qualified
/// type but does not actually retain the object written into it.
/// Generally such variables are also 'const' for safety.
bool isARCPseudoStrong() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ARCPseudoStrong;
}
void setARCPseudoStrong(bool ps) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.ARCPseudoStrong = ps;
}
/// Whether this variable is (C++1z) inline.
bool isInline() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
}
bool isInlineSpecified() const {
return isa<ParmVarDecl>(this) ? false
: NonParmVarDeclBits.IsInlineSpecified;
}
void setInlineSpecified() {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.IsInline = true;
NonParmVarDeclBits.IsInlineSpecified = true;
}
void setImplicitlyInline() {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.IsInline = true;
}
/// Whether this variable is (C++11) constexpr.
bool isConstexpr() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
}
void setConstexpr(bool IC) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.IsConstexpr = IC;
}
/// Whether this variable is the implicit variable for a lambda init-capture.
bool isInitCapture() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
}
void setInitCapture(bool IC) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.IsInitCapture = IC;
}
/// Whether this local extern variable declaration's previous declaration
/// was declared in the same block scope. Only correct in C++.
bool isPreviousDeclInSameBlockScope() const {
return isa<ParmVarDecl>(this)
? false
: NonParmVarDeclBits.PreviousDeclInSameBlockScope;
}
void setPreviousDeclInSameBlockScope(bool Same) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
}
/// \brief Retrieve the variable declaration from which this variable could
/// be instantiated, if it is an instantiation (rather than a non-template).
VarDecl *getTemplateInstantiationPattern() const;
/// \brief If this variable is an instantiated static data member of a
/// class template specialization, returns the templated static data member
/// from which it was instantiated.
VarDecl *getInstantiatedFromStaticDataMember() const;
/// \brief If this variable is an instantiation of a variable template or a
/// static data member of a class template, determine what kind of
/// template specialization or instantiation this is.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief If this variable is an instantiation of a variable template or a
/// static data member of a class template, determine its point of
/// instantiation.
SourceLocation getPointOfInstantiation() const;
/// \brief If this variable is an instantiation of a static data member of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// \brief For a static data member that was instantiated from a static
/// data member of a class template, set the template specialiation kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// \brief Specify that this variable is an instantiation of the
/// static data member VD.
void setInstantiationOfStaticDataMember(VarDecl *VD,
TemplateSpecializationKind TSK);
/// \brief Retrieves the variable template that is described by this
/// variable declaration.
///
/// Every variable template is represented as a VarTemplateDecl and a
/// VarDecl. The former contains template properties (such as
/// the template parameter lists) while the latter contains the
/// actual description of the template's
/// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
/// VarDecl that from a VarTemplateDecl, while
/// getDescribedVarTemplate() retrieves the VarTemplateDecl from
/// a VarDecl.
VarTemplateDecl *getDescribedVarTemplate() const;
void setDescribedVarTemplate(VarTemplateDecl *Template);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
};
class ImplicitParamDecl : public VarDecl {
void anchor() override;
public:
static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T);
static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
IdentifierInfo *Id, QualType Type)
: VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
/*tinfo*/ nullptr, SC_None) {
setImplicit();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ImplicitParam; }
};
/// ParmVarDecl - Represents a parameter to a function.
class ParmVarDecl : public VarDecl {
public:
enum { MaxFunctionScopeDepth = 255 };
enum { MaxFunctionScopeIndex = 255 };
protected:
ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
: VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
assert(ParmVarDeclBits.IsKNRPromoted == false);
assert(ParmVarDeclBits.IsObjCMethodParam == false);
setDefaultArg(DefArg);
}
public:
static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg);
static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
void setObjCMethodScopeInfo(unsigned parameterIndex) {
ParmVarDeclBits.IsObjCMethodParam = true;
setParameterIndex(parameterIndex);
}
void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
assert(!ParmVarDeclBits.IsObjCMethodParam);
ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
&& "truncation!");
setParameterIndex(parameterIndex);
}
bool isObjCMethodParameter() const {
return ParmVarDeclBits.IsObjCMethodParam;
}
unsigned getFunctionScopeDepth() const {
if (ParmVarDeclBits.IsObjCMethodParam) return 0;
return ParmVarDeclBits.ScopeDepthOrObjCQuals;
}
/// Returns the index of this parameter in its prototype or method scope.
unsigned getFunctionScopeIndex() const {
return getParameterIndex();
}
ObjCDeclQualifier getObjCDeclQualifier() const {
if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
}
void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
assert(ParmVarDeclBits.IsObjCMethodParam);
ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
}
/// True if the value passed to this parameter must undergo
/// K&R-style default argument promotion:
///
/// C99 6.5.2.2.
/// If the expression that denotes the called function has a type
/// that does not include a prototype, the integer promotions are
/// performed on each argument, and arguments that have type float
/// are promoted to double.
bool isKNRPromoted() const {
return ParmVarDeclBits.IsKNRPromoted;
}
void setKNRPromoted(bool promoted) {
ParmVarDeclBits.IsKNRPromoted = promoted;
}
Expr *getDefaultArg();
const Expr *getDefaultArg() const {
return const_cast<ParmVarDecl *>(this)->getDefaultArg();
}
void setDefaultArg(Expr *defarg);
/// \brief Retrieve the source range that covers the entire default
/// argument.
SourceRange getDefaultArgRange() const;
void setUninstantiatedDefaultArg(Expr *arg);
Expr *getUninstantiatedDefaultArg();
const Expr *getUninstantiatedDefaultArg() const {
return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
}
/// hasDefaultArg - Determines whether this parameter has a default argument,
/// either parsed or not.
bool hasDefaultArg() const;
/// hasUnparsedDefaultArg - Determines whether this parameter has a
/// default argument that has not yet been parsed. This will occur
/// during the processing of a C++ class whose member functions have
/// default arguments, e.g.,
/// @code
/// class X {
/// public:
/// void f(int x = 17); // x has an unparsed default argument now
/// }; // x has a regular default argument now
/// @endcode
bool hasUnparsedDefaultArg() const {
return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
}
bool hasUninstantiatedDefaultArg() const {
return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
}
/// setUnparsedDefaultArg - Specify that this parameter has an
/// unparsed default argument. The argument will be replaced with a
/// real default argument via setDefaultArg when the class
/// definition enclosing the function declaration that owns this
/// default argument is completed.
void setUnparsedDefaultArg() {
ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
}
bool hasInheritedDefaultArg() const {
return ParmVarDeclBits.HasInheritedDefaultArg;
}
void setHasInheritedDefaultArg(bool I = true) {
ParmVarDeclBits.HasInheritedDefaultArg = I;
}
QualType getOriginalType() const;
/// \brief Determine whether this parameter is actually a function
/// parameter pack.
bool isParameterPack() const;
/// setOwningFunction - Sets the function declaration that owns this
/// ParmVarDecl. Since ParmVarDecls are often created before the
/// FunctionDecls that own them, this routine is required to update
/// the DeclContext appropriately.
void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ParmVar; }
private:
enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
void setParameterIndex(unsigned parameterIndex) {
if (parameterIndex >= ParameterIndexSentinel) {
setParameterIndexLarge(parameterIndex);
return;
}
ParmVarDeclBits.ParameterIndex = parameterIndex;
assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
}
unsigned getParameterIndex() const {
unsigned d = ParmVarDeclBits.ParameterIndex;
return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
}
void setParameterIndexLarge(unsigned parameterIndex);
unsigned getParameterIndexLarge() const;
};
/// FunctionDecl - An instance of this class is created to represent a
/// function declaration or definition.
///
/// Since a given function can be declared several times in a program,
/// there may be several FunctionDecls that correspond to that
/// function. Only one of those FunctionDecls will be found when
/// traversing the list of declarations in the context of the
/// FunctionDecl (e.g., the translation unit); this FunctionDecl
/// contains all of the information known about the function. Other,
/// previous declarations of the function are available via the
/// getPreviousDecl() chain.
class FunctionDecl : public DeclaratorDecl, public DeclContext,
public Redeclarable<FunctionDecl> {
public:
/// \brief The kind of templated function a FunctionDecl can be.
enum TemplatedKind {
TK_NonTemplate,
TK_FunctionTemplate,
TK_MemberSpecialization,
TK_FunctionTemplateSpecialization,
TK_DependentFunctionTemplateSpecialization
};
private:
/// ParamInfo - new[]'d array of pointers to VarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo;
LazyDeclStmtPtr Body;
// FIXME: This can be packed into the bitfields in DeclContext.
// NOTE: VC++ packs bitfields poorly if the types differ.
unsigned SClass : 3;
unsigned IsInline : 1;
unsigned IsInlineSpecified : 1;
protected:
// This is shared by CXXConstructorDecl, CXXConversionDecl, and
// CXXDeductionGuideDecl.
unsigned IsExplicitSpecified : 1;
private:
unsigned IsVirtualAsWritten : 1;
unsigned IsPure : 1;
unsigned HasInheritedPrototype : 1;
unsigned HasWrittenPrototype : 1;
unsigned IsDeleted : 1;
unsigned IsTrivial : 1; // sunk from CXXMethodDecl
unsigned IsDefaulted : 1; // sunk from CXXMethoDecl
unsigned IsExplicitlyDefaulted : 1; //sunk from CXXMethodDecl
unsigned HasImplicitReturnZero : 1;
unsigned IsLateTemplateParsed : 1;
unsigned IsConstexpr : 1;
/// \brief Indicates if the function uses __try.
unsigned UsesSEHTry : 1;
/// \brief Indicates if the function was a definition but its body was
/// skipped.
unsigned HasSkippedBody : 1;
/// Indicates if the function declaration will have a body, once we're done
/// parsing it. (We don't set it to false when we're done parsing, in the
/// hopes this is simpler.)
unsigned WillHaveBody : 1;
/// \brief End part of this FunctionDecl's source range.
