freebsd-nq/tools/ctf/cvt/ctf.c
Mark Johnston 168b1a758b 5589 improper use of NULL in tools/ctf
Reviewed by: David Höppner <0xffea@gmail.com>
Reviewed by: Josef "Jeff" Sipek <jeffpc@josefsipek.net>
Approved by: Dan McDonald <danmcd@omniti.com>
Author: Richard PALO <richard@NetBSD.org>

illumos/illumos-gate@ad0b1ea5d6
2015-03-09 20:43:14 +00:00

1283 lines
31 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Create and parse buffers containing CTF data.
*/
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <ctype.h>
#include <zlib.h>
#include <elf.h>
#include "ctf_headers.h"
#include "ctftools.h"
#include "strtab.h"
#include "memory.h"
/*
* Name of the file currently being read, used to print error messages. We
* assume that only one file will be read at a time, and thus make no attempt
* to allow curfile to be used simultaneously by multiple threads.
*
* The value is only valid during a call to ctf_load.
*/
char *curfile;
#define CTF_BUF_CHUNK_SIZE (64 * 1024)
#define RES_BUF_CHUNK_SIZE (64 * 1024)
struct ctf_buf {
strtab_t ctb_strtab; /* string table */
caddr_t ctb_base; /* pointer to base of buffer */
caddr_t ctb_end; /* pointer to end of buffer */
caddr_t ctb_ptr; /* pointer to empty buffer space */
size_t ctb_size; /* size of buffer */
int nptent; /* number of processed types */
int ntholes; /* number of type holes */
};
/*PRINTFLIKE1*/
static void
parseterminate(char *fmt, ...)
{
static char msgbuf[1024]; /* sigh */
va_list ap;
va_start(ap, fmt);
vsnprintf(msgbuf, sizeof (msgbuf), fmt, ap);
va_end(ap);
terminate("%s: %s\n", curfile, msgbuf);
}
void
ctf_buf_grow(ctf_buf_t *b)
{
off_t ptroff = b->ctb_ptr - b->ctb_base;
b->ctb_size += CTF_BUF_CHUNK_SIZE;
b->ctb_base = xrealloc(b->ctb_base, b->ctb_size);
b->ctb_end = b->ctb_base + b->ctb_size;
b->ctb_ptr = b->ctb_base + ptroff;
}
ctf_buf_t *
ctf_buf_new(void)
{
ctf_buf_t *b = xcalloc(sizeof (ctf_buf_t));
strtab_create(&b->ctb_strtab);
ctf_buf_grow(b);
return (b);
}
void
ctf_buf_free(ctf_buf_t *b)
{
strtab_destroy(&b->ctb_strtab);
free(b->ctb_base);
free(b);
}
uint_t
ctf_buf_cur(ctf_buf_t *b)
{
return (b->ctb_ptr - b->ctb_base);
}
void
ctf_buf_write(ctf_buf_t *b, const void *p, size_t n)
{
size_t len;
while (n != 0) {
if (b->ctb_ptr == b->ctb_end)
ctf_buf_grow(b);
len = MIN((size_t)(b->ctb_end - b->ctb_ptr), n);
bcopy(p, b->ctb_ptr, len);
b->ctb_ptr += len;
p = (char *)p + len;
n -= len;
}
}
static int
write_label(labelent_t *le, ctf_buf_t *b)
{
ctf_lblent_t ctl;
ctl.ctl_label = strtab_insert(&b->ctb_strtab, le->le_name);
ctl.ctl_typeidx = le->le_idx;
ctf_buf_write(b, &ctl, sizeof (ctl));
return (1);
}
static void
write_objects(iidesc_t *idp, ctf_buf_t *b)
{
ushort_t id = (idp ? idp->ii_dtype->t_id : 0);
ctf_buf_write(b, &id, sizeof (id));
debug(3, "Wrote object %s (%d)\n", (idp ? idp->ii_name : "(null)"), id);
}
static void
write_functions(iidesc_t *idp, ctf_buf_t *b)
{
ushort_t fdata[2];
ushort_t id;
int nargs;
int i;
if (!idp) {
fdata[0] = 0;
ctf_buf_write(b, &fdata[0], sizeof (fdata[0]));
debug(3, "Wrote function (null)\n");
return;
}
nargs = idp->ii_nargs + (idp->ii_vargs != 0);
if (nargs > CTF_MAX_VLEN) {
terminate("function %s has too many args: %d > %d\n",
idp->ii_name, nargs, CTF_MAX_VLEN);
}
fdata[0] = CTF_TYPE_INFO(CTF_K_FUNCTION, 1, nargs);
fdata[1] = idp->ii_dtype->t_id;
ctf_buf_write(b, fdata, sizeof (fdata));
for (i = 0; i < idp->ii_nargs; i++) {
id = idp->ii_args[i]->t_id;
ctf_buf_write(b, &id, sizeof (id));
}
if (idp->ii_vargs) {
id = 0;
ctf_buf_write(b, &id, sizeof (id));
}
debug(3, "Wrote function %s (%d args)\n", idp->ii_name, nargs);
}
/*
* Depending on the size of the type being described, either a ctf_stype_t (for
* types with size < CTF_LSTRUCT_THRESH) or a ctf_type_t (all others) will be
* written. We isolate the determination here so the rest of the writer code
* doesn't need to care.
