3671 lines
139 KiB
C++
3671 lines
139 KiB
C++
//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// \brief Defines the C++ Decl subclasses, other than those for templates
|
|
/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_AST_DECLCXX_H
|
|
#define LLVM_CLANG_AST_DECLCXX_H
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTUnresolvedSet.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/LambdaCapture.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
|
|
namespace clang {
|
|
|
|
class ClassTemplateDecl;
|
|
class ClassTemplateSpecializationDecl;
|
|
class ConstructorUsingShadowDecl;
|
|
class CXXBasePath;
|
|
class CXXBasePaths;
|
|
class CXXConstructorDecl;
|
|
class CXXConversionDecl;
|
|
class CXXDestructorDecl;
|
|
class CXXMethodDecl;
|
|
class CXXRecordDecl;
|
|
class CXXMemberLookupCriteria;
|
|
class CXXFinalOverriderMap;
|
|
class CXXIndirectPrimaryBaseSet;
|
|
class FriendDecl;
|
|
class LambdaExpr;
|
|
class UsingDecl;
|
|
|
|
/// \brief Represents any kind of function declaration, whether it is a
|
|
/// concrete function or a function template.
|
|
class AnyFunctionDecl {
|
|
NamedDecl *Function;
|
|
|
|
AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
|
|
|
|
public:
|
|
AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
|
|
AnyFunctionDecl(FunctionTemplateDecl *FTD);
|
|
|
|
/// \brief Implicily converts any function or function template into a
|
|
/// named declaration.
|
|
operator NamedDecl *() const { return Function; }
|
|
|
|
/// \brief Retrieve the underlying function or function template.
|
|
NamedDecl *get() const { return Function; }
|
|
|
|
static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
|
|
return AnyFunctionDecl(ND);
|
|
}
|
|
};
|
|
|
|
} // end namespace clang
|
|
|
|
namespace llvm {
|
|
// Provide PointerLikeTypeTraits for non-cvr pointers.
|
|
template<>
|
|
class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
|
|
public:
|
|
static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
|
|
return F.get();
|
|
}
|
|
static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
|
|
return ::clang::AnyFunctionDecl::getFromNamedDecl(
|
|
static_cast< ::clang::NamedDecl*>(P));
|
|
}
|
|
|
|
enum { NumLowBitsAvailable = 2 };
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace clang {
|
|
|
|
/// \brief Represents an access specifier followed by colon ':'.
|
|
///
|
|
/// An objects of this class represents sugar for the syntactic occurrence
|
|
/// of an access specifier followed by a colon in the list of member
|
|
/// specifiers of a C++ class definition.
|
|
///
|
|
/// Note that they do not represent other uses of access specifiers,
|
|
/// such as those occurring in a list of base specifiers.
|
|
/// Also note that this class has nothing to do with so-called
|
|
/// "access declarations" (C++98 11.3 [class.access.dcl]).
|
|
class AccessSpecDecl : public Decl {
|
|
virtual void anchor();
|
|
/// \brief The location of the ':'.
|
|
SourceLocation ColonLoc;
|
|
|
|
AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
|
|
SourceLocation ASLoc, SourceLocation ColonLoc)
|
|
: Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
|
|
setAccess(AS);
|
|
}
|
|
AccessSpecDecl(EmptyShell Empty)
|
|
: Decl(AccessSpec, Empty) { }
|
|
public:
|
|
/// \brief The location of the access specifier.
|
|
SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
|
|
/// \brief Sets the location of the access specifier.
|
|
void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
|
|
|
|
/// \brief The location of the colon following the access specifier.
|
|
SourceLocation getColonLoc() const { return ColonLoc; }
|
|
/// \brief Sets the location of the colon.
|
|
void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return SourceRange(getAccessSpecifierLoc(), getColonLoc());
|
|
}
|
|
|
|
static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
|
|
DeclContext *DC, SourceLocation ASLoc,
|
|
SourceLocation ColonLoc) {
|
|
return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
|
|
}
|
|
static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == AccessSpec; }
|
|
};
|
|
|
|
/// \brief Represents a base class of a C++ class.
|
|
///
|
|
/// Each CXXBaseSpecifier represents a single, direct base class (or
|
|
/// struct) of a C++ class (or struct). It specifies the type of that
|
|
/// base class, whether it is a virtual or non-virtual base, and what
|
|
/// level of access (public, protected, private) is used for the
|
|
/// derivation. For example:
|
|
///
|
|
/// \code
|
|
/// class A { };
|
|
/// class B { };
|
|
/// class C : public virtual A, protected B { };
|
|
/// \endcode
|
|
///
|
|
/// In this code, C will have two CXXBaseSpecifiers, one for "public
|
|
/// virtual A" and the other for "protected B".
|
|
class CXXBaseSpecifier {
|
|
/// \brief The source code range that covers the full base
|
|
/// specifier, including the "virtual" (if present) and access
|
|
/// specifier (if present).
|
|
SourceRange Range;
|
|
|
|
/// \brief The source location of the ellipsis, if this is a pack
|
|
/// expansion.
|
|
SourceLocation EllipsisLoc;
|
|
|
|
/// \brief Whether this is a virtual base class or not.
|
|
unsigned Virtual : 1;
|
|
|
|
/// \brief Whether this is the base of a class (true) or of a struct (false).
|
|
///
|
|
/// This determines the mapping from the access specifier as written in the
|
|
/// source code to the access specifier used for semantic analysis.
|
|
unsigned BaseOfClass : 1;
|
|
|
|
/// \brief Access specifier as written in the source code (may be AS_none).
|
|
///
|
|
/// The actual type of data stored here is an AccessSpecifier, but we use
|
|
/// "unsigned" here to work around a VC++ bug.
|
|
unsigned Access : 2;
|
|
|
|
/// \brief Whether the class contains a using declaration
|
|
/// to inherit the named class's constructors.
|
|
unsigned InheritConstructors : 1;
|
|
|
|
/// \brief The type of the base class.
|
|
///
|
|
/// This will be a class or struct (or a typedef of such). The source code
|
|
/// range does not include the \c virtual or the access specifier.
|
|
TypeSourceInfo *BaseTypeInfo;
|
|
|
|
public:
|
|
CXXBaseSpecifier() { }
|
|
|
|
CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
|
|
TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
|
|
: Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
|
|
Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { }
|
|
|
|
/// \brief Retrieves the source range that contains the entire base specifier.
|
|
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
|
|
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
|
|
|
|
/// \brief Get the location at which the base class type was written.
|
|
SourceLocation getBaseTypeLoc() const LLVM_READONLY {
|
|
return BaseTypeInfo->getTypeLoc().getLocStart();
|
|
}
|
|
|
|
/// \brief Determines whether the base class is a virtual base class (or not).
|
|
bool isVirtual() const { return Virtual; }
|
|
|
|
/// \brief Determine whether this base class is a base of a class declared
|
|
/// with the 'class' keyword (vs. one declared with the 'struct' keyword).
|
|
bool isBaseOfClass() const { return BaseOfClass; }
|
|
|
|
/// \brief Determine whether this base specifier is a pack expansion.
|
|
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
|
|
|
|
/// \brief Determine whether this base class's constructors get inherited.
|
|
bool getInheritConstructors() const { return InheritConstructors; }
|
|
|
|
/// \brief Set that this base class's constructors should be inherited.
|
|
void setInheritConstructors(bool Inherit = true) {
|
|
InheritConstructors = Inherit;
|
|
}
|
|
|
|
/// \brief For a pack expansion, determine the location of the ellipsis.
|
|
SourceLocation getEllipsisLoc() const {
|
|
return EllipsisLoc;
|
|
}
|
|
|
|
/// \brief Returns the access specifier for this base specifier.
|
|
///
|
|
/// This is the actual base specifier as used for semantic analysis, so
|
|
/// the result can never be AS_none. To retrieve the access specifier as
|
|
/// written in the source code, use getAccessSpecifierAsWritten().
|
|
AccessSpecifier getAccessSpecifier() const {
|
|
if ((AccessSpecifier)Access == AS_none)
|
|
return BaseOfClass? AS_private : AS_public;
|
|
else
|
|
return (AccessSpecifier)Access;
|
|
}
|
|
|
|
/// \brief Retrieves the access specifier as written in the source code
|
|
/// (which may mean that no access specifier was explicitly written).
|
|
///
|
|
/// Use getAccessSpecifier() to retrieve the access specifier for use in
|
|
/// semantic analysis.
|
|
AccessSpecifier getAccessSpecifierAsWritten() const {
|
|
return (AccessSpecifier)Access;
|
|
}
|
|
|
|
/// \brief Retrieves the type of the base class.
|
|
///
|
|
/// This type will always be an unqualified class type.
|
|
QualType getType() const {
|
|
return BaseTypeInfo->getType().getUnqualifiedType();
|
|
}
|
|
|
|
/// \brief Retrieves the type and source location of the base class.
|
|
TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
|
|
};
|
|
|
|
/// \brief Represents a C++ struct/union/class.
|
|
class CXXRecordDecl : public RecordDecl {
|
|
|
|
friend void TagDecl::startDefinition();
|
|
|
|
/// Values used in DefinitionData fields to represent special members.
|
|
enum SpecialMemberFlags {
|
|
SMF_DefaultConstructor = 0x1,
|
|
SMF_CopyConstructor = 0x2,
|
|
SMF_MoveConstructor = 0x4,
|
|
SMF_CopyAssignment = 0x8,
|
|
SMF_MoveAssignment = 0x10,
|
|
SMF_Destructor = 0x20,
|
|
SMF_All = 0x3f
|
|
};
|
|
|
|
struct DefinitionData {
|
|
DefinitionData(CXXRecordDecl *D);
|
|
|
|
/// \brief True if this class has any user-declared constructors.
|
|
unsigned UserDeclaredConstructor : 1;
|
|
|
|
/// \brief The user-declared special members which this class has.
|
|
unsigned UserDeclaredSpecialMembers : 6;
|
|
|
|
/// \brief True when this class is an aggregate.
|
|
unsigned Aggregate : 1;
|
|
|
|
/// \brief True when this class is a POD-type.
|
|
unsigned PlainOldData : 1;
|
|
|
|
/// true when this class is empty for traits purposes,
|
|
/// i.e. has no data members other than 0-width bit-fields, has no
|
|
/// virtual function/base, and doesn't inherit from a non-empty
|
|
/// class. Doesn't take union-ness into account.
|
|
unsigned Empty : 1;
|
|
|
|
/// \brief True when this class is polymorphic, i.e., has at
|
|
/// least one virtual member or derives from a polymorphic class.
|
|
unsigned Polymorphic : 1;
|
|
|
|
/// \brief True when this class is abstract, i.e., has at least
|
|
/// one pure virtual function, (that can come from a base class).
|
|
unsigned Abstract : 1;
|
|
|
|
/// \brief True when this class has standard layout.
|
|
///
|
|
/// C++11 [class]p7. A standard-layout class is a class that:
|
|
/// * has no non-static data members of type non-standard-layout class (or
|
|
/// array of such types) or reference,
|
|
/// * has no virtual functions (10.3) and no virtual base classes (10.1),
|
|
/// * has the same access control (Clause 11) for all non-static data
|
|
/// members
|
|
/// * has no non-standard-layout base classes,
|
|
/// * either has no non-static data members in the most derived class and at
|
|
/// most one base class with non-static data members, or has no base
|
|
/// classes with non-static data members, and
|
|
/// * has no base classes of the same type as the first non-static data
|
|
/// member.
|
|
unsigned IsStandardLayout : 1;
|
|
|
|
/// \brief True when there are no non-empty base classes.
|
|
///
|
|
/// This is a helper bit of state used to implement IsStandardLayout more
|
|
/// efficiently.
|
|
unsigned HasNoNonEmptyBases : 1;
|
|
|
|
/// \brief True when there are private non-static data members.
|
|
unsigned HasPrivateFields : 1;
|
|
|
|
/// \brief True when there are protected non-static data members.
|
|
unsigned HasProtectedFields : 1;
|
|
|
|
/// \brief True when there are private non-static data members.
|
|
unsigned HasPublicFields : 1;
|
|
|
|
/// \brief True if this class (or any subobject) has mutable fields.
|
|
unsigned HasMutableFields : 1;
|
|
|
|
/// \brief True if this class (or any nested anonymous struct or union)
|
|
/// has variant members.
|
|
unsigned HasVariantMembers : 1;
|
|
|
|
/// \brief True if there no non-field members declared by the user.
|
|
unsigned HasOnlyCMembers : 1;
|
|
|
|
/// \brief True if any field has an in-class initializer, including those
|
|
/// within anonymous unions or structs.
|
|
unsigned HasInClassInitializer : 1;
|
|
|
|
/// \brief True if any field is of reference type, and does not have an
|
|
/// in-class initializer.
|
|
///
|
|
/// In this case, value-initialization of this class is illegal in C++98
|
|
/// even if the class has a trivial default constructor.
|
|
unsigned HasUninitializedReferenceMember : 1;
|
|
|
|
/// \brief True if any non-mutable field whose type doesn't have a user-
|
|
/// provided default ctor also doesn't have an in-class initializer.
|
|
unsigned HasUninitializedFields : 1;
|
|
|
|
/// \brief True if there are any member using-declarations that inherit
|
|
/// constructors from a base class.
|
|
unsigned HasInheritedConstructor : 1;
|
|
|
|
/// \brief True if there are any member using-declarations named
|
|
/// 'operator='.
|
|
unsigned HasInheritedAssignment : 1;
|
|
|
|
/// \brief These flags are \c true if a defaulted corresponding special
|
|
/// member can't be fully analyzed without performing overload resolution.
|
|
/// @{
|
|
unsigned NeedOverloadResolutionForMoveConstructor : 1;
|
|
unsigned NeedOverloadResolutionForMoveAssignment : 1;
|
|
unsigned NeedOverloadResolutionForDestructor : 1;
|
|
/// @}
|
|
|
|
/// \brief These flags are \c true if an implicit defaulted corresponding
|
|
/// special member would be defined as deleted.
|
|
/// @{
|
|
unsigned DefaultedMoveConstructorIsDeleted : 1;
|
|
unsigned DefaultedMoveAssignmentIsDeleted : 1;
|
|
unsigned DefaultedDestructorIsDeleted : 1;
|
|
/// @}
|
|
|
|
/// \brief The trivial special members which this class has, per
|
|
/// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
|
|
/// C++11 [class.dtor]p5, or would have if the member were not suppressed.
|
|
///
|
|
/// This excludes any user-declared but not user-provided special members
|
|
/// which have been declared but not yet defined.
|
|
unsigned HasTrivialSpecialMembers : 6;
|
|
|
|
/// \brief The declared special members of this class which are known to be
|
|
/// non-trivial.
|
|
///
|
|
/// This excludes any user-declared but not user-provided special members
|
|
/// which have been declared but not yet defined, and any implicit special
|
|
/// members which have not yet been declared.
|
|
unsigned DeclaredNonTrivialSpecialMembers : 6;
|
|
|
|
/// \brief True when this class has a destructor with no semantic effect.
|
|
unsigned HasIrrelevantDestructor : 1;
|
|
|
|
/// \brief True when this class has at least one user-declared constexpr
|
|
/// constructor which is neither the copy nor move constructor.
|
|
unsigned HasConstexprNonCopyMoveConstructor : 1;
|
|
|
|
/// \brief True if this class has a (possibly implicit) defaulted default
|
|
/// constructor.
|
|
unsigned HasDefaultedDefaultConstructor : 1;
|
|
|
|
/// \brief True if a defaulted default constructor for this class would
|
|
/// be constexpr.
|
|
unsigned DefaultedDefaultConstructorIsConstexpr : 1;
|
|
|
|
/// \brief True if this class has a constexpr default constructor.
|
|
///
|
|
/// This is true for either a user-declared constexpr default constructor
|
|
/// or an implicitly declared constexpr default constructor.
|
|
unsigned HasConstexprDefaultConstructor : 1;
|
|
|
|
/// \brief True when this class contains at least one non-static data
|
|
/// member or base class of non-literal or volatile type.
|
|
unsigned HasNonLiteralTypeFieldsOrBases : 1;
|
|
|
|
/// \brief True when visible conversion functions are already computed
|
|
/// and are available.
|
|
unsigned ComputedVisibleConversions : 1;
|
|
|
|
/// \brief Whether we have a C++11 user-provided default constructor (not
|
|
/// explicitly deleted or defaulted).
|
|
unsigned UserProvidedDefaultConstructor : 1;
|
|
|
|
/// \brief The special members which have been declared for this class,
|
|
/// either by the user or implicitly.
|
|
unsigned DeclaredSpecialMembers : 6;
|
|
|
|
/// \brief Whether an implicit copy constructor could have a const-qualified
|
|
/// parameter, for initializing virtual bases and for other subobjects.