///
/// We could compute the full range in getSourceRange(). However, when we're
/// dealing with a function definition deserialized from a PCH/AST file,
/// we can only compute the full range once the function body has been
/// de-serialized, so it's far better to have the (sometimes-redundant)
/// EndRangeLoc.
SourceLocation EndRangeLoc;
/// \brief The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates, this value will be NULL. For function
/// declarations that describe a function template, this will be a
/// pointer to a FunctionTemplateDecl. For member functions
/// of class template specializations, this will be a MemberSpecializationInfo
/// pointer containing information about the specialization.
/// For function template specializations, this will be a
/// FunctionTemplateSpecializationInfo, which contains information about
/// the template being specialized and the template arguments involved in
/// that specialization.
llvm::PointerUnion4<FunctionTemplateDecl *,
MemberSpecializationInfo *,
FunctionTemplateSpecializationInfo *,
DependentFunctionTemplateSpecializationInfo *>
TemplateOrSpecialization;
/// DNLoc - Provides source/type location info for the
/// declaration name embedded in the DeclaratorDecl base class.
DeclarationNameLoc DNLoc;
/// \brief Specify that this function declaration is actually a function
/// template specialization.
///
/// \param C the ASTContext.
///
/// \param Template the function template that this function template
/// specialization specializes.
///
/// \param TemplateArgs the template arguments that produced this
/// function template specialization from the template.
///
/// \param InsertPos If non-NULL, the position in the function template
/// specialization set where the function template specialization data will
/// be inserted.
///
/// \param TSK the kind of template specialization this is.
///
/// \param TemplateArgsAsWritten location info of template arguments.
///
/// \param PointOfInstantiation point at which the function template
/// specialization was first instantiated.
void setFunctionTemplateSpecialization(ASTContext &C,
FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK,
const TemplateArgumentListInfo *TemplateArgsAsWritten,
SourceLocation PointOfInstantiation);
/// \brief Specify that this record is an instantiation of the
/// member function FD.
void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
TemplateSpecializationKind TSK);
void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
protected:
FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
bool isConstexprSpecified)
: DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
StartLoc),
DeclContext(DK), redeclarable_base(C), ParamInfo(nullptr), Body(),
SClass(S), IsInline(isInlineSpecified),
IsInlineSpecified(isInlineSpecified), IsExplicitSpecified(false),
IsVirtualAsWritten(false), IsPure(false),
HasInheritedPrototype(false), HasWrittenPrototype(true),
IsDeleted(false), IsTrivial(false), IsDefaulted(false),
IsExplicitlyDefaulted(false), HasImplicitReturnZero(false),
IsLateTemplateParsed(false), IsConstexpr(isConstexprSpecified),
UsesSEHTry(false), HasSkippedBody(false), WillHaveBody(false),
EndRangeLoc(NameInfo.getEndLoc()), TemplateOrSpecialization(),
DNLoc(NameInfo.getInfo()) {}
typedef Redeclarable<FunctionDecl> redeclarable_base;
FunctionDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
FunctionDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
FunctionDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
public:
typedef redeclarable_base::redecl_range redecl_range;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation NLoc,
DeclarationName N, QualType T,
TypeSourceInfo *TInfo,
StorageClass SC,
bool isInlineSpecified = false,
bool hasWrittenPrototype = true,
bool isConstexprSpecified = false) {
DeclarationNameInfo NameInfo(N, NLoc);
return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo,
SC,
isInlineSpecified, hasWrittenPrototype,
isConstexprSpecified);
}
static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC,
bool isInlineSpecified,
bool hasWrittenPrototype,
bool isConstexprSpecified = false);
static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
bool Qualified) const override;
void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
SourceRange getSourceRange() const override LLVM_READONLY;
/// \brief Returns true if the function has a body (definition). The
/// function body might be in any of the (re-)declarations of this
/// function. The variant that accepts a FunctionDecl pointer will
/// set that function declaration to the actual declaration
/// containing the body (if there is one).
bool hasBody(const FunctionDecl *&Definition) const;
bool hasBody() const override {
const FunctionDecl* Definition;
return hasBody(Definition);
}
/// hasTrivialBody - Returns whether the function has a trivial body that does
/// not require any specific codegen.
bool hasTrivialBody() const;
/// isDefined - Returns true if the function is defined at all, including
/// a deleted definition. Except for the behavior when the function is
/// deleted, behaves like hasBody.
bool isDefined(const FunctionDecl *&Definition) const;
virtual bool isDefined() const {
const FunctionDecl* Definition;
return isDefined(Definition);
}
/// \brief Get the definition for this declaration.
FunctionDecl *getDefinition() {
const FunctionDecl *Definition;
if (isDefined(Definition))
return const_cast<FunctionDecl *>(Definition);
return nullptr;
}
const FunctionDecl *getDefinition() const {
return const_cast<FunctionDecl *>(this)->getDefinition();
}
/// getBody - Retrieve the body (definition) of the function. The
/// function body might be in any of the (re-)declarations of this
/// function. The variant that accepts a FunctionDecl pointer will
/// set that function declaration to the actual declaration
/// containing the body (if there is one).
/// NOTE: For checking if there is a body, use hasBody() instead, to avoid
/// unnecessary AST de-serialization of the body.
Stmt *getBody(const FunctionDecl *&Definition) const;
Stmt *getBody() const override {
const FunctionDecl* Definition;
return getBody(Definition);
}
/// isThisDeclarationADefinition - Returns whether this specific
/// declaration of the function is also a definition. This does not
/// determine whether the function has been defined (e.g., in a
/// previous definition); for that information, use isDefined. Note
/// that this returns false for a defaulted function unless that function
/// has been implicitly defined (possibly as deleted).
bool isThisDeclarationADefinition() const {
return IsDeleted || Body || IsLateTemplateParsed;
}
/// doesThisDeclarationHaveABody - Returns whether this specific
/// declaration of the function has a body - that is, if it is a non-
/// deleted definition.
bool doesThisDeclarationHaveABody() const {
return Body || IsLateTemplateParsed;
}
void setBody(Stmt *B);
void setLazyBody(uint64_t Offset) { Body = Offset; }
/// Whether this function is variadic.
bool isVariadic() const;
/// Whether this function is marked as virtual explicitly.
bool isVirtualAsWritten() const { return IsVirtualAsWritten; }
void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; }
/// Whether this virtual function is pure, i.e. makes the containing class
/// abstract.
bool isPure() const { return IsPure; }
void setPure(bool P = true);
/// Whether this templated function will be late parsed.
bool isLateTemplateParsed() const { return IsLateTemplateParsed; }
void setLateTemplateParsed(bool ILT = true) { IsLateTemplateParsed = ILT; }
/// Whether this function is "trivial" in some specialized C++ senses.
/// Can only be true for default constructors, copy constructors,
/// copy assignment operators, and destructors. Not meaningful until
/// the class has been fully built by Sema.
bool isTrivial() const { return IsTrivial; }
void setTrivial(bool IT) { IsTrivial = IT; }
/// Whether this function is defaulted per C++0x. Only valid for
/// special member functions.
bool isDefaulted() const { return IsDefaulted; }
void setDefaulted(bool D = true) { IsDefaulted = D; }
/// Whether this function is explicitly defaulted per C++0x. Only valid
/// for special member functions.
bool isExplicitlyDefaulted() const { return IsExplicitlyDefaulted; }
void setExplicitlyDefaulted(bool ED = true) { IsExplicitlyDefaulted = ED; }
/// Whether falling off this function implicitly returns null/zero.
/// If a more specific implicit return value is required, front-ends
/// should synthesize the appropriate return statements.
bool hasImplicitReturnZero() const { return HasImplicitReturnZero; }
void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; }
/// \brief Whether this function has a prototype, either because one
/// was explicitly written or because it was "inherited" by merging
/// a declaration without a prototype with a declaration that has a
/// prototype.
bool hasPrototype() const {
return HasWrittenPrototype || HasInheritedPrototype;
}
bool hasWrittenPrototype() const { return HasWrittenPrototype; }
/// \brief Whether this function inherited its prototype from a
/// previous declaration.
bool hasInheritedPrototype() const { return HasInheritedPrototype; }
void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; }
/// Whether this is a (C++11) constexpr function or constexpr constructor.
bool isConstexpr() const { return IsConstexpr; }
void setConstexpr(bool IC) { IsConstexpr = IC; }
/// \brief Indicates the function uses __try.
bool usesSEHTry() const { return UsesSEHTry; }
void setUsesSEHTry(bool UST) { UsesSEHTry = UST; }
/// \brief Whether this function has been deleted.
