168b1a758b
Reviewed by: David Höppner <0xffea@gmail.com> Reviewed by: Josef "Jeff" Sipek <jeffpc@josefsipek.net> Approved by: Dan McDonald <danmcd@omniti.com> Author: Richard PALO <richard@NetBSD.org> illumos/illumos-gate@ad0b1ea5d6
1994 lines
50 KiB
C
1994 lines
50 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
/*
|
|
* Copyright 2012 Jason King. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* DWARF to tdata conversion
|
|
*
|
|
* For the most part, conversion is straightforward, proceeding in two passes.
|
|
* On the first pass, we iterate through every die, creating new type nodes as
|
|
* necessary. Referenced tdesc_t's are created in an uninitialized state, thus
|
|
* allowing type reference pointers to be filled in. If the tdesc_t
|
|
* corresponding to a given die can be completely filled out (sizes and offsets
|
|
* calculated, and so forth) without using any referenced types, the tdesc_t is
|
|
* marked as resolved. Consider an array type. If the type corresponding to
|
|
* the array contents has not yet been processed, we will create a blank tdesc
|
|
* for the contents type (only the type ID will be filled in, relying upon the
|
|
* later portion of the first pass to encounter and complete the referenced
|
|
* type). We will then attempt to determine the size of the array. If the
|
|
* array has a byte size attribute, we will have completely characterized the
|
|
* array type, and will be able to mark it as resolved. The lack of a byte
|
|
* size attribute, on the other hand, will prevent us from fully resolving the
|
|
* type, as the size will only be calculable with reference to the contents
|
|
* type, which has not, as yet, been encountered. The array type will thus be
|
|
* left without the resolved flag, and the first pass will continue.
|
|
*
|
|
* When we begin the second pass, we will have created tdesc_t nodes for every
|
|
* type in the section. We will traverse the tree, from the iidescs down,
|
|
* processing each unresolved node. As the referenced nodes will have been
|
|
* populated, the array type used in our example above will be able to use the
|
|
* size of the referenced types (if available) to determine its own type. The
|
|
* traversal will be repeated until all types have been resolved or we have
|
|
* failed to make progress. When all tdescs have been resolved, the conversion
|
|
* is complete.
|
|
*
|
|
* There are, as always, a few special cases that are handled during the first
|
|
* and second passes:
|
|
*
|
|
* 1. Empty enums - GCC will occasionally emit an enum without any members.
|
|
* Later on in the file, it will emit the same enum type, though this time
|
|
* with the full complement of members. All references to the memberless
|
|
* enum need to be redirected to the full definition. During the first
|
|
* pass, each enum is entered in dm_enumhash, along with a pointer to its
|
|
* corresponding tdesc_t. If, during the second pass, we encounter a
|
|
* memberless enum, we use the hash to locate the full definition. All
|
|
* tdescs referencing the empty enum are then redirected.
|
|
*
|
|
* 2. Forward declarations - If the compiler sees a forward declaration for
|
|
* a structure, followed by the definition of that structure, it will emit
|
|
* DWARF data for both the forward declaration and the definition. We need
|
|
* to resolve the forward declarations when possible, by redirecting
|
|
* forward-referencing tdescs to the actual struct/union definitions. This
|
|
* redirection is done completely within the first pass. We begin by
|
|
* recording all forward declarations in dw_fwdhash. When we define a
|
|
* structure, we check to see if there have been any corresponding forward
|
|
* declarations. If so, we redirect the tdescs which referenced the forward
|
|
* declarations to the structure or union definition.
|
|
*
|
|
* XXX see if a post traverser will allow the elimination of repeated pass 2
|
|
* traversals.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <strings.h>
|
|
#include <errno.h>
|
|
#include <libelf.h>
|
|
#include <libdwarf.h>
|
|
#include <libgen.h>
|
|
#include <dwarf.h>
|
|
|
|
#include "ctf_headers.h"
|
|
#include "ctftools.h"
|
|
#include "memory.h"
|
|
#include "list.h"
|
|
#include "traverse.h"
|
|
|
|
/* The version of DWARF which we support. */
|
|
#define DWARF_VERSION 2
|
|
|
|
/*
|
|
* We need to define a couple of our own intrinsics, to smooth out some of the
|
|
* differences between the GCC and DevPro DWARF emitters. See the referenced
|
|
* routines and the special cases in the file comment for more details.
|
|
*
|
|
* Type IDs are 32 bits wide. We're going to use the top of that field to
|
|
* indicate types that we've created ourselves.
|
|
*/
|
|
#define TID_FILEMAX 0x3fffffff /* highest tid from file */
|
|
#define TID_VOID 0x40000001 /* see die_void() */
|
|
#define TID_LONG 0x40000002 /* see die_array() */
|
|
|
|
#define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */
|
|
|
|
/*
|
|
* To reduce the staggering amount of error-handling code that would otherwise
|
|
* be required, the attribute-retrieval routines handle most of their own
|
|
* errors. If the following flag is supplied as the value of the `req'
|
|
* argument, they will also handle the absence of a requested attribute by
|
|
* terminating the program.
|
|
*/
|
|
#define DW_ATTR_REQ 1
|
|
|
|
#define TDESC_HASH_BUCKETS 511
|
|
|
|
typedef struct dwarf {
|
|
Dwarf_Debug dw_dw; /* for libdwarf */
|
|
Dwarf_Error dw_err; /* for libdwarf */
|
|
Dwarf_Unsigned dw_maxoff; /* highest legal offset in this cu */
|
|
tdata_t *dw_td; /* root of the tdesc/iidesc tree */
|
|
hash_t *dw_tidhash; /* hash of tdescs by t_id */
|
|
hash_t *dw_fwdhash; /* hash of fwd decls by name */
|
|
hash_t *dw_enumhash; /* hash of memberless enums by name */
|
|
tdesc_t *dw_void; /* manufactured void type */
|
|
tdesc_t *dw_long; /* manufactured long type for arrays */
|
|
size_t dw_ptrsz; /* size of a pointer in this file */
|
|
tid_t dw_mfgtid_last; /* last mfg'd type ID used */
|
|
uint_t dw_nunres; /* count of unresolved types */
|
|
char *dw_cuname; /* name of compilation unit */
|
|
} dwarf_t;
|
|
|
|
static void die_create_one(dwarf_t *, Dwarf_Die);
|
|
static void die_create(dwarf_t *, Dwarf_Die);
|
|
|
|
static tid_t
|
|
mfgtid_next(dwarf_t *dw)
|
|
{
|
|
return (++dw->dw_mfgtid_last);
|
|
}
|
|
|
|
static void
|
|
tdesc_add(dwarf_t *dw, tdesc_t *tdp)
|
|
{
|
|
hash_add(dw->dw_tidhash, tdp);
|
|
}
|
|
|
|
static tdesc_t *
|
|
tdesc_lookup(dwarf_t *dw, int tid)
|
|
{
|
|
tdesc_t tmpl, *tdp;
|
|
|
|
tmpl.t_id = tid;
|
|
|
|
if (hash_find(dw->dw_tidhash, &tmpl, (void **)&tdp))
|
|
return (tdp);
|
|
else
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Resolve a tdesc down to a node which should have a size. Returns the size,
|
|
* zero if the size hasn't yet been determined.