|
|
unsigned ImplicitCopyConstructorCanHaveConstParamForVBase : 1;
|
|
unsigned ImplicitCopyConstructorCanHaveConstParamForNonVBase : 1;
|
|
|
|
/// \brief Whether an implicit copy assignment operator would have a
|
|
/// const-qualified parameter.
|
|
unsigned ImplicitCopyAssignmentHasConstParam : 1;
|
|
|
|
/// \brief Whether any declared copy constructor has a const-qualified
|
|
/// parameter.
|
|
unsigned HasDeclaredCopyConstructorWithConstParam : 1;
|
|
|
|
/// \brief Whether any declared copy assignment operator has either a
|
|
/// const-qualified reference parameter or a non-reference parameter.
|
|
unsigned HasDeclaredCopyAssignmentWithConstParam : 1;
|
|
|
|
/// \brief Whether this class describes a C++ lambda.
|
|
unsigned IsLambda : 1;
|
|
|
|
/// \brief Whether we are currently parsing base specifiers.
|
|
unsigned IsParsingBaseSpecifiers : 1;
|
|
|
|
unsigned HasODRHash : 1;
|
|
|
|
/// \brief A hash of parts of the class to help in ODR checking.
|
|
unsigned ODRHash;
|
|
|
|
/// \brief The number of base class specifiers in Bases.
|
|
unsigned NumBases;
|
|
|
|
/// \brief The number of virtual base class specifiers in VBases.
|
|
unsigned NumVBases;
|
|
|
|
/// \brief Base classes of this class.
|
|
///
|
|
/// FIXME: This is wasted space for a union.
|
|
LazyCXXBaseSpecifiersPtr Bases;
|
|
|
|
/// \brief direct and indirect virtual base classes of this class.
|
|
LazyCXXBaseSpecifiersPtr VBases;
|
|
|
|
/// \brief The conversion functions of this C++ class (but not its
|
|
/// inherited conversion functions).
|
|
///
|
|
/// Each of the entries in this overload set is a CXXConversionDecl.
|
|
LazyASTUnresolvedSet Conversions;
|
|
|
|
/// \brief The conversion functions of this C++ class and all those
|
|
/// inherited conversion functions that are visible in this class.
|
|
///
|
|
/// Each of the entries in this overload set is a CXXConversionDecl or a
|
|
/// FunctionTemplateDecl.
|
|
LazyASTUnresolvedSet VisibleConversions;
|
|
|
|
/// \brief The declaration which defines this record.
|
|
CXXRecordDecl *Definition;
|
|
|
|
/// \brief The first friend declaration in this class, or null if there
|
|
/// aren't any.
|
|
///
|
|
/// This is actually currently stored in reverse order.
|
|
LazyDeclPtr FirstFriend;
|
|
|
|
/// \brief Retrieve the set of direct base classes.
|
|
CXXBaseSpecifier *getBases() const {
|
|
if (!Bases.isOffset())
|
|
return Bases.get(nullptr);
|
|
return getBasesSlowCase();
|
|
}
|
|
|
|
/// \brief Retrieve the set of virtual base classes.
|
|
CXXBaseSpecifier *getVBases() const {
|
|
if (!VBases.isOffset())
|
|
return VBases.get(nullptr);
|
|
return getVBasesSlowCase();
|
|
}
|
|
|
|
ArrayRef<CXXBaseSpecifier> bases() const {
|
|
return llvm::makeArrayRef(getBases(), NumBases);
|
|
}
|
|
ArrayRef<CXXBaseSpecifier> vbases() const {
|
|
return llvm::makeArrayRef(getVBases(), NumVBases);
|
|
}
|
|
|
|
private:
|
|
CXXBaseSpecifier *getBasesSlowCase() const;
|
|
CXXBaseSpecifier *getVBasesSlowCase() const;
|
|
};
|
|
|
|
struct DefinitionData *DefinitionData;
|
|
|
|
/// \brief Describes a C++ closure type (generated by a lambda expression).
|
|
struct LambdaDefinitionData : public DefinitionData {
|
|
typedef LambdaCapture Capture;
|
|
|
|
LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info,
|
|
bool Dependent, bool IsGeneric,
|
|
LambdaCaptureDefault CaptureDefault)
|
|
: DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
|
|
CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0),
|
|
ManglingNumber(0), ContextDecl(nullptr), Captures(nullptr),
|
|
MethodTyInfo(Info) {
|
|
IsLambda = true;
|
|
|
|
// C++1z [expr.prim.lambda]p4:
|
|
// This class type is not an aggregate type.
|
|
Aggregate = false;
|
|
PlainOldData = false;
|
|
}
|
|
|
|
/// \brief Whether this lambda is known to be dependent, even if its
|
|
/// context isn't dependent.
|
|
///
|
|
/// A lambda with a non-dependent context can be dependent if it occurs
|
|
/// within the default argument of a function template, because the
|
|
/// lambda will have been created with the enclosing context as its
|
|
/// declaration context, rather than function. This is an unfortunate
|
|
/// artifact of having to parse the default arguments before.
|
|
unsigned Dependent : 1;
|
|
|
|
/// \brief Whether this lambda is a generic lambda.
|
|
unsigned IsGenericLambda : 1;
|
|
|
|
/// \brief The Default Capture.
|
|
unsigned CaptureDefault : 2;
|
|
|
|
/// \brief The number of captures in this lambda is limited 2^NumCaptures.
|
|
unsigned NumCaptures : 15;
|
|
|
|
/// \brief The number of explicit captures in this lambda.
|
|
unsigned NumExplicitCaptures : 13;
|
|
|
|
/// \brief The number used to indicate this lambda expression for name
|
|
/// mangling in the Itanium C++ ABI.
|
|
unsigned ManglingNumber;
|
|
|
|
/// \brief The declaration that provides context for this lambda, if the
|
|
/// actual DeclContext does not suffice. This is used for lambdas that
|
|
/// occur within default arguments of function parameters within the class
|
|
/// or within a data member initializer.
|
|
LazyDeclPtr ContextDecl;
|
|
|
|
/// \brief The list of captures, both explicit and implicit, for this
|
|
/// lambda.
|
|
Capture *Captures;
|
|
|
|
/// \brief The type of the call method.
|
|
TypeSourceInfo *MethodTyInfo;
|
|
|
|
};
|
|
|
|
struct DefinitionData *dataPtr() const {
|
|
// Complete the redecl chain (if necessary).
|
|
getMostRecentDecl();
|
|
return DefinitionData;
|
|
}
|
|
|
|
struct DefinitionData &data() const {
|
|
auto *DD = dataPtr();
|
|
assert(DD && "queried property of class with no definition");
|
|
return *DD;
|
|
}
|
|
|
|
struct LambdaDefinitionData &getLambdaData() const {
|
|
// No update required: a merged definition cannot change any lambda
|
|
// properties.
|
|
auto *DD = DefinitionData;
|
|
assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
|
|
return static_cast<LambdaDefinitionData&>(*DD);
|
|
}
|
|
|
|
/// \brief The template or declaration that this declaration
|
|
/// describes or was instantiated from, respectively.
|
|
///
|
|
/// For non-templates, this value will be null. For record
|
|
/// declarations that describe a class template, this will be a
|
|
/// pointer to a ClassTemplateDecl. For member
|
|
/// classes of class template specializations, this will be the
|
|
/// MemberSpecializationInfo referring to the member class that was
|
|
/// instantiated or specialized.
|
|
llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
|
|
TemplateOrInstantiation;
|
|
|
|
friend class DeclContext;
|
|
friend class LambdaExpr;
|
|
|
|
/// \brief Called from setBases and addedMember to notify the class that a
|
|
/// direct or virtual base class or a member of class type has been added.
|
|
void addedClassSubobject(CXXRecordDecl *Base);
|
|
|
|
/// \brief Notify the class that member has been added.
|
|
///
|
|
/// This routine helps maintain information about the class based on which
|
|
/// members have been added. It will be invoked by DeclContext::addDecl()
|
|
/// whenever a member is added to this record.
|
|
void addedMember(Decl *D);
|
|
|
|
void markedVirtualFunctionPure();
|
|
friend void FunctionDecl::setPure(bool);
|
|
|
|
friend class ASTNodeImporter;
|
|
|
|
/// \brief Get the head of our list of friend declarations, possibly
|
|
/// deserializing the friends from an external AST source.
|
|
FriendDecl *getFirstFriend() const;
|
|
|
|
protected:
|
|
CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
|
|
|
|
public:
|
|
/// \brief Iterator that traverses the base classes of a class.
|
|
typedef CXXBaseSpecifier* base_class_iterator;
|
|
|
|
/// \brief Iterator that traverses the base classes of a class.
|
|
typedef const CXXBaseSpecifier* base_class_const_iterator;
|
|
|
|
CXXRecordDecl *getCanonicalDecl() override {
|
|
return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
|
|
}
|
|
const CXXRecordDecl *getCanonicalDecl() const {
|
|
return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
|
|
}
|
|
|
|
CXXRecordDecl *getPreviousDecl() {
|
|
return cast_or_null<CXXRecordDecl>(
|
|
static_cast<RecordDecl *>(this)->getPreviousDecl());
|
|
}
|
|
const CXXRecordDecl *getPreviousDecl() const {
|
|
return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
|
|
}
|
|
|
|
CXXRecordDecl *getMostRecentDecl() {
|
|
return cast<CXXRecordDecl>(
|
|
static_cast<RecordDecl *>(this)->getMostRecentDecl());
|
|
}
|
|
|
|
const CXXRecordDecl *getMostRecentDecl() const {
|
|
return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
|
|
}
|
|
|
|
CXXRecordDecl *getDefinition() const {
|
|
// We only need an update if we don't already know which
|
|
// declaration is the definition.
|
|
auto *DD = DefinitionData ? DefinitionData : dataPtr();
|
|
return DD ? DD->Definition : nullptr;
|
|
}
|
|
|
|
bool hasDefinition() const { return DefinitionData || dataPtr(); }
|
|
|
|
static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id,
|
|
CXXRecordDecl *PrevDecl = nullptr,
|
|
bool DelayTypeCreation = false);
|
|
static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
|
|
TypeSourceInfo *Info, SourceLocation Loc,
|
|
bool DependentLambda, bool IsGeneric,
|
|
LambdaCaptureDefault CaptureDefault);
|
|
static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
|
|
|
|
bool isDynamicClass() const {
|
|
return data().Polymorphic || data().NumVBases != 0;
|
|
}
|
|
|
|
void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
|
|
|
|
bool isParsingBaseSpecifiers() const {
|
|
return data().IsParsingBaseSpecifiers;
|
|
}
|
|
|
|
unsigned getODRHash() const;
|
|
|
|
/// \brief Sets the base classes of this struct or class.
|
|
void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
|
|
|
|
/// \brief Retrieves the number of base classes of this class.
|
|
unsigned getNumBases() const { return data().NumBases; }
|
|
|
|
typedef llvm::iterator_range<base_class_iterator> base_class_range;
|
|
typedef llvm::iterator_range<base_class_const_iterator>
|
|
base_class_const_range;
|
|
|
|
base_class_range bases() {
|
|
return base_class_range(bases_begin(), bases_end());
|
|
}
|
|
base_class_const_range bases() const {
|
|
return base_class_const_range(bases_begin(), bases_end());
|
|
}
|
|
|
|
base_class_iterator bases_begin() { return data().getBases(); }
|
|
base_class_const_iterator bases_begin() const { return data().getBases(); }
|
|
base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
|
|
base_class_const_iterator bases_end() const {
|
|
return bases_begin() + data().NumBases;
|
|
}
|
|
|
|
/// \brief Retrieves the number of virtual base classes of this class.
|
|
unsigned getNumVBases() const { return data().NumVBases; }
|
|
|
|
base_class_range vbases() {
|
|
return base_class_range(vbases_begin(), vbases_end());
|
|
}
|
|
base_class_const_range vbases() const {
|
|
return base_class_const_range(vbases_begin(), vbases_end());
|
|
}
|
|
|
|
base_class_iterator vbases_begin() { return data().getVBases(); }
|
|
base_class_const_iterator vbases_begin() const { return data().getVBases(); }
|
|
base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
|
|
base_class_const_iterator vbases_end() const {
|
|
return vbases_begin() + data().NumVBases;
|
|
}
|
|
|
|
/// \brief Determine whether this class has any dependent base classes which
|
|
/// are not the current instantiation.
|
|
bool hasAnyDependentBases() const;
|
|
|
|
/// Iterator access to method members. The method iterator visits
|
|
/// all method members of the class, including non-instance methods,
|
|
/// special methods, etc.
|
|
typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
|
|
typedef llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>
|
|
method_range;
|
|
|
|
method_range methods() const {
|
|
return method_range(method_begin(), method_end());
|
|
}
|
|
|
|
/// \brief Method begin iterator. Iterates in the order the methods
|
|
/// were declared.
|
|
method_iterator method_begin() const {
|
|
return method_iterator(decls_begin());
|
|
}
|
|
/// \brief Method past-the-end iterator.
|
|
method_iterator method_end() const {
|
|
return method_iterator(decls_end());
|
|
}
|
|
|
|
/// Iterator access to constructor members.
|
|
typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
|
|
typedef llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>
|
|
ctor_range;
|
|
|
|
ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
|
|
|
|
ctor_iterator ctor_begin() const {
|
|
return ctor_iterator(decls_begin());
|
|
}
|
|
ctor_iterator ctor_end() const {
|
|
return ctor_iterator(decls_end());
|
|
}
|
|
|
|
/// An iterator over friend declarations. All of these are defined
|
|
/// in DeclFriend.h.
|
|
class friend_iterator;
|
|
typedef llvm::iterator_range<friend_iterator> friend_range;
|
|
|
|
friend_range friends() const;
|
|
friend_iterator friend_begin() const;
|
|
friend_iterator friend_end() const;
|
|
void pushFriendDecl(FriendDecl *FD);
|
|
|
|
/// Determines whether this record has any friends.
|
|
bool hasFriends() const {
|
|
return data().FirstFriend.isValid();
|
|
}
|
|
|
|
/// \brief \c true if we know for sure that this class has a single,
|
|
/// accessible, unambiguous move constructor that is not deleted.
|
|
bool hasSimpleMoveConstructor() const {
|
|
return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
|
|
!data().DefaultedMoveConstructorIsDeleted;
|
|
}
|
|
/// \brief \c true if we know for sure that this class has a single,
|
|
/// accessible, unambiguous move assignment operator that is not deleted.
|
|
bool hasSimpleMoveAssignment() const {
|
|
return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
|
|
!data().DefaultedMoveAssignmentIsDeleted;
|
|
}
|
|
/// \brief \c true if we know for sure that this class has an accessible
|
|
/// destructor that is not deleted.
|
|
bool hasSimpleDestructor() const {
|
|
return !hasUserDeclaredDestructor() &&
|
|
!data().DefaultedDestructorIsDeleted;
|
|
}
|
|
|
|
/// \brief Determine whether this class has any default constructors.
|
|
bool hasDefaultConstructor() const {
|
|
return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
|
|
needsImplicitDefaultConstructor();
|
|
}
|
|
|
|
/// \brief Determine if we need to declare a default constructor for
|
|
/// this class.
|
|
///
|
|
/// This value is used for lazy creation of default constructors.
|
|
bool needsImplicitDefaultConstructor() const {
|
|
return !data().UserDeclaredConstructor &&
|
|
!(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
|
|
// C++14 [expr.prim.lambda]p20:
|
|
// The closure type associated with a lambda-expression has no
|
|
// default constructor.
|
|
!isLambda();
|
|
}
|
|
|
|
/// \brief Determine whether this class has any user-declared constructors.
|
|
///
|
|
/// When true, a default constructor will not be implicitly declared.
|
|
bool hasUserDeclaredConstructor() const {
|
|
return data().UserDeclaredConstructor;
|
|
}
|
|
|
|
/// \brief Whether this class has a user-provided default constructor
|
|
/// per C++11.
|
|
bool hasUserProvidedDefaultConstructor() const {
|
|
return data().UserProvidedDefaultConstructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a user-declared copy constructor.
|
|
///
|
|
/// When false, a copy constructor will be implicitly declared.
|
|
bool hasUserDeclaredCopyConstructor() const {
|
|
return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class needs an implicit copy
|
|
/// constructor to be lazily declared.
|
|
bool needsImplicitCopyConstructor() const {
|
|
return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
|
|
}
|
|
|
|
/// \brief Determine whether we need to eagerly declare a defaulted copy
|
|
/// constructor for this class.
|
|
bool needsOverloadResolutionForCopyConstructor() const {
|
|
return data().HasMutableFields;
|
|
}
|
|
|
|
/// \brief Determine whether an implicit copy constructor for this type
|
|
/// would have a parameter with a const-qualified reference type.
