275928fc14
OpenSolaris. This commit resets files to match the versions in the OpenSolaris tree as of 2008/04/10. The changes in this import from the previous import are the ones that will subsequently re-applied to take files off the vendor branch. This is unfortunately necessary because the Solaris developers won't allow FreeBSD support #ifdefs in their source code because that creates 'dead code' (stuff that they never compile).
1141 lines
31 KiB
C
1141 lines
31 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#pragma ident "%Z%%M% %I% %E% SMI"
|
|
|
|
/*
|
|
* This file contains routines that merge one tdata_t tree, called the child,
|
|
* into another, called the parent. Note that these names are used mainly for
|
|
* convenience and to represent the direction of the merge. They are not meant
|
|
* to imply any relationship between the tdata_t graphs prior to the merge.
|
|
*
|
|
* tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
|
|
* a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply
|
|
* put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
|
|
* clean up loose ends.
|
|
*
|
|
* The algorithm is as follows:
|
|
*
|
|
* 1. Mapping iidesc_t nodes
|
|
*
|
|
* For each child iidesc_t node, we first try to map its tdesc_t subgraph
|
|
* against the tdesc_t graph in the parent. For each node in the child subgraph
|
|
* that exists in the parent, a mapping between the two (between their type IDs)
|
|
* is established. For the child nodes that cannot be mapped onto existing
|
|
* parent nodes, a mapping is established between the child node ID and a
|
|
* newly-allocated ID that the node will use when it is re-created in the
|
|
* parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be
|
|
* Added) hash, which tracks nodes that need to be created in the parent.
|
|
*
|
|
* If all of the nodes in the subgraph for an iidesc_t in the child can be
|
|
* mapped to existing nodes in the parent, then we can try to map the child
|
|
* iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent
|
|
* iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
|
|
* then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This
|
|
* list tracks iidesc_t nodes that are to be created in the parent.
|
|
*
|
|
* While visiting the tdesc_t nodes, we may discover a forward declaration (a
|
|
* FORWARD tdesc_t) in the parent that is resolved in the child. That is, there
|
|
* may be a structure or union definition in the child with the same name as the
|
|
* forward declaration in the parent. If we find such a node, we record an
|
|
* association in the md_fdida (Forward => Definition ID Association) list
|
|
* between the parent ID of the forward declaration and the ID that the
|
|
* definition will use when re-created in the parent.
|
|
*
|
|
* 2. Creating new tdesc_t nodes (the md_tdtba hash)
|
|
*
|
|
* We have now attempted to map all tdesc_t nodes from the child into the
|
|
* parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
|
|
* created (or, as we so wittily call it, conjured) in the parent. We iterate
|
|
* through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t
|
|
* node, conjuring requires two steps - the copying of the common tdesc_t data
|
|
* (name, type, etc) from the child node, and the creation of links from the
|
|
* newly-created node to the parent equivalents of other tdesc_t nodes pointed
|
|
* to by node being conjured. Note that in some cases, the targets of these
|
|
* links will be on the md_tdtba hash themselves, and may not have been created
|
|
* yet. As such, we can't establish the links from these new nodes into the
|
|
* parent graph. We therefore conjure them with links to nodes in the *child*
|
|
* graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
|
|
* To Be Remapped) hash. For example, a POINTER tdesc_t that could not be
|
|
* resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
|
|
*
|
|
* 3. Creating new iidesc_t nodes (the md_iitba list)
|
|
*
|
|
* When we have completed step 2, all tdesc_t nodes have been created (or
|
|
* already existed) in the parent. Some of them may have incorrect links (the
|
|
* members of the md_tdtbr list), but they've all been created. As such, we can
|
|
* create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
|
|
* pointers correctly. We create each node, and attach the pointers to the
|
|
* appropriate parts of the parent tdesc_t graph.