|
|
*/
|
|
static size_t
|
|
tdesc_size(tdesc_t *tdp)
|
|
{
|
|
for (;;) {
|
|
switch (tdp->t_type) {
|
|
case INTRINSIC:
|
|
case POINTER:
|
|
case ARRAY:
|
|
case FUNCTION:
|
|
case STRUCT:
|
|
case UNION:
|
|
case ENUM:
|
|
return (tdp->t_size);
|
|
|
|
case FORWARD:
|
|
return (0);
|
|
|
|
case TYPEDEF:
|
|
case VOLATILE:
|
|
case CONST:
|
|
case RESTRICT:
|
|
tdp = tdp->t_tdesc;
|
|
continue;
|
|
|
|
case 0: /* not yet defined */
|
|
return (0);
|
|
|
|
default:
|
|
terminate("tdp %u: tdesc_size on unknown type %d\n",
|
|
tdp->t_id, tdp->t_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
static size_t
|
|
tdesc_bitsize(tdesc_t *tdp)
|
|
{
|
|
for (;;) {
|
|
switch (tdp->t_type) {
|
|
case INTRINSIC:
|
|
return (tdp->t_intr->intr_nbits);
|
|
|
|
case ARRAY:
|
|
case FUNCTION:
|
|
case STRUCT:
|
|
case UNION:
|
|
case ENUM:
|
|
case POINTER:
|
|
return (tdp->t_size * NBBY);
|
|
|
|
case FORWARD:
|
|
return (0);
|
|
|
|
case TYPEDEF:
|
|
case VOLATILE:
|
|
case RESTRICT:
|
|
case CONST:
|
|
tdp = tdp->t_tdesc;
|
|
continue;
|
|
|
|
case 0: /* not yet defined */
|
|
return (0);
|
|
|
|
default:
|
|
terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
|
|
tdp->t_id, tdp->t_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
static tdesc_t *
|
|
tdesc_basetype(tdesc_t *tdp)
|
|
{
|
|
for (;;) {
|
|
switch (tdp->t_type) {
|
|
case TYPEDEF:
|
|
case VOLATILE:
|
|
case RESTRICT:
|
|
case CONST:
|
|
tdp = tdp->t_tdesc;
|
|
break;
|
|
case 0: /* not yet defined */
|
|
return (NULL);
|
|
default:
|
|
return (tdp);
|
|
}
|
|
}
|
|
}
|
|
|
|
static Dwarf_Off
|
|
die_off(dwarf_t *dw, Dwarf_Die die)
|
|
{
|
|
Dwarf_Off off;
|
|
|
|
if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
|
|
return (off);
|
|
|
|
terminate("failed to get offset for die: %s\n",
|
|
dwarf_errmsg(dw->dw_err));
|
|
/*NOTREACHED*/
|
|
return (0);
|
|
}
|
|
|
|
static Dwarf_Die
|
|
die_sibling(dwarf_t *dw, Dwarf_Die die)
|
|
{
|
|
Dwarf_Die sib;
|
|
int rc;
|
|
|
|
if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
|
|
DW_DLV_OK)
|
|
return (sib);
|
|
else if (rc == DW_DLV_NO_ENTRY)
|
|
return (NULL);
|
|
|
|
terminate("die %llu: failed to find type sibling: %s\n",
|
|
die_off(dw, die), dwarf_errmsg(dw->dw_err));
|
|
/*NOTREACHED*/
|
|
return (NULL);
|
|
}
|
|
|
|
static Dwarf_Die
|
|
die_child(dwarf_t *dw, Dwarf_Die die)
|
|
{
|
|
Dwarf_Die child;
|
|
int rc;
|
|
|
|
if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
|
|
return (child);
|
|
else if (rc == DW_DLV_NO_ENTRY)
|
|
return (NULL);
|
|
|
|
terminate("die %llu: failed to find type child: %s\n",
|
|
die_off(dw, die), dwarf_errmsg(dw->dw_err));
|
|
/*NOTREACHED*/
|
|
return (NULL);
|
|
}
|
|
|
|
static Dwarf_Half
|
|
die_tag(dwarf_t *dw, Dwarf_Die die)
|
|
{
|
|
Dwarf_Half tag;
|
|
|
|
if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
|
|
return (tag);
|
|
|
|
terminate("die %llu: failed to get tag for type: %s\n",
|
|
die_off(dw, die), dwarf_errmsg(dw->dw_err));
|
|
/*NOTREACHED*/
|
|
return (0);
|
|
}
|
|
|
|
static Dwarf_Attribute
|
|
die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
|
|
{
|
|
Dwarf_Attribute attr;
|
|
int rc;
|
|
|
|
if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
|
|
return (attr);
|
|
} else if (rc == DW_DLV_NO_ENTRY) {
|
|
if (req) {
|
|
terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
|
|
name);
|
|
} else {
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
terminate("die %llu: failed to get attribute for type: %s\n",
|
|
die_off(dw, die), dwarf_errmsg(dw->dw_err));
|
|
/*NOTREACHED*/
|
|
return (NULL);
|
|
}
|
|
|
|
static Dwarf_Half
|
|
die_attr_form(dwarf_t *dw, Dwarf_Attribute attr)
|
|
{
|
|
Dwarf_Half form;
|
|
|
|
if (dwarf_whatform(attr, &form, &dw->dw_err) == DW_DLV_OK)
|
|
return (form);
|
|
|
|
terminate("failed to get attribute form for type: %s\n",
|
|
dwarf_errmsg(dw->dw_err));
|
|
/*NOTREACHED*/
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* the following functions lookup the value of an attribute in a DIE:
|
|
*
|
|
* die_signed
|
|
* die_unsigned
|
|
* die_bool
|
|
* die_string
|
|
*
|
|
* They all take the same parameters (with the exception of valp which is
|
|
* a pointer to the type of the attribute we are looking up):
|
|
*
|
|
* dw - the dwarf object to look in
|
|
* die - the DIE we're interested in
|
|
* name - the name of the attribute to lookup
|
|
* valp - pointer to where the value of the attribute is placed
|
|
* req - if the value is required (0 / non-zero)
|
|
*
|
|
* If the attribute is not found, one of the following happens:
|
|
* - program terminates (req is non-zero)
|
|
* - function returns 0
|
|
*
|
|
* If the value is found, and in a form (class) we can handle, the function
|
|
* returns 1.
|
|
*
|
|
* Currently, we can only handle attribute values that are stored as
|
|
* constants (immediate value). If an attribute has a form we cannot
|
|
* handle (for example VLAs may store the dimensions of the array
|
|
* as a DWARF expression that can compute it at runtime by reading
|
|
* values off the stack or other locations in memory), it is treated
|
|
* the same as if the attribute does not exist.
|
|
*/
|
|
static int
|
|
die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
|
|
int req)
|
|
{
|
|
Dwarf_Attribute attr;
|
|
Dwarf_Signed val;
|
|
|
|
if ((attr = die_attr(dw, die, name, req)) == NULL)
|
|
return (0); /* die_attr will terminate for us if necessary */
|
|
|
|
if (dwarf_formsdata(attr, &val, &dw->dw_err) != DW_DLV_OK) {
|
|
if (req == 0)
|
|
return (0);
|
|
|
|
terminate("die %llu: failed to get signed (form 0x%x)\n",
|
|
die_off(dw, die), die_attr_form(dw, attr));
|
|
}
|
|
|
|
dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
|
|
|
|
*valp = val;
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
|
|
int req)
|
|
{
|
|
Dwarf_Attribute attr;
|
|
Dwarf_Unsigned val;
|
|
|
|
if ((attr = die_attr(dw, die, name, req)) == NULL)
|
|
return (0); /* die_attr will terminate for us if necessary */
|
|
|
|
if (dwarf_formudata(attr, &val, &dw->dw_err) != DW_DLV_OK) {
|
|
if (req == 0)
|
|
return (0);
|
|
|
|
terminate("die %llu: failed to get unsigned (form 0x%x)\n",
|
|
die_off(dw, die), die_attr_form(dw, attr));
|
|
}
|
|
|
|
dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
|
|
|
|
*valp = val;
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
|
|
{
|
|
Dwarf_Attribute attr;
|
|
Dwarf_Bool val;
|
|
|
|
if ((attr = die_attr(dw, die, name, req)) == NULL)
|
|
return (0); /* die_attr will terminate for us if necessary */
|
|
|
|
if (dwarf_formflag(attr, &val, &dw->dw_err) != DW_DLV_OK) {
|
|
if (req == 0)
|
|
return (0);
|
|
|
|
terminate("die %llu: failed to get bool (form 0x%x)\n",
|
|
die_off(dw, die), die_attr_form(dw, attr));
|
|
}
|
|
|
|
dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
|
|
|
|
*valp = val;
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
|
|
{
|
|
Dwarf_Attribute attr;
|
|
char *str;
|
|
|
|
if ((attr = die_attr(dw, die, name, req)) == NULL)
|
|
return (0); /* die_attr will terminate for us if necessary */
|
|
|
|
if (dwarf_formstring(attr, &str, &dw->dw_err) != DW_DLV_OK) {
|
|
if (req == 0)
|
|
return (0);
|
|
|
|
terminate("die %llu: failed to get string (form 0x%x)\n",
|
|
die_off(dw, die), die_attr_form(dw, attr));
|
|
}
|
|
|
|
*strp = xstrdup(str);
|
|
dwarf_dealloc(dw->dw_dw, str, DW_DLA_STRING);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static Dwarf_Off
|
|
die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
|
|
{
|
|
Dwarf_Attribute attr;
|
|
Dwarf_Off off;
|
|
|
|
attr = die_attr(dw, die, name, DW_ATTR_REQ);
|
|
|
|
if (dwarf_formref(attr, &off, &dw->dw_err) != DW_DLV_OK) {
|
|
terminate("die %llu: failed to get ref (form 0x%x)\n",
|
|
die_off(dw, die), die_attr_form(dw, attr));
|
|
}
|
|
|
|
dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
|
|
|
|
return (off);
|
|
}
|
|
|
|
static char *
|
|
die_name(dwarf_t *dw, Dwarf_Die die)
|
|
{
|
|
char *str = NULL;
|
|
|
|
(void) die_string(dw, die, DW_AT_name, &str, 0);
|
|
|
|
return (str);
|
|
}
|
|
|
|
static int
|
|
die_isdecl(dwarf_t *dw, Dwarf_Die die)
|
|
{
|
|
Dwarf_Bool val;
|
|
|
|
return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
|
|
}
|
|
|
|
static int
|
|
die_isglobal(dwarf_t *dw, Dwarf_Die die)
|
|
{
|
|
Dwarf_Signed vis;
|
|
Dwarf_Bool ext;
|
|
|
|
/*
|
|
* Some compilers (gcc) use DW_AT_external to indicate function
|
|
* visibility. Others (Sun) use DW_AT_visibility.