|
|
bool implicitCopyConstructorHasConstParam() const {
|
|
return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
|
|
(isAbstract() ||
|
|
data().ImplicitCopyConstructorCanHaveConstParamForVBase);
|
|
}
|
|
|
|
/// \brief Determine whether this class has a copy constructor with
|
|
/// a parameter type which is a reference to a const-qualified type.
|
|
bool hasCopyConstructorWithConstParam() const {
|
|
return data().HasDeclaredCopyConstructorWithConstParam ||
|
|
(needsImplicitCopyConstructor() &&
|
|
implicitCopyConstructorHasConstParam());
|
|
}
|
|
|
|
/// \brief Whether this class has a user-declared move constructor or
|
|
/// assignment operator.
|
|
///
|
|
/// When false, a move constructor and assignment operator may be
|
|
/// implicitly declared.
|
|
bool hasUserDeclaredMoveOperation() const {
|
|
return data().UserDeclaredSpecialMembers &
|
|
(SMF_MoveConstructor | SMF_MoveAssignment);
|
|
}
|
|
|
|
/// \brief Determine whether this class has had a move constructor
|
|
/// declared by the user.
|
|
bool hasUserDeclaredMoveConstructor() const {
|
|
return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a move constructor.
|
|
bool hasMoveConstructor() const {
|
|
return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
|
|
needsImplicitMoveConstructor();
|
|
}
|
|
|
|
/// \brief Set that we attempted to declare an implicitly move
|
|
/// constructor, but overload resolution failed so we deleted it.
|
|
void setImplicitMoveConstructorIsDeleted() {
|
|
assert((data().DefaultedMoveConstructorIsDeleted ||
|
|
needsOverloadResolutionForMoveConstructor()) &&
|
|
"move constructor should not be deleted");
|
|
data().DefaultedMoveConstructorIsDeleted = true;
|
|
}
|
|
|
|
/// \brief Determine whether this class should get an implicit move
|
|
/// constructor or if any existing special member function inhibits this.
|
|
bool needsImplicitMoveConstructor() const {
|
|
return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
|
|
!hasUserDeclaredCopyConstructor() &&
|
|
!hasUserDeclaredCopyAssignment() &&
|
|
!hasUserDeclaredMoveAssignment() &&
|
|
!hasUserDeclaredDestructor();
|
|
}
|
|
|
|
/// \brief Determine whether we need to eagerly declare a defaulted move
|
|
/// constructor for this class.
|
|
bool needsOverloadResolutionForMoveConstructor() const {
|
|
return data().NeedOverloadResolutionForMoveConstructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a user-declared copy assignment
|
|
/// operator.
|
|
///
|
|
/// When false, a copy assigment operator will be implicitly declared.
|
|
bool hasUserDeclaredCopyAssignment() const {
|
|
return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
|
|
}
|
|
|
|
/// \brief Determine whether this class needs an implicit copy
|
|
/// assignment operator to be lazily declared.
|
|
bool needsImplicitCopyAssignment() const {
|
|
return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
|
|
}
|
|
|
|
/// \brief Determine whether we need to eagerly declare a defaulted copy
|
|
/// assignment operator for this class.
|
|
bool needsOverloadResolutionForCopyAssignment() const {
|
|
return data().HasMutableFields;
|
|
}
|
|
|
|
/// \brief Determine whether an implicit copy assignment operator for this
|
|
/// type would have a parameter with a const-qualified reference type.
|
|
bool implicitCopyAssignmentHasConstParam() const {
|
|
return data().ImplicitCopyAssignmentHasConstParam;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a copy assignment operator with
|
|
/// a parameter type which is a reference to a const-qualified type or is not
|
|
/// a reference.
|
|
bool hasCopyAssignmentWithConstParam() const {
|
|
return data().HasDeclaredCopyAssignmentWithConstParam ||
|
|
(needsImplicitCopyAssignment() &&
|
|
implicitCopyAssignmentHasConstParam());
|
|
}
|
|
|
|
/// \brief Determine whether this class has had a move assignment
|
|
/// declared by the user.
|
|
bool hasUserDeclaredMoveAssignment() const {
|
|
return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a move assignment operator.
|
|
bool hasMoveAssignment() const {
|
|
return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
|
|
needsImplicitMoveAssignment();
|
|
}
|
|
|
|
/// \brief Set that we attempted to declare an implicit move assignment
|
|
/// operator, but overload resolution failed so we deleted it.
|
|
void setImplicitMoveAssignmentIsDeleted() {
|
|
assert((data().DefaultedMoveAssignmentIsDeleted ||
|
|
needsOverloadResolutionForMoveAssignment()) &&
|
|
"move assignment should not be deleted");
|
|
data().DefaultedMoveAssignmentIsDeleted = true;
|
|
}
|
|
|
|
/// \brief Determine whether this class should get an implicit move
|
|
/// assignment operator or if any existing special member function inhibits
|
|
/// this.
|
|
bool needsImplicitMoveAssignment() const {
|
|
return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
|
|
!hasUserDeclaredCopyConstructor() &&
|
|
!hasUserDeclaredCopyAssignment() &&
|
|
!hasUserDeclaredMoveConstructor() &&
|
|
!hasUserDeclaredDestructor() &&
|
|
// C++1z [expr.prim.lambda]p21: "the closure type has a deleted copy
|
|
// assignment operator". The intent is that this counts as a user
|
|
// declared copy assignment, but we do not model it that way.
|
|
!isLambda();
|
|
}
|
|
|
|
/// \brief Determine whether we need to eagerly declare a move assignment
|
|
/// operator for this class.
|
|
bool needsOverloadResolutionForMoveAssignment() const {
|
|
return data().NeedOverloadResolutionForMoveAssignment;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a user-declared destructor.
|
|
///
|
|
/// When false, a destructor will be implicitly declared.
|
|
bool hasUserDeclaredDestructor() const {
|
|
return data().UserDeclaredSpecialMembers & SMF_Destructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class needs an implicit destructor to
|
|
/// be lazily declared.
|
|
bool needsImplicitDestructor() const {
|
|
return !(data().DeclaredSpecialMembers & SMF_Destructor);
|
|
}
|
|
|
|
/// \brief Determine whether we need to eagerly declare a destructor for this
|
|
/// class.
|
|
bool needsOverloadResolutionForDestructor() const {
|
|
return data().NeedOverloadResolutionForDestructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class describes a lambda function object.
|
|
bool isLambda() const {
|
|
// An update record can't turn a non-lambda into a lambda.
|
|
auto *DD = DefinitionData;
|
|
return DD && DD->IsLambda;
|
|
}
|
|
|
|
/// \brief Determine whether this class describes a generic
|
|
/// lambda function object (i.e. function call operator is
|
|
/// a template).
|
|
bool isGenericLambda() const;
|
|
|
|
/// \brief Retrieve the lambda call operator of the closure type
|
|
/// if this is a closure type.
|
|
CXXMethodDecl *getLambdaCallOperator() const;
|
|
|
|
/// \brief Retrieve the lambda static invoker, the address of which
|
|
/// is returned by the conversion operator, and the body of which
|
|
/// is forwarded to the lambda call operator.
|
|
CXXMethodDecl *getLambdaStaticInvoker() const;
|
|
|
|
/// \brief Retrieve the generic lambda's template parameter list.
|
|
/// Returns null if the class does not represent a lambda or a generic
|
|
/// lambda.
|
|
TemplateParameterList *getGenericLambdaTemplateParameterList() const;
|
|
|
|
LambdaCaptureDefault getLambdaCaptureDefault() const {
|
|
assert(isLambda());
|
|
return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
|
|
}
|
|
|
|
/// \brief For a closure type, retrieve the mapping from captured
|
|
/// variables and \c this to the non-static data members that store the
|
|
/// values or references of the captures.
|
|
///
|
|
/// \param Captures Will be populated with the mapping from captured
|
|
/// variables to the corresponding fields.
|
|
///
|
|
/// \param ThisCapture Will be set to the field declaration for the
|
|
/// \c this capture.
|
|
///
|
|
/// \note No entries will be added for init-captures, as they do not capture
|
|
/// variables.
|
|
void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
|
|
FieldDecl *&ThisCapture) const;
|
|
|
|
typedef const LambdaCapture *capture_const_iterator;
|
|
typedef llvm::iterator_range<capture_const_iterator> capture_const_range;
|
|
|
|
capture_const_range captures() const {
|
|
return capture_const_range(captures_begin(), captures_end());
|
|
}
|
|
capture_const_iterator captures_begin() const {
|
|
return isLambda() ? getLambdaData().Captures : nullptr;
|
|
}
|
|
capture_const_iterator captures_end() const {
|
|
return isLambda() ? captures_begin() + getLambdaData().NumCaptures
|
|
: nullptr;
|
|
}
|
|
|
|
typedef UnresolvedSetIterator conversion_iterator;
|
|
conversion_iterator conversion_begin() const {
|
|
return data().Conversions.get(getASTContext()).begin();
|
|
}
|
|
conversion_iterator conversion_end() const {
|
|
return data().Conversions.get(getASTContext()).end();
|
|
}
|
|
|
|
/// Removes a conversion function from this class. The conversion
|
|
/// function must currently be a member of this class. Furthermore,
|
|
/// this class must currently be in the process of being defined.
|
|
void removeConversion(const NamedDecl *Old);
|
|
|
|
/// \brief Get all conversion functions visible in current class,
|
|
/// including conversion function templates.
|
|
llvm::iterator_range<conversion_iterator> getVisibleConversionFunctions();
|
|
|
|
/// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
|
|
/// which is a class with no user-declared constructors, no private
|
|
/// or protected non-static data members, no base classes, and no virtual
|
|
/// functions (C++ [dcl.init.aggr]p1).
|
|
bool isAggregate() const { return data().Aggregate; }
|
|
|
|
/// \brief Whether this class has any in-class initializers
|
|
/// for non-static data members (including those in anonymous unions or
|
|
/// structs).
|
|
bool hasInClassInitializer() const { return data().HasInClassInitializer; }
|
|
|
|
/// \brief Whether this class or any of its subobjects has any members of
|
|
/// reference type which would make value-initialization ill-formed.
|
|
///
|
|
/// Per C++03 [dcl.init]p5:
|
|
/// - if T is a non-union class type without a user-declared constructor,
|
|
/// then every non-static data member and base-class component of T is
|
|
/// value-initialized [...] A program that calls for [...]
|
|
/// value-initialization of an entity of reference type is ill-formed.
|
|
bool hasUninitializedReferenceMember() const {
|
|
return !isUnion() && !hasUserDeclaredConstructor() &&
|
|
data().HasUninitializedReferenceMember;
|
|
}
|
|
|
|
/// \brief Whether this class is a POD-type (C++ [class]p4)
|
|
///
|
|
/// For purposes of this function a class is POD if it is an aggregate
|
|
/// that has no non-static non-POD data members, no reference data
|
|
/// members, no user-defined copy assignment operator and no
|
|
/// user-defined destructor.
|
|
///
|
|
/// Note that this is the C++ TR1 definition of POD.
|
|
bool isPOD() const { return data().PlainOldData; }
|
|
|
|
/// \brief True if this class is C-like, without C++-specific features, e.g.
|
|
/// it contains only public fields, no bases, tag kind is not 'class', etc.
|
|
bool isCLike() const;
|
|
|
|
/// \brief Determine whether this is an empty class in the sense of
|
|
/// (C++11 [meta.unary.prop]).
|
|
///
|
|
/// The CXXRecordDecl is a class type, but not a union type,
|
|
/// with no non-static data members other than bit-fields of length 0,
|
|
/// no virtual member functions, no virtual base classes,
|
|
/// and no base class B for which is_empty<B>::value is false.
|
|
///
|
|
/// \note This does NOT include a check for union-ness.
|
|
bool isEmpty() const { return data().Empty; }
|
|
|
|
/// \brief Determine whether this class has direct non-static data members.
|
|
bool hasDirectFields() const {
|
|
auto &D = data();
|
|
return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
|
|
}
|
|
|
|
/// Whether this class is polymorphic (C++ [class.virtual]),
|
|
/// which means that the class contains or inherits a virtual function.
|
|
bool isPolymorphic() const { return data().Polymorphic; }
|
|
|
|
/// \brief Determine whether this class has a pure virtual function.
|
|
///
|
|
/// The class is is abstract per (C++ [class.abstract]p2) if it declares
|
|
/// a pure virtual function or inherits a pure virtual function that is
|
|
/// not overridden.
|
|
bool isAbstract() const { return data().Abstract; }
|
|
|
|
/// \brief Determine whether this class has standard layout per
|
|
/// (C++ [class]p7)
|
|
bool isStandardLayout() const { return data().IsStandardLayout; }
|
|
|
|
/// \brief Determine whether this class, or any of its class subobjects,
|
|
/// contains a mutable field.
|
|
bool hasMutableFields() const { return data().HasMutableFields; }
|
|
|
|
/// \brief Determine whether this class has any variant members.
|
|
bool hasVariantMembers() const { return data().HasVariantMembers; }
|
|
|
|
/// \brief Determine whether this class has a trivial default constructor
|
|
/// (C++11 [class.ctor]p5).
|
|
bool hasTrivialDefaultConstructor() const {
|
|
return hasDefaultConstructor() &&
|
|
(data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
|
|
}
|
|
|
|
/// \brief Determine whether this class has a non-trivial default constructor
|
|
/// (C++11 [class.ctor]p5).
|
|
bool hasNonTrivialDefaultConstructor() const {
|
|
return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
|
|
(needsImplicitDefaultConstructor() &&
|
|
!(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
|
|
}
|
|
|
|
/// \brief Determine whether this class has at least one constexpr constructor
|
|
/// other than the copy or move constructors.
|
|
bool hasConstexprNonCopyMoveConstructor() const {
|
|
return data().HasConstexprNonCopyMoveConstructor ||
|
|
(needsImplicitDefaultConstructor() &&
|
|
defaultedDefaultConstructorIsConstexpr());
|
|
}
|
|
|
|
/// \brief Determine whether a defaulted default constructor for this class
|
|
/// would be constexpr.
|
|
bool defaultedDefaultConstructorIsConstexpr() const {
|
|
return data().DefaultedDefaultConstructorIsConstexpr &&
|
|
(!isUnion() || hasInClassInitializer() || !hasVariantMembers());
|
|
}
|
|
|
|
/// \brief Determine whether this class has a constexpr default constructor.
|
|
bool hasConstexprDefaultConstructor() const {
|
|
return data().HasConstexprDefaultConstructor ||
|
|
(needsImplicitDefaultConstructor() &&
|
|
defaultedDefaultConstructorIsConstexpr());
|
|
}
|
|
|
|
/// \brief Determine whether this class has a trivial copy constructor
|
|
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
|
|
bool hasTrivialCopyConstructor() const {
|
|
return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a non-trivial copy constructor
|
|
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
|
|
bool hasNonTrivialCopyConstructor() const {
|
|
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
|
|
!hasTrivialCopyConstructor();
|
|
}
|
|
|
|
/// \brief Determine whether this class has a trivial move constructor
|
|
/// (C++11 [class.copy]p12)
|
|
bool hasTrivialMoveConstructor() const {
|
|
return hasMoveConstructor() &&
|
|
(data().HasTrivialSpecialMembers & SMF_MoveConstructor);
|
|
}
|
|
|
|
/// \brief Determine whether this class has a non-trivial move constructor
|
|
/// (C++11 [class.copy]p12)
|
|
bool hasNonTrivialMoveConstructor() const {
|
|
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
|
|
(needsImplicitMoveConstructor() &&
|
|
!(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
|
|
}
|
|
|
|
/// \brief Determine whether this class has a trivial copy assignment operator
|
|
/// (C++ [class.copy]p11, C++11 [class.copy]p25)
|
|
bool hasTrivialCopyAssignment() const {
|
|
return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a non-trivial copy assignment
|
|
/// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
|
|
bool hasNonTrivialCopyAssignment() const {
|
|
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
|
|
!hasTrivialCopyAssignment();
|
|
}
|
|
|
|
/// \brief Determine whether this class has a trivial move assignment operator
|
|
/// (C++11 [class.copy]p25)
|
|
bool hasTrivialMoveAssignment() const {
|
|
return hasMoveAssignment() &&
|
|
(data().HasTrivialSpecialMembers & SMF_MoveAssignment);
|
|
}
|
|
|
|
/// \brief Determine whether this class has a non-trivial move assignment
|
|
/// operator (C++11 [class.copy]p25)
|
|
bool hasNonTrivialMoveAssignment() const {
|
|
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
|
|
(needsImplicitMoveAssignment() &&
|
|
!(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
|
|
}
|
|
|
|
/// \brief Determine whether this class has a trivial destructor
|
|
/// (C++ [class.dtor]p3)
|
|
bool hasTrivialDestructor() const {
|
|
return data().HasTrivialSpecialMembers & SMF_Destructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a non-trivial destructor
|
|
/// (C++ [class.dtor]p3)
|
|
bool hasNonTrivialDestructor() const {
|
|
return !(data().HasTrivialSpecialMembers & SMF_Destructor);
|
|
}
|
|
|
|
/// \brief Determine whether declaring a const variable with this type is ok
|
|
/// per core issue 253.