///
/// A function that is "deleted" (via the C++0x "= delete" syntax)
/// acts like a normal function, except that it cannot actually be
/// called or have its address taken. Deleted functions are
/// typically used in C++ overload resolution to attract arguments
/// whose type or lvalue/rvalue-ness would permit the use of a
/// different overload that would behave incorrectly. For example,
/// one might use deleted functions to ban implicit conversion from
/// a floating-point number to an Integer type:
///
/// @code
/// struct Integer {
/// Integer(long); // construct from a long
/// Integer(double) = delete; // no construction from float or double
/// Integer(long double) = delete; // no construction from long double
/// };
/// @endcode
// If a function is deleted, its first declaration must be.
bool isDeleted() const { return getCanonicalDecl()->IsDeleted; }
bool isDeletedAsWritten() const { return IsDeleted && !IsDefaulted; }
void setDeletedAsWritten(bool D = true) { IsDeleted = D; }
/// \brief Determines whether this function is "main", which is the
/// entry point into an executable program.
bool isMain() const;
/// \brief Determines whether this function is a MSVCRT user defined entry
/// point.
bool isMSVCRTEntryPoint() const;
/// \brief Determines whether this operator new or delete is one
/// of the reserved global placement operators:
/// void *operator new(size_t, void *);
/// void *operator new[](size_t, void *);
/// void operator delete(void *, void *);
/// void operator delete[](void *, void *);
/// These functions have special behavior under [new.delete.placement]:
/// These functions are reserved, a C++ program may not define
/// functions that displace the versions in the Standard C++ library.
/// The provisions of [basic.stc.dynamic] do not apply to these
/// reserved placement forms of operator new and operator delete.
///
/// This function must be an allocation or deallocation function.
bool isReservedGlobalPlacementOperator() const;
/// \brief Determines whether this function is one of the replaceable
/// global allocation functions:
/// void *operator new(size_t);
/// void *operator new(size_t, const std::nothrow_t &) noexcept;
/// void *operator new[](size_t);
/// void *operator new[](size_t, const std::nothrow_t &) noexcept;
/// void operator delete(void *) noexcept;
/// void operator delete(void *, std::size_t) noexcept; [C++1y]
/// void operator delete(void *, const std::nothrow_t &) noexcept;
/// void operator delete[](void *) noexcept;
/// void operator delete[](void *, std::size_t) noexcept; [C++1y]
/// void operator delete[](void *, const std::nothrow_t &) noexcept;
/// These functions have special behavior under C++1y [expr.new]:
/// An implementation is allowed to omit a call to a replaceable global
/// allocation function. [...]
bool isReplaceableGlobalAllocationFunction() const;
/// Compute the language linkage.
LanguageLinkage getLanguageLinkage() const;
/// \brief Determines whether this function is a function with
/// external, C linkage.
bool isExternC() const;
/// \brief Determines whether this function's context is, or is nested within,
/// a C++ extern "C" linkage spec.
bool isInExternCContext() const;
/// \brief Determines whether this function's context is, or is nested within,
/// a C++ extern "C++" linkage spec.
bool isInExternCXXContext() const;
/// \brief Determines whether this is a global function.
bool isGlobal() const;
/// \brief Determines whether this function is known to be 'noreturn', through
/// an attribute on its declaration or its type.
bool isNoReturn() const;
/// \brief True if the function was a definition but its body was skipped.
bool hasSkippedBody() const { return HasSkippedBody; }
void setHasSkippedBody(bool Skipped = true) { HasSkippedBody = Skipped; }
/// True if this function will eventually have a body, once it's fully parsed.
bool willHaveBody() const { return WillHaveBody; }
void setWillHaveBody(bool V = true) { WillHaveBody = V; }
void setPreviousDeclaration(FunctionDecl * PrevDecl);
FunctionDecl *getCanonicalDecl() override;
const FunctionDecl *getCanonicalDecl() const {
return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
}
unsigned getBuiltinID() const;
// ArrayRef interface to parameters.
ArrayRef<ParmVarDecl *> parameters() const {
return {ParamInfo, getNumParams()};
}
MutableArrayRef<ParmVarDecl *> parameters() {
return {ParamInfo, getNumParams()};
}
// Iterator access to formal parameters.
typedef MutableArrayRef<ParmVarDecl *>::iterator param_iterator;
typedef ArrayRef<ParmVarDecl *>::const_iterator param_const_iterator;
bool param_empty() const { return parameters().empty(); }
param_iterator param_begin() { return parameters().begin(); }
param_iterator param_end() { return parameters().end(); }
param_const_iterator param_begin() const { return parameters().begin(); }
param_const_iterator param_end() const { return parameters().end(); }
size_t param_size() const { return parameters().size(); }
/// getNumParams - Return the number of parameters this function must have
/// based on its FunctionType. This is the length of the ParamInfo array
/// after it has been created.
unsigned getNumParams() const;
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
setParams(getASTContext(), NewParamInfo);
}
/// getMinRequiredArguments - Returns the minimum number of arguments
/// needed to call this function. This may be fewer than the number of
/// function parameters, if some of the parameters have default
/// arguments (in C++).
unsigned getMinRequiredArguments() const;
QualType getReturnType() const {
assert(getType()->getAs<FunctionType>() && "Expected a FunctionType!");
return getType()->getAs<FunctionType>()->getReturnType();
}
/// \brief Attempt to compute an informative source range covering the
/// function return type. This may omit qualifiers and other information with
/// limited representation in the AST.
SourceRange getReturnTypeSourceRange() const;
/// \brief Attempt to compute an informative source range covering the
/// function exception specification, if any.
SourceRange getExceptionSpecSourceRange() const;
/// \brief Determine the type of an expression that calls this function.
QualType getCallResultType() const {
assert(getType()->getAs<FunctionType>() && "Expected a FunctionType!");
return getType()->getAs<FunctionType>()->getCallResultType(getASTContext());
}
/// \brief Returns the WarnUnusedResultAttr that is either declared on this
/// function, or its return type declaration.
const Attr *getUnusedResultAttr() const;
/// \brief Returns true if this function or its return type has the
/// warn_unused_result attribute. If the return type has the attribute and
/// this function is a method of the return type's class, then false will be
/// returned to avoid spurious warnings on member methods such as assignment
/// operators.
bool hasUnusedResultAttr() const { return getUnusedResultAttr() != nullptr; }
/// \brief Returns the storage class as written in the source. For the
/// computed linkage of symbol, see getLinkage.
StorageClass getStorageClass() const { return StorageClass(SClass); }
/// \brief Determine whether the "inline" keyword was specified for this
/// function.
bool isInlineSpecified() const { return IsInlineSpecified; }
/// Set whether the "inline" keyword was specified for this function.
void setInlineSpecified(bool I) {
IsInlineSpecified = I;
IsInline = I;
}
/// Flag that this function is implicitly inline.
void setImplicitlyInline() {
IsInline = true;
}
/// \brief Determine whether this function should be inlined, because it is
/// either marked "inline" or "constexpr" or is a member function of a class
/// that was defined in the class body.
bool isInlined() const { return IsInline; }
bool isInlineDefinitionExternallyVisible() const;
bool isMSExternInline() const;
bool doesDeclarationForceExternallyVisibleDefinition() const;
/// isOverloadedOperator - Whether this function declaration
/// represents an C++ overloaded operator, e.g., "operator+".
bool isOverloadedOperator() const {
return getOverloadedOperator() != OO_None;
}
OverloadedOperatorKind getOverloadedOperator() const;
const IdentifierInfo *getLiteralIdentifier() const;
/// \brief If this function is an instantiation of a member function
/// of a class template specialization, retrieves the function from
/// which it was instantiated.
///
/// This routine will return non-NULL for (non-templated) member
/// functions of class templates and for instantiations of function
/// templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// void f(T);
/// };
/// \endcode
///
/// The declaration for X<int>::f is a (non-templated) FunctionDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromFunction() will return
/// the FunctionDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberFunction().
FunctionDecl *getInstantiatedFromMemberFunction() const;
/// \brief What kind of templated function this is.
TemplatedKind getTemplatedKind() const;
/// \brief If this function is an instantiation of a member function of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// \brief Specify that this record is an instantiation of the
/// member function FD.
void setInstantiationOfMemberFunction(FunctionDecl *FD,
TemplateSpecializationKind TSK) {
setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
}
/// \brief Retrieves the function template that is described by this
/// function declaration.
///
/// Every function template is represented as a FunctionTemplateDecl
/// and a FunctionDecl (or something derived from FunctionDecl). The
/// former contains template properties (such as the template
/// parameter lists) while the latter contains the actual
/// description of the template's
/// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
/// FunctionDecl that describes the function template,
/// getDescribedFunctionTemplate() retrieves the
/// FunctionTemplateDecl from a FunctionDecl.
FunctionTemplateDecl *getDescribedFunctionTemplate() const;
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
/// \brief Determine whether this function is a function template
/// specialization.
bool isFunctionTemplateSpecialization() const {
return getPrimaryTemplate() != nullptr;
}
/// \brief Retrieve the class scope template pattern that this function
/// template specialization is instantiated from.
FunctionDecl *getClassScopeSpecializationPattern() const;
/// \brief If this function is actually a function template specialization,
/// retrieve information about this function template specialization.
/// Otherwise, returns NULL.
FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
/// \brief Determines whether this function is a function template
/// specialization or a member of a class template specialization that can
/// be implicitly instantiated.
bool isImplicitlyInstantiable() const;
/// \brief Determines if the given function was instantiated from a
/// function template.
bool isTemplateInstantiation() const;
/// \brief Retrieve the function declaration from which this function could
/// be instantiated, if it is an instantiation (rather than a non-template
/// or a specialization, for example).