|
|
*/
|
|
if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
|
|
return (vis == DW_VIS_exported);
|
|
else
|
|
return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
|
|
}
|
|
|
|
static tdesc_t *
|
|
die_add(dwarf_t *dw, Dwarf_Off off)
|
|
{
|
|
tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
|
|
|
|
tdp->t_id = off;
|
|
|
|
tdesc_add(dw, tdp);
|
|
|
|
return (tdp);
|
|
}
|
|
|
|
static tdesc_t *
|
|
die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
|
|
{
|
|
Dwarf_Off ref = die_attr_ref(dw, die, name);
|
|
tdesc_t *tdp;
|
|
|
|
if ((tdp = tdesc_lookup(dw, ref)) != NULL)
|
|
return (tdp);
|
|
|
|
return (die_add(dw, ref));
|
|
}
|
|
|
|
static int
|
|
die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
|
|
Dwarf_Unsigned *valp, int req)
|
|
{
|
|
Dwarf_Attribute attr;
|
|
Dwarf_Locdesc *loc;
|
|
Dwarf_Signed locnum;
|
|
|
|
if ((attr = die_attr(dw, die, name, req)) == NULL)
|
|
return (0); /* die_attr will terminate for us if necessary */
|
|
|
|
if (dwarf_loclist(attr, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) {
|
|
terminate("die %llu: failed to get mem offset location list\n",
|
|
die_off(dw, die));
|
|
}
|
|
|
|
dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
|
|
|
|
if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
|
|
terminate("die %llu: cannot parse member offset\n",
|
|
die_off(dw, die));
|
|
}
|
|
|
|
*valp = loc->ld_s->lr_number;
|
|
|
|
dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK);
|
|
dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static tdesc_t *
|
|
tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
|
|
{
|
|
tdesc_t *tdp;
|
|
intr_t *intr;
|
|
|
|
intr = xcalloc(sizeof (intr_t));
|
|
intr->intr_type = INTR_INT;
|
|
intr->intr_signed = 1;
|
|
intr->intr_nbits = sz * NBBY;
|
|
|
|
tdp = xcalloc(sizeof (tdesc_t));
|
|
tdp->t_name = xstrdup(name);
|
|
tdp->t_size = sz;
|
|
tdp->t_id = tid;
|
|
tdp->t_type = INTRINSIC;
|
|
tdp->t_intr = intr;
|
|
tdp->t_flags = TDESC_F_RESOLVED;
|
|
|
|
tdesc_add(dw, tdp);
|
|
|
|
return (tdp);
|
|
}
|
|
|
|
/*
|
|
* Manufacture a void type. Used for gcc-emitted stabs, where the lack of a
|
|
* type reference implies a reference to a void type. A void *, for example
|
|
* will be represented by a pointer die without a DW_AT_type. CTF requires
|
|
* that pointer nodes point to something, so we'll create a void for use as
|
|
* the target. Note that the DWARF data may already create a void type. Ours
|
|
* would then be a duplicate, but it'll be removed in the self-uniquification
|
|
* merge performed at the completion of DWARF->tdesc conversion.
|
|
*/
|
|
static tdesc_t *
|
|
tdesc_intr_void(dwarf_t *dw)
|
|
{
|
|
if (dw->dw_void == NULL)
|
|
dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
|
|
|
|
return (dw->dw_void);
|
|
}
|
|
|
|
static tdesc_t *
|
|
tdesc_intr_long(dwarf_t *dw)
|
|
{
|
|
if (dw->dw_long == NULL) {
|
|
dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
|
|
dw->dw_ptrsz);
|
|
}
|
|
|
|
return (dw->dw_long);
|
|
}
|
|
|
|
/*
|
|
* Used for creating bitfield types. We create a copy of an existing intrinsic,
|
|
* adjusting the size of the copy to match what the caller requested. The
|
|
* caller can then use the copy as the type for a bitfield structure member.
|
|
*/
|
|
static tdesc_t *
|
|
tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
|
|
{
|
|
tdesc_t *new = xcalloc(sizeof (tdesc_t));
|
|
|
|
if (!(old->t_flags & TDESC_F_RESOLVED)) {
|
|
terminate("tdp %u: attempt to make a bit field from an "
|
|
"unresolved type\n", old->t_id);
|
|
}
|
|
|
|
new->t_name = xstrdup(old->t_name);
|
|
new->t_size = old->t_size;
|
|
new->t_id = mfgtid_next(dw);
|
|
new->t_type = INTRINSIC;
|
|
new->t_flags = TDESC_F_RESOLVED;
|
|
|
|
new->t_intr = xcalloc(sizeof (intr_t));
|
|
bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
|
|
new->t_intr->intr_nbits = bitsz;
|
|
|
|
tdesc_add(dw, new);
|
|
|
|
return (new);
|
|
}
|
|
|
|
static void
|
|
tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
|
|
tdesc_t *dimtdp)
|
|
{
|
|
Dwarf_Unsigned uval;
|
|
Dwarf_Signed sval;
|
|
tdesc_t *ctdp;
|
|
Dwarf_Die dim2;
|
|
ardef_t *ar;
|
|
|
|
if ((dim2 = die_sibling(dw, dim)) == NULL) {
|
|
ctdp = arrtdp;
|
|
} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
|
|
ctdp = xcalloc(sizeof (tdesc_t));
|
|
ctdp->t_id = mfgtid_next(dw);
|
|
debug(3, "die %llu: creating new type %u for sub-dimension\n",
|
|
die_off(dw, dim2), ctdp->t_id);
|
|
tdesc_array_create(dw, dim2, arrtdp, ctdp);
|
|
} else {
|
|
terminate("die %llu: unexpected non-subrange node in array\n",
|
|
die_off(dw, dim2));
|
|
}
|
|
|
|
dimtdp->t_type = ARRAY;
|
|
dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
|
|
|
|
/*
|
|
* Array bounds can be signed or unsigned, but there are several kinds
|
|
* of signless forms (data1, data2, etc) that take their sign from the
|
|
* routine that is trying to interpret them. That is, data1 can be
|
|
* either signed or unsigned, depending on whether you use the signed or
|
|
* unsigned accessor function. GCC will use the signless forms to store
|
|
* unsigned values which have their high bit set, so we need to try to
|
|
* read them first as unsigned to get positive values. We could also
|
|
* try signed first, falling back to unsigned if we got a negative
|
|
* value.