|
|
bool allowConstDefaultInit() const {
|
|
return !data().HasUninitializedFields ||
|
|
!(data().HasDefaultedDefaultConstructor ||
|
|
needsImplicitDefaultConstructor());
|
|
}
|
|
|
|
/// \brief Determine whether this class has a destructor which has no
|
|
/// semantic effect.
|
|
///
|
|
/// Any such destructor will be trivial, public, defaulted and not deleted,
|
|
/// and will call only irrelevant destructors.
|
|
bool hasIrrelevantDestructor() const {
|
|
return data().HasIrrelevantDestructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a non-literal or/ volatile type
|
|
/// non-static data member or base class.
|
|
bool hasNonLiteralTypeFieldsOrBases() const {
|
|
return data().HasNonLiteralTypeFieldsOrBases;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a using-declaration that names
|
|
/// a user-declared base class constructor.
|
|
bool hasInheritedConstructor() const {
|
|
return data().HasInheritedConstructor;
|
|
}
|
|
|
|
/// \brief Determine whether this class has a using-declaration that names
|
|
/// a base class assignment operator.
|
|
bool hasInheritedAssignment() const {
|
|
return data().HasInheritedAssignment;
|
|
}
|
|
|
|
/// \brief Determine whether this class is considered trivially copyable per
|
|
/// (C++11 [class]p6).
|
|
bool isTriviallyCopyable() const;
|
|
|
|
/// \brief Determine whether this class is considered trivial.
|
|
///
|
|
/// C++11 [class]p6:
|
|
/// "A trivial class is a class that has a trivial default constructor and
|
|
/// is trivially copiable."
|
|
bool isTrivial() const {
|
|
return isTriviallyCopyable() && hasTrivialDefaultConstructor();
|
|
}
|
|
|
|
/// \brief Determine whether this class is a literal type.
|
|
///
|
|
/// C++11 [basic.types]p10:
|
|
/// A class type that has all the following properties:
|
|
/// - it has a trivial destructor
|
|
/// - every constructor call and full-expression in the
|
|
/// brace-or-equal-intializers for non-static data members (if any) is
|
|
/// a constant expression.
|
|
/// - it is an aggregate type or has at least one constexpr constructor
|
|
/// or constructor template that is not a copy or move constructor, and
|
|
/// - all of its non-static data members and base classes are of literal
|
|
/// types
|
|
///
|
|
/// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
|
|
/// treating types with trivial default constructors as literal types.
|
|
///
|
|
/// Only in C++1z and beyond, are lambdas literal types.
|
|
bool isLiteral() const {
|
|
return hasTrivialDestructor() &&
|
|
(!isLambda() || getASTContext().getLangOpts().CPlusPlus1z) &&
|
|
!hasNonLiteralTypeFieldsOrBases() &&
|
|
(isAggregate() || isLambda() ||
|
|
hasConstexprNonCopyMoveConstructor() ||
|
|
hasTrivialDefaultConstructor());
|
|
}
|
|
|
|
/// \brief If this record is an instantiation of a member class,
|
|
/// retrieves the member class from which it was instantiated.
|
|
///
|
|
/// This routine will return non-null for (non-templated) member
|
|
/// classes of class templates. For example, given:
|
|
///
|
|
/// \code
|
|
/// template<typename T>
|
|
/// struct X {
|
|
/// struct A { };
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
|
|
/// whose parent is the class template specialization X<int>. For
|
|
/// this declaration, getInstantiatedFromMemberClass() will return
|
|
/// the CXXRecordDecl X<T>::A. When a complete definition of
|
|
/// X<int>::A is required, it will be instantiated from the
|
|
/// declaration returned by getInstantiatedFromMemberClass().
|
|
CXXRecordDecl *getInstantiatedFromMemberClass() const;
|
|
|
|
/// \brief If this class is an instantiation of a member class of a
|
|
/// class template specialization, retrieves the member specialization
|
|
/// information.
|
|
MemberSpecializationInfo *getMemberSpecializationInfo() const;
|
|
|
|
/// \brief Specify that this record is an instantiation of the
|
|
/// member class \p RD.
|
|
void setInstantiationOfMemberClass(CXXRecordDecl *RD,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
/// \brief Retrieves the class template that is described by this
|
|
/// class declaration.
|
|
///
|
|
/// Every class template is represented as a ClassTemplateDecl and a
|
|
/// CXXRecordDecl. The former contains template properties (such as
|
|
/// the template parameter lists) while the latter contains the
|
|
/// actual description of the template's
|
|
/// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
|
|
/// CXXRecordDecl that from a ClassTemplateDecl, while
|
|
/// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
|
|
/// a CXXRecordDecl.
|
|
ClassTemplateDecl *getDescribedClassTemplate() const;
|
|
|
|
void setDescribedClassTemplate(ClassTemplateDecl *Template);
|
|
|
|
/// \brief Determine whether this particular class is a specialization or
|
|
/// instantiation of a class template or member class of a class template,
|
|
/// and how it was instantiated or specialized.
|
|
TemplateSpecializationKind getTemplateSpecializationKind() const;
|
|
|
|
/// \brief Set the kind of specialization or template instantiation this is.
|
|
void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
|
|
|
|
/// \brief Retrieve the record declaration from which this record could be
|
|
/// instantiated. Returns null if this class is not a template instantiation.
|
|
const CXXRecordDecl *getTemplateInstantiationPattern() const;
|
|
|
|
CXXRecordDecl *getTemplateInstantiationPattern() {
|
|
return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
|
|
->getTemplateInstantiationPattern());
|
|
}
|
|
|
|
/// \brief Returns the destructor decl for this class.
|
|
CXXDestructorDecl *getDestructor() const;
|
|
|
|
/// \brief Returns true if the class destructor, or any implicitly invoked
|
|
/// destructors are marked noreturn.
|
|
bool isAnyDestructorNoReturn() const;
|
|
|
|
/// \brief If the class is a local class [class.local], returns
|
|
/// the enclosing function declaration.
|
|
const FunctionDecl *isLocalClass() const {
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
|
|
return RD->isLocalClass();
|
|
|
|
return dyn_cast<FunctionDecl>(getDeclContext());
|
|
}
|
|
|
|
FunctionDecl *isLocalClass() {
|
|
return const_cast<FunctionDecl*>(
|
|
const_cast<const CXXRecordDecl*>(this)->isLocalClass());
|
|
}
|
|
|
|
/// \brief Determine whether this dependent class is a current instantiation,
|
|
/// when viewed from within the given context.
|
|
bool isCurrentInstantiation(const DeclContext *CurContext) const;
|
|
|
|
/// \brief Determine whether this class is derived from the class \p Base.
|
|
///
|
|
/// This routine only determines whether this class is derived from \p Base,
|
|
/// but does not account for factors that may make a Derived -> Base class
|
|
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
|
|
/// base class subobjects.
|
|
///
|
|
/// \param Base the base class we are searching for.
|
|
///
|
|
/// \returns true if this class is derived from Base, false otherwise.
|
|
bool isDerivedFrom(const CXXRecordDecl *Base) const;
|
|
|
|
/// \brief Determine whether this class is derived from the type \p Base.
|
|
///
|
|
/// This routine only determines whether this class is derived from \p Base,
|
|
/// but does not account for factors that may make a Derived -> Base class
|
|
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
|
|
/// base class subobjects.
|
|
///
|
|
/// \param Base the base class we are searching for.
|
|
///
|
|
/// \param Paths will contain the paths taken from the current class to the
|
|
/// given \p Base class.
|
|
///
|
|
/// \returns true if this class is derived from \p Base, false otherwise.
|
|
///
|
|
/// \todo add a separate parameter to configure IsDerivedFrom, rather than
|
|
/// tangling input and output in \p Paths
|
|
bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
|
|
|
|
/// \brief Determine whether this class is virtually derived from
|
|
/// the class \p Base.
|
|
///
|
|
/// This routine only determines whether this class is virtually
|
|
/// derived from \p Base, but does not account for factors that may
|
|
/// make a Derived -> Base class ill-formed, such as
|
|
/// private/protected inheritance or multiple, ambiguous base class
|
|
/// subobjects.
|
|
///
|
|
/// \param Base the base class we are searching for.
|
|
///
|
|
/// \returns true if this class is virtually derived from Base,
|
|
/// false otherwise.
|
|
bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
|
|
|
|
/// \brief Determine whether this class is provably not derived from
|
|
/// the type \p Base.
|
|
bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
|
|
|
|
/// \brief Function type used by forallBases() as a callback.
|
|
///
|
|
/// \param BaseDefinition the definition of the base class
|
|
///
|
|
/// \returns true if this base matched the search criteria
|
|
typedef llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>
|
|
ForallBasesCallback;
|
|
|
|
/// \brief Determines if the given callback holds for all the direct
|
|
/// or indirect base classes of this type.
|
|
///
|
|
/// The class itself does not count as a base class. This routine
|
|
/// returns false if the class has non-computable base classes.
|
|
///
|
|
/// \param BaseMatches Callback invoked for each (direct or indirect) base
|
|
/// class of this type, or if \p AllowShortCircuit is true then until a call
|
|
/// returns false.
|
|
///
|
|
/// \param AllowShortCircuit if false, forces the callback to be called
|
|
/// for every base class, even if a dependent or non-matching base was
|
|
/// found.
|
|
bool forallBases(ForallBasesCallback BaseMatches,
|
|
bool AllowShortCircuit = true) const;
|
|
|
|
/// \brief Function type used by lookupInBases() to determine whether a
|
|
/// specific base class subobject matches the lookup criteria.
|
|
///
|
|
/// \param Specifier the base-class specifier that describes the inheritance
|
|
/// from the base class we are trying to match.
|
|
///
|
|
/// \param Path the current path, from the most-derived class down to the
|
|
/// base named by the \p Specifier.
|
|
///
|
|
/// \returns true if this base matched the search criteria, false otherwise.
|
|
typedef llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path)> BaseMatchesCallback;
|
|
|
|
/// \brief Look for entities within the base classes of this C++ class,
|
|
/// transitively searching all base class subobjects.
|
|
///
|
|
/// This routine uses the callback function \p BaseMatches to find base
|
|
/// classes meeting some search criteria, walking all base class subobjects
|
|
/// and populating the given \p Paths structure with the paths through the
|
|
/// inheritance hierarchy that resulted in a match. On a successful search,
|
|
/// the \p Paths structure can be queried to retrieve the matching paths and
|
|
/// to determine if there were any ambiguities.
|
|
///
|
|
/// \param BaseMatches callback function used to determine whether a given
|
|
/// base matches the user-defined search criteria.
|
|
///
|
|
/// \param Paths used to record the paths from this class to its base class
|
|
/// subobjects that match the search criteria.
|
|
///
|
|
/// \returns true if there exists any path from this class to a base class
|
|
/// subobject that matches the search criteria.
|
|
bool lookupInBases(BaseMatchesCallback BaseMatches,
|
|
CXXBasePaths &Paths) const;
|
|
|
|
/// \brief Base-class lookup callback that determines whether the given
|
|
/// base class specifier refers to a specific class declaration.
|
|
///
|
|
/// This callback can be used with \c lookupInBases() to determine whether
|
|
/// a given derived class has is a base class subobject of a particular type.
|
|
/// The base record pointer should refer to the canonical CXXRecordDecl of the
|
|
/// base class that we are searching for.
|
|
static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
|
|
|
|
/// \brief Base-class lookup callback that determines whether the
|
|
/// given base class specifier refers to a specific class
|
|
/// declaration and describes virtual derivation.
|
|
///
|
|
/// This callback can be used with \c lookupInBases() to determine
|
|
/// whether a given derived class has is a virtual base class
|
|
/// subobject of a particular type. The base record pointer should
|
|
/// refer to the canonical CXXRecordDecl of the base class that we
|
|
/// are searching for.
|
|
static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path,
|
|
const CXXRecordDecl *BaseRecord);
|
|
|
|
/// \brief Base-class lookup callback that determines whether there exists
|
|
/// a tag with the given name.
|
|
///
|
|
/// This callback can be used with \c lookupInBases() to find tag members
|
|
/// of the given name within a C++ class hierarchy.
|
|
static bool FindTagMember(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path, DeclarationName Name);
|
|
|
|
/// \brief Base-class lookup callback that determines whether there exists
|
|
/// a member with the given name.
|
|
///
|
|
/// This callback can be used with \c lookupInBases() to find members
|
|
/// of the given name within a C++ class hierarchy.
|
|
static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path, DeclarationName Name);
|
|
|
|
/// \brief Base-class lookup callback that determines whether there exists
|
|
/// an OpenMP declare reduction member with the given name.
|
|
///
|
|
/// This callback can be used with \c lookupInBases() to find members
|
|
/// of the given name within a C++ class hierarchy.
|
|
static bool FindOMPReductionMember(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path, DeclarationName Name);
|
|
|
|
/// \brief Base-class lookup callback that determines whether there exists
|
|
/// a member with the given name that can be used in a nested-name-specifier.
|
|
///
|
|
/// This callback can be used with \c lookupInBases() to find members of
|
|
/// the given name within a C++ class hierarchy that can occur within
|
|
/// nested-name-specifiers.
|
|
static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path,
|
|
DeclarationName Name);
|
|
|
|
/// \brief Retrieve the final overriders for each virtual member
|
|
/// function in the class hierarchy where this class is the
|
|
/// most-derived class in the class hierarchy.
|
|
void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
|
|
|
|
/// \brief Get the indirect primary bases for this class.
|
|
void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
|
|
|
|
/// Renders and displays an inheritance diagram
|
|
/// for this C++ class and all of its base classes (transitively) using
|
|
/// GraphViz.
|
|
void viewInheritance(ASTContext& Context) const;
|
|
|
|
/// \brief Calculates the access of a decl that is reached
|
|
/// along a path.
|
|
static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
|
|
AccessSpecifier DeclAccess) {
|
|
assert(DeclAccess != AS_none);
|
|
if (DeclAccess == AS_private) return AS_none;
|
|
return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
|
|
}
|
|
|
|
/// \brief Indicates that the declaration of a defaulted or deleted special
|
|
/// member function is now complete.
|
|
void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
|
|
|
|
/// \brief Indicates that the definition of this class is now complete.
|
|
void completeDefinition() override;
|
|
|
|
/// \brief Indicates that the definition of this class is now complete,
|
|
/// and provides a final overrider map to help determine
|
|
///
|
|
/// \param FinalOverriders The final overrider map for this class, which can
|
|
/// be provided as an optimization for abstract-class checking. If NULL,
|
|
/// final overriders will be computed if they are needed to complete the
|
|
/// definition.
|
|
void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
|
|
|
|
/// \brief Determine whether this class may end up being abstract, even though
|
|
/// it is not yet known to be abstract.
|
|
///
|
|
/// \returns true if this class is not known to be abstract but has any
|
|
/// base classes that are abstract. In this case, \c completeDefinition()
|
|
/// will need to compute final overriders to determine whether the class is
|
|
/// actually abstract.
|
|
bool mayBeAbstract() const;
|
|
|
|
/// \brief If this is the closure type of a lambda expression, retrieve the
|
|
/// number to be used for name mangling in the Itanium C++ ABI.
|
|
///
|
|
/// Zero indicates that this closure type has internal linkage, so the
|
|
/// mangling number does not matter, while a non-zero value indicates which
|
|
/// lambda expression this is in this particular context.
|
|
unsigned getLambdaManglingNumber() const {
|
|
assert(isLambda() && "Not a lambda closure type!");
|
|
return getLambdaData().ManglingNumber;
|
|
}
|
|
|
|
/// \brief Retrieve the declaration that provides additional context for a
|
|
/// lambda, when the normal declaration context is not specific enough.
|
|
///
|
|
/// Certain contexts (default arguments of in-class function parameters and
|
|
/// the initializers of data members) have separate name mangling rules for
|
|
/// lambdas within the Itanium C++ ABI. For these cases, this routine provides
|
|
/// the declaration in which the lambda occurs, e.g., the function parameter
|
|
/// or the non-static data member. Otherwise, it returns NULL to imply that
|
|
/// the declaration context suffices.
|
|
Decl *getLambdaContextDecl() const;
|
|
|
|
/// \brief Set the mangling number and context declaration for a lambda
|
|
/// class.
|
|
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
|
|
getLambdaData().ManglingNumber = ManglingNumber;
|
|
getLambdaData().ContextDecl = ContextDecl;
|
|
}
|
|
|
|
/// \brief Returns the inheritance model used for this record.