FunctionDecl *getTemplateInstantiationPattern() const;
/// \brief Retrieve the primary template that this function template
/// specialization either specializes or was instantiated from.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
FunctionTemplateDecl *getPrimaryTemplate() const;
/// \brief Retrieve the template arguments used to produce this function
/// template specialization from the primary template.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
const TemplateArgumentList *getTemplateSpecializationArgs() const;
/// \brief Retrieve the template argument list as written in the sources,
/// if any.
///
/// If this function declaration is not a function template specialization
/// or if it had no explicit template argument list, returns NULL.
/// Note that it an explicit template argument list may be written empty,
/// e.g., template<> void foo<>(char* s);
const ASTTemplateArgumentListInfo*
getTemplateSpecializationArgsAsWritten() const;
/// \brief Specify that this function declaration is actually a function
/// template specialization.
///
/// \param Template the function template that this function template
/// specialization specializes.
///
/// \param TemplateArgs the template arguments that produced this
/// function template specialization from the template.
///
/// \param InsertPos If non-NULL, the position in the function template
/// specialization set where the function template specialization data will
/// be inserted.
///
/// \param TSK the kind of template specialization this is.
///
/// \param TemplateArgsAsWritten location info of template arguments.
///
/// \param PointOfInstantiation point at which the function template
/// specialization was first instantiated.
void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
SourceLocation PointOfInstantiation = SourceLocation()) {
setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
InsertPos, TSK, TemplateArgsAsWritten,
PointOfInstantiation);
}
/// \brief Specifies that this function declaration is actually a
/// dependent function template specialization.
void setDependentTemplateSpecialization(ASTContext &Context,
const UnresolvedSetImpl &Templates,
const TemplateArgumentListInfo &TemplateArgs);
DependentFunctionTemplateSpecializationInfo *
getDependentSpecializationInfo() const;
/// \brief Determine what kind of template instantiation this function
/// represents.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief Determine what kind of template instantiation this function
/// represents.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// \brief Retrieve the (first) point of instantiation of a function template
/// specialization or a member of a class template specialization.
///
/// \returns the first point of instantiation, if this function was
/// instantiated from a template; otherwise, returns an invalid source
/// location.
SourceLocation getPointOfInstantiation() const;
/// \brief Determine whether this is or was instantiated from an out-of-line
/// definition of a member function.
bool isOutOfLine() const override;
/// \brief Identify a memory copying or setting function.
/// If the given function is a memory copy or setting function, returns
/// the corresponding Builtin ID. If the function is not a memory function,
/// returns 0.
unsigned getMemoryFunctionKind() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstFunction && K <= lastFunction;
}
static DeclContext *castToDeclContext(const FunctionDecl *D) {
return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
}
static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// FieldDecl - An instance of this class is created by Sema::ActOnField to
/// represent a member of a struct/union/class.
class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
// FIXME: This can be packed into the bitfields in Decl.
unsigned Mutable : 1;
mutable unsigned CachedFieldIndex : 31;
/// The kinds of value we can store in InitializerOrBitWidth.
///
/// Note that this is compatible with InClassInitStyle except for
/// ISK_CapturedVLAType.
enum InitStorageKind {
/// If the pointer is null, there's nothing special. Otherwise,
/// this is a bitfield and the pointer is the Expr* storing the
/// bit-width.
ISK_BitWidthOrNothing = (unsigned) ICIS_NoInit,
/// The pointer is an (optional due to delayed parsing) Expr*
/// holding the copy-initializer.
ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
/// The pointer is an (optional due to delayed parsing) Expr*
/// holding the list-initializer.
ISK_InClassListInit = (unsigned) ICIS_ListInit,
/// The pointer is a VariableArrayType* that's been captured;
/// the enclosing context is a lambda or captured statement.
ISK_CapturedVLAType,
};
/// \brief Storage for either the bit-width, the in-class
/// initializer, or the captured variable length array bound.
///
/// We can safely combine these because in-class initializers are
/// not permitted for bit-fields, and both are exclusive with VLA
/// captures.
///
/// If the storage kind is ISK_InClassCopyInit or
/// ISK_InClassListInit, but the initializer is null, then this
/// field has an in-class initializer which has not yet been parsed
/// and attached.
llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
protected:
FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
InClassInitStyle InitStyle)
: DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
Mutable(Mutable), CachedFieldIndex(0),
InitStorage(BW, (InitStorageKind) InitStyle) {
assert((!BW || InitStyle == ICIS_NoInit) && "got initializer for bitfield");
}
public:
static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
InClassInitStyle InitStyle);
static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// getFieldIndex - Returns the index of this field within its record,
/// as appropriate for passing to ASTRecordLayout::getFieldOffset.
unsigned getFieldIndex() const;
/// isMutable - Determines whether this field is mutable (C++ only).
bool isMutable() const { return Mutable; }
/// \brief Determines whether this field is a bitfield.
bool isBitField() const {
return InitStorage.getInt() == ISK_BitWidthOrNothing &&
InitStorage.getPointer() != nullptr;
}
/// @brief Determines whether this is an unnamed bitfield.
bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
/// isAnonymousStructOrUnion - Determines whether this field is a
/// representative for an anonymous struct or union. Such fields are
/// unnamed and are implicitly generated by the implementation to
/// store the data for the anonymous union or struct.
bool isAnonymousStructOrUnion() const;
Expr *getBitWidth() const {
return isBitField()
? static_cast<Expr *>(InitStorage.getPointer())
: nullptr;
}
unsigned getBitWidthValue(const ASTContext &Ctx) const;
/// setBitWidth - Set the bit-field width for this member.
// Note: used by some clients (i.e., do not remove it).
void setBitWidth(Expr *Width) {
assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
InitStorage.getPointer() == nullptr &&
"bit width, initializer or captured type already set");
InitStorage.setPointerAndInt(Width, ISK_BitWidthOrNothing);
}
/// removeBitWidth - Remove the bit-field width from this member.
// Note: used by some clients (i.e., do not remove it).
void removeBitWidth() {
assert(isBitField() && "no bitfield width to remove");
InitStorage.setPointerAndInt(nullptr, ISK_BitWidthOrNothing);
}
/// getInClassInitStyle - Get the kind of (C++11) in-class initializer which
/// this field has.
InClassInitStyle getInClassInitStyle() const {
InitStorageKind storageKind = InitStorage.getInt();
return (storageKind == ISK_CapturedVLAType
? ICIS_NoInit : (InClassInitStyle) storageKind);
}
/// hasInClassInitializer - Determine whether this member has a C++11 in-class
/// initializer.
bool hasInClassInitializer() const {
return getInClassInitStyle() != ICIS_NoInit;
}
/// getInClassInitializer - Get the C++11 in-class initializer for this
/// member, or null if one has not been set. If a valid declaration has an
/// in-class initializer, but this returns null, then we have not parsed and
/// attached it yet.
Expr *getInClassInitializer() const {
return hasInClassInitializer()
? static_cast<Expr *>(InitStorage.getPointer())
: nullptr;
}
/// setInClassInitializer - Set the C++11 in-class initializer for this
/// member.
void setInClassInitializer(Expr *Init) {
assert(hasInClassInitializer() &&
InitStorage.getPointer() == nullptr &&
"bit width, initializer or captured type already set");
InitStorage.setPointer(Init);
}
/// removeInClassInitializer - Remove the C++11 in-class initializer from this
/// member.
void removeInClassInitializer() {
assert(hasInClassInitializer() && "no initializer to remove");
InitStorage.setPointerAndInt(nullptr, ISK_BitWidthOrNothing);
}
/// \brief Determine whether this member captures the variable length array
/// type.
bool hasCapturedVLAType() const {
return InitStorage.getInt() == ISK_CapturedVLAType;
}
/// \brief Get the captured variable length array type.
const VariableArrayType *getCapturedVLAType() const {
return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
InitStorage.getPointer())
: nullptr;
}
/// \brief Set the captured variable length array type for this field.
void setCapturedVLAType(const VariableArrayType *VLAType);
/// getParent - Returns the parent of this field declaration, which
/// is the struct in which this method is defined.
const RecordDecl *getParent() const {
return cast<RecordDecl>(getDeclContext());
}
RecordDecl *getParent() {
return cast<RecordDecl>(getDeclContext());
}
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this field.
FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// EnumConstantDecl - An instance of this object exists for each enum constant
/// that is defined. For example, in "enum X {a,b}", each of a/b are
/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
/// TagType for the X EnumDecl.
class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
Stmt *Init; // an integer constant expression
llvm::APSInt Val; // The value.
protected:
EnumConstantDecl(DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, Expr *E,
const llvm::APSInt &V)
: ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
public:
static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, Expr *E,
const llvm::APSInt &V);
static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
const Expr *getInitExpr() const { return (const Expr*) Init; }
Expr *getInitExpr() { return (Expr*) Init; }
const llvm::APSInt &getInitVal() const { return Val; }
void setInitExpr(Expr *E) { Init = (Stmt*) E; }
void setInitVal(const llvm::APSInt &V) { Val = V; }
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this enumerator.
EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == EnumConstant; }
friend class StmtIteratorBase;
};
/// IndirectFieldDecl - An instance of this class is created to represent a
/// field injected from an anonymous union/struct into the parent scope.