|
|
*/
|
|
if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
|
|
ar->ad_nelems = uval + 1;
|
|
else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
|
|
ar->ad_nelems = sval + 1;
|
|
else
|
|
ar->ad_nelems = 0;
|
|
|
|
/*
|
|
* Different compilers use different index types. Force the type to be
|
|
* a common, known value (long).
|
|
*/
|
|
ar->ad_idxtype = tdesc_intr_long(dw);
|
|
ar->ad_contents = ctdp;
|
|
|
|
if (ar->ad_contents->t_size != 0) {
|
|
dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
|
|
dimtdp->t_flags |= TDESC_F_RESOLVED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a tdesc from an array node. Some arrays will come with byte size
|
|
* attributes, and thus can be resolved immediately. Others don't, and will
|
|
* need to wait until the second pass for resolution.
|
|
*/
|
|
static void
|
|
die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
|
|
Dwarf_Unsigned uval;
|
|
Dwarf_Die dim;
|
|
|
|
debug(3, "die %llu: creating array\n", off);
|
|
|
|
if ((dim = die_child(dw, arr)) == NULL ||
|
|
die_tag(dw, dim) != DW_TAG_subrange_type)
|
|
terminate("die %llu: failed to retrieve array bounds\n", off);
|
|
|
|
tdesc_array_create(dw, dim, arrtdp, tdp);
|
|
|
|
if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
|
|
tdesc_t *dimtdp;
|
|
int flags;
|
|
|
|
tdp->t_size = uval;
|
|
|
|
/*
|
|
* Ensure that sub-dimensions have sizes too before marking
|
|
* as resolved.
|
|
*/
|
|
flags = TDESC_F_RESOLVED;
|
|
for (dimtdp = tdp->t_ardef->ad_contents;
|
|
dimtdp->t_type == ARRAY;
|
|
dimtdp = dimtdp->t_ardef->ad_contents) {
|
|
if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
|
|
flags = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
tdp->t_flags |= flags;
|
|
}
|
|
|
|
debug(3, "die %llu: array nelems %u size %u\n", off,
|
|
tdp->t_ardef->ad_nelems, tdp->t_size);
|
|
}
|
|
|
|
/*ARGSUSED1*/
|
|
static int
|
|
die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private)
|
|
{
|
|
dwarf_t *dw = private;
|
|
size_t sz;
|
|
|
|
if (tdp->t_flags & TDESC_F_RESOLVED)
|
|
return (1);
|
|
|
|
debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
|
|
tdp->t_ardef->ad_contents->t_id);
|
|
|
|
if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) {
|
|
debug(3, "unable to resolve array %s (%d) contents %d\n",
|
|
tdesc_name(tdp), tdp->t_id,
|
|
tdp->t_ardef->ad_contents->t_id);
|
|
|
|
dw->dw_nunres++;
|
|
return (1);
|
|
}
|
|
|
|
tdp->t_size = sz * tdp->t_ardef->ad_nelems;
|
|
tdp->t_flags |= TDESC_F_RESOLVED;
|
|
|
|
debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*ARGSUSED1*/
|
|
static int
|
|
die_array_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private)
|
|
{
|
|
tdesc_t *cont = tdp->t_ardef->ad_contents;
|
|
|
|
if (tdp->t_flags & TDESC_F_RESOLVED)
|
|
return (1);
|
|
|
|
fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
|
|
tdp->t_id, tdesc_name(cont), cont->t_id);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Most enums (those with members) will be resolved during this first pass.
|
|
* Others - those without members (see the file comment) - won't be, and will
|
|
* need to wait until the second pass when they can be matched with their full
|
|
* definitions.
|
|
*/
|
|
static void
|
|
die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
Dwarf_Die mem;
|
|
Dwarf_Unsigned uval;
|
|
Dwarf_Signed sval;
|
|
|
|
debug(3, "die %llu: creating enum\n", off);
|
|
|
|
tdp->t_type = ENUM;
|
|
|
|
(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
|
|
tdp->t_size = uval;
|
|
|
|
if ((mem = die_child(dw, die)) != NULL) {
|
|
elist_t **elastp = &tdp->t_emem;
|
|
|
|
do {
|
|
elist_t *el;
|
|
|
|
if (die_tag(dw, mem) != DW_TAG_enumerator) {
|
|
/* Nested type declaration */
|
|
die_create_one(dw, mem);
|
|
continue;
|
|
}
|
|
|
|
el = xcalloc(sizeof (elist_t));
|
|
el->el_name = die_name(dw, mem);
|
|
|
|
if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
|
|
el->el_number = sval;
|
|
} else if (die_unsigned(dw, mem, DW_AT_const_value,
|
|
&uval, 0)) {
|
|
el->el_number = uval;
|
|
} else {
|
|
terminate("die %llu: enum %llu: member without "
|
|
"value\n", off, die_off(dw, mem));
|
|
}
|
|
|
|
debug(3, "die %llu: enum %llu: created %s = %d\n", off,
|
|
die_off(dw, mem), el->el_name, el->el_number);
|
|
|
|
*elastp = el;
|
|
elastp = &el->el_next;
|
|
|
|
} while ((mem = die_sibling(dw, mem)) != NULL);
|
|
|
|
hash_add(dw->dw_enumhash, tdp);
|
|
|
|
tdp->t_flags |= TDESC_F_RESOLVED;
|
|
|
|
if (tdp->t_name != NULL) {
|
|
iidesc_t *ii = xcalloc(sizeof (iidesc_t));
|
|
ii->ii_type = II_SOU;
|
|
ii->ii_name = xstrdup(tdp->t_name);
|
|
ii->ii_dtype = tdp;
|
|
|
|
iidesc_add(dw->dw_td->td_iihash, ii);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
die_enum_match(void *arg1, void *arg2)
|
|
{
|
|
tdesc_t *tdp = arg1, **fullp = arg2;
|
|
|
|
if (tdp->t_emem != NULL) {
|
|
*fullp = tdp;
|
|
return (-1); /* stop the iteration */
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*ARGSUSED1*/
|
|
static int
|
|
die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private)
|
|
{
|
|
dwarf_t *dw = private;
|
|
tdesc_t *full = NULL;
|
|
|
|
if (tdp->t_flags & TDESC_F_RESOLVED)
|
|
return (1);
|
|
|
|
(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
|
|
|
|
/*
|
|
* The answer to this one won't change from iteration to iteration,
|
|
* so don't even try.
|
|
*/
|
|
if (full == NULL) {
|
|
terminate("tdp %u: enum %s has no members\n", tdp->t_id,
|
|
tdesc_name(tdp));
|
|
}
|
|
|
|
debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
|
|
tdesc_name(tdp), full->t_id);
|
|
|
|
tdp->t_flags |= TDESC_F_RESOLVED;
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
die_fwd_map(void *arg1, void *arg2)
|
|
{
|
|
tdesc_t *fwd = arg1, *sou = arg2;
|
|
|
|
debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
|
|
tdesc_name(fwd), sou->t_id);
|
|
fwd->t_tdesc = sou;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Structures and unions will never be resolved during the first pass, as we
|
|
* won't be able to fully determine the member sizes. The second pass, which
|
|
* have access to sizing information, will be able to complete the resolution.
|
|
*/
|
|
static void
|
|
die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
|
|
int type, const char *typename)
|
|
{
|
|
Dwarf_Unsigned sz, bitsz, bitoff;
|
|
Dwarf_Die mem;
|
|
mlist_t *ml, **mlastp;
|
|
iidesc_t *ii;
|
|
|
|
tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
|
|
|
|
debug(3, "die %llu: creating %s %s\n", off,
|
|
(tdp->t_type == FORWARD ? "forward decl" : typename),
|
|
tdesc_name(tdp));
|
|
|
|
if (tdp->t_type == FORWARD) {
|
|
hash_add(dw->dw_fwdhash, tdp);
|
|
return;
|
|
}
|
|
|
|
(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
|
|
|
|
(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
|
|
tdp->t_size = sz;
|
|
|
|
/*
|
|
* GCC allows empty SOUs as an extension.