|
|
MSInheritanceAttr::Spelling getMSInheritanceModel() const;
|
|
/// \brief Calculate what the inheritance model would be for this class.
|
|
MSInheritanceAttr::Spelling calculateInheritanceModel() const;
|
|
|
|
/// In the Microsoft C++ ABI, use zero for the field offset of a null data
|
|
/// member pointer if we can guarantee that zero is not a valid field offset,
|
|
/// or if the member pointer has multiple fields. Polymorphic classes have a
|
|
/// vfptr at offset zero, so we can use zero for null. If there are multiple
|
|
/// fields, we can use zero even if it is a valid field offset because
|
|
/// null-ness testing will check the other fields.
|
|
bool nullFieldOffsetIsZero() const {
|
|
return !MSInheritanceAttr::hasOnlyOneField(/*IsMemberFunction=*/false,
|
|
getMSInheritanceModel()) ||
|
|
(hasDefinition() && isPolymorphic());
|
|
}
|
|
|
|
/// \brief Controls when vtordisps will be emitted if this record is used as a
|
|
/// virtual base.
|
|
MSVtorDispAttr::Mode getMSVtorDispMode() const;
|
|
|
|
/// \brief Determine whether this lambda expression was known to be dependent
|
|
/// at the time it was created, even if its context does not appear to be
|
|
/// dependent.
|
|
///
|
|
/// This flag is a workaround for an issue with parsing, where default
|
|
/// arguments are parsed before their enclosing function declarations have
|
|
/// been created. This means that any lambda expressions within those
|
|
/// default arguments will have as their DeclContext the context enclosing
|
|
/// the function declaration, which may be non-dependent even when the
|
|
/// function declaration itself is dependent. This flag indicates when we
|
|
/// know that the lambda is dependent despite that.
|
|
bool isDependentLambda() const {
|
|
return isLambda() && getLambdaData().Dependent;
|
|
}
|
|
|
|
TypeSourceInfo *getLambdaTypeInfo() const {
|
|
return getLambdaData().MethodTyInfo;
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) {
|
|
return K >= firstCXXRecord && K <= lastCXXRecord;
|
|
}
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
friend class ASTRecordWriter;
|
|
friend class ASTReader;
|
|
friend class ASTWriter;
|
|
};
|
|
|
|
/// \brief Represents a C++ deduction guide declaration.
|
|
///
|
|
/// \code
|
|
/// template<typename T> struct A { A(); A(T); };
|
|
/// A() -> A<int>;
|
|
/// \endcode
|
|
///
|
|
/// In this example, there will be an explicit deduction guide from the
|
|
/// second line, and implicit deduction guide templates synthesized from
|
|
/// the constructors of \c A.
|
|
class CXXDeductionGuideDecl : public FunctionDecl {
|
|
void anchor() override;
|
|
private:
|
|
CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
|
|
bool IsExplicit, const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
SourceLocation EndLocation)
|
|
: FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
|
|
SC_None, false, false) {
|
|
if (EndLocation.isValid())
|
|
setRangeEnd(EndLocation);
|
|
IsExplicitSpecified = IsExplicit;
|
|
}
|
|
|
|
public:
|
|
static CXXDeductionGuideDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, bool IsExplicit,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
SourceLocation EndLocation);
|
|
|
|
static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
/// Whether this deduction guide is explicit.
|
|
bool isExplicit() const { return IsExplicitSpecified; }
|
|
|
|
/// Whether this deduction guide was declared with the 'explicit' specifier.
|
|
bool isExplicitSpecified() const { return IsExplicitSpecified; }
|
|
|
|
/// Get the template for which this guide performs deduction.
|
|
TemplateDecl *getDeducedTemplate() const {
|
|
return getDeclName().getCXXDeductionGuideTemplate();
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
};
|
|
|
|
/// \brief Represents a static or instance method of a struct/union/class.
|
|
///
|
|
/// In the terminology of the C++ Standard, these are the (static and
|
|
/// non-static) member functions, whether virtual or not.
|
|
class CXXMethodDecl : public FunctionDecl {
|
|
void anchor() override;
|
|
protected:
|
|
CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
|
|
SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass SC, bool isInline,
|
|
bool isConstexpr, SourceLocation EndLocation)
|
|
: FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo,
|
|
SC, isInline, isConstexpr) {
|
|
if (EndLocation.isValid())
|
|
setRangeEnd(EndLocation);
|
|
}
|
|
|
|
public:
|
|
static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
|
|
SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass SC,
|
|
bool isInline,
|
|
bool isConstexpr,
|
|
SourceLocation EndLocation);
|
|
|
|
static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
bool isStatic() const;
|
|
bool isInstance() const { return !isStatic(); }
|
|
|
|
/// Returns true if the given operator is implicitly static in a record
|
|
/// context.
|
|
static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
|
|
// [class.free]p1:
|
|
// Any allocation function for a class T is a static member
|
|
// (even if not explicitly declared static).
|
|
// [class.free]p6 Any deallocation function for a class X is a static member
|
|
// (even if not explicitly declared static).
|
|
return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
|
|
OOK == OO_Array_Delete;
|
|
}
|
|
|
|
bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
|
|
bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
|
|
|
|
bool isVirtual() const {
|
|
CXXMethodDecl *CD =
|
|
cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
|
|
|
|
// Member function is virtual if it is marked explicitly so, or if it is
|
|
// declared in __interface -- then it is automatically pure virtual.
|
|
if (CD->isVirtualAsWritten() || CD->isPure())
|
|
return true;
|
|
|
|
return (CD->begin_overridden_methods() != CD->end_overridden_methods());
|
|
}
|
|
|
|
/// \brief Determine whether this is a usual deallocation function
|
|
/// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
|
|
/// delete or delete[] operator with a particular signature.
|
|
bool isUsualDeallocationFunction() const;
|
|
|
|
/// \brief Determine whether this is a copy-assignment operator, regardless
|
|
/// of whether it was declared implicitly or explicitly.
|
|
bool isCopyAssignmentOperator() const;
|
|
|
|
/// \brief Determine whether this is a move assignment operator.
|
|
bool isMoveAssignmentOperator() const;
|
|
|
|
CXXMethodDecl *getCanonicalDecl() override {
|
|
return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
|
|
}
|
|
const CXXMethodDecl *getCanonicalDecl() const {
|
|
return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
|
|
}
|
|
|
|
CXXMethodDecl *getMostRecentDecl() {
|
|
return cast<CXXMethodDecl>(
|
|
static_cast<FunctionDecl *>(this)->getMostRecentDecl());
|
|
}
|
|
const CXXMethodDecl *getMostRecentDecl() const {
|
|
return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
|
|
}
|
|
|
|
/// True if this method is user-declared and was not
|
|
/// deleted or defaulted on its first declaration.
|
|
bool isUserProvided() const {
|
|
return !(isDeleted() || getCanonicalDecl()->isDefaulted());
|
|
}
|
|
|
|
///
|
|
void addOverriddenMethod(const CXXMethodDecl *MD);
|
|
|
|
typedef const CXXMethodDecl *const* method_iterator;
|
|
|
|
method_iterator begin_overridden_methods() const;
|
|
method_iterator end_overridden_methods() const;
|
|
unsigned size_overridden_methods() const;
|
|
typedef ASTContext::overridden_method_range overridden_method_range;
|
|
overridden_method_range overridden_methods() const;
|
|
|
|
/// Returns the parent of this method declaration, which
|
|
/// is the class in which this method is defined.
|
|
const CXXRecordDecl *getParent() const {
|
|
return cast<CXXRecordDecl>(FunctionDecl::getParent());
|
|
}
|
|
|
|
/// Returns the parent of this method declaration, which
|
|
/// is the class in which this method is defined.
|
|
CXXRecordDecl *getParent() {
|
|
return const_cast<CXXRecordDecl *>(
|
|
cast<CXXRecordDecl>(FunctionDecl::getParent()));
|
|
}
|
|
|
|
/// \brief Returns the type of the \c this pointer.
|
|
///
|
|
/// Should only be called for instance (i.e., non-static) methods.
|
|
QualType getThisType(ASTContext &C) const;
|
|
|
|
unsigned getTypeQualifiers() const {
|
|
return getType()->getAs<FunctionProtoType>()->getTypeQuals();
|
|
}
|
|
|
|
/// \brief Retrieve the ref-qualifier associated with this method.
|
|
///
|
|
/// In the following example, \c f() has an lvalue ref-qualifier, \c g()
|
|
/// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
|
|
/// @code
|
|
/// struct X {
|
|
/// void f() &;
|
|
/// void g() &&;
|
|
/// void h();
|
|
/// };
|
|
/// @endcode
|
|
RefQualifierKind getRefQualifier() const {
|
|
return getType()->getAs<FunctionProtoType>()->getRefQualifier();
|
|
}
|
|
|
|
bool hasInlineBody() const;
|
|
|
|
/// \brief Determine whether this is a lambda closure type's static member
|
|
/// function that is used for the result of the lambda's conversion to
|
|
/// function pointer (for a lambda with no captures).
|
|
///
|
|
/// The function itself, if used, will have a placeholder body that will be
|
|
/// supplied by IR generation to either forward to the function call operator
|
|
/// or clone the function call operator.
|
|
bool isLambdaStaticInvoker() const;
|
|
|
|
/// \brief Find the method in \p RD that corresponds to this one.
|
|
///
|
|
/// Find if \p RD or one of the classes it inherits from override this method.
|
|
/// If so, return it. \p RD is assumed to be a subclass of the class defining
|
|
/// this method (or be the class itself), unless \p MayBeBase is set to true.
|
|
CXXMethodDecl *
|
|
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
|
|
bool MayBeBase = false);
|
|
|
|
const CXXMethodDecl *
|
|
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
|
|
bool MayBeBase = false) const {
|
|
return const_cast<CXXMethodDecl *>(this)
|
|
->getCorrespondingMethodInClass(RD, MayBeBase);
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) {
|
|
return K >= firstCXXMethod && K <= lastCXXMethod;
|
|
}
|
|
};
|
|
|
|
/// \brief Represents a C++ base or member initializer.
|
|
///
|
|
/// This is part of a constructor initializer that
|
|
/// initializes one non-static member variable or one base class. For
|
|
/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
|
|
/// initializers:
|
|
///
|
|
/// \code
|
|
/// class A { };
|
|
/// class B : public A {
|
|
/// float f;
|
|
/// public:
|
|
/// B(A& a) : A(a), f(3.14159) { }
|
|
/// };
|
|
/// \endcode
|
|
class CXXCtorInitializer final {
|
|
/// \brief Either the base class name/delegating constructor type (stored as
|
|
/// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
|
|
/// (IndirectFieldDecl*) being initialized.
|
|
llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
|
|
Initializee;
|
|
|
|
/// \brief The source location for the field name or, for a base initializer
|
|
/// pack expansion, the location of the ellipsis.
|
|
///
|
|
/// In the case of a delegating
|
|
/// constructor, it will still include the type's source location as the
|
|
/// Initializee points to the CXXConstructorDecl (to allow loop detection).
|
|
SourceLocation MemberOrEllipsisLocation;
|
|
|
|
/// \brief The argument used to initialize the base or member, which may
|
|
/// end up constructing an object (when multiple arguments are involved).
|
|
Stmt *Init;
|
|
|
|
/// \brief Location of the left paren of the ctor-initializer.
|
|
SourceLocation LParenLoc;
|
|
|
|
/// \brief Location of the right paren of the ctor-initializer.
|
|
SourceLocation RParenLoc;
|
|
|
|
/// \brief If the initializee is a type, whether that type makes this
|
|
/// a delegating initialization.
|
|
unsigned IsDelegating : 1;
|
|
|
|
/// \brief If the initializer is a base initializer, this keeps track
|
|
/// of whether the base is virtual or not.
|
|
unsigned IsVirtual : 1;
|
|
|
|
/// \brief Whether or not the initializer is explicitly written
|
|
/// in the sources.
|
|
unsigned IsWritten : 1;
|
|
|
|
/// If IsWritten is true, then this number keeps track of the textual order
|
|
/// of this initializer in the original sources, counting from 0.
|
|
unsigned SourceOrder : 13;
|
|
|
|
public:
|
|
/// \brief Creates a new base-class initializer.
|
|
explicit
|
|
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
|
|
SourceLocation L, Expr *Init, SourceLocation R,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
/// \brief Creates a new member initializer.
|
|
explicit
|
|
CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
|
|
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
|
|
SourceLocation R);
|
|
|
|
/// \brief Creates a new anonymous field initializer.
|
|
explicit
|
|
CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
|
|
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
|
|
SourceLocation R);
|
|
|
|
/// \brief Creates a new delegating initializer.
|
|
explicit
|
|
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
|
|
SourceLocation L, Expr *Init, SourceLocation R);
|
|
|
|
/// \brief Determine whether this initializer is initializing a base class.
|
|
bool isBaseInitializer() const {
|
|
return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
|
|
}
|
|
|
|
/// \brief Determine whether this initializer is initializing a non-static
|
|
/// data member.
|
|
bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
|
|
|
|
bool isAnyMemberInitializer() const {
|
|
return isMemberInitializer() || isIndirectMemberInitializer();
|
|
}
|
|
|
|
bool isIndirectMemberInitializer() const {
|
|
return Initializee.is<IndirectFieldDecl*>();
|
|
}
|
|
|
|
/// \brief Determine whether this initializer is an implicit initializer
|
|
/// generated for a field with an initializer defined on the member
|
|
/// declaration.
|
|
///
|
|
/// In-class member initializers (also known as "non-static data member
|
|
/// initializations", NSDMIs) were introduced in C++11.
|
|
bool isInClassMemberInitializer() const {
|
|
return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
|
|
}
|
|
|
|
/// \brief Determine whether this initializer is creating a delegating
|
|
/// constructor.
|
|
bool isDelegatingInitializer() const {
|
|
return Initializee.is<TypeSourceInfo*>() && IsDelegating;
|
|
}
|
|
|
|
/// \brief Determine whether this initializer is a pack expansion.
|
|
bool isPackExpansion() const {
|
|
return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
|
|
}
|
|
|
|
// \brief For a pack expansion, returns the location of the ellipsis.
|
|
SourceLocation getEllipsisLoc() const {
|
|
assert(isPackExpansion() && "Initializer is not a pack expansion");
|
|
return MemberOrEllipsisLocation;
|
|
}
|
|
|
|
/// If this is a base class initializer, returns the type of the
|
|
/// base class with location information. Otherwise, returns an NULL
|
|
/// type location.
|
|
TypeLoc getBaseClassLoc() const;
|
|
|
|
/// If this is a base class initializer, returns the type of the base class.
|
|
/// Otherwise, returns null.
|
|
const Type *getBaseClass() const;
|
|
|
|
/// Returns whether the base is virtual or not.
|
|
bool isBaseVirtual() const {
|
|
assert(isBaseInitializer() && "Must call this on base initializer!");
|
|
|
|
return IsVirtual;
|
|
}
|
|
|
|
/// \brief Returns the declarator information for a base class or delegating
|
|
/// initializer.
|
|
TypeSourceInfo *getTypeSourceInfo() const {
|
|
return Initializee.dyn_cast<TypeSourceInfo *>();
|
|
}
|
|
|
|
/// \brief If this is a member initializer, returns the declaration of the
|
|
/// non-static data member being initialized. Otherwise, returns null.
|
|
FieldDecl *getMember() const {
|
|
if (isMemberInitializer())
|
|
return Initializee.get<FieldDecl*>();
|
|
return nullptr;
|
|
}
|
|
FieldDecl *getAnyMember() const {
|
|
if (isMemberInitializer())
|
|
return Initializee.get<FieldDecl*>();
|
|
if (isIndirectMemberInitializer())
|
|
return Initializee.get<IndirectFieldDecl*>()->getAnonField();
|
|
return nullptr;
|
|
}
|
|
|
|
IndirectFieldDecl *getIndirectMember() const {
|
|
if (isIndirectMemberInitializer())
|
|
return Initializee.get<IndirectFieldDecl*>();
|
|
return nullptr;
|
|
}
|
|
|
|
SourceLocation getMemberLocation() const {
|
|
return MemberOrEllipsisLocation;
|
|
}
|
|
|
|
/// \brief Determine the source location of the initializer.
|
|
SourceLocation getSourceLocation() const;
|
|
|
|
/// \brief Determine the source range covering the entire initializer.
|
|
SourceRange getSourceRange() const LLVM_READONLY;
|
|
|
|
/// \brief Determine whether this initializer is explicitly written
|
|
/// in the source code.
|
|
bool isWritten() const { return IsWritten; }
|
|
|
|
/// \brief Return the source position of the initializer, counting from 0.
|
|
/// If the initializer was implicit, -1 is returned.
|
|
int getSourceOrder() const {
|
|
return IsWritten ? static_cast<int>(SourceOrder) : -1;
|
|
}
|
|
|
|
/// \brief Set the source order of this initializer.