/// IndirectFieldDecl are always implicit.
class IndirectFieldDecl : public ValueDecl,
public Mergeable<IndirectFieldDecl> {
void anchor() override;
NamedDecl **Chaining;
unsigned ChainingSize;
IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T,
MutableArrayRef<NamedDecl *> CH);
public:
static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
typedef ArrayRef<NamedDecl *>::const_iterator chain_iterator;
ArrayRef<NamedDecl *> chain() const {
return llvm::makeArrayRef(Chaining, ChainingSize);
}
chain_iterator chain_begin() const { return chain().begin(); }
chain_iterator chain_end() const { return chain().end(); }
unsigned getChainingSize() const { return ChainingSize; }
FieldDecl *getAnonField() const {
assert(chain().size() >= 2);
return cast<FieldDecl>(chain().back());
}
VarDecl *getVarDecl() const {
assert(chain().size() >= 2);
return dyn_cast<VarDecl>(chain().front());
}
IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == IndirectField; }
friend class ASTDeclReader;
};
/// TypeDecl - Represents a declaration of a type.
///
class TypeDecl : public NamedDecl {
void anchor() override;
/// TypeForDecl - This indicates the Type object that represents
/// this TypeDecl. It is a cache maintained by
/// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
/// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
mutable const Type *TypeForDecl;
/// LocStart - The start of the source range for this declaration.
SourceLocation LocStart;
friend class ASTContext;
protected:
TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
SourceLocation StartL = SourceLocation())
: NamedDecl(DK, DC, L, Id), TypeForDecl(nullptr), LocStart(StartL) {}
public:
// Low-level accessor. If you just want the type defined by this node,
// check out ASTContext::getTypeDeclType or one of
// ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
// already know the specific kind of node this is.
const Type *getTypeForDecl() const { return TypeForDecl; }
void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
SourceLocation getLocStart() const LLVM_READONLY { return LocStart; }
void setLocStart(SourceLocation L) { LocStart = L; }
SourceRange getSourceRange() const override LLVM_READONLY {
if (LocStart.isValid())
return SourceRange(LocStart, getLocation());
else
return SourceRange(getLocation());
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
};
/// Base class for declarations which introduce a typedef-name.
class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
void anchor() override;
typedef std::pair<TypeSourceInfo*, QualType> ModedTInfo;
llvm::PointerUnion<TypeSourceInfo*, ModedTInfo*> MaybeModedTInfo;
// FIXME: This can be packed into the bitfields in Decl.
/// If 0, we have not computed IsTransparentTag.
/// Otherwise, IsTransparentTag is (CacheIsTransparentTag >> 1).
mutable unsigned CacheIsTransparentTag : 2;
protected:
TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
MaybeModedTInfo(TInfo), CacheIsTransparentTag(0) {}
typedef Redeclarable<TypedefNameDecl> redeclarable_base;
TypedefNameDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
TypedefNameDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
TypedefNameDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
public:
typedef redeclarable_base::redecl_range redecl_range;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
bool isModed() const { return MaybeModedTInfo.is<ModedTInfo*>(); }
TypeSourceInfo *getTypeSourceInfo() const {
return isModed()
? MaybeModedTInfo.get<ModedTInfo*>()->first
: MaybeModedTInfo.get<TypeSourceInfo*>();
}
QualType getUnderlyingType() const {
return isModed()
? MaybeModedTInfo.get<ModedTInfo*>()->second
: MaybeModedTInfo.get<TypeSourceInfo*>()->getType();
}
void setTypeSourceInfo(TypeSourceInfo *newType) {
MaybeModedTInfo = newType;
}
void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
MaybeModedTInfo = new (getASTContext()) ModedTInfo(unmodedTSI, modedTy);
}
/// Retrieves the canonical declaration of this typedef-name.
TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
/// Retrieves the tag declaration for which this is the typedef name for
/// linkage purposes, if any.
///
/// \param AnyRedecl Look for the tag declaration in any redeclaration of
/// this typedef declaration.
TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
/// Determines if this typedef shares a name and spelling location with its
/// underlying tag type, as is the case with the NS_ENUM macro.
bool isTransparentTag() const {
if (CacheIsTransparentTag)
return CacheIsTransparentTag & 0x2;
return isTransparentTagSlow();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstTypedefName && K <= lastTypedefName;
}
private:
bool isTransparentTagSlow() const;
};
/// TypedefDecl - Represents the declaration of a typedef-name via the 'typedef'
/// type specifier.
class TypedefDecl : public TypedefNameDecl {
TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
public:
static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo);
static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Typedef; }
};
/// TypeAliasDecl - Represents the declaration of a typedef-name via a C++0x
/// alias-declaration.
class TypeAliasDecl : public TypedefNameDecl {
/// The template for which this is the pattern, if any.
TypeAliasTemplateDecl *Template;
TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
Template(nullptr) {}
public:
static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo);
static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TypeAlias; }
};
/// TagDecl - Represents the declaration of a struct/union/class/enum.
class TagDecl
: public TypeDecl, public DeclContext, public Redeclarable<TagDecl> {
public:
// This is really ugly.
typedef TagTypeKind TagKind;
private:
// FIXME: This can be packed into the bitfields in Decl.
/// TagDeclKind - The TagKind enum.
unsigned TagDeclKind : 3;
/// IsCompleteDefinition - True if this is a definition ("struct foo
/// {};"), false if it is a declaration ("struct foo;"). It is not
/// a definition until the definition has been fully processed.
unsigned IsCompleteDefinition : 1;
protected:
/// IsBeingDefined - True if this is currently being defined.
unsigned IsBeingDefined : 1;
private:
/// IsEmbeddedInDeclarator - True if this tag declaration is
/// "embedded" (i.e., defined or declared for the very first time)
/// in the syntax of a declarator.
unsigned IsEmbeddedInDeclarator : 1;
/// \brief True if this tag is free standing, e.g. "struct foo;".
unsigned IsFreeStanding : 1;
protected:
// These are used by (and only defined for) EnumDecl.
unsigned NumPositiveBits : 8;
unsigned NumNegativeBits : 8;
/// IsScoped - True if this tag declaration is a scoped enumeration. Only
/// possible in C++11 mode.
unsigned IsScoped : 1;
/// IsScopedUsingClassTag - If this tag declaration is a scoped enum,
/// then this is true if the scoped enum was declared using the class
/// tag, false if it was declared with the struct tag. No meaning is
/// associated if this tag declaration is not a scoped enum.
unsigned IsScopedUsingClassTag : 1;
/// IsFixed - True if this is an enumeration with fixed underlying type. Only
/// possible in C++11, Microsoft extensions, or Objective C mode.
unsigned IsFixed : 1;
/// \brief Indicates whether it is possible for declarations of this kind
/// to have an out-of-date definition.
///
/// This option is only enabled when modules are enabled.
unsigned MayHaveOutOfDateDef : 1;
/// Has the full definition of this type been required by a use somewhere in
/// the TU.
unsigned IsCompleteDefinitionRequired : 1;
private:
SourceRange BraceRange;
// A struct representing syntactic qualifier info,
// to be used for the (uncommon) case of out-of-line declarations.
typedef QualifierInfo ExtInfo;
/// \brief If the (out-of-line) tag declaration name
/// is qualified, it points to the qualifier info (nns and range);
/// otherwise, if the tag declaration is anonymous and it is part of
/// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
/// otherwise, if the tag declaration is anonymous and it is used as a
/// declaration specifier for variables, it points to the first VarDecl (used
/// for mangling);
/// otherwise, it is a null (TypedefNameDecl) pointer.
llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
const ExtInfo *getExtInfo() const {
return TypedefNameDeclOrQualifier.get<ExtInfo *>();
}
protected:
TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
SourceLocation StartL)
: TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
TagDeclKind(TK), IsCompleteDefinition(false), IsBeingDefined(false),
IsEmbeddedInDeclarator(false), IsFreeStanding(false),
IsCompleteDefinitionRequired(false),
TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
assert((DK != Enum || TK == TTK_Enum) &&
"EnumDecl not matched with TTK_Enum");
setPreviousDecl(PrevDecl);
}
typedef Redeclarable<TagDecl> redeclarable_base;
TagDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
TagDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
TagDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
/// @brief Completes the definition of this tag declaration.
///
/// This is a helper function for derived classes.
void completeDefinition();
public:
typedef redeclarable_base::redecl_range redecl_range;
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
SourceRange getBraceRange() const { return BraceRange; }
void setBraceRange(SourceRange R) { BraceRange = R; }
/// getInnerLocStart - Return SourceLocation representing start of source
/// range ignoring outer template declarations.
SourceLocation getInnerLocStart() const { return getLocStart(); }
/// getOuterLocStart - Return SourceLocation representing start of source
/// range taking into account any outer template declarations.
SourceLocation getOuterLocStart() const;
SourceRange getSourceRange() const override LLVM_READONLY;
TagDecl *getCanonicalDecl() override;
const TagDecl *getCanonicalDecl() const {
return const_cast<TagDecl*>(this)->getCanonicalDecl();
}
/// isThisDeclarationADefinition() - Return true if this declaration
/// is a completion definition of the type. Provided for consistency.
bool isThisDeclarationADefinition() const {
return isCompleteDefinition();
}
/// isCompleteDefinition - Return true if this decl has its body
/// fully specified.
bool isCompleteDefinition() const {
return IsCompleteDefinition;
}
/// \brief Return true if this complete decl is
/// required to be complete for some existing use.
bool isCompleteDefinitionRequired() const {
return IsCompleteDefinitionRequired;
}
/// isBeingDefined - Return true if this decl is currently being defined.
bool isBeingDefined() const {
return IsBeingDefined;
}
bool isEmbeddedInDeclarator() const {
return IsEmbeddedInDeclarator;
}
void setEmbeddedInDeclarator(bool isInDeclarator) {
IsEmbeddedInDeclarator = isInDeclarator;
}
bool isFreeStanding() const { return IsFreeStanding; }
void setFreeStanding(bool isFreeStanding = true) {
IsFreeStanding = isFreeStanding;
}
/// \brief Whether this declaration declares a type that is
/// dependent, i.e., a type that somehow depends on template
/// parameters.
bool isDependentType() const { return isDependentContext(); }
/// @brief Starts the definition of this tag declaration.