|
|
*/
|
|
if ((mem = die_child(dw, str)) == NULL)
|
|
goto out;
|
|
|
|
mlastp = &tdp->t_members;
|
|
|
|
do {
|
|
Dwarf_Off memoff = die_off(dw, mem);
|
|
Dwarf_Half tag = die_tag(dw, mem);
|
|
Dwarf_Unsigned mloff;
|
|
|
|
if (tag != DW_TAG_member) {
|
|
/* Nested type declaration */
|
|
die_create_one(dw, mem);
|
|
continue;
|
|
}
|
|
|
|
debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
|
|
|
|
ml = xcalloc(sizeof (mlist_t));
|
|
|
|
/*
|
|
* This could be a GCC anon struct/union member, so we'll allow
|
|
* an empty name, even though nothing can really handle them
|
|
* properly. Note that some versions of GCC miss out debug
|
|
* info for anon structs, though recent versions are fixed (gcc
|
|
* bug 11816).
|
|
*/
|
|
if ((ml->ml_name = die_name(dw, mem)) == NULL)
|
|
ml->ml_name = "";
|
|
|
|
ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
|
|
|
|
if (die_mem_offset(dw, mem, DW_AT_data_member_location,
|
|
&mloff, 0)) {
|
|
debug(3, "die %llu: got mloff %llx\n", off,
|
|
(u_longlong_t)mloff);
|
|
ml->ml_offset = mloff * 8;
|
|
}
|
|
|
|
if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
|
|
ml->ml_size = bitsz;
|
|
else
|
|
ml->ml_size = tdesc_bitsize(ml->ml_type);
|
|
|
|
if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
|
|
#ifdef _BIG_ENDIAN
|
|
ml->ml_offset += bitoff;
|
|
#else
|
|
ml->ml_offset += tdesc_bitsize(ml->ml_type) - bitoff -
|
|
ml->ml_size;
|
|
#endif
|
|
}
|
|
|
|
debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
|
|
off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
|
|
|
|
*mlastp = ml;
|
|
mlastp = &ml->ml_next;
|
|
} while ((mem = die_sibling(dw, mem)) != NULL);
|
|
|
|
/*
|
|
* GCC will attempt to eliminate unused types, thus decreasing the
|
|
* size of the emitted dwarf. That is, if you declare a foo_t in your
|
|
* header, include said header in your source file, and neglect to
|
|
* actually use (directly or indirectly) the foo_t in the source file,
|
|
* the foo_t won't make it into the emitted DWARF. So, at least, goes
|
|
* the theory.
|
|
*
|
|
* Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
|
|
* and then neglect to emit the members. Strangely, the loner struct
|
|
* tag will always be followed by a proper nested declaration of
|
|
* something else. This is clearly a bug, but we're not going to have
|
|
* time to get it fixed before this goo goes back, so we'll have to work
|
|
* around it. If we see a no-membered struct with a nested declaration
|
|
* (i.e. die_child of the struct tag won't be null), we'll ignore it.
|
|
* Being paranoid, we won't simply remove it from the hash. Instead,
|
|
* we'll decline to create an iidesc for it, thus ensuring that this
|
|
* type won't make it into the output file. To be safe, we'll also
|
|
* change the name.
|
|
*/
|
|
if (tdp->t_members == NULL) {
|
|
const char *old = tdesc_name(tdp);
|
|
size_t newsz = 7 + strlen(old) + 1;
|
|
char *new = xmalloc(newsz);
|
|
(void) snprintf(new, newsz, "orphan %s", old);
|
|
|
|
debug(3, "die %llu: worked around %s %s\n", off, typename, old);
|
|
|
|
if (tdp->t_name != NULL)
|
|
free(tdp->t_name);
|
|
tdp->t_name = new;
|
|
return;
|
|
}
|
|
|
|
out:
|
|
if (tdp->t_name != NULL) {
|
|
ii = xcalloc(sizeof (iidesc_t));
|
|
ii->ii_type = II_SOU;
|
|
ii->ii_name = xstrdup(tdp->t_name);
|
|
ii->ii_dtype = tdp;
|
|
|
|
iidesc_add(dw->dw_td->td_iihash, ii);
|
|
}
|
|
}
|
|
|
|
static void
|
|
die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
die_sou_create(dw, die, off, tdp, STRUCT, "struct");
|
|
}
|
|
|
|
static void
|
|
die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
die_sou_create(dw, die, off, tdp, UNION, "union");
|
|
}
|
|
|
|
/*ARGSUSED1*/
|
|
static int
|
|
die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private)
|
|
{
|
|
dwarf_t *dw = private;
|
|
mlist_t *ml;
|
|
tdesc_t *mt;
|
|
|
|
if (tdp->t_flags & TDESC_F_RESOLVED)
|
|
return (1);
|
|
|
|
debug(3, "resolving sou %s\n", tdesc_name(tdp));
|
|
|
|
for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
|
|
if (ml->ml_size == 0) {
|
|
mt = tdesc_basetype(ml->ml_type);
|
|
|
|
if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
|
|
continue;
|
|
|
|
/*
|
|
* For empty members, or GCC/C99 flexible array
|
|
* members, a size of 0 is correct.
|
|
*/
|
|
if (mt->t_members == NULL)
|
|
continue;
|
|
if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
|
|
continue;
|
|
|
|
dw->dw_nunres++;
|
|
return (1);
|
|
}
|
|
|
|
if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
|
|
dw->dw_nunres++;
|
|
return (1);
|
|
}
|
|
|
|
if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
|
|
mt->t_intr->intr_nbits != ml->ml_size) {
|
|
/*
|
|
* This member is a bitfield, and needs to reference
|
|
* an intrinsic type with the same width. If the
|
|
* currently-referenced type isn't of the same width,
|
|
* we'll copy it, adjusting the width of the copy to
|
|
* the size we'd like.
|
|
*/
|
|
debug(3, "tdp %u: creating bitfield for %d bits\n",
|
|
tdp->t_id, ml->ml_size);
|
|
|
|
ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
|
|
}
|
|
}
|
|
|
|
tdp->t_flags |= TDESC_F_RESOLVED;
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*ARGSUSED1*/
|
|
static int
|
|
die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private)
|
|
{
|
|
const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
|
|
mlist_t *ml;
|
|
|
|
if (tdp->t_flags & TDESC_F_RESOLVED)
|
|
return (1);
|
|
|
|
for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
|
|
if (ml->ml_size == 0) {
|
|
fprintf(stderr, "%s %d: failed to size member \"%s\" "
|
|
"of type %s (%d)\n", typename, tdp->t_id,
|
|
ml->ml_name, tdesc_name(ml->ml_type),
|
|
ml->ml_type->t_id);
|
|
}
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
Dwarf_Attribute attr;
|
|
Dwarf_Half tag;
|
|
Dwarf_Die arg;
|
|
fndef_t *fn;
|
|
int i;
|
|
|
|
debug(3, "die %llu: creating function pointer\n", off);
|
|
|
|
/*
|
|
* We'll begin by processing any type definition nodes that may be
|
|
* lurking underneath this one.
|
|
*/
|
|
for (arg = die_child(dw, die); arg != NULL;
|
|
arg = die_sibling(dw, arg)) {
|
|
if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
|
|
tag != DW_TAG_unspecified_parameters) {
|
|
/* Nested type declaration */
|
|
die_create_one(dw, arg);
|
|
}
|
|
}
|
|
|
|
if (die_isdecl(dw, die)) {
|
|
/*
|
|
* This is a prototype. We don't add prototypes to the
|
|
* tree, so we're going to drop the tdesc. Unfortunately,
|
|
* it has already been added to the tree. Nobody will reference
|
|
* it, though, and it will be leaked.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
fn = xcalloc(sizeof (fndef_t));
|
|
|
|
tdp->t_type = FUNCTION;
|
|
|
|
if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
|
|
dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
|
|
fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
|
|
} else {
|
|
fn->fn_ret = tdesc_intr_void(dw);
|
|
}
|
|
|
|
/*
|
|
* Count the arguments to the function, then read them in.