|
|
///
|
|
/// This can only be called once for each initializer; it cannot be called
|
|
/// on an initializer having a positive number of (implicit) array indices.
|
|
///
|
|
/// This assumes that the initializer was written in the source code, and
|
|
/// ensures that isWritten() returns true.
|
|
void setSourceOrder(int Pos) {
|
|
assert(!IsWritten &&
|
|
"setSourceOrder() used on implicit initializer");
|
|
assert(SourceOrder == 0 &&
|
|
"calling twice setSourceOrder() on the same initializer");
|
|
assert(Pos >= 0 &&
|
|
"setSourceOrder() used to make an initializer implicit");
|
|
IsWritten = true;
|
|
SourceOrder = static_cast<unsigned>(Pos);
|
|
}
|
|
|
|
SourceLocation getLParenLoc() const { return LParenLoc; }
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
|
|
/// \brief Get the initializer.
|
|
Expr *getInit() const { return static_cast<Expr*>(Init); }
|
|
};
|
|
|
|
/// Description of a constructor that was inherited from a base class.
|
|
class InheritedConstructor {
|
|
ConstructorUsingShadowDecl *Shadow;
|
|
CXXConstructorDecl *BaseCtor;
|
|
|
|
public:
|
|
InheritedConstructor() : Shadow(), BaseCtor() {}
|
|
InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
|
|
CXXConstructorDecl *BaseCtor)
|
|
: Shadow(Shadow), BaseCtor(BaseCtor) {}
|
|
|
|
explicit operator bool() const { return Shadow; }
|
|
|
|
ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
|
|
CXXConstructorDecl *getConstructor() const { return BaseCtor; }
|
|
};
|
|
|
|
/// \brief Represents a C++ constructor within a class.
|
|
///
|
|
/// For example:
|
|
///
|
|
/// \code
|
|
/// class X {
|
|
/// public:
|
|
/// explicit X(int); // represented by a CXXConstructorDecl.
|
|
/// };
|
|
/// \endcode
|
|
class CXXConstructorDecl final
|
|
: public CXXMethodDecl,
|
|
private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor> {
|
|
void anchor() override;
|
|
|
|
/// \name Support for base and member initializers.
|
|
/// \{
|
|
/// \brief The arguments used to initialize the base or member.
|
|
LazyCXXCtorInitializersPtr CtorInitializers;
|
|
unsigned NumCtorInitializers : 31;
|
|
/// \}
|
|
|
|
/// \brief Whether this constructor declaration is an implicitly-declared
|
|
/// inheriting constructor.
|
|
unsigned IsInheritingConstructor : 1;
|
|
|
|
CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isExplicitSpecified, bool isInline,
|
|
bool isImplicitlyDeclared, bool isConstexpr,
|
|
InheritedConstructor Inherited)
|
|
: CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
|
|
SC_None, isInline, isConstexpr, SourceLocation()),
|
|
CtorInitializers(nullptr), NumCtorInitializers(0),
|
|
IsInheritingConstructor((bool)Inherited) {
|
|
setImplicit(isImplicitlyDeclared);
|
|
if (Inherited)
|
|
*getTrailingObjects<InheritedConstructor>() = Inherited;
|
|
IsExplicitSpecified = isExplicitSpecified;
|
|
}
|
|
|
|
public:
|
|
static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
|
|
bool InheritsConstructor);
|
|
static CXXConstructorDecl *
|
|
Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
|
|
bool isExplicit, bool isInline, bool isImplicitlyDeclared,
|
|
bool isConstexpr,
|
|
InheritedConstructor Inherited = InheritedConstructor());
|
|
|
|
/// \brief Iterates through the member/base initializer list.
|
|
typedef CXXCtorInitializer **init_iterator;
|
|
|
|
/// \brief Iterates through the member/base initializer list.
|
|
typedef CXXCtorInitializer *const *init_const_iterator;
|
|
|
|
typedef llvm::iterator_range<init_iterator> init_range;
|
|
typedef llvm::iterator_range<init_const_iterator> init_const_range;
|
|
|
|
init_range inits() { return init_range(init_begin(), init_end()); }
|
|
init_const_range inits() const {
|
|
return init_const_range(init_begin(), init_end());
|
|
}
|
|
|
|
/// \brief Retrieve an iterator to the first initializer.
|
|
init_iterator init_begin() {
|
|
const auto *ConstThis = this;
|
|
return const_cast<init_iterator>(ConstThis->init_begin());
|
|
}
|
|
/// \brief Retrieve an iterator to the first initializer.
|
|
init_const_iterator init_begin() const;
|
|
|
|
/// \brief Retrieve an iterator past the last initializer.
|
|
init_iterator init_end() {
|
|
return init_begin() + NumCtorInitializers;
|
|
}
|
|
/// \brief Retrieve an iterator past the last initializer.
|
|
init_const_iterator init_end() const {
|
|
return init_begin() + NumCtorInitializers;
|
|
}
|
|
|
|
typedef std::reverse_iterator<init_iterator> init_reverse_iterator;
|
|
typedef std::reverse_iterator<init_const_iterator>
|
|
init_const_reverse_iterator;
|
|
|
|
init_reverse_iterator init_rbegin() {
|
|
return init_reverse_iterator(init_end());
|
|
}
|
|
init_const_reverse_iterator init_rbegin() const {
|
|
return init_const_reverse_iterator(init_end());
|
|
}
|
|
|
|
init_reverse_iterator init_rend() {
|
|
return init_reverse_iterator(init_begin());
|
|
}
|
|
init_const_reverse_iterator init_rend() const {
|
|
return init_const_reverse_iterator(init_begin());
|
|
}
|
|
|
|
/// \brief Determine the number of arguments used to initialize the member
|
|
/// or base.
|
|
unsigned getNumCtorInitializers() const {
|
|
return NumCtorInitializers;
|
|
}
|
|
|
|
void setNumCtorInitializers(unsigned numCtorInitializers) {
|
|
NumCtorInitializers = numCtorInitializers;
|
|
}
|
|
|
|
void setCtorInitializers(CXXCtorInitializer **Initializers) {
|
|
CtorInitializers = Initializers;
|
|
}
|
|
|
|
/// Whether this function is marked as explicit explicitly.
|
|
bool isExplicitSpecified() const { return IsExplicitSpecified; }
|
|
|
|
/// Whether this function is explicit.
|
|
bool isExplicit() const {
|
|
return getCanonicalDecl()->isExplicitSpecified();
|
|
}
|
|
|
|
/// \brief Determine whether this constructor is a delegating constructor.
|
|
bool isDelegatingConstructor() const {
|
|
return (getNumCtorInitializers() == 1) &&
|
|
init_begin()[0]->isDelegatingInitializer();
|
|
}
|
|
|
|
/// \brief When this constructor delegates to another, retrieve the target.
|
|
CXXConstructorDecl *getTargetConstructor() const;
|
|
|
|
/// Whether this constructor is a default
|
|
/// constructor (C++ [class.ctor]p5), which can be used to
|
|
/// default-initialize a class of this type.
|
|
bool isDefaultConstructor() const;
|
|
|
|
/// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2,
|
|
/// which can be used to copy the class.
|
|
///
|
|
/// \p TypeQuals will be set to the qualifiers on the
|
|
/// argument type. For example, \p TypeQuals would be set to \c
|
|
/// Qualifiers::Const for the following copy constructor:
|
|
///
|
|
/// \code
|
|
/// class X {
|
|
/// public:
|
|
/// X(const X&);
|
|
/// };
|
|
/// \endcode
|
|
bool isCopyConstructor(unsigned &TypeQuals) const;
|
|
|
|
/// Whether this constructor is a copy
|
|
/// constructor (C++ [class.copy]p2, which can be used to copy the
|
|
/// class.
|
|
bool isCopyConstructor() const {
|
|
unsigned TypeQuals = 0;
|
|
return isCopyConstructor(TypeQuals);
|
|
}
|
|
|
|
/// \brief Determine whether this constructor is a move constructor
|
|
/// (C++11 [class.copy]p3), which can be used to move values of the class.
|
|
///
|
|
/// \param TypeQuals If this constructor is a move constructor, will be set
|
|
/// to the type qualifiers on the referent of the first parameter's type.
|
|
bool isMoveConstructor(unsigned &TypeQuals) const;
|
|
|
|
/// \brief Determine whether this constructor is a move constructor
|
|
/// (C++11 [class.copy]p3), which can be used to move values of the class.
|
|
bool isMoveConstructor() const {
|
|
unsigned TypeQuals = 0;
|
|
return isMoveConstructor(TypeQuals);
|
|
}
|
|
|
|
/// \brief Determine whether this is a copy or move constructor.
|
|
///
|
|
/// \param TypeQuals Will be set to the type qualifiers on the reference
|
|
/// parameter, if in fact this is a copy or move constructor.
|
|
bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
|
|
|
|
/// \brief Determine whether this a copy or move constructor.
|
|
bool isCopyOrMoveConstructor() const {
|
|
unsigned Quals;
|
|
return isCopyOrMoveConstructor(Quals);
|
|
}
|
|
|
|
/// Whether this constructor is a
|
|
/// converting constructor (C++ [class.conv.ctor]), which can be
|
|
/// used for user-defined conversions.
|
|
bool isConvertingConstructor(bool AllowExplicit) const;
|
|
|
|
/// \brief Determine whether this is a member template specialization that
|
|
/// would copy the object to itself. Such constructors are never used to copy
|
|
/// an object.
|
|
bool isSpecializationCopyingObject() const;
|
|
|
|
/// \brief Determine whether this is an implicit constructor synthesized to
|
|
/// model a call to a constructor inherited from a base class.
|
|
bool isInheritingConstructor() const { return IsInheritingConstructor; }
|
|
|
|
/// \brief Get the constructor that this inheriting constructor is based on.
|
|
InheritedConstructor getInheritedConstructor() const {
|
|
return IsInheritingConstructor ? *getTrailingObjects<InheritedConstructor>()
|
|
: InheritedConstructor();
|
|
}
|
|
|
|
CXXConstructorDecl *getCanonicalDecl() override {
|
|
return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
|
|
}
|
|
const CXXConstructorDecl *getCanonicalDecl() const {
|
|
return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == CXXConstructor; }
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
friend TrailingObjects;
|
|
};
|
|
|
|
/// \brief Represents a C++ destructor within a class.
|
|
///
|
|
/// For example:
|
|
///
|
|
/// \code
|
|
/// class X {
|
|
/// public:
|
|
/// ~X(); // represented by a CXXDestructorDecl.
|
|
/// };
|
|
/// \endcode
|
|
class CXXDestructorDecl : public CXXMethodDecl {
|
|
void anchor() override;
|
|
|
|
FunctionDecl *OperatorDelete;
|
|
|
|
CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isInline, bool isImplicitlyDeclared)
|
|
: CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
|
|
SC_None, isInline, /*isConstexpr=*/false, SourceLocation()),
|
|
OperatorDelete(nullptr) {
|
|
setImplicit(isImplicitlyDeclared);
|
|
}
|
|
|
|
public:
|
|
static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
|
|
SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo* TInfo,
|
|
bool isInline,
|
|
bool isImplicitlyDeclared);
|
|
static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
|
|
|
|
void setOperatorDelete(FunctionDecl *OD);
|
|
const FunctionDecl *getOperatorDelete() const {
|
|
return getCanonicalDecl()->OperatorDelete;
|
|
}
|
|
|
|
CXXDestructorDecl *getCanonicalDecl() override {
|
|
return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
|
|
}
|
|
const CXXDestructorDecl *getCanonicalDecl() const {
|
|
return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == CXXDestructor; }
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
};
|
|
|
|
/// \brief Represents a C++ conversion function within a class.
|
|
///
|
|
/// For example:
|
|
///
|
|
/// \code
|
|
/// class X {
|
|
/// public:
|
|
/// operator bool();
|
|
/// };
|
|
/// \endcode
|
|
class CXXConversionDecl : public CXXMethodDecl {
|
|
void anchor() override;
|
|
|
|
CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo, QualType T,
|
|
TypeSourceInfo *TInfo, bool isInline,
|
|
bool isExplicitSpecified, bool isConstexpr,
|
|
SourceLocation EndLocation)
|
|
: CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
|
|
SC_None, isInline, isConstexpr, EndLocation) {
|
|
IsExplicitSpecified = isExplicitSpecified;
|
|
}
|
|
|
|
public:
|
|
static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
|
|
SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isInline, bool isExplicit,
|
|
bool isConstexpr,
|
|
SourceLocation EndLocation);
|
|
static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
/// Whether this function is marked as explicit explicitly.
|
|
bool isExplicitSpecified() const { return IsExplicitSpecified; }
|
|
|
|
/// Whether this function is explicit.
|
|
bool isExplicit() const {
|
|
return getCanonicalDecl()->isExplicitSpecified();
|
|
}
|
|
|
|
/// \brief Returns the type that this conversion function is converting to.
|
|
QualType getConversionType() const {
|
|
return getType()->getAs<FunctionType>()->getReturnType();
|
|
}
|
|
|
|
/// \brief Determine whether this conversion function is a conversion from
|
|
/// a lambda closure type to a block pointer.
|
|
bool isLambdaToBlockPointerConversion() const;
|
|
|
|
CXXConversionDecl *getCanonicalDecl() override {
|
|
return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
|
|
}
|
|
const CXXConversionDecl *getCanonicalDecl() const {
|
|
return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == CXXConversion; }
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
};
|
|
|
|
/// \brief Represents a linkage specification.
|
|
///
|
|
/// For example:
|
|
/// \code
|
|
/// extern "C" void foo();
|
|
/// \endcode
|
|
class LinkageSpecDecl : public Decl, public DeclContext {
|
|
virtual void anchor();
|
|
public:
|
|
/// \brief Represents the language in a linkage specification.
|
|
///
|
|
/// The values are part of the serialization ABI for
|
|
/// ASTs and cannot be changed without altering that ABI. To help
|
|
/// ensure a stable ABI for this, we choose the DW_LANG_ encodings
|
|
/// from the dwarf standard.
|
|
enum LanguageIDs {
|
|
lang_c = /* DW_LANG_C */ 0x0002,
|
|
lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
|
|
};
|
|
private:
|
|
/// \brief The language for this linkage specification.
|
|
unsigned Language : 3;
|
|
/// \brief True if this linkage spec has braces.
|
|
///
|
|
/// This is needed so that hasBraces() returns the correct result while the
|
|
/// linkage spec body is being parsed. Once RBraceLoc has been set this is
|
|
/// not used, so it doesn't need to be serialized.
|
|
unsigned HasBraces : 1;
|
|
/// \brief The source location for the extern keyword.
|
|
SourceLocation ExternLoc;
|
|
/// \brief The source location for the right brace (if valid).
|
|
SourceLocation RBraceLoc;
|
|
|
|
LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
|
|
SourceLocation LangLoc, LanguageIDs lang, bool HasBraces)
|
|
: Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
|
|
Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc),
|
|
RBraceLoc(SourceLocation()) { }
|
|
|
|
public:
|
|
static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation ExternLoc,
|
|
SourceLocation LangLoc, LanguageIDs Lang,
|
|
bool HasBraces);
|
|
static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
/// \brief Return the language specified by this linkage specification.
|
|
LanguageIDs getLanguage() const { return LanguageIDs(Language); }
|
|
/// \brief Set the language specified by this linkage specification.
|
|
void setLanguage(LanguageIDs L) { Language = L; }
|
|
|
|
/// \brief Determines whether this linkage specification had braces in
|
|
/// its syntactic form.
|
|
bool hasBraces() const {
|
|
assert(!RBraceLoc.isValid() || HasBraces);
|
|
return HasBraces;
|
|
}
|
|
|
|
SourceLocation getExternLoc() const { return ExternLoc; }
|
|
SourceLocation getRBraceLoc() const { return RBraceLoc; }
|
|
void setExternLoc(SourceLocation L) { ExternLoc = L; }
|
|
void setRBraceLoc(SourceLocation L) {
|
|
RBraceLoc = L;
|
|
HasBraces = RBraceLoc.isValid();
|
|
}
|
|
|
|
SourceLocation getLocEnd() const LLVM_READONLY {
|
|
if (hasBraces())
|
|
return getRBraceLoc();
|
|
// No braces: get the end location of the (only) declaration in context
|
|
// (if present).
|
|
return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
|
|
}
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return SourceRange(ExternLoc, getLocEnd());
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == LinkageSpec; }
|
|
static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
|
|
return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
|
|
}
|
|
static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
|
|
return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
|
|
}
|
|
};
|
|
|
|
/// \brief Represents C++ using-directive.
|
|
///
|
|
/// For example:
|
|
/// \code
|
|
/// using namespace std;
|
|
/// \endcode
|
|
///
|
|
/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
|
|
/// artificial names for all using-directives in order to store
|
|
/// them in DeclContext effectively.
|
|
class UsingDirectiveDecl : public NamedDecl {
|
|
void anchor() override;
|
|
/// \brief The location of the \c using keyword.
|
|
SourceLocation UsingLoc;
|
|
|
|
/// \brief The location of the \c namespace keyword.
|
|
SourceLocation NamespaceLoc;
|
|
|
|
/// \brief The nested-name-specifier that precedes the namespace.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
/// \brief The namespace nominated by this using-directive.
|
|
NamedDecl *NominatedNamespace;
|
|
|
|
/// Enclosing context containing both using-directive and nominated
|
|
/// namespace.
|
|
DeclContext *CommonAncestor;
|
|
|
|
/// \brief Returns special DeclarationName used by using-directives.
|
|
///
|
|
/// This is only used by DeclContext for storing UsingDirectiveDecls in
|
|
/// its lookup structure.
|
|
static DeclarationName getName() {
|
|
return DeclarationName::getUsingDirectiveName();
|
|
}
|
|
|
|
UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
|
|
SourceLocation NamespcLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation IdentLoc,
|
|
NamedDecl *Nominated,
|
|
DeclContext *CommonAncestor)
|
|
: NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
|
|
NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
|
|
NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { }
|
|
|
|
public:
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the
|
|
/// name of the namespace, with source-location information.