///
/// This method should be invoked at the beginning of the definition
/// of this tag declaration. It will set the tag type into a state
/// where it is in the process of being defined.
void startDefinition();
/// getDefinition - Returns the TagDecl that actually defines this
/// struct/union/class/enum. When determining whether or not a
/// struct/union/class/enum has a definition, one should use this
/// method as opposed to 'isDefinition'. 'isDefinition' indicates
/// whether or not a specific TagDecl is defining declaration, not
/// whether or not the struct/union/class/enum type is defined.
/// This method returns NULL if there is no TagDecl that defines
/// the struct/union/class/enum.
TagDecl *getDefinition() const;
void setCompleteDefinition(bool V) { IsCompleteDefinition = V; }
void setCompleteDefinitionRequired(bool V = true) {
IsCompleteDefinitionRequired = V;
}
StringRef getKindName() const {
return TypeWithKeyword::getTagTypeKindName(getTagKind());
}
TagKind getTagKind() const {
return TagKind(TagDeclKind);
}
void setTagKind(TagKind TK) { TagDeclKind = TK; }
bool isStruct() const { return getTagKind() == TTK_Struct; }
bool isInterface() const { return getTagKind() == TTK_Interface; }
bool isClass() const { return getTagKind() == TTK_Class; }
bool isUnion() const { return getTagKind() == TTK_Union; }
bool isEnum() const { return getTagKind() == TTK_Enum; }
/// Is this tag type named, either directly or via being defined in
/// a typedef of this type?
///
/// C++11 [basic.link]p8:
/// A type is said to have linkage if and only if:
/// - it is a class or enumeration type that is named (or has a
/// name for linkage purposes) and the name has linkage; ...
/// C++11 [dcl.typedef]p9:
/// If the typedef declaration defines an unnamed class (or enum),
/// the first typedef-name declared by the declaration to be that
/// class type (or enum type) is used to denote the class type (or
/// enum type) for linkage purposes only.
///
/// C does not have an analogous rule, but the same concept is
/// nonetheless useful in some places.
bool hasNameForLinkage() const {
return (getDeclName() || getTypedefNameForAnonDecl());
}
TypedefNameDecl *getTypedefNameForAnonDecl() const {
return hasExtInfo() ? nullptr
: TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
}
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
/// \brief Retrieve the nested-name-specifier that qualifies the name of this
/// declaration, if it was present in the source.
NestedNameSpecifier *getQualifier() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
: nullptr;
}
/// \brief Retrieve the nested-name-specifier (with source-location
/// information) that qualifies the name of this declaration, if it was
/// present in the source.
NestedNameSpecifierLoc getQualifierLoc() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc
: NestedNameSpecifierLoc();
}
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
unsigned getNumTemplateParameterLists() const {
return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
}
TemplateParameterList *getTemplateParameterList(unsigned i) const {
assert(i < getNumTemplateParameterLists());
return getExtInfo()->TemplParamLists[i];
}
void setTemplateParameterListsInfo(ASTContext &Context,
ArrayRef<TemplateParameterList *> TPLists);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
static DeclContext *castToDeclContext(const TagDecl *D) {
return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
}
static TagDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// EnumDecl - Represents an enum. In C++11, enums can be forward-declared
/// with a fixed underlying type, and in C we allow them to be forward-declared
/// with no underlying type as an extension.
class EnumDecl : public TagDecl {
void anchor() override;
/// IntegerType - This represent the integer type that the enum corresponds
/// to for code generation purposes. Note that the enumerator constants may
/// have a different type than this does.
///
/// If the underlying integer type was explicitly stated in the source
/// code, this is a TypeSourceInfo* for that type. Otherwise this type
/// was automatically deduced somehow, and this is a Type*.
///
/// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
/// some cases it won't.
///
/// The underlying type of an enumeration never has any qualifiers, so
/// we can get away with just storing a raw Type*, and thus save an
/// extra pointer when TypeSourceInfo is needed.
llvm::PointerUnion<const Type*, TypeSourceInfo*> IntegerType;
/// PromotionType - The integer type that values of this type should
/// promote to. In C, enumerators are generally of an integer type
/// directly, but gcc-style large enumerators (and all enumerators
/// in C++) are of the enum type instead.
QualType PromotionType;
/// \brief If this enumeration is an instantiation of a member enumeration
/// of a class template specialization, this is the member specialization
/// information.
MemberSpecializationInfo *SpecializationInfo;
EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
bool Scoped, bool ScopedUsingClassTag, bool Fixed)
: TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc),
SpecializationInfo(nullptr) {
assert(Scoped || !ScopedUsingClassTag);
IntegerType = (const Type *)nullptr;
NumNegativeBits = 0;
NumPositiveBits = 0;
IsScoped = Scoped;
IsScopedUsingClassTag = ScopedUsingClassTag;
IsFixed = Fixed;
}
void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
TemplateSpecializationKind TSK);
public:
EnumDecl *getCanonicalDecl() override {
return cast<EnumDecl>(TagDecl::getCanonicalDecl());
}
const EnumDecl *getCanonicalDecl() const {
return const_cast<EnumDecl*>(this)->getCanonicalDecl();
}
EnumDecl *getPreviousDecl() {
return cast_or_null<EnumDecl>(
static_cast<TagDecl *>(this)->getPreviousDecl());
}
const EnumDecl *getPreviousDecl() const {
return const_cast<EnumDecl*>(this)->getPreviousDecl();
}
EnumDecl *getMostRecentDecl() {
return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
}
const EnumDecl *getMostRecentDecl() const {
return const_cast<EnumDecl*>(this)->getMostRecentDecl();
}
EnumDecl *getDefinition() const {
return cast_or_null<EnumDecl>(TagDecl::getDefinition());
}
static EnumDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, EnumDecl *PrevDecl,
bool IsScoped, bool IsScopedUsingClassTag,
bool IsFixed);
static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// completeDefinition - When created, the EnumDecl corresponds to a
/// forward-declared enum. This method is used to mark the
/// declaration as being defined; it's enumerators have already been
/// added (via DeclContext::addDecl). NewType is the new underlying
/// type of the enumeration type.
void completeDefinition(QualType NewType,
QualType PromotionType,
unsigned NumPositiveBits,
unsigned NumNegativeBits);
// enumerator_iterator - Iterates through the enumerators of this
// enumeration.
typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator;
typedef llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>
enumerator_range;
enumerator_range enumerators() const {
return enumerator_range(enumerator_begin(), enumerator_end());
}
enumerator_iterator enumerator_begin() const {
const EnumDecl *E = getDefinition();
if (!E)
E = this;
return enumerator_iterator(E->decls_begin());
}
enumerator_iterator enumerator_end() const {
const EnumDecl *E = getDefinition();
if (!E)
E = this;
return enumerator_iterator(E->decls_end());
}
/// getPromotionType - Return the integer type that enumerators
/// should promote to.
QualType getPromotionType() const { return PromotionType; }
/// \brief Set the promotion type.
void setPromotionType(QualType T) { PromotionType = T; }
/// getIntegerType - Return the integer type this enum decl corresponds to.
/// This returns a null QualType for an enum forward definition with no fixed
/// underlying type.
QualType getIntegerType() const {
if (!IntegerType)
return QualType();
if (const Type *T = IntegerType.dyn_cast<const Type*>())
return QualType(T, 0);
return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
}
/// \brief Set the underlying integer type.
void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
/// \brief Set the underlying integer type source info.
void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
/// \brief Return the type source info for the underlying integer type,
/// if no type source info exists, return 0.
TypeSourceInfo *getIntegerTypeSourceInfo() const {
return IntegerType.dyn_cast<TypeSourceInfo*>();
}
/// \brief Retrieve the source range that covers the underlying type if
/// specified.
SourceRange getIntegerTypeRange() const LLVM_READONLY;
/// \brief Returns the width in bits required to store all the
/// non-negative enumerators of this enum.
unsigned getNumPositiveBits() const {
return NumPositiveBits;
}
void setNumPositiveBits(unsigned Num) {
NumPositiveBits = Num;
assert(NumPositiveBits == Num && "can't store this bitcount");
}
/// \brief Returns the width in bits required to store all the
/// negative enumerators of this enum. These widths include
/// the rightmost leading 1; that is:
///
/// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
/// ------------------------ ------- -----------------
/// -1 1111111 1
/// -10 1110110 5
/// -101 1001011 8
unsigned getNumNegativeBits() const {
return NumNegativeBits;
}
void setNumNegativeBits(unsigned Num) {
NumNegativeBits = Num;
}
/// \brief Returns true if this is a C++11 scoped enumeration.
bool isScoped() const {
return IsScoped;
}
/// \brief Returns true if this is a C++11 scoped enumeration.
bool isScopedUsingClassTag() const {
return IsScopedUsingClassTag;
}
/// \brief Returns true if this is an Objective-C, C++11, or
/// Microsoft-style enumeration with a fixed underlying type.
bool isFixed() const {
return IsFixed;
}
/// \brief Returns true if this can be considered a complete type.
bool isComplete() const {
return isCompleteDefinition() || isFixed();
}
/// Returns true if this enum is either annotated with
/// enum_extensibility(closed) or isn't annotated with enum_extensibility.
bool isClosed() const;
/// Returns true if this enum is annotated with flag_enum and isn't annotated
/// with enum_extensibility(open).
bool isClosedFlag() const;
/// Returns true if this enum is annotated with neither flag_enum nor
/// enum_extensibility(open).
bool isClosedNonFlag() const;
/// \brief Retrieve the enum definition from which this enumeration could
/// be instantiated, if it is an instantiation (rather than a non-template).