|
|
*/
|
|
for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
|
|
arg = die_sibling(dw, arg)) {
|
|
if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
|
|
fn->fn_nargs++;
|
|
else if (tag == DW_TAG_unspecified_parameters &&
|
|
fn->fn_nargs > 0)
|
|
fn->fn_vargs = 1;
|
|
}
|
|
|
|
if (fn->fn_nargs != 0) {
|
|
debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
|
|
(fn->fn_nargs > 1 ? "s" : ""));
|
|
|
|
fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
|
|
for (i = 0, arg = die_child(dw, die);
|
|
arg != NULL && i < fn->fn_nargs;
|
|
arg = die_sibling(dw, arg)) {
|
|
if (die_tag(dw, arg) != DW_TAG_formal_parameter)
|
|
continue;
|
|
|
|
fn->fn_args[i++] = die_lookup_pass1(dw, arg,
|
|
DW_AT_type);
|
|
}
|
|
}
|
|
|
|
tdp->t_fndef = fn;
|
|
tdp->t_flags |= TDESC_F_RESOLVED;
|
|
}
|
|
|
|
/*
|
|
* GCC and DevPro use different names for the base types. While the terms are
|
|
* the same, they are arranged in a different order. Some terms, such as int,
|
|
* are implied in one, and explicitly named in the other. Given a base type
|
|
* as input, this routine will return a common name, along with an intr_t
|
|
* that reflects said name.
|
|
*/
|
|
static intr_t *
|
|
die_base_name_parse(const char *name, char **newp)
|
|
{
|
|
char buf[100];
|
|
char *base, *c;
|
|
int nlong = 0, nshort = 0, nchar = 0, nint = 0;
|
|
int sign = 1;
|
|
char fmt = '\0';
|
|
intr_t *intr;
|
|
|
|
if (strlen(name) > sizeof (buf) - 1)
|
|
terminate("base type name \"%s\" is too long\n", name);
|
|
|
|
strncpy(buf, name, sizeof (buf));
|
|
|
|
for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
|
|
if (strcmp(c, "signed") == 0)
|
|
sign = 1;
|
|
else if (strcmp(c, "unsigned") == 0)
|
|
sign = 0;
|
|
else if (strcmp(c, "long") == 0)
|
|
nlong++;
|
|
else if (strcmp(c, "char") == 0) {
|
|
nchar++;
|
|
fmt = 'c';
|
|
} else if (strcmp(c, "short") == 0)
|
|
nshort++;
|
|
else if (strcmp(c, "int") == 0)
|
|
nint++;
|
|
else {
|
|
/*
|
|
* If we don't recognize any of the tokens, we'll tell
|
|
* the caller to fall back to the dwarf-provided
|
|
* encoding information.
|
|
*/
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
|
|
return (NULL);
|
|
|
|
if (nchar > 0) {
|
|
if (nlong > 0 || nshort > 0 || nint > 0)
|
|
return (NULL);
|
|
|
|
base = "char";
|
|
|
|
} else if (nshort > 0) {
|
|
if (nlong > 0)
|
|
return (NULL);
|
|
|
|
base = "short";
|
|
|
|
} else if (nlong > 0) {
|
|
base = "long";
|
|
|
|
} else {
|
|
base = "int";
|
|
}
|
|
|
|
intr = xcalloc(sizeof (intr_t));
|
|
intr->intr_type = INTR_INT;
|
|
intr->intr_signed = sign;
|
|
intr->intr_iformat = fmt;
|
|
|
|
snprintf(buf, sizeof (buf), "%s%s%s",
|
|
(sign ? "" : "unsigned "),
|
|
(nlong > 1 ? "long " : ""),
|
|
base);
|
|
|
|
*newp = xstrdup(buf);
|
|
return (intr);
|
|
}
|
|
|
|
typedef struct fp_size_map {
|
|
size_t fsm_typesz[2]; /* size of {32,64} type */
|
|
uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */
|
|
} fp_size_map_t;
|
|
|
|
static const fp_size_map_t fp_encodings[] = {
|
|
{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
|
|
{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
|
|
#ifdef __sparc
|
|
{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
|
|
#else
|
|
{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
|
|
#endif
|
|
{ { 0, 0 } }
|
|
};
|
|
|
|
static uint_t
|
|
die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
|
|
{
|
|
const fp_size_map_t *map = fp_encodings;
|
|
uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
|
|
uint_t mult = 1, col = 0;
|
|
|
|
if (enc == DW_ATE_complex_float) {
|
|
mult = 2;
|
|
col = 1;
|
|
} else if (enc == DW_ATE_imaginary_float ||
|
|
enc == DW_ATE_SUN_imaginary_float)
|
|
col = 2;
|
|
|
|
while (map->fsm_typesz[szidx] != 0) {
|
|
if (map->fsm_typesz[szidx] * mult == sz)
|
|
return (map->fsm_enc[col]);
|
|
map++;
|
|
}
|
|
|
|
terminate("die %llu: unrecognized real type size %u\n", off, sz);
|
|
/*NOTREACHED*/
|
|
return (0);
|
|
}
|
|
|
|
static intr_t *
|
|
die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
|
|
{
|
|
intr_t *intr = xcalloc(sizeof (intr_t));
|
|
Dwarf_Signed enc;
|
|
|
|
(void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
|
|
|
|
switch (enc) {
|
|
case DW_ATE_unsigned:
|
|
case DW_ATE_address:
|
|
intr->intr_type = INTR_INT;
|
|
break;
|
|
case DW_ATE_unsigned_char:
|
|
intr->intr_type = INTR_INT;
|
|
intr->intr_iformat = 'c';
|
|
break;
|
|
case DW_ATE_signed:
|
|
intr->intr_type = INTR_INT;
|
|
intr->intr_signed = 1;
|
|
break;
|
|
case DW_ATE_signed_char:
|
|
intr->intr_type = INTR_INT;
|
|
intr->intr_signed = 1;
|
|
intr->intr_iformat = 'c';
|
|
break;
|
|
case DW_ATE_boolean:
|
|
intr->intr_type = INTR_INT;
|
|
intr->intr_signed = 1;
|
|
intr->intr_iformat = 'b';
|
|
break;
|
|
case DW_ATE_float:
|
|
case DW_ATE_complex_float:
|
|
case DW_ATE_imaginary_float:
|
|
case DW_ATE_SUN_imaginary_float:
|
|
case DW_ATE_SUN_interval_float:
|
|
intr->intr_type = INTR_REAL;
|
|
intr->intr_signed = 1;
|
|
intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
|
|
break;
|
|
default:
|
|
terminate("die %llu: unknown base type encoding 0x%llx\n",
|
|
off, enc);
|
|
}
|
|
|
|
return (intr);
|
|
}
|
|
|
|
static void
|
|
die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
Dwarf_Unsigned sz;
|
|
intr_t *intr;
|
|
char *new;
|
|
|
|
debug(3, "die %llu: creating base type\n", off);
|
|
|
|
/*
|
|
* The compilers have their own clever (internally inconsistent) ideas
|
|
* as to what base types should look like. Some times gcc will, for
|
|
* example, use DW_ATE_signed_char for char. Other times, however, it
|
|
* will use DW_ATE_signed. Needless to say, this causes some problems
|
|
* down the road, particularly with merging. We do, however, use the
|
|
* DWARF idea of type sizes, as this allows us to avoid caring about
|
|
* the data model.
|
|
*/
|
|
(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
|
|
|
|
if (tdp->t_name == NULL)
|
|
terminate("die %llu: base type without name\n", off);
|
|
|
|
/* XXX make a name parser for float too */
|
|
if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
|
|
/* Found it. We'll use the parsed version */
|
|
debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
|
|
tdesc_name(tdp), new);
|
|
|
|
free(tdp->t_name);
|
|
tdp->t_name = new;
|
|
} else {
|
|
/*
|
|
* We didn't recognize the type, so we'll create an intr_t
|
|
* based on the DWARF data.