*/
static void
write_sized_type_rec(ctf_buf_t *b, ctf_type_t *ctt, size_t size)
{
if (size > CTF_MAX_SIZE) {
ctt->ctt_size = CTF_LSIZE_SENT;
ctt->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size);
ctt->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size);
ctf_buf_write(b, ctt, sizeof (*ctt));
} else {
ctf_stype_t *cts = (ctf_stype_t *)ctt;
cts->ctt_size = (ushort_t)size;
ctf_buf_write(b, cts, sizeof (*cts));
}
}
static void
write_unsized_type_rec(ctf_buf_t *b, ctf_type_t *ctt)
{
ctf_stype_t *cts = (ctf_stype_t *)ctt;
ctf_buf_write(b, cts, sizeof (*cts));
}
static int
write_type(tdesc_t *tp, ctf_buf_t *b)
{
elist_t *ep;
mlist_t *mp;
intr_t *ip;
size_t offset;
uint_t encoding;
uint_t data;
int isroot = tp->t_flags & TDESC_F_ISROOT;
int i;
ctf_type_t ctt;
ctf_array_t cta;
ctf_member_t ctm;
ctf_lmember_t ctlm;
ctf_enum_t cte;
ushort_t id;
ctlm.ctlm_pad = 0;
/*
* There shouldn't be any holes in the type list (where a hole is
* defined as two consecutive tdescs without consecutive ids), but
* check for them just in case. If we do find holes, we need to make
* fake entries to fill the holes, or we won't be able to reconstruct
* the tree from the written data.
*/
if (++b->nptent < CTF_TYPE_TO_INDEX(tp->t_id)) {
debug(2, "genctf: type hole from %d < x < %d\n",
b->nptent - 1, CTF_TYPE_TO_INDEX(tp->t_id));
ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, 0);
ctt.ctt_info = CTF_TYPE_INFO(0, 0, 0);
while (b->nptent < CTF_TYPE_TO_INDEX(tp->t_id)) {
write_sized_type_rec(b, &ctt, 0);
b->nptent++;
}
}
offset = strtab_insert(&b->ctb_strtab, tp->t_name);
ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);
switch (tp->t_type) {
case INTRINSIC:
ip = tp->t_intr;
if (ip->intr_type == INTR_INT)
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_INTEGER,
isroot, 1);
else
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_FLOAT, isroot, 1);
write_sized_type_rec(b, &ctt, tp->t_size);
encoding = 0;
if (ip->intr_type == INTR_INT) {
if (ip->intr_signed)
encoding |= CTF_INT_SIGNED;
if (ip->intr_iformat == 'c')
encoding |= CTF_INT_CHAR;
else if (ip->intr_iformat == 'b')
encoding |= CTF_INT_BOOL;
else if (ip->intr_iformat == 'v')
encoding |= CTF_INT_VARARGS;
} else
encoding = ip->intr_fformat;
data = CTF_INT_DATA(encoding, ip->intr_offset, ip->intr_nbits);
ctf_buf_write(b, &data, sizeof (data));
break;
case POINTER:
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_POINTER, isroot, 0);
ctt.ctt_type = tp->t_tdesc->t_id;
write_unsized_type_rec(b, &ctt);
break;
case ARRAY:
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_ARRAY, isroot, 1);
write_sized_type_rec(b, &ctt, tp->t_size);
cta.cta_contents = tp->t_ardef->ad_contents->t_id;
cta.cta_index = tp->t_ardef->ad_idxtype->t_id;
cta.cta_nelems = tp->t_ardef->ad_nelems;
ctf_buf_write(b, &cta, sizeof (cta));
break;
case STRUCT:
case UNION:
for (i = 0, mp = tp->t_members; mp != NULL; mp = mp->ml_next)
i++; /* count up struct or union members */
if (i > CTF_MAX_VLEN) {
terminate("sou %s has too many members: %d > %d\n",
tdesc_name(tp), i, CTF_MAX_VLEN);
}
if (tp->t_type == STRUCT)
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_STRUCT, isroot, i);
else
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_UNION, isroot, i);
write_sized_type_rec(b, &ctt, tp->t_size);
if (tp->t_size < CTF_LSTRUCT_THRESH) {
for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
offset = strtab_insert(&b->ctb_strtab,
mp->ml_name);
ctm.ctm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
offset);
ctm.ctm_type = mp->ml_type->t_id;
ctm.ctm_offset = mp->ml_offset;
ctf_buf_write(b, &ctm, sizeof (ctm));
}
} else {
for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