EnumDecl *getTemplateInstantiationPattern() const;
/// \brief Returns the enumeration (declared within the template)
/// from which this enumeration type was instantiated, or NULL if
/// this enumeration was not instantiated from any template.
EnumDecl *getInstantiatedFromMemberEnum() const;
/// \brief If this enumeration is a member of a specialization of a
/// templated class, determine what kind of template specialization
/// or instantiation this is.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief For an enumeration member that was instantiated from a member
/// enumeration of a templated class, set the template specialiation kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// \brief If this enumeration is an instantiation of a member enumeration of
/// a class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const {
return SpecializationInfo;
}
/// \brief Specify that this enumeration is an instantiation of the
/// member enumeration ED.
void setInstantiationOfMemberEnum(EnumDecl *ED,
TemplateSpecializationKind TSK) {
setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Enum; }
friend class ASTDeclReader;
};
/// RecordDecl - Represents a struct/union/class. For example:
/// struct X; // Forward declaration, no "body".
/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
/// This decl will be marked invalid if *any* members are invalid.
///
class RecordDecl : public TagDecl {
// FIXME: This can be packed into the bitfields in Decl.
/// HasFlexibleArrayMember - This is true if this struct ends with a flexible
/// array member (e.g. int X[]) or if this union contains a struct that does.
/// If so, this cannot be contained in arrays or other structs as a member.
bool HasFlexibleArrayMember : 1;
/// AnonymousStructOrUnion - Whether this is the type of an anonymous struct
/// or union.
bool AnonymousStructOrUnion : 1;
/// HasObjectMember - This is true if this struct has at least one member
/// containing an Objective-C object pointer type.
bool HasObjectMember : 1;
/// HasVolatileMember - This is true if struct has at least one member of
/// 'volatile' type.
bool HasVolatileMember : 1;
/// \brief Whether the field declarations of this record have been loaded
/// from external storage. To avoid unnecessary deserialization of
/// methods/nested types we allow deserialization of just the fields
/// when needed.
mutable bool LoadedFieldsFromExternalStorage : 1;
friend class DeclContext;
protected:
RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, RecordDecl *PrevDecl);
public:
static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
RecordDecl *getPreviousDecl() {
return cast_or_null<RecordDecl>(
static_cast<TagDecl *>(this)->getPreviousDecl());
}
const RecordDecl *getPreviousDecl() const {
return const_cast<RecordDecl*>(this)->getPreviousDecl();
}
RecordDecl *getMostRecentDecl() {
return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
}
const RecordDecl *getMostRecentDecl() const {
return const_cast<RecordDecl*>(this)->getMostRecentDecl();
}
bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; }
void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; }
/// isAnonymousStructOrUnion - Whether this is an anonymous struct
/// or union. To be an anonymous struct or union, it must have been
/// declared without a name and there must be no objects of this
/// type declared, e.g.,
/// @code
/// union { int i; float f; };
/// @endcode
/// is an anonymous union but neither of the following are:
/// @code
/// union X { int i; float f; };
/// union { int i; float f; } obj;
/// @endcode
bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; }
void setAnonymousStructOrUnion(bool Anon) {
AnonymousStructOrUnion = Anon;
}
bool hasObjectMember() const { return HasObjectMember; }
void setHasObjectMember (bool val) { HasObjectMember = val; }
bool hasVolatileMember() const { return HasVolatileMember; }
void setHasVolatileMember (bool val) { HasVolatileMember = val; }
bool hasLoadedFieldsFromExternalStorage() const {
return LoadedFieldsFromExternalStorage;
}
void setHasLoadedFieldsFromExternalStorage(bool val) {
LoadedFieldsFromExternalStorage = val;
}
/// \brief Determines whether this declaration represents the
/// injected class name.
///
/// The injected class name in C++ is the name of the class that
/// appears inside the class itself. For example:
///
/// \code
/// struct C {
/// // C is implicitly declared here as a synonym for the class name.
/// };
///
/// C::C c; // same as "C c;"
/// \endcode
bool isInjectedClassName() const;
/// \brief Determine whether this record is a class describing a lambda
/// function object.
bool isLambda() const;
/// \brief Determine whether this record is a record for captured variables in
/// CapturedStmt construct.
bool isCapturedRecord() const;
/// \brief Mark the record as a record for captured variables in CapturedStmt
/// construct.
void setCapturedRecord();
/// getDefinition - Returns the RecordDecl that actually defines
/// this struct/union/class. When determining whether or not a
/// struct/union/class is completely defined, one should use this
/// method as opposed to 'isCompleteDefinition'.
/// 'isCompleteDefinition' indicates whether or not a specific
/// RecordDecl is a completed definition, not whether or not the
/// record type is defined. This method returns NULL if there is
/// no RecordDecl that defines the struct/union/tag.
RecordDecl *getDefinition() const {
return cast_or_null<RecordDecl>(TagDecl::getDefinition());
}
// Iterator access to field members. The field iterator only visits
// the non-static data members of this class, ignoring any static
// data members, functions, constructors, destructors, etc.
typedef specific_decl_iterator<FieldDecl> field_iterator;
typedef llvm::iterator_range<specific_decl_iterator<FieldDecl>> field_range;
field_range fields() const { return field_range(field_begin(), field_end()); }
field_iterator field_begin() const;
field_iterator field_end() const {
return field_iterator(decl_iterator());
}
// field_empty - Whether there are any fields (non-static data
// members) in this record.
bool field_empty() const {
return field_begin() == field_end();
}
/// completeDefinition - Notes that the definition of this type is
/// now complete.
virtual void completeDefinition();
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstRecord && K <= lastRecord;
}
/// isMsStrust - Get whether or not this is an ms_struct which can
/// be turned on with an attribute, pragma, or -mms-bitfields
/// commandline option.
bool isMsStruct(const ASTContext &C) const;
/// \brief Whether we are allowed to insert extra padding between fields.
/// These padding are added to help AddressSanitizer detect
/// intra-object-overflow bugs.
bool mayInsertExtraPadding(bool EmitRemark = false) const;
/// Finds the first data member which has a name.
/// nullptr is returned if no named data member exists.
const FieldDecl *findFirstNamedDataMember() const;
private:
/// \brief Deserialize just the fields.
void LoadFieldsFromExternalStorage() const;
};
class FileScopeAsmDecl : public Decl {
virtual void anchor();
StringLiteral *AsmString;
SourceLocation RParenLoc;
FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
SourceLocation StartL, SourceLocation EndL)
: Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
public:
static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
StringLiteral *Str, SourceLocation AsmLoc,
SourceLocation RParenLoc);
static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceLocation getAsmLoc() const { return getLocation(); }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getAsmLoc(), getRParenLoc());
}
const StringLiteral *getAsmString() const { return AsmString; }
StringLiteral *getAsmString() { return AsmString; }
void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == FileScopeAsm; }
};
/// BlockDecl - This represents a block literal declaration, which is like an
/// unnamed FunctionDecl. For example:
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
///
class BlockDecl : public Decl, public DeclContext {
public:
/// A class which contains all the information about a particular
/// captured value.
class Capture {
enum {
flag_isByRef = 0x1,
flag_isNested = 0x2
};
/// The variable being captured.
llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
/// The copy expression, expressed in terms of a DeclRef (or
/// BlockDeclRef) to the captured variable. Only required if the
/// variable has a C++ class type.
Expr *CopyExpr;
public:
Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
: VariableAndFlags(variable,
(byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
CopyExpr(copy) {}
/// The variable being captured.
VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
/// Whether this is a "by ref" capture, i.e. a capture of a __block
/// variable.
bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
/// Whether this is a nested capture, i.e. the variable captured
/// is not from outside the immediately enclosing function/block.
bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
bool hasCopyExpr() const { return CopyExpr != nullptr; }
Expr *getCopyExpr() const { return CopyExpr; }
void setCopyExpr(Expr *e) { CopyExpr = e; }
};
private:
// FIXME: This can be packed into the bitfields in Decl.
bool IsVariadic : 1;
bool CapturesCXXThis : 1;
bool BlockMissingReturnType : 1;
bool IsConversionFromLambda : 1;
/// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo;
unsigned NumParams;
Stmt *Body;
TypeSourceInfo *SignatureAsWritten;
const Capture *Captures;
unsigned NumCaptures;
unsigned ManglingNumber;
Decl *ManglingContextDecl;
protected:
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
: Decl(Block, DC, CaretLoc), DeclContext(Block),
IsVariadic(false), CapturesCXXThis(false),
BlockMissingReturnType(true), IsConversionFromLambda(false),
ParamInfo(nullptr), NumParams(0), Body(nullptr),
SignatureAsWritten(nullptr), Captures(nullptr), NumCaptures(0),
ManglingNumber(0), ManglingContextDecl(nullptr) {}
public:
static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceLocation getCaretLocation() const { return getLocation(); }
bool isVariadic() const { return IsVariadic; }
void setIsVariadic(bool value) { IsVariadic = value; }
CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
Stmt *getBody() const override { return (Stmt*) Body; }
void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
// ArrayRef access to formal parameters.