|
|
*/
|
|
debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
|
|
tdesc_name(tdp));
|
|
|
|
intr = die_base_from_dwarf(dw, base, off, sz);
|
|
}
|
|
|
|
intr->intr_nbits = sz * 8;
|
|
|
|
tdp->t_type = INTRINSIC;
|
|
tdp->t_intr = intr;
|
|
tdp->t_size = sz;
|
|
|
|
tdp->t_flags |= TDESC_F_RESOLVED;
|
|
}
|
|
|
|
static void
|
|
die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
|
|
int type, const char *typename)
|
|
{
|
|
Dwarf_Attribute attr;
|
|
|
|
debug(3, "die %llu: creating %s\n", off, typename);
|
|
|
|
tdp->t_type = type;
|
|
|
|
if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
|
|
dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR);
|
|
tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
|
|
} else {
|
|
tdp->t_tdesc = tdesc_intr_void(dw);
|
|
}
|
|
|
|
if (type == POINTER)
|
|
tdp->t_size = dw->dw_ptrsz;
|
|
|
|
tdp->t_flags |= TDESC_F_RESOLVED;
|
|
|
|
if (type == TYPEDEF) {
|
|
iidesc_t *ii = xcalloc(sizeof (iidesc_t));
|
|
ii->ii_type = II_TYPE;
|
|
ii->ii_name = xstrdup(tdp->t_name);
|
|
ii->ii_dtype = tdp;
|
|
|
|
iidesc_add(dw->dw_td->td_iihash, ii);
|
|
}
|
|
}
|
|
|
|
static void
|
|
die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
|
|
}
|
|
|
|
static void
|
|
die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
die_through_create(dw, die, off, tdp, CONST, "const");
|
|
}
|
|
|
|
static void
|
|
die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
die_through_create(dw, die, off, tdp, POINTER, "pointer");
|
|
}
|
|
|
|
static void
|
|
die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
|
|
}
|
|
|
|
static void
|
|
die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
|
|
}
|
|
|
|
/*ARGSUSED3*/
|
|
static void
|
|
die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
Dwarf_Die arg;
|
|
Dwarf_Half tag;
|
|
iidesc_t *ii;
|
|
char *name;
|
|
|
|
debug(3, "die %llu: creating function definition\n", off);
|
|
|
|
/*
|
|
* We'll begin by processing any type definition nodes that may be
|
|
* lurking underneath this one.
|
|
*/
|
|
for (arg = die_child(dw, die); arg != NULL;
|
|
arg = die_sibling(dw, arg)) {
|
|
if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
|
|
tag != DW_TAG_variable) {
|
|
/* Nested type declaration */
|
|
die_create_one(dw, arg);
|
|
}
|
|
}
|
|
|
|
if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
|
|
/*
|
|
* We process neither prototypes nor subprograms without
|
|
* names.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
ii = xcalloc(sizeof (iidesc_t));
|
|
ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
|
|
ii->ii_name = name;
|
|
if (ii->ii_type == II_SFUN)
|
|
ii->ii_owner = xstrdup(dw->dw_cuname);
|
|
|
|
debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
|
|
(ii->ii_type == II_GFUN ? "global" : "static"));
|
|
|
|
if (die_attr(dw, die, DW_AT_type, 0) != NULL)
|
|
ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
|
|
else
|
|
ii->ii_dtype = tdesc_intr_void(dw);
|
|
|
|
for (arg = die_child(dw, die); arg != NULL;
|
|
arg = die_sibling(dw, arg)) {
|
|
char *name;
|
|
|
|
debug(3, "die %llu: looking at sub member at %llu\n",
|
|
off, die_off(dw, die));
|
|
|
|
if (die_tag(dw, arg) != DW_TAG_formal_parameter)
|
|
continue;
|
|
|
|
if ((name = die_name(dw, arg)) == NULL) {
|
|
terminate("die %llu: func arg %d has no name\n",
|
|
off, ii->ii_nargs + 1);
|
|
}
|
|
|
|
if (strcmp(name, "...") == 0) {
|
|
free(name);
|
|
ii->ii_vargs = 1;
|
|
continue;
|
|
}
|
|
|
|
ii->ii_nargs++;
|
|
}
|
|
|
|
if (ii->ii_nargs > 0) {
|
|
int i;
|
|
|
|
debug(3, "die %llu: function has %d argument%s\n", off,
|
|
ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
|
|
|
|
ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
|
|
|
|
for (arg = die_child(dw, die), i = 0;
|
|
arg != NULL && i < ii->ii_nargs;
|
|
arg = die_sibling(dw, arg)) {
|
|
if (die_tag(dw, arg) != DW_TAG_formal_parameter)
|
|
continue;
|
|
|
|
ii->ii_args[i++] = die_lookup_pass1(dw, arg,
|
|
DW_AT_type);
|
|
}
|
|
}
|
|
|
|
iidesc_add(dw->dw_td->td_iihash, ii);
|
|
}
|
|
|
|
/*ARGSUSED3*/
|
|
static void
|
|
die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
iidesc_t *ii;
|
|
char *name;
|
|
|
|
debug(3, "die %llu: creating object definition\n", off);
|
|
|
|
if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
|
|
return; /* skip prototypes and nameless objects */
|
|
|
|
ii = xcalloc(sizeof (iidesc_t));
|
|
ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
|
|
ii->ii_name = name;
|
|
ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
|
|
if (ii->ii_type == II_SVAR)
|
|
ii->ii_owner = xstrdup(dw->dw_cuname);
|
|
|
|
iidesc_add(dw->dw_td->td_iihash, ii);
|
|
}
|
|
|
|
/*ARGSUSED2*/
|
|
static int
|
|
die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private)
|
|
{
|
|
if (fwd->t_flags & TDESC_F_RESOLVED)
|
|
return (1);
|
|
|
|
if (fwd->t_tdesc != NULL) {
|
|
debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
|
|
tdesc_name(fwd));
|
|
*fwdp = fwd->t_tdesc;
|
|
}
|
|
|
|
fwd->t_flags |= TDESC_F_RESOLVED;
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
|
|
{
|
|
Dwarf_Die child = die_child(dw, die);
|
|
|
|
if (child != NULL)
|
|
die_create(dw, child);
|
|
}
|
|
|
|
/*
|
|
* Used to map the die to a routine which can parse it, using the tag to do the
|
|
* mapping. While the processing of most tags entails the creation of a tdesc,
|
|
* there are a few which don't - primarily those which result in the creation of
|
|
* iidescs which refer to existing tdescs.