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the
|
|
/// name of the namespace.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return QualifierLoc.getNestedNameSpecifier();
|
|
}
|
|
|
|
NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
|
|
const NamedDecl *getNominatedNamespaceAsWritten() const {
|
|
return NominatedNamespace;
|
|
}
|
|
|
|
/// \brief Returns the namespace nominated by this using-directive.
|
|
NamespaceDecl *getNominatedNamespace();
|
|
|
|
const NamespaceDecl *getNominatedNamespace() const {
|
|
return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
|
|
}
|
|
|
|
/// \brief Returns the common ancestor context of this using-directive and
|
|
/// its nominated namespace.
|
|
DeclContext *getCommonAncestor() { return CommonAncestor; }
|
|
const DeclContext *getCommonAncestor() const { return CommonAncestor; }
|
|
|
|
/// \brief Return the location of the \c using keyword.
|
|
SourceLocation getUsingLoc() const { return UsingLoc; }
|
|
|
|
// FIXME: Could omit 'Key' in name.
|
|
/// \brief Returns the location of the \c namespace keyword.
|
|
SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
|
|
|
|
/// \brief Returns the location of this using declaration's identifier.
|
|
SourceLocation getIdentLocation() const { return getLocation(); }
|
|
|
|
static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation NamespaceLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation IdentLoc,
|
|
NamedDecl *Nominated,
|
|
DeclContext *CommonAncestor);
|
|
static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return SourceRange(UsingLoc, getLocation());
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == UsingDirective; }
|
|
|
|
// Friend for getUsingDirectiveName.
|
|
friend class DeclContext;
|
|
|
|
friend class ASTDeclReader;
|
|
};
|
|
|
|
/// \brief Represents a C++ namespace alias.
|
|
///
|
|
/// For example:
|
|
///
|
|
/// \code
|
|
/// namespace Foo = Bar;
|
|
/// \endcode
|
|
class NamespaceAliasDecl : public NamedDecl,
|
|
public Redeclarable<NamespaceAliasDecl> {
|
|
void anchor() override;
|
|
|
|
/// \brief The location of the \c namespace keyword.
|
|
SourceLocation NamespaceLoc;
|
|
|
|
/// \brief The location of the namespace's identifier.
|
|
///
|
|
/// This is accessed by TargetNameLoc.
|
|
SourceLocation IdentLoc;
|
|
|
|
/// \brief The nested-name-specifier that precedes the namespace.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
/// \brief The Decl that this alias points to, either a NamespaceDecl or
|
|
/// a NamespaceAliasDecl.
|
|
NamedDecl *Namespace;
|
|
|
|
NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
|
|
SourceLocation NamespaceLoc, SourceLocation AliasLoc,
|
|
IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation IdentLoc, NamedDecl *Namespace)
|
|
: NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
|
|
NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
|
|
QualifierLoc(QualifierLoc), Namespace(Namespace) {}
|
|
|
|
typedef Redeclarable<NamespaceAliasDecl> redeclarable_base;
|
|
NamespaceAliasDecl *getNextRedeclarationImpl() override;
|
|
NamespaceAliasDecl *getPreviousDeclImpl() override;
|
|
NamespaceAliasDecl *getMostRecentDeclImpl() override;
|
|
|
|
friend class ASTDeclReader;
|
|
|
|
public:
|
|
static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation NamespaceLoc,
|
|
SourceLocation AliasLoc,
|
|
IdentifierInfo *Alias,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation IdentLoc,
|
|
NamedDecl *Namespace);
|
|
|
|
static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
typedef redeclarable_base::redecl_range redecl_range;
|
|
typedef redeclarable_base::redecl_iterator redecl_iterator;
|
|
using redeclarable_base::redecls_begin;
|
|
using redeclarable_base::redecls_end;
|
|
using redeclarable_base::redecls;
|
|
using redeclarable_base::getPreviousDecl;
|
|
using redeclarable_base::getMostRecentDecl;
|
|
|
|
NamespaceAliasDecl *getCanonicalDecl() override {
|
|
return getFirstDecl();
|
|
}
|
|
const NamespaceAliasDecl *getCanonicalDecl() const {
|
|
return getFirstDecl();
|
|
}
|
|
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the
|
|
/// name of the namespace, with source-location information.
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the
|
|
/// name of the namespace.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return QualifierLoc.getNestedNameSpecifier();
|
|
}
|
|
|
|
/// \brief Retrieve the namespace declaration aliased by this directive.
|
|
NamespaceDecl *getNamespace() {
|
|
if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
|
|
return AD->getNamespace();
|
|
|
|
return cast<NamespaceDecl>(Namespace);
|
|
}
|
|
|
|
const NamespaceDecl *getNamespace() const {
|
|
return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
|
|
}
|
|
|
|
/// Returns the location of the alias name, i.e. 'foo' in
|
|
/// "namespace foo = ns::bar;".
|
|
SourceLocation getAliasLoc() const { return getLocation(); }
|
|
|
|
/// Returns the location of the \c namespace keyword.
|
|
SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
|
|
|
|
/// Returns the location of the identifier in the named namespace.
|
|
SourceLocation getTargetNameLoc() const { return IdentLoc; }
|
|
|
|
/// \brief Retrieve the namespace that this alias refers to, which
|
|
/// may either be a NamespaceDecl or a NamespaceAliasDecl.
|
|
NamedDecl *getAliasedNamespace() const { return Namespace; }
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return SourceRange(NamespaceLoc, IdentLoc);
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == NamespaceAlias; }
|
|
};
|
|
|
|
/// \brief Represents a shadow declaration introduced into a scope by a
|
|
/// (resolved) using declaration.
|
|
///
|
|
/// For example,
|
|
/// \code
|
|
/// namespace A {
|
|
/// void foo();
|
|
/// }
|
|
/// namespace B {
|
|
/// using A::foo; // <- a UsingDecl
|
|
/// // Also creates a UsingShadowDecl for A::foo() in B
|
|
/// }
|
|
/// \endcode
|
|
class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
|
|
void anchor() override;
|
|
|
|
/// The referenced declaration.
|
|
NamedDecl *Underlying;
|
|
|
|
/// \brief The using declaration which introduced this decl or the next using
|
|
/// shadow declaration contained in the aforementioned using declaration.
|
|
NamedDecl *UsingOrNextShadow;
|
|
friend class UsingDecl;
|
|
|
|
typedef Redeclarable<UsingShadowDecl> redeclarable_base;
|
|
UsingShadowDecl *getNextRedeclarationImpl() override {
|
|
return getNextRedeclaration();
|
|
}
|
|
UsingShadowDecl *getPreviousDeclImpl() override {
|
|
return getPreviousDecl();
|
|
}
|
|
UsingShadowDecl *getMostRecentDeclImpl() override {
|
|
return getMostRecentDecl();
|
|
}
|
|
|
|
protected:
|
|
UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
|
|
UsingDecl *Using, NamedDecl *Target);
|
|
UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
|
|
|
|
public:
|
|
static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation Loc, UsingDecl *Using,
|
|
NamedDecl *Target) {
|
|
return new (C, DC) UsingShadowDecl(UsingShadow, C, DC, Loc, Using, Target);
|
|
}
|
|
|
|
static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
typedef redeclarable_base::redecl_range redecl_range;
|
|
typedef redeclarable_base::redecl_iterator redecl_iterator;
|
|
using redeclarable_base::redecls_begin;
|
|
using redeclarable_base::redecls_end;
|
|
using redeclarable_base::redecls;
|
|
using redeclarable_base::getPreviousDecl;
|
|
using redeclarable_base::getMostRecentDecl;
|
|
using redeclarable_base::isFirstDecl;
|
|
|
|
UsingShadowDecl *getCanonicalDecl() override {
|
|
return getFirstDecl();
|
|
}
|
|
const UsingShadowDecl *getCanonicalDecl() const {
|
|
return getFirstDecl();
|
|
}
|
|
|
|
/// \brief Gets the underlying declaration which has been brought into the
|
|
/// local scope.
|
|
NamedDecl *getTargetDecl() const { return Underlying; }
|
|
|
|
/// \brief Sets the underlying declaration which has been brought into the
|
|
/// local scope.
|
|
void setTargetDecl(NamedDecl* ND) {
|
|
assert(ND && "Target decl is null!");
|
|
Underlying = ND;
|
|
IdentifierNamespace = ND->getIdentifierNamespace();
|
|
}
|
|
|
|
/// \brief Gets the using declaration to which this declaration is tied.
|
|
UsingDecl *getUsingDecl() const;
|
|
|
|
/// \brief The next using shadow declaration contained in the shadow decl
|
|
/// chain of the using declaration which introduced this decl.
|
|
UsingShadowDecl *getNextUsingShadowDecl() const {
|
|
return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) {
|
|
return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
|
|
}
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
};
|
|
|
|
/// \brief Represents a shadow constructor declaration introduced into a
|
|
/// class by a C++11 using-declaration that names a constructor.
|
|
///
|
|
/// For example:
|
|
/// \code
|
|
/// struct Base { Base(int); };
|
|
/// struct Derived {
|
|
/// using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
|
|
/// };
|
|
/// \endcode
|
|
class ConstructorUsingShadowDecl final : public UsingShadowDecl {
|
|
void anchor() override;
|
|
|
|
/// \brief If this constructor using declaration inherted the constructor
|
|
/// from an indirect base class, this is the ConstructorUsingShadowDecl
|
|
/// in the named direct base class from which the declaration was inherited.
|
|
ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl;
|
|
|
|
/// \brief If this constructor using declaration inherted the constructor
|
|
/// from an indirect base class, this is the ConstructorUsingShadowDecl
|
|
/// that will be used to construct the unique direct or virtual base class
|
|
/// that receives the constructor arguments.
|
|
ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl;
|
|
|
|
/// \brief \c true if the constructor ultimately named by this using shadow
|
|
/// declaration is within a virtual base class subobject of the class that
|
|
/// contains this declaration.
|
|
unsigned IsVirtual : 1;
|
|
|
|
ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
|
|
UsingDecl *Using, NamedDecl *Target,
|
|
bool TargetInVirtualBase)
|
|
: UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc, Using,
|
|
Target->getUnderlyingDecl()),
|
|
NominatedBaseClassShadowDecl(
|
|
dyn_cast<ConstructorUsingShadowDecl>(Target)),
|
|
ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
|
|
IsVirtual(TargetInVirtualBase) {
|
|
// If we found a constructor that chains to a constructor for a virtual
|
|
// base, we should directly call that virtual base constructor instead.
|
|
// FIXME: This logic belongs in Sema.
|
|
if (NominatedBaseClassShadowDecl &&
|
|
NominatedBaseClassShadowDecl->constructsVirtualBase()) {
|
|
ConstructedBaseClassShadowDecl =
|
|
NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
|
|
IsVirtual = true;
|
|
}
|
|
}
|
|
ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
|
|
: UsingShadowDecl(ConstructorUsingShadow, C, Empty),
|
|
NominatedBaseClassShadowDecl(), ConstructedBaseClassShadowDecl(),
|
|
IsVirtual(false) {}
|
|
|
|
public:
|
|
static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation Loc,
|
|
UsingDecl *Using, NamedDecl *Target,
|
|
bool IsVirtual);
|
|
static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
|
|
unsigned ID);
|
|
|
|
/// Returns the parent of this using shadow declaration, which
|
|
/// is the class in which this is declared.
|
|
//@{
|
|
const CXXRecordDecl *getParent() const {
|
|
return cast<CXXRecordDecl>(getDeclContext());
|
|
}
|
|
CXXRecordDecl *getParent() {
|
|
return cast<CXXRecordDecl>(getDeclContext());
|
|
}
|
|
//@}
|
|
|
|
/// \brief Get the inheriting constructor declaration for the direct base
|
|
/// class from which this using shadow declaration was inherited, if there is
|
|
/// one. This can be different for each redeclaration of the same shadow decl.
|
|
ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
|
|
return NominatedBaseClassShadowDecl;
|
|
}
|
|
|
|
/// \brief Get the inheriting constructor declaration for the base class
|
|
/// for which we don't have an explicit initializer, if there is one.
|
|
ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
|
|
return ConstructedBaseClassShadowDecl;
|
|
}
|
|
|
|
/// \brief Get the base class that was named in the using declaration. This
|
|
/// can be different for each redeclaration of this same shadow decl.
|
|
CXXRecordDecl *getNominatedBaseClass() const;
|
|
|
|
/// \brief Get the base class whose constructor or constructor shadow
|
|
/// declaration is passed the constructor arguments.
|
|
CXXRecordDecl *getConstructedBaseClass() const {
|
|
return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
|
|
? ConstructedBaseClassShadowDecl
|
|
: getTargetDecl())
|
|
->getDeclContext());
|
|
}
|
|
|
|
/// \brief Returns \c true if the constructed base class is a virtual base
|
|
/// class subobject of this declaration's class.
|
|
bool constructsVirtualBase() const {
|
|
return IsVirtual;
|
|
}
|
|
|
|
/// \brief Get the constructor or constructor template in the derived class
|
|
/// correspnding to this using shadow declaration, if it has been implicitly
|
|
/// declared already.
|
|
CXXConstructorDecl *getConstructor() const;
|
|
void setConstructor(NamedDecl *Ctor);
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
};
|
|
|
|
/// \brief Represents a C++ using-declaration.
|
|
///
|
|
/// For example:
|
|
/// \code
|
|
/// using someNameSpace::someIdentifier;
|
|
/// \endcode
|
|
class UsingDecl : public NamedDecl, public Mergeable<UsingDecl> {
|
|
void anchor() override;
|
|
|
|
/// \brief The source location of the 'using' keyword itself.
|
|
SourceLocation UsingLocation;
|
|
|
|
/// \brief The nested-name-specifier that precedes the name.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
/// \brief Provides source/type location info for the declaration name
|
|
/// embedded in the ValueDecl base class.
|
|
DeclarationNameLoc DNLoc;
|
|
|
|
/// \brief The first shadow declaration of the shadow decl chain associated
|
|
/// with this using declaration.
|
|
///
|
|
/// The bool member of the pair store whether this decl has the \c typename
|
|
/// keyword.
|
|
llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
|
|
|
|
UsingDecl(DeclContext *DC, SourceLocation UL,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
|
|
: NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
|
|
UsingLocation(UL), QualifierLoc(QualifierLoc),
|
|
DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) {
|
|
}
|
|
|
|
public:
|
|
/// \brief Return the source location of the 'using' keyword.
|
|
SourceLocation getUsingLoc() const { return UsingLocation; }
|
|
|
|
/// \brief Set the source location of the 'using' keyword.
|
|
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
|
|
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the name,
|
|
/// with source-location information.