offset = strtab_insert(&b->ctb_strtab,
mp->ml_name);
ctlm.ctlm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
offset);
ctlm.ctlm_type = mp->ml_type->t_id;
ctlm.ctlm_offsethi =
CTF_OFFSET_TO_LMEMHI(mp->ml_offset);
ctlm.ctlm_offsetlo =
CTF_OFFSET_TO_LMEMLO(mp->ml_offset);
ctf_buf_write(b, &ctlm, sizeof (ctlm));
}
}
break;
case ENUM:
for (i = 0, ep = tp->t_emem; ep != NULL; ep = ep->el_next)
i++; /* count up enum members */
if (i > CTF_MAX_VLEN) {
terminate("enum %s has too many values: %d > %d\n",
tdesc_name(tp), i, CTF_MAX_VLEN);
}
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_ENUM, isroot, i);
write_sized_type_rec(b, &ctt, tp->t_size);
for (ep = tp->t_emem; ep != NULL; ep = ep->el_next) {
offset = strtab_insert(&b->ctb_strtab, ep->el_name);
cte.cte_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);
cte.cte_value = ep->el_number;
ctf_buf_write(b, &cte, sizeof (cte));
}
break;
case FORWARD:
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_FORWARD, isroot, 0);
ctt.ctt_type = 0;
write_unsized_type_rec(b, &ctt);
break;
case TYPEDEF:
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_TYPEDEF, isroot, 0);
ctt.ctt_type = tp->t_tdesc->t_id;
write_unsized_type_rec(b, &ctt);
break;
case VOLATILE:
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_VOLATILE, isroot, 0);
ctt.ctt_type = tp->t_tdesc->t_id;
write_unsized_type_rec(b, &ctt);
break;
case CONST:
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_CONST, isroot, 0);
ctt.ctt_type = tp->t_tdesc->t_id;
write_unsized_type_rec(b, &ctt);
break;
case FUNCTION:
i = tp->t_fndef->fn_nargs + tp->t_fndef->fn_vargs;
if (i > CTF_MAX_VLEN) {
terminate("function %s has too many args: %d > %d\n",
i, CTF_MAX_VLEN);
}
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_FUNCTION, isroot, i);
ctt.ctt_type = tp->t_fndef->fn_ret->t_id;
write_unsized_type_rec(b, &ctt);
for (i = 0; i < tp->t_fndef->fn_nargs; i++) {
id = tp->t_fndef->fn_args[i]->t_id;
ctf_buf_write(b, &id, sizeof (id));
}
if (tp->t_fndef->fn_vargs) {
id = 0;
ctf_buf_write(b, &id, sizeof (id));
i++;
}
if (i & 1) {
id = 0;
ctf_buf_write(b, &id, sizeof (id));
}
break;
case RESTRICT:
ctt.ctt_info = CTF_TYPE_INFO(CTF_K_RESTRICT, isroot, 0);
ctt.ctt_type = tp->t_tdesc->t_id;
write_unsized_type_rec(b, &ctt);
break;
default:
warning("Can't write unknown type %d\n", tp->t_type);
}
debug(3, "Wrote type %d %s\n", tp->t_id, tdesc_name(tp));
return (1);
}
typedef struct resbuf {
caddr_t rb_base;
caddr_t rb_ptr;
size_t rb_size;
z_stream rb_zstr;
} resbuf_t;
static void
rbzs_grow(resbuf_t *rb)
{
off_t ptroff = (caddr_t)rb->rb_zstr.next_out - rb->rb_base;
rb->rb_size += RES_BUF_CHUNK_SIZE;
rb->rb_base = xrealloc(rb->rb_base, rb->rb_size);
rb->rb_ptr = rb->rb_base + ptroff;
rb->rb_zstr.next_out = (Bytef *)(rb->rb_ptr);
rb->rb_zstr.avail_out += RES_BUF_CHUNK_SIZE;
}
static void
compress_start(resbuf_t *rb)
{
int rc;
rb->rb_zstr.zalloc = (alloc_func)0;
rb->rb_zstr.zfree = (free_func)0;
rb->rb_zstr.opaque = (voidpf)0;
if ((rc = deflateInit(&rb->rb_zstr, Z_BEST_COMPRESSION)) != Z_OK)
parseterminate("zlib start failed: %s", zError(rc));
}
static ssize_t
compress_buffer(const void *buf, size_t n, void *data)
{
resbuf_t *rb = (resbuf_t *)data;
int rc;
rb->rb_zstr.next_out = (Bytef *)rb->rb_ptr;
rb->rb_zstr.avail_out = rb->rb_size - (rb->rb_ptr - rb->rb_base);
rb->rb_zstr.next_in = (Bytef *)buf;
rb->rb_zstr.avail_in = n;
while (rb->rb_zstr.avail_in) {
if (rb->rb_zstr.avail_out == 0)
rbzs_grow(rb);
if ((rc = deflate(&rb->rb_zstr, Z_NO_FLUSH)) != Z_OK)
parseterminate("zlib deflate failed: %s", zError(rc));
}
rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out;
return (n);
}
static void
compress_flush(resbuf_t *rb, int type)