ArrayRef<ParmVarDecl *> parameters() const {
return {ParamInfo, getNumParams()};
}
MutableArrayRef<ParmVarDecl *> parameters() {
return {ParamInfo, getNumParams()};
}
// Iterator access to formal parameters.
typedef MutableArrayRef<ParmVarDecl *>::iterator param_iterator;
typedef ArrayRef<ParmVarDecl *>::const_iterator param_const_iterator;
bool param_empty() const { return parameters().empty(); }
param_iterator param_begin() { return parameters().begin(); }
param_iterator param_end() { return parameters().end(); }
param_const_iterator param_begin() const { return parameters().begin(); }
param_const_iterator param_end() const { return parameters().end(); }
size_t param_size() const { return parameters().size(); }
unsigned getNumParams() const { return NumParams; }
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
/// hasCaptures - True if this block (or its nested blocks) captures
/// anything of local storage from its enclosing scopes.
bool hasCaptures() const { return NumCaptures != 0 || CapturesCXXThis; }
/// getNumCaptures - Returns the number of captured variables.
/// Does not include an entry for 'this'.
unsigned getNumCaptures() const { return NumCaptures; }
typedef ArrayRef<Capture>::const_iterator capture_const_iterator;
ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
capture_const_iterator capture_begin() const { return captures().begin(); }
capture_const_iterator capture_end() const { return captures().end(); }
bool capturesCXXThis() const { return CapturesCXXThis; }
bool blockMissingReturnType() const { return BlockMissingReturnType; }
void setBlockMissingReturnType(bool val) { BlockMissingReturnType = val; }
bool isConversionFromLambda() const { return IsConversionFromLambda; }
void setIsConversionFromLambda(bool val) { IsConversionFromLambda = val; }
bool capturesVariable(const VarDecl *var) const;
void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
bool CapturesCXXThis);
unsigned getBlockManglingNumber() const {
return ManglingNumber;
}
Decl *getBlockManglingContextDecl() const {
return ManglingContextDecl;
}
void setBlockMangling(unsigned Number, Decl *Ctx) {
ManglingNumber = Number;
ManglingContextDecl = Ctx;
}
SourceRange getSourceRange() const override LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Block; }
static DeclContext *castToDeclContext(const BlockDecl *D) {
return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
}
static BlockDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
}
};
/// \brief This represents the body of a CapturedStmt, and serves as its
/// DeclContext.
class CapturedDecl final
: public Decl,
public DeclContext,
private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
protected:
size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
return NumParams;
}
private:
/// \brief The number of parameters to the outlined function.
unsigned NumParams;
/// \brief The position of context parameter in list of parameters.
unsigned ContextParam;
/// \brief The body of the outlined function.
llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
ImplicitParamDecl *const *getParams() const {
return getTrailingObjects<ImplicitParamDecl *>();
}
ImplicitParamDecl **getParams() {
return getTrailingObjects<ImplicitParamDecl *>();
}
public:
static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
unsigned NumParams);
static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumParams);
Stmt *getBody() const override;
void setBody(Stmt *B);
bool isNothrow() const;
void setNothrow(bool Nothrow = true);
unsigned getNumParams() const { return NumParams; }
ImplicitParamDecl *getParam(unsigned i) const {
assert(i < NumParams);
return getParams()[i];
}
void setParam(unsigned i, ImplicitParamDecl *P) {
assert(i < NumParams);
getParams()[i] = P;
}
// ArrayRef interface to parameters.
ArrayRef<ImplicitParamDecl *> parameters() const {
return {getParams(), getNumParams()};
}
MutableArrayRef<ImplicitParamDecl *> parameters() {
return {getParams(), getNumParams()};
}
/// \brief Retrieve the parameter containing captured variables.
ImplicitParamDecl *getContextParam() const {
assert(ContextParam < NumParams);
return getParam(ContextParam);
}
void setContextParam(unsigned i, ImplicitParamDecl *P) {
assert(i < NumParams);
ContextParam = i;
setParam(i, P);
}
unsigned getContextParamPosition() const { return ContextParam; }
typedef ImplicitParamDecl *const *param_iterator;
typedef llvm::iterator_range<param_iterator> param_range;
/// \brief Retrieve an iterator pointing to the first parameter decl.
param_iterator param_begin() const { return getParams(); }
/// \brief Retrieve an iterator one past the last parameter decl.
param_iterator param_end() const { return getParams() + NumParams; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Captured; }
static DeclContext *castToDeclContext(const CapturedDecl *D) {
return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
}
static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
};
/// \brief Describes a module import declaration, which makes the contents
/// of the named module visible in the current translation unit.
///
/// An import declaration imports the named module (or submodule). For example:
/// \code
/// @import std.vector;
/// \endcode
///
/// Import declarations can also be implicitly generated from
/// \#include/\#import directives.
class ImportDecl final : public Decl,
llvm::TrailingObjects<ImportDecl, SourceLocation> {
/// \brief The imported module, along with a bit that indicates whether
/// we have source-location information for each identifier in the module
/// name.
///
/// When the bit is false, we only have a single source location for the
/// end of the import declaration.
llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete;
/// \brief The next import in the list of imports local to the translation
/// unit being parsed (not loaded from an AST file).
ImportDecl *NextLocalImport;
friend class ASTReader;
friend class ASTDeclReader;
friend class ASTContext;
friend TrailingObjects;
ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs);
ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
SourceLocation EndLoc);
ImportDecl(EmptyShell Empty) : Decl(Import, Empty), NextLocalImport() { }
public:
/// \brief Create a new module import declaration.
static ImportDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs);
/// \brief Create a new module import declaration for an implicitly-generated
/// import.
static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, Module *Imported,
SourceLocation EndLoc);
/// \brief Create a new, deserialized module import declaration.
static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumLocations);
/// \brief Retrieve the module that was imported by the import declaration.
Module *getImportedModule() const { return ImportedAndComplete.getPointer(); }
/// \brief Retrieves the locations of each of the identifiers that make up
/// the complete module name in the import declaration.
///
/// This will return an empty array if the locations of the individual
/// identifiers aren't available.
ArrayRef<SourceLocation> getIdentifierLocs() const;
SourceRange getSourceRange() const override LLVM_READONLY;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Import; }
};
/// \brief Represents a C++ Modules TS module export declaration.
///
/// For example:
/// \code
/// export void foo();
/// \endcode
class ExportDecl final : public Decl, public DeclContext {
virtual void anchor();
private:
/// \brief The source location for the right brace (if valid).
SourceLocation RBraceLoc;
ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
: Decl(Export, DC, ExportLoc), DeclContext(Export),
RBraceLoc(SourceLocation()) { }
friend class ASTDeclReader;
public:
static ExportDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation ExportLoc);
static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceLocation getExportLoc() const { return getLocation(); }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
SourceLocation getLocEnd() const LLVM_READONLY {
if (RBraceLoc.isValid())
return RBraceLoc;
// No braces: get the end location of the (only) declaration in context
// (if present).
return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getLocation(), getLocEnd());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Export; }
static DeclContext *castToDeclContext(const ExportDecl *D) {
return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
}
static ExportDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
}
};
/// \brief Represents an empty-declaration.
class EmptyDecl : public Decl {
virtual void anchor();
EmptyDecl(DeclContext *DC, SourceLocation L)
: Decl(Empty, DC, L) { }
public:
static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L);
static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Empty; }
};
/// Insertion operator for diagnostics. This allows sending NamedDecl's
/// into a diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const NamedDecl* ND) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
DiagnosticsEngine::ak_nameddecl);
return DB;
}
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
const NamedDecl* ND) {
PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
DiagnosticsEngine::ak_nameddecl);
return PD;
}
template<typename decl_type>
void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
// Note: This routine is implemented here because we need both NamedDecl
// and Redeclarable to be defined.
assert(RedeclLink.NextIsLatest() &&
"setPreviousDecl on a decl already in a redeclaration chain");
if (PrevDecl) {
// Point to previous. Make sure that this is actually the most recent
// redeclaration, or we can build invalid chains. If the most recent
// redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
First = PrevDecl->getFirstDecl();
assert(First->RedeclLink.NextIsLatest() && "Expected first");
decl_type *MostRecent = First->getNextRedeclaration();
RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
// If the declaration was previously visible, a redeclaration of it remains
// visible even if it wouldn't be visible by itself.
static_cast<decl_type*>(this)->IdentifierNamespace |=
MostRecent->getIdentifierNamespace() &
(Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
} else {
// Make this first.
First = static_cast<decl_type*>(this);
}
// First one will point to this one as latest.
First->RedeclLink.setLatest(static_cast<decl_type*>(this));
assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
}
// Inline function definitions.
/// \brief Check if the given decl is complete.
///
/// We use this function to break a cycle between the inline definitions in
/// Type.h and Decl.h.
inline bool IsEnumDeclComplete(EnumDecl *ED) {
return ED->isComplete();
}
/// \brief Check if the given decl is scoped.
///
/// We use this function to break a cycle between the inline definitions in
/// Type.h and Decl.h.
inline bool IsEnumDeclScoped(EnumDecl *ED) {
return ED->isScoped();
}
} // end namespace clang
#endif