|
|
*/
|
|
|
|
#define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */
|
|
|
|
typedef struct die_creator {
|
|
Dwarf_Half dc_tag;
|
|
uint16_t dc_flags;
|
|
void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
|
|
} die_creator_t;
|
|
|
|
static const die_creator_t die_creators[] = {
|
|
{ DW_TAG_array_type, 0, die_array_create },
|
|
{ DW_TAG_enumeration_type, 0, die_enum_create },
|
|
{ DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend },
|
|
{ DW_TAG_pointer_type, 0, die_pointer_create },
|
|
{ DW_TAG_structure_type, 0, die_struct_create },
|
|
{ DW_TAG_subroutine_type, 0, die_funcptr_create },
|
|
{ DW_TAG_typedef, 0, die_typedef_create },
|
|
{ DW_TAG_union_type, 0, die_union_create },
|
|
{ DW_TAG_base_type, 0, die_base_create },
|
|
{ DW_TAG_const_type, 0, die_const_create },
|
|
{ DW_TAG_subprogram, DW_F_NOTDP, die_function_create },
|
|
{ DW_TAG_variable, DW_F_NOTDP, die_variable_create },
|
|
{ DW_TAG_volatile_type, 0, die_volatile_create },
|
|
{ DW_TAG_restrict_type, 0, die_restrict_create },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static const die_creator_t *
|
|
die_tag2ctor(Dwarf_Half tag)
|
|
{
|
|
const die_creator_t *dc;
|
|
|
|
for (dc = die_creators; dc->dc_create != NULL; dc++) {
|
|
if (dc->dc_tag == tag)
|
|
return (dc);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
die_create_one(dwarf_t *dw, Dwarf_Die die)
|
|
{
|
|
Dwarf_Off off = die_off(dw, die);
|
|
const die_creator_t *dc;
|
|
Dwarf_Half tag;
|
|
tdesc_t *tdp;
|
|
|
|
debug(3, "die %llu: create_one\n", off);
|
|
|
|
if (off > dw->dw_maxoff) {
|
|
terminate("illegal die offset %llu (max %llu)\n", off,
|
|
dw->dw_maxoff);
|
|
}
|
|
|
|
tag = die_tag(dw, die);
|
|
|
|
if ((dc = die_tag2ctor(tag)) == NULL) {
|
|
debug(2, "die %llu: ignoring tag type %x\n", off, tag);
|
|
return;
|
|
}
|
|
|
|
if ((tdp = tdesc_lookup(dw, off)) == NULL &&
|
|
!(dc->dc_flags & DW_F_NOTDP)) {
|
|
tdp = xcalloc(sizeof (tdesc_t));
|
|
tdp->t_id = off;
|
|
tdesc_add(dw, tdp);
|
|
}
|
|
|
|
if (tdp != NULL)
|
|
tdp->t_name = die_name(dw, die);
|
|
|
|
dc->dc_create(dw, die, off, tdp);
|
|
}
|
|
|
|
static void
|
|
die_create(dwarf_t *dw, Dwarf_Die die)
|
|
{
|
|
do {
|
|
die_create_one(dw, die);
|
|
} while ((die = die_sibling(dw, die)) != NULL);
|
|
}
|
|
|
|
static tdtrav_cb_f die_resolvers[] = {
|
|
NULL,
|
|
NULL, /* intrinsic */
|
|
NULL, /* pointer */
|
|
die_array_resolve, /* array */
|
|
NULL, /* function */
|
|
die_sou_resolve, /* struct */
|
|
die_sou_resolve, /* union */
|
|
die_enum_resolve, /* enum */
|
|
die_fwd_resolve, /* forward */
|
|
NULL, /* typedef */
|
|
NULL, /* typedef unres */
|
|
NULL, /* volatile */
|
|
NULL, /* const */
|
|
NULL, /* restrict */
|
|
};
|
|
|
|
static tdtrav_cb_f die_fail_reporters[] = {
|
|
NULL,
|
|
NULL, /* intrinsic */
|
|
NULL, /* pointer */
|
|
die_array_failed, /* array */
|
|
NULL, /* function */
|
|
die_sou_failed, /* struct */
|
|
die_sou_failed, /* union */
|
|
NULL, /* enum */
|
|
NULL, /* forward */
|
|
NULL, /* typedef */
|
|
NULL, /* typedef unres */
|
|
NULL, /* volatile */
|
|
NULL, /* const */
|
|
NULL, /* restrict */
|
|
};
|
|
|
|
static void
|
|
die_resolve(dwarf_t *dw)
|
|
{
|
|
int last = -1;
|
|
int pass = 0;
|
|
|
|
do {
|
|
pass++;
|
|
dw->dw_nunres = 0;
|
|
|
|
(void) iitraverse_hash(dw->dw_td->td_iihash,
|
|
&dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
|
|
|
|
debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
|
|
|
|
if (dw->dw_nunres == last) {
|
|
fprintf(stderr, "%s: failed to resolve the following "
|
|
"types:\n", progname);
|
|
|
|
(void) iitraverse_hash(dw->dw_td->td_iihash,
|
|
&dw->dw_td->td_curvgen, NULL, NULL,
|
|
die_fail_reporters, dw);
|
|
|
|
terminate("failed to resolve types\n");
|
|
}
|
|
|
|
last = dw->dw_nunres;
|
|
|
|
} while (dw->dw_nunres != 0);
|
|
}
|
|
|
|
/*
|
|
* Any object containing a function or object symbol at any scope should also
|
|
* contain DWARF data.
|
|
*/
|
|
static boolean_t
|
|
should_have_dwarf(Elf *elf)
|
|
{
|
|
Elf_Scn *scn = NULL;
|
|
Elf_Data *data = NULL;
|
|
GElf_Shdr shdr;
|
|
GElf_Sym sym;
|
|
uint32_t symdx = 0;
|
|
size_t nsyms = 0;
|
|
boolean_t found = B_FALSE;
|
|
|
|
while ((scn = elf_nextscn(elf, scn)) != NULL) {
|
|
gelf_getshdr(scn, &shdr);
|
|
|
|
if (shdr.sh_type == SHT_SYMTAB) {
|
|
found = B_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
terminate("cannot convert stripped objects\n");
|
|
|
|
data = elf_getdata(scn, NULL);
|
|
nsyms = shdr.sh_size / shdr.sh_entsize;
|
|
|
|
for (symdx = 0; symdx < nsyms; symdx++) {
|
|
gelf_getsym(data, symdx, &sym);
|
|
|
|
if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
|
|
(GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
|
|
(GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
|
|
char *name;
|
|
|
|
name = elf_strptr(elf, shdr.sh_link, sym.st_name);
|
|
|
|
/* Studio emits these local symbols regardless */
|
|
if ((strcmp(name, "Bbss.bss") != 0) &&
|
|
(strcmp(name, "Ttbss.bss") != 0) &&
|
|
(strcmp(name, "Ddata.data") != 0) &&
|
|
(strcmp(name, "Ttdata.data") != 0) &&
|
|
(strcmp(name, "Drodata.rodata") != 0))
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
dw_read(tdata_t *td, Elf *elf, const char *filename)
|
|
{
|
|
Dwarf_Unsigned abboff, hdrlen, nxthdr;
|
|
Dwarf_Half vers, addrsz;
|
|
Dwarf_Die cu, child;
|
|
dwarf_t dw;
|
|
char *prod = NULL;
|
|
int rc;
|
|
|
|
bzero(&dw, sizeof (dwarf_t));
|
|
dw.dw_td = td;
|
|
dw.dw_ptrsz = elf_ptrsz(elf);
|
|
dw.dw_mfgtid_last = TID_MFGTID_BASE;
|
|
dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
|
|
dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
|
|
tdesc_namecmp);
|
|
dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
|
|
tdesc_namecmp);
|
|
|
|
if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw,
|
|
&dw.dw_err)) == DW_DLV_NO_ENTRY) {
|
|
if (should_have_dwarf(elf)) {
|
|
errno = ENOENT;
|
|
return (-1);
|
|
} else {
|
|
return (0);
|
|
}
|
|
} else if (rc != DW_DLV_OK) {
|
|
if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
|
|
/*
|
|
* There's no type data in the DWARF section, but
|
|
* libdwarf is too clever to handle that properly.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
terminate("failed to initialize DWARF: %s\n",
|
|
dwarf_errmsg(dw.dw_err));
|
|
}
|
|
|
|
if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
|
|
&addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK)
|
|
terminate("file does not contain valid DWARF data: %s\n",
|
|
dwarf_errmsg(dw.dw_err));
|
|
|
|
/*
|
|
* Some compilers emit no DWARF for empty files, others emit an empty
|
|
* compilation unit.
|
|
*/
|
|
if ((cu = die_sibling(&dw, NULL)) == NULL ||
|
|
((child = die_child(&dw, cu)) == NULL) &&
|
|
should_have_dwarf(elf)) {
|
|
terminate("file does not contain dwarf type data "
|
|
"(try compiling with -g)\n");
|
|
} else if (child == NULL) {
|
|
return (0);
|
|
}
|
|
|
|
dw.dw_maxoff = nxthdr - 1;
|
|
|
|
if (dw.dw_maxoff > TID_FILEMAX)
|
|
terminate("file contains too many types\n");
|
|
|
|
debug(1, "DWARF version: %d\n", vers);
|
|
if (vers != DWARF_VERSION) {
|
|
terminate("file contains incompatible version %d DWARF code "
|
|
"(version 2 required)\n", vers);
|
|
}
|
|
|
|
if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
|
|
debug(1, "DWARF emitter: %s\n", prod);
|
|
free(prod);
|
|
}
|
|
|
|
if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
|
|
char *base = xstrdup(basename(dw.dw_cuname));
|
|
free(dw.dw_cuname);
|
|
dw.dw_cuname = base;
|
|
|
|
debug(1, "CU name: %s\n", dw.dw_cuname);
|
|
}
|
|
|
|
die_create(&dw, child);
|
|
|
|
if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
|
|
&addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
|
|
terminate("multiple compilation units not supported\n");
|
|
|
|
(void) dwarf_finish(dw.dw_dw, &dw.dw_err);
|
|
|
|
die_resolve(&dw);
|
|
|
|
cvt_fixups(td, dw.dw_ptrsz);
|
|
|
|
/* leak the dwarf_t */
|
|
|
|
return (0);
|
|
}
|