{
int rc;
for (;;) {
if (rb->rb_zstr.avail_out == 0)
rbzs_grow(rb);
rc = deflate(&rb->rb_zstr, type);
if ((type == Z_FULL_FLUSH && rc == Z_BUF_ERROR) ||
(type == Z_FINISH && rc == Z_STREAM_END))
break;
else if (rc != Z_OK)
parseterminate("zlib finish failed: %s", zError(rc));
}
rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out;
}
static void
compress_end(resbuf_t *rb)
{
int rc;
compress_flush(rb, Z_FINISH);
if ((rc = deflateEnd(&rb->rb_zstr)) != Z_OK)
parseterminate("zlib end failed: %s", zError(rc));
}
/*
* Pad the buffer to a power-of-2 boundary
*/
static void
pad_buffer(ctf_buf_t *buf, int align)
{
uint_t cur = ctf_buf_cur(buf);
ssize_t topad = (align - (cur % align)) % align;
static const char pad[8] = { 0 };
while (topad > 0) {
ctf_buf_write(buf, pad, (topad > 8 ? 8 : topad));
topad -= 8;
}
}
static ssize_t
bcopy_data(const void *buf, size_t n, void *data)
{
caddr_t *posp = (caddr_t *)data;
bcopy(buf, *posp, n);
*posp += n;
return (n);
}
static caddr_t
write_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp)
{
caddr_t outbuf;
caddr_t bufpos;
outbuf = xmalloc(sizeof (ctf_header_t) + (buf->ctb_ptr - buf->ctb_base)
+ buf->ctb_strtab.str_size);
bufpos = outbuf;
(void) bcopy_data(h, sizeof (ctf_header_t), &bufpos);
(void) bcopy_data(buf->ctb_base, buf->ctb_ptr - buf->ctb_base,
&bufpos);
(void) strtab_write(&buf->ctb_strtab, bcopy_data, &bufpos);
*resszp = bufpos - outbuf;
return (outbuf);
}
/*
* Create the compression buffer, and fill it with the CTF and string
* table data. We flush the compression state between the two so the
* dictionary used for the string tables won't be polluted with values
* that made sense for the CTF data.
*/
static caddr_t
write_compressed_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp)
{
resbuf_t resbuf;
resbuf.rb_size = RES_BUF_CHUNK_SIZE;
resbuf.rb_base = xmalloc(resbuf.rb_size);
bcopy(h, resbuf.rb_base, sizeof (ctf_header_t));
resbuf.rb_ptr = resbuf.rb_base + sizeof (ctf_header_t);
compress_start(&resbuf);
(void) compress_buffer(buf->ctb_base, buf->ctb_ptr - buf->ctb_base,
&resbuf);
compress_flush(&resbuf, Z_FULL_FLUSH);
(void) strtab_write(&buf->ctb_strtab, compress_buffer, &resbuf);
compress_end(&resbuf);
*resszp = (resbuf.rb_ptr - resbuf.rb_base);
return (resbuf.rb_base);
}
caddr_t
ctf_gen(iiburst_t *iiburst, size_t *resszp, int do_compress)
{
ctf_buf_t *buf = ctf_buf_new();
ctf_header_t h;
caddr_t outbuf;
int i;
/*
* Prepare the header, and create the CTF output buffers. The data
* object section and function section are both lists of 2-byte
* integers; we pad these out to the next 4-byte boundary if needed.
*/
h.cth_magic = CTF_MAGIC;
h.cth_version = CTF_VERSION;
h.cth_flags = do_compress ? CTF_F_COMPRESS : 0;
h.cth_parlabel = strtab_insert(&buf->ctb_strtab,
iiburst->iib_td->td_parlabel);
h.cth_parname = strtab_insert(&buf->ctb_strtab,
iiburst->iib_td->td_parname);
h.cth_lbloff = 0;
(void) list_iter(iiburst->iib_td->td_labels, (int (*)())write_label,
buf);
pad_buffer(buf, 2);
h.cth_objtoff = ctf_buf_cur(buf);
for (i = 0; i < iiburst->iib_nobjts; i++)
write_objects(iiburst->iib_objts[i], buf);
pad_buffer(buf, 2);
h.cth_funcoff = ctf_buf_cur(buf);
for (i = 0; i < iiburst->iib_nfuncs; i++)
write_functions(iiburst->iib_funcs[i], buf);
pad_buffer(buf, 4);
h.cth_typeoff = ctf_buf_cur(buf);
(void) list_iter(iiburst->iib_types, (int (*)())write_type, buf);
debug(2, "CTF wrote %d types\n", list_count(iiburst->iib_types));
h.cth_stroff = ctf_buf_cur(buf);
h.cth_strlen = strtab_size(&buf->ctb_strtab);
/*
* We only do compression for ctfmerge, as ctfconvert is only
* supposed to be used on intermediary build objects. This is
* significantly faster.