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the name.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return QualifierLoc.getNestedNameSpecifier();
|
|
}
|
|
|
|
DeclarationNameInfo getNameInfo() const {
|
|
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
|
|
}
|
|
|
|
/// \brief Return true if it is a C++03 access declaration (no 'using').
|
|
bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
|
|
|
|
/// \brief Return true if the using declaration has 'typename'.
|
|
bool hasTypename() const { return FirstUsingShadow.getInt(); }
|
|
|
|
/// \brief Sets whether the using declaration has 'typename'.
|
|
void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
|
|
|
|
/// \brief Iterates through the using shadow declarations associated with
|
|
/// this using declaration.
|
|
class shadow_iterator {
|
|
/// \brief The current using shadow declaration.
|
|
UsingShadowDecl *Current;
|
|
|
|
public:
|
|
typedef UsingShadowDecl* value_type;
|
|
typedef UsingShadowDecl* reference;
|
|
typedef UsingShadowDecl* pointer;
|
|
typedef std::forward_iterator_tag iterator_category;
|
|
typedef std::ptrdiff_t difference_type;
|
|
|
|
shadow_iterator() : Current(nullptr) { }
|
|
explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { }
|
|
|
|
reference operator*() const { return Current; }
|
|
pointer operator->() const { return Current; }
|
|
|
|
shadow_iterator& operator++() {
|
|
Current = Current->getNextUsingShadowDecl();
|
|
return *this;
|
|
}
|
|
|
|
shadow_iterator operator++(int) {
|
|
shadow_iterator tmp(*this);
|
|
++(*this);
|
|
return tmp;
|
|
}
|
|
|
|
friend bool operator==(shadow_iterator x, shadow_iterator y) {
|
|
return x.Current == y.Current;
|
|
}
|
|
friend bool operator!=(shadow_iterator x, shadow_iterator y) {
|
|
return x.Current != y.Current;
|
|
}
|
|
};
|
|
|
|
typedef llvm::iterator_range<shadow_iterator> shadow_range;
|
|
|
|
shadow_range shadows() const {
|
|
return shadow_range(shadow_begin(), shadow_end());
|
|
}
|
|
shadow_iterator shadow_begin() const {
|
|
return shadow_iterator(FirstUsingShadow.getPointer());
|
|
}
|
|
shadow_iterator shadow_end() const { return shadow_iterator(); }
|
|
|
|
/// \brief Return the number of shadowed declarations associated with this
|
|
/// using declaration.
|
|
unsigned shadow_size() const {
|
|
return std::distance(shadow_begin(), shadow_end());
|
|
}
|
|
|
|
void addShadowDecl(UsingShadowDecl *S);
|
|
void removeShadowDecl(UsingShadowDecl *S);
|
|
|
|
static UsingDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation UsingL,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
bool HasTypenameKeyword);
|
|
|
|
static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
/// Retrieves the canonical declaration of this declaration.
|
|
UsingDecl *getCanonicalDecl() override { return getFirstDecl(); }
|
|
const UsingDecl *getCanonicalDecl() const { return getFirstDecl(); }
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Using; }
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
};
|
|
|
|
/// Represents a pack of using declarations that a single
|
|
/// using-declarator pack-expanded into.
|
|
///
|
|
/// \code
|
|
/// template<typename ...T> struct X : T... {
|
|
/// using T::operator()...;
|
|
/// using T::operator T...;
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// In the second case above, the UsingPackDecl will have the name
|
|
/// 'operator T' (which contains an unexpanded pack), but the individual
|
|
/// UsingDecls and UsingShadowDecls will have more reasonable names.
|
|
class UsingPackDecl final
|
|
: public NamedDecl, public Mergeable<UsingPackDecl>,
|
|
private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
|
|
void anchor() override;
|
|
|
|
/// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
|
|
/// which this waas instantiated.
|
|
NamedDecl *InstantiatedFrom;
|
|
|
|
/// The number of using-declarations created by this pack expansion.
|
|
unsigned NumExpansions;
|
|
|
|
UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
|
|
ArrayRef<NamedDecl *> UsingDecls)
|
|
: NamedDecl(UsingPack, DC,
|
|
InstantiatedFrom ? InstantiatedFrom->getLocation()
|
|
: SourceLocation(),
|
|
InstantiatedFrom ? InstantiatedFrom->getDeclName()
|
|
: DeclarationName()),
|
|
InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
|
|
std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
|
|
getTrailingObjects<NamedDecl *>());
|
|
}
|
|
|
|
public:
|
|
/// Get the using declaration from which this was instantiated. This will
|
|
/// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
|
|
/// that is a pack expansion.
|
|
NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
|
|
|
|
/// Get the set of using declarations that this pack expanded into. Note that
|
|
/// some of these may still be unresolved.
|
|
ArrayRef<NamedDecl *> expansions() const {
|
|
return llvm::makeArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
|
|
}
|
|
|
|
static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
|
|
NamedDecl *InstantiatedFrom,
|
|
ArrayRef<NamedDecl *> UsingDecls);
|
|
|
|
static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
|
|
unsigned NumExpansions);
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return InstantiatedFrom->getSourceRange();
|
|
}
|
|
|
|
UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
|
|
const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == UsingPack; }
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
friend TrailingObjects;
|
|
};
|
|
|
|
/// \brief Represents a dependent using declaration which was not marked with
|
|
/// \c typename.
|
|
///
|
|
/// Unlike non-dependent using declarations, these *only* bring through
|
|
/// non-types; otherwise they would break two-phase lookup.
|
|
///
|
|
/// \code
|
|
/// template \<class T> class A : public Base<T> {
|
|
/// using Base<T>::foo;
|
|
/// };
|
|
/// \endcode
|
|
class UnresolvedUsingValueDecl : public ValueDecl,
|
|
public Mergeable<UnresolvedUsingValueDecl> {
|
|
void anchor() override;
|
|
|
|
/// \brief The source location of the 'using' keyword
|
|
SourceLocation UsingLocation;
|
|
|
|
/// \brief If this is a pack expansion, the location of the '...'.
|
|
SourceLocation EllipsisLoc;
|
|
|
|
/// \brief The nested-name-specifier that precedes the name.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
/// \brief Provides source/type location info for the declaration name
|
|
/// embedded in the ValueDecl base class.
|
|
DeclarationNameLoc DNLoc;
|
|
|
|
UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
|
|
SourceLocation UsingLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
SourceLocation EllipsisLoc)
|
|
: ValueDecl(UnresolvedUsingValue, DC,
|
|
NameInfo.getLoc(), NameInfo.getName(), Ty),
|
|
UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
|
|
QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo())
|
|
{ }
|
|
|
|
public:
|
|
/// \brief Returns the source location of the 'using' keyword.
|
|
SourceLocation getUsingLoc() const { return UsingLocation; }
|
|
|
|
/// \brief Set the source location of the 'using' keyword.
|
|
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
|
|
|
|
/// \brief Return true if it is a C++03 access declaration (no 'using').
|
|
bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
|
|
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the name,
|
|
/// with source-location information.
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the name.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return QualifierLoc.getNestedNameSpecifier();
|
|
}
|
|
|
|
DeclarationNameInfo getNameInfo() const {
|
|
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
|
|
}
|
|
|
|
/// \brief Determine whether this is a pack expansion.
|
|
bool isPackExpansion() const {
|
|
return EllipsisLoc.isValid();
|
|
}
|
|
|
|
/// \brief Get the location of the ellipsis if this is a pack expansion.
|
|
SourceLocation getEllipsisLoc() const {
|
|
return EllipsisLoc;
|
|
}
|
|
|
|
static UnresolvedUsingValueDecl *
|
|
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
|
|
|
|
static UnresolvedUsingValueDecl *
|
|
CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
/// Retrieves the canonical declaration of this declaration.
|
|
UnresolvedUsingValueDecl *getCanonicalDecl() override {
|
|
return getFirstDecl();
|
|
}
|
|
const UnresolvedUsingValueDecl *getCanonicalDecl() const {
|
|
return getFirstDecl();
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
|
|
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
};
|
|
|
|
/// \brief Represents a dependent using declaration which was marked with
|
|
/// \c typename.
|
|
///
|
|
/// \code
|
|
/// template \<class T> class A : public Base<T> {
|
|
/// using typename Base<T>::foo;
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// The type associated with an unresolved using typename decl is
|
|
/// currently always a typename type.
|
|
class UnresolvedUsingTypenameDecl
|
|
: public TypeDecl,
|
|
public Mergeable<UnresolvedUsingTypenameDecl> {
|
|
void anchor() override;
|
|
|
|
/// \brief The source location of the 'typename' keyword
|
|
SourceLocation TypenameLocation;
|
|
|
|
/// \brief If this is a pack expansion, the location of the '...'.
|
|
SourceLocation EllipsisLoc;
|
|
|
|
/// \brief The nested-name-specifier that precedes the name.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
|
|
SourceLocation TypenameLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TargetNameLoc,
|
|
IdentifierInfo *TargetName,
|
|
SourceLocation EllipsisLoc)
|
|
: TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
|
|
UsingLoc),
|
|
TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
|
|
QualifierLoc(QualifierLoc) { }
|
|
|
|
friend class ASTDeclReader;
|
|
|
|
public:
|
|
/// \brief Returns the source location of the 'using' keyword.
|
|
SourceLocation getUsingLoc() const { return getLocStart(); }
|
|
|
|
/// \brief Returns the source location of the 'typename' keyword.
|
|
SourceLocation getTypenameLoc() const { return TypenameLocation; }
|
|
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the name,
|
|
/// with source-location information.
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
|
|
/// \brief Retrieve the nested-name-specifier that qualifies the name.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return QualifierLoc.getNestedNameSpecifier();
|
|
}
|
|
|
|
DeclarationNameInfo getNameInfo() const {
|
|
return DeclarationNameInfo(getDeclName(), getLocation());
|
|
}
|
|
|
|
/// \brief Determine whether this is a pack expansion.
|
|
bool isPackExpansion() const {
|
|
return EllipsisLoc.isValid();
|
|
}
|
|
|
|
/// \brief Get the location of the ellipsis if this is a pack expansion.
|
|
SourceLocation getEllipsisLoc() const {
|
|
return EllipsisLoc;
|
|
}
|
|
|
|
static UnresolvedUsingTypenameDecl *
|
|
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
|
|
SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TargetNameLoc, DeclarationName TargetName,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
static UnresolvedUsingTypenameDecl *
|
|
CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
/// Retrieves the canonical declaration of this declaration.
|
|
UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
|
|
return getFirstDecl();
|
|
}
|
|
const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
|
|
return getFirstDecl();
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
|
|
};
|
|
|
|
/// \brief Represents a C++11 static_assert declaration.
|
|
class StaticAssertDecl : public Decl {
|
|
virtual void anchor();
|
|
llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
|
|
StringLiteral *Message;
|
|
SourceLocation RParenLoc;
|
|
|
|
StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
|
|
Expr *AssertExpr, StringLiteral *Message,
|
|
SourceLocation RParenLoc, bool Failed)
|
|
: Decl(StaticAssert, DC, StaticAssertLoc),
|
|
AssertExprAndFailed(AssertExpr, Failed), Message(Message),
|
|
RParenLoc(RParenLoc) { }
|
|
|
|
public:
|
|
static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StaticAssertLoc,
|
|
Expr *AssertExpr, StringLiteral *Message,
|
|
SourceLocation RParenLoc, bool Failed);
|
|
static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
|
|
const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
|
|
|
|
StringLiteral *getMessage() { return Message; }
|
|
const StringLiteral *getMessage() const { return Message; }
|
|
|
|
bool isFailed() const { return AssertExprAndFailed.getInt(); }
|
|
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return SourceRange(getLocation(), getRParenLoc());
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == StaticAssert; }
|
|
|
|
friend class ASTDeclReader;
|
|
};
|
|
|
|
/// A binding in a decomposition declaration. For instance, given:
|
|
///
|
|
/// int n[3];
|
|
/// auto &[a, b, c] = n;
|
|
///
|
|
/// a, b, and c are BindingDecls, whose bindings are the expressions
|
|
/// x[0], x[1], and x[2] respectively, where x is the implicit
|
|
/// DecompositionDecl of type 'int (&)[3]'.
|
|
class BindingDecl : public ValueDecl {
|
|
void anchor() override;
|
|
|
|
/// The binding represented by this declaration. References to this
|
|
/// declaration are effectively equivalent to this expression (except
|
|
/// that it is only evaluated once at the point of declaration of the
|
|
/// binding).
|
|
Expr *Binding;
|
|
|
|
BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
|
|
: ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()), Binding(nullptr) {}
|
|
|
|
public:
|
|
static BindingDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdLoc, IdentifierInfo *Id);
|
|
static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
/// Get the expression to which this declaration is bound. This may be null
|
|
/// in two different cases: while parsing the initializer for the
|
|
/// decomposition declaration, and when the initializer is type-dependent.
|
|
Expr *getBinding() const { return Binding; }
|
|
|
|
/// Get the variable (if any) that holds the value of evaluating the binding.
|
|
/// Only present for user-defined bindings for tuple-like types.
|
|
VarDecl *getHoldingVar() const;
|
|
|
|
/// Set the binding for this BindingDecl, along with its declared type (which
|
|
/// should be a possibly-cv-qualified form of the type of the binding, or a
|
|
/// reference to such a type).
|
|
void setBinding(QualType DeclaredType, Expr *Binding) {
|
|
setType(DeclaredType);
|
|
this->Binding = Binding;
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Decl::Binding; }
|
|
|
|
friend class ASTDeclReader;
|
|
};
|
|
|
|
/// A decomposition declaration. For instance, given:
|
|
///
|
|
/// int n[3];
|
|
/// auto &[a, b, c] = n;
|
|
///
|
|
/// the second line declares a DecompositionDecl of type 'int (&)[3]', and
|
|
/// three BindingDecls (named a, b, and c). An instance of this class is always
|
|
/// unnamed, but behaves in almost all other respects like a VarDecl.
|
|
class DecompositionDecl final
|
|
: public VarDecl,
|
|
private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
|
|
void anchor() override;
|
|
|
|
/// The number of BindingDecl*s following this object.
|
|
unsigned NumBindings;
|
|
|
|
DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation LSquareLoc, QualType T,
|
|
TypeSourceInfo *TInfo, StorageClass SC,
|
|
ArrayRef<BindingDecl *> Bindings)
|
|
: VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
|
|
SC),
|
|
NumBindings(Bindings.size()) {
|
|
std::uninitialized_copy(Bindings.begin(), Bindings.end(),
|
|
getTrailingObjects<BindingDecl *>());
|
|
}
|
|
|
|
public:
|
|
static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LSquareLoc,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass S,
|
|
ArrayRef<BindingDecl *> Bindings);
|
|
static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
|
|
unsigned NumBindings);
|
|
|
|
ArrayRef<BindingDecl *> bindings() const {
|
|
return llvm::makeArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
|
|
}
|
|
|
|
void printName(raw_ostream &os) const override;
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Decomposition; }
|
|
|
|
friend TrailingObjects;
|
|
friend class ASTDeclReader;
|
|
};
|
|
|
|
/// An instance of this class represents the declaration of a property
|
|
/// member. This is a Microsoft extension to C++, first introduced in
|
|
/// Visual Studio .NET 2003 as a parallel to similar features in C#
|
|
/// and Managed C++.
|
|
///
|
|
/// A property must always be a non-static class member.
|
|
///
|
|
/// A property member superficially resembles a non-static data
|
|
/// member, except preceded by a property attribute:
|
|
/// __declspec(property(get=GetX, put=PutX)) int x;
|
|
/// Either (but not both) of the 'get' and 'put' names may be omitted.
|
|
///
|
|
/// A reference to a property is always an lvalue. If the lvalue
|
|
/// undergoes lvalue-to-rvalue conversion, then a getter name is
|
|
/// required, and that member is called with no arguments.
|
|
/// If the lvalue is assigned into, then a setter name is required,
|
|
/// and that member is called with one argument, the value assigned.
|
|
/// Both operations are potentially overloaded. Compound assignments
|
|
/// are permitted, as are the increment and decrement operators.
|
|
///
|
|
/// The getter and putter methods are permitted to be overloaded,
|
|
/// although their return and parameter types are subject to certain
|
|
/// restrictions according to the type of the property.
|
|
///
|
|
/// A property declared using an incomplete array type may
|
|
/// additionally be subscripted, adding extra parameters to the getter
|
|
/// and putter methods.
|
|
class MSPropertyDecl : public DeclaratorDecl {
|
|
IdentifierInfo *GetterId, *SetterId;
|
|
|
|
MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
|
|
QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
|
|
IdentifierInfo *Getter, IdentifierInfo *Setter)
|
|
: DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
|
|
GetterId(Getter), SetterId(Setter) {}
|
|
|
|
public:
|
|
static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L, DeclarationName N, QualType T,
|
|
TypeSourceInfo *TInfo, SourceLocation StartL,
|
|
IdentifierInfo *Getter, IdentifierInfo *Setter);
|
|
static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
|
|
|
|
bool hasGetter() const { return GetterId != nullptr; }
|
|
IdentifierInfo* getGetterId() const { return GetterId; }
|
|
bool hasSetter() const { return SetterId != nullptr; }
|
|
IdentifierInfo* getSetterId() const { return SetterId; }
|
|
|
|
friend class ASTDeclReader;
|
|
};
|
|
|
|
/// Insertion operator for diagnostics. This allows sending an AccessSpecifier
|
|
/// into a diagnostic with <<.
|
|
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
|
|
AccessSpecifier AS);
|
|
|
|
const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
|
|
AccessSpecifier AS);
|
|
|
|
} // end namespace clang
|
|
|
|
#endif
|