*/
if (do_compress)
outbuf = write_compressed_buffer(&h, buf, resszp);
else
outbuf = write_buffer(&h, buf, resszp);
ctf_buf_free(buf);
return (outbuf);
}
void
get_ctt_size(ctf_type_t *ctt, size_t *sizep, size_t *incrementp)
{
if (ctt->ctt_size == CTF_LSIZE_SENT) {
*sizep = (size_t)CTF_TYPE_LSIZE(ctt);
*incrementp = sizeof (ctf_type_t);
} else {
*sizep = ctt->ctt_size;
*incrementp = sizeof (ctf_stype_t);
}
}
static int
count_types(ctf_header_t *h, caddr_t data)
{
caddr_t dptr = data + h->cth_typeoff;
int count = 0;
dptr = data + h->cth_typeoff;
while (dptr < data + h->cth_stroff) {
/* LINTED - pointer alignment */
ctf_type_t *ctt = (ctf_type_t *)dptr;
size_t vlen = CTF_INFO_VLEN(ctt->ctt_info);
size_t size, increment;
get_ctt_size(ctt, &size, &increment);
switch (CTF_INFO_KIND(ctt->ctt_info)) {
case CTF_K_INTEGER:
case CTF_K_FLOAT:
dptr += 4;
break;
case CTF_K_POINTER:
case CTF_K_FORWARD:
case CTF_K_TYPEDEF:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
case CTF_K_FUNCTION:
dptr += sizeof (ushort_t) * (vlen + (vlen & 1));
break;
case CTF_K_ARRAY:
dptr += sizeof (ctf_array_t);
break;
case CTF_K_STRUCT:
case CTF_K_UNION:
if (size < CTF_LSTRUCT_THRESH)
dptr += sizeof (ctf_member_t) * vlen;
else
dptr += sizeof (ctf_lmember_t) * vlen;
break;
case CTF_K_ENUM:
dptr += sizeof (ctf_enum_t) * vlen;
break;
case CTF_K_UNKNOWN:
break;
default:
parseterminate("Unknown CTF type %d (#%d) at %#x",
CTF_INFO_KIND(ctt->ctt_info), count, dptr - data);
}
dptr += increment;
count++;
}
debug(3, "CTF read %d types\n", count);
return (count);
}
/*
* Resurrect the labels stored in the CTF data, returning the index associated
* with a label provided by the caller. There are several cases, outlined
* below. Note that, given two labels, the one associated with the lesser type
* index is considered to be older than the other.
*
* 1. matchlbl == NULL - return the index of the most recent label.
* 2. matchlbl == "BASE" - return the index of the oldest label.
* 3. matchlbl != NULL, but doesn't match any labels in the section - warn
* the user, and proceed as if matchlbl == "BASE" (for safety).
* 4. matchlbl != NULL, and matches one of the labels in the section - return
* the type index associated with the label.
*/
static int
resurrect_labels(ctf_header_t *h, tdata_t *td, caddr_t ctfdata, char *matchlbl)
{
caddr_t buf = ctfdata + h->cth_lbloff;
caddr_t sbuf = ctfdata + h->cth_stroff;
size_t bufsz = h->cth_objtoff - h->cth_lbloff;
int lastidx = 0, baseidx = -1;
char *baselabel;
ctf_lblent_t *ctl;
/* LINTED - pointer alignment */
for (ctl = (ctf_lblent_t *)buf; (caddr_t)ctl < buf + bufsz; ctl++) {
char *label = sbuf + ctl->ctl_label;
lastidx = ctl->ctl_typeidx;
debug(3, "Resurrected label %s type idx %d\n", label, lastidx);
tdata_label_add(td, label, lastidx);
if (baseidx == -1) {
baseidx = lastidx;
baselabel = label;
if (matchlbl != NULL && streq(matchlbl, "BASE"))
return (lastidx);
}
if (matchlbl != NULL && streq(label, matchlbl))
return (lastidx);
}
if (matchlbl != NULL) {
/* User provided a label that didn't match */
warning("%s: Cannot find label `%s' - using base (%s)\n",
curfile, matchlbl, (baselabel ? baselabel : "NONE"));
tdata_label_free(td);
tdata_label_add(td, baselabel, baseidx);
return (baseidx);
}
return (lastidx);
}
static void
resurrect_objects(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
caddr_t ctfdata, symit_data_t *si)
{
caddr_t buf = ctfdata + h->cth_objtoff;
size_t bufsz = h->cth_funcoff - h->cth_objtoff;
caddr_t dptr;
symit_reset(si);
for (dptr = buf; dptr < buf + bufsz; dptr += 2) {
/* LINTED - pointer alignment */
ushort_t id = *((ushort_t *)dptr);
iidesc_t *ii;
GElf_Sym *sym;
if (!(sym = symit_next(si, STT_OBJECT)) && id != 0) {
parseterminate(
"Unexpected end of object symbols at %x of %x",
dptr - buf, bufsz);
}
if (id == 0) {
debug(3, "Skipping null object\n");
continue;
} else if (id >= tdsize) {
parseterminate("Reference to invalid type %d", id);
}
ii = iidesc_new(symit_name(si));
ii->ii_dtype = tdarr[id];
if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) {
ii->ii_type = II_SVAR;
ii->ii_owner = xstrdup(symit_curfile(si));
} else
ii->ii_type = II_GVAR;
hash_add(td->td_iihash, ii);
debug(3, "Resurrected %s object %s (%d) from %s\n",
(ii->ii_type == II_GVAR ? "global" : "static"),
ii->ii_name, id, (ii->ii_owner ? ii->ii_owner : "(none)"));
}
}
static void
resurrect_functions(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
caddr_t ctfdata, symit_data_t *si)
{
caddr_t buf = ctfdata + h->cth_funcoff;
size_t bufsz = h->cth_typeoff - h->cth_funcoff;
caddr_t dptr = buf;
iidesc_t *ii;
ushort_t info;
ushort_t retid;
GElf_Sym *sym;
int i;
symit_reset(si);
while (dptr < buf + bufsz) {
/* LINTED - pointer alignment */
info = *((ushort_t *)dptr);
dptr += 2;
if (!(sym = symit_next(si, STT_FUNC)) && info != 0)
parseterminate("Unexpected end of function symbols");
if (info == 0) {
debug(3, "Skipping null function (%s)\n",
symit_name(si));
continue;
}
/* LINTED - pointer alignment */
retid = *((ushort_t *)dptr);
dptr += 2;
if (retid >= tdsize)
parseterminate("Reference to invalid type %d", retid);
ii = iidesc_new(symit_name(si));
ii->ii_dtype = tdarr[retid];
if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) {
ii->ii_type = II_SFUN;
ii->ii_owner = xstrdup(symit_curfile(si));
} else
ii->ii_type = II_GFUN;
ii->ii_nargs = CTF_INFO_VLEN(info);
if (ii->ii_nargs)
ii->ii_args =
xmalloc(sizeof (tdesc_t *) * ii->ii_nargs);
for (i = 0; i < ii->ii_nargs; i++, dptr += 2) {
/* LINTED - pointer alignment */
ushort_t id = *((ushort_t *)dptr);
if (id >= tdsize)
parseterminate("Reference to invalid type %d",
id);
ii->ii_args[i] = tdarr[id];
}
if (ii->ii_nargs && ii->ii_args[ii->ii_nargs - 1] == NULL) {
ii->ii_nargs--;
ii->ii_vargs = 1;
}
hash_add(td->td_iihash, ii);
debug(3, "Resurrected %s function %s (%d, %d args)\n",
(ii->ii_type == II_GFUN ? "global" : "static"),
ii->ii_name, retid, ii->ii_nargs);
}
}
static void
resurrect_types(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
caddr_t ctfdata, int maxid)
{
caddr_t buf = ctfdata + h->cth_typeoff;
size_t bufsz = h->cth_stroff - h->cth_typeoff;
caddr_t sbuf = ctfdata + h->cth_stroff;
caddr_t dptr = buf;
tdesc_t *tdp;
uint_t data;
uint_t encoding;
size_t size, increment;
int tcnt;
int iicnt = 0;
tid_t tid, argid;
int kind, vlen;
int i;
elist_t **epp;
mlist_t **mpp;
intr_t *ip;
ctf_type_t *ctt;
ctf_array_t *cta;
ctf_enum_t *cte;
/*
* A maxid of zero indicates a request to resurrect all types, so reset
* maxid to the maximum type id.
*/
if (maxid == 0)
maxid = CTF_MAX_TYPE;
for (dptr = buf, tcnt = 0, tid = 1; dptr < buf + bufsz; tcnt++, tid++) {
if (tid > maxid)
break;
if (tid >= tdsize)
parseterminate("Reference to invalid type %d", tid);
/* LINTED - pointer alignment */
ctt = (ctf_type_t *)dptr;
get_ctt_size(ctt, &size, &increment);
dptr += increment;
tdp = tdarr[tid];
if (CTF_NAME_STID(ctt->ctt_name) != CTF_STRTAB_0)
parseterminate(
"Unable to cope with non-zero strtab id");
if (CTF_NAME_OFFSET(ctt->ctt_name) != 0) {
tdp->t_name =
xstrdup(sbuf + CTF_NAME_OFFSET(ctt->ctt_name));
} else
tdp->t_name = NULL;
kind = CTF_INFO_KIND(ctt->ctt_info);
vlen = CTF_INFO_VLEN(ctt->ctt_info);
switch (kind) {
case CTF_K_INTEGER:
tdp->t_type = INTRINSIC;
tdp->t_size = size;
/* LINTED - pointer alignment */
data = *((uint_t *)dptr);
dptr += sizeof (uint_t);
encoding = CTF_INT_ENCODING(data);
ip = xmalloc(sizeof (intr_t));
ip->intr_type = INTR_INT;
ip->intr_signed = (encoding & CTF_INT_SIGNED) ? 1 : 0;
if (encoding & CTF_INT_CHAR)
ip->intr_iformat = 'c';
else if (encoding & CTF_INT_BOOL)
ip->intr_iformat = 'b';
else if (encoding & CTF_INT_VARARGS)
ip->intr_iformat = 'v';
else
ip->intr_iformat = '\0';
ip->intr_offset = CTF_INT_OFFSET(data);
ip->intr_nbits = CTF_INT_BITS(data);
tdp->t_intr = ip;
break;
case CTF_K_FLOAT:
tdp->t_type = INTRINSIC;
tdp->t_size = size;
/* LINTED - pointer alignment */
data = *((uint_t *)dptr);
dptr += sizeof (uint_t);
ip = xcalloc(sizeof (intr_t));
ip->intr_type = INTR_REAL;
ip->intr_fformat = CTF_FP_ENCODING(data);
ip->intr_offset = CTF_FP_OFFSET(data);
ip->intr_nbits = CTF_FP_BITS(data);
tdp->t_intr = ip;
break;
case CTF_K_POINTER:
tdp->t_type = POINTER;
tdp->t_tdesc = tdarr[ctt->ctt_type];
break;
case CTF_K_ARRAY:
tdp->t_type = ARRAY;
tdp->t_size = size;
/* LINTED - pointer alignment */
cta = (ctf_array_t *)dptr;
dptr += sizeof (ctf_array_t);
tdp->t_ardef = xmalloc(sizeof (ardef_t));
tdp->t_ardef->ad_contents = tdarr[cta->cta_contents];
tdp->t_ardef->ad_idxtype = tdarr[cta->cta_index];
tdp->t_ardef->ad_nelems = cta->cta_nelems;
break;
case CTF_K_STRUCT:
case CTF_K_UNION:
tdp->t_type = (kind == CTF_K_STRUCT ? STRUCT : UNION);
tdp->t_size = size;
if (size < CTF_LSTRUCT_THRESH) {
for (i = 0, mpp = &tdp->t_members; i < vlen;
i++, mpp = &((*mpp)->ml_next)) {
/* LINTED - pointer alignment */
ctf_member_t *ctm = (ctf_member_t *)
dptr;
dptr += sizeof (ctf_member_t);
*mpp = xmalloc(sizeof (mlist_t));
(*mpp)->ml_name = xstrdup(sbuf +
ctm->ctm_name);
(*mpp)->ml_type = tdarr[ctm->ctm_type];
(*mpp)->ml_offset = ctm->ctm_offset;
(*mpp)->ml_size = 0;
}
} else {
for (i = 0, mpp = &tdp->t_members; i < vlen;
i++, mpp = &((*mpp)->ml_next)) {
/* LINTED - pointer alignment */
ctf_lmember_t *ctlm = (ctf_lmember_t *)
dptr;
dptr += sizeof (ctf_lmember_t);
*mpp = xmalloc(sizeof (mlist_t));
(*mpp)->ml_name = xstrdup(sbuf +
ctlm->ctlm_name);
(*mpp)->ml_type =
tdarr[ctlm->ctlm_type];
(*mpp)->ml_offset =
(int)CTF_LMEM_OFFSET(ctlm);
(*mpp)->ml_size = 0;
}
}
*mpp = NULL;
break;
case CTF_K_ENUM:
tdp->t_type = ENUM;
tdp->t_size = size;
for (i = 0, epp = &tdp->t_emem; i < vlen;
i++, epp = &((*epp)->el_next)) {
/* LINTED - pointer alignment */
cte = (ctf_enum_t *)dptr;
dptr += sizeof (ctf_enum_t);
*epp = xmalloc(sizeof (elist_t));
(*epp)->el_name = xstrdup(sbuf + cte->cte_name);
(*epp)->el_number = cte->cte_value;
}
*epp = NULL;
break;
case CTF_K_FORWARD:
tdp->t_type = FORWARD;
list_add(&td->td_fwdlist, tdp);
break;
case CTF_K_TYPEDEF:
tdp->t_type = TYPEDEF;
tdp->t_tdesc = tdarr[ctt->ctt_type];
break;
case CTF_K_VOLATILE:
tdp->t_type = VOLATILE;
tdp->t_tdesc = tdarr[ctt->ctt_type];
break;
case CTF_K_CONST:
tdp->t_type = CONST;
tdp->t_tdesc = tdarr[ctt->ctt_type];
break;
case CTF_K_FUNCTION:
tdp->t_type = FUNCTION;
tdp->t_fndef = xcalloc(sizeof (fndef_t));
tdp->t_fndef->fn_ret = tdarr[ctt->ctt_type];
/* LINTED - pointer alignment */
if (vlen > 0 && *(ushort_t *)(dptr +
(sizeof (ushort_t) * (vlen - 1))) == 0)
tdp->t_fndef->fn_vargs = 1;
tdp->t_fndef->fn_nargs = vlen - tdp->t_fndef->fn_vargs;
tdp->t_fndef->fn_args = xcalloc(sizeof (tdesc_t) *
vlen - tdp->t_fndef->fn_vargs);
for (i = 0; i < vlen; i++) {
/* LINTED - pointer alignment */
argid = *(ushort_t *)dptr;
dptr += sizeof (ushort_t);
if (argid != 0)
tdp->t_fndef->fn_args[i] = tdarr[argid];
}
if (vlen & 1)
dptr += sizeof (ushort_t);
break;
case CTF_K_RESTRICT:
tdp->t_type = RESTRICT;
tdp->t_tdesc = tdarr[ctt->ctt_type];
break;
case CTF_K_UNKNOWN:
break;
default:
warning("Can't parse unknown CTF type %d\n", kind);
}
if (CTF_INFO_ISROOT(ctt->ctt_info)) {
iidesc_t *ii = iidesc_new(tdp->t_name);
if (tdp->t_type == STRUCT || tdp->t_type == UNION ||
tdp->t_type == ENUM)
ii->ii_type = II_SOU;
else
ii->ii_type = II_TYPE;
ii->ii_dtype = tdp;
hash_add(td->td_iihash, ii);
iicnt++;
}
debug(3, "Resurrected %d %stype %s (%d)\n", tdp->t_type,
(CTF_INFO_ISROOT(ctt->ctt_info) ? "root " : ""),
tdesc_name(tdp), tdp->t_id);
}
debug(3, "Resurrected %d types (%d were roots)\n", tcnt, iicnt);
}
/*
* For lack of other inspiration, we're going to take the boring route. We
* count the number of types. This lets us malloc that many tdesc structs
* before we start filling them in. This has the advantage of allowing us to
* avoid a merge-esque remap step.
*/
static tdata_t *
ctf_parse(ctf_header_t *h, caddr_t buf, symit_data_t *si, char *label)
{
tdata_t *td = tdata_new();
tdesc_t **tdarr;
int ntypes = count_types(h, buf);
int idx, i;
/* shudder */
tdarr = xcalloc(sizeof (tdesc_t *) * (ntypes + 1));
tdarr[0] = NULL;
for (i = 1; i <= ntypes; i++) {
tdarr[i] = xcalloc(sizeof (tdesc_t));
tdarr[i]->t_id = i;
}
td->td_parlabel = xstrdup(buf + h->cth_stroff + h->cth_parlabel);
/* we have the technology - we can rebuild them */
idx = resurrect_labels(h, td, buf, label);
resurrect_objects(h, td, tdarr, ntypes + 1, buf, si);
resurrect_functions(h, td, tdarr, ntypes + 1, buf, si);
resurrect_types(h, td, tdarr, ntypes + 1, buf, idx);
free(tdarr);
td->td_nextid = ntypes + 1;
return (td);
}
static size_t
decompress_ctf(caddr_t cbuf, size_t cbufsz, caddr_t dbuf, size_t dbufsz)
{
z_stream zstr;
int rc;
zstr.zalloc = (alloc_func)0;
zstr.zfree = (free_func)0;
zstr.opaque = (voidpf)0;
zstr.next_in = (Bytef *)cbuf;
zstr.avail_in = cbufsz;
zstr.next_out = (Bytef *)dbuf;
zstr.avail_out = dbufsz;
if ((rc = inflateInit(&zstr)) != Z_OK ||
(rc = inflate(&zstr, Z_NO_FLUSH)) != Z_STREAM_END ||
(rc = inflateEnd(&zstr)) != Z_OK) {
warning("CTF decompress zlib error %s\n", zError(rc));
return (0);
}
debug(3, "reflated %lu bytes to %lu, pointer at %d\n",
zstr.total_in, zstr.total_out, (caddr_t)zstr.next_in - cbuf);
return (zstr.total_out);
}
/*
* Reconstruct the type tree from a given buffer of CTF data. Only the types
* up to the type associated with the provided label, inclusive, will be
* reconstructed. If a NULL label is provided, all types will be reconstructed.
*
* This function won't work on files that have been uniquified.
*/
tdata_t *
ctf_load(char *file, caddr_t buf, size_t bufsz, symit_data_t *si, char *label)
{
ctf_header_t *h;
caddr_t ctfdata;
size_t ctfdatasz;
tdata_t *td;
curfile = file;
if (bufsz < sizeof (ctf_header_t))
parseterminate("Corrupt CTF - short header");
/* LINTED - pointer alignment */
h = (ctf_header_t *)buf;
buf += sizeof (ctf_header_t);
bufsz -= sizeof (ctf_header_t);
if (h->cth_magic != CTF_MAGIC)
parseterminate("Corrupt CTF - bad magic 0x%x", h->cth_magic);
if (h->cth_version != CTF_VERSION)
parseterminate("Unknown CTF version %d", h->cth_version);
ctfdatasz = h->cth_stroff + h->cth_strlen;
if (h->cth_flags & CTF_F_COMPRESS) {
size_t actual;
ctfdata = xmalloc(ctfdatasz);
if ((actual = decompress_ctf(buf, bufsz, ctfdata, ctfdatasz)) !=
ctfdatasz) {
parseterminate("Corrupt CTF - short decompression "
"(was %d, expecting %d)", actual, ctfdatasz);
}
} else {
ctfdata = buf;
ctfdatasz = bufsz;
}
td = ctf_parse(h, ctfdata, si, label);
if (h->cth_flags & CTF_F_COMPRESS)
free(ctfdata);
curfile = NULL;
return (td);
}