|
|
*
|
|
* 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
|
|
*
|
|
* As in step 3, we rely on the fact that all of the tdesc_t nodes have been
|
|
* created. Each entry in the md_tdtbr list is a pointer to where a link into
|
|
* the parent will be established. As saved in the md_tdtbr list, these
|
|
* pointers point into the child tdesc_t subgraph. We can thus get the target
|
|
* type ID from the child, look at the ID mapping to determine the desired link
|
|
* target, and redirect the link accordingly.
|
|
*
|
|
* 5. Parent => child forward declaration resolution
|
|
*
|
|
* If entries were made in the md_fdida list in step 1, we have forward
|
|
* declarations in the parent that need to be resolved to their definitions
|
|
* re-created in step 2 from the child. Using the md_fdida list, we can locate
|
|
* the definition for the forward declaration, and we can redirect all inbound
|
|
* edges to the forward declaration node to the actual definition.
|
|
*
|
|
* A pox on the house of anyone who changes the algorithm without updating
|
|
* this comment.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <strings.h>
|
|
#include <assert.h>
|
|
#include <pthread.h>
|
|
|
|
#include "ctf_headers.h"
|
|
#include "ctftools.h"
|
|
#include "list.h"
|
|
#include "alist.h"
|
|
#include "memory.h"
|
|
#include "traverse.h"
|
|
|
|
typedef struct equiv_data equiv_data_t;
|
|
typedef struct merge_cb_data merge_cb_data_t;
|
|
|
|
/*
|
|
* There are two traversals in this file, for equivalency and for tdesc_t
|
|
* re-creation, that do not fit into the tdtraverse() framework. We have our
|
|
* own traversal mechanism and ops vector here for those two cases.
|
|
*/
|
|
typedef struct tdesc_ops {
|
|
char *name;
|
|
int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
|
|
tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
|
|
} tdesc_ops_t;
|
|
extern tdesc_ops_t tdesc_ops[];
|
|
|
|
/*
|
|
* The workhorse structure of tdata_t merging. Holds all lists of nodes to be
|
|
* processed during various phases of the merge algorithm.
|
|
*/
|
|
struct merge_cb_data {
|
|
tdata_t *md_parent;
|
|
tdata_t *md_tgt;
|
|
alist_t *md_ta; /* Type Association */
|
|
alist_t *md_fdida; /* Forward -> Definition ID Association */
|
|
list_t **md_iitba; /* iidesc_t nodes To Be Added to the parent */
|
|
hash_t *md_tdtba; /* tdesc_t nodes To Be Added to the parent */
|
|
list_t **md_tdtbr; /* tdesc_t nodes To Be Remapped */
|
|
int md_flags;
|
|
}; /* merge_cb_data_t */
|
|
|
|
/*
|
|
* When we first create a tdata_t from stabs data, we will have duplicate nodes.
|
|
* Normal merges, however, assume that the child tdata_t is already self-unique,
|
|
* and for speed reasons do not attempt to self-uniquify. If this flag is set,
|
|
* the merge algorithm will self-uniquify by avoiding the insertion of
|
|
* duplicates in the md_tdtdba list.
|
|
*/
|
|
#define MCD_F_SELFUNIQUIFY 0x1
|
|
|
|
/*
|
|
* When we merge the CTF data for the modules, we don't want it to contain any
|
|
* data that can be found in the reference module (usually genunix). If this
|
|
* flag is set, we're doing a merge between the fully merged tdata_t for this
|
|
* module and the tdata_t for the reference module, with the data unique to this
|
|
* module ending up in a third tdata_t. It is this third tdata_t that will end
|
|
* up in the .SUNW_ctf section for the module.
|
|
*/
|
|
#define MCD_F_REFMERGE 0x2
|
|
|
|
/*
|
|
* Mapping of child type IDs to parent type IDs
|
|
*/
|
|
|
|
static void
|
|
add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
|
|
{
|
|
debug(3, "Adding mapping %u => %u\n", srcid, tgtid);
|
|
|
|
assert(!alist_find(ta, (void *)srcid, NULL));
|
|
assert(srcid != 0 && tgtid != 0);
|
|
|
|
alist_add(ta, (void *)srcid, (void *)tgtid);
|
|
}
|
|
|
|
static tid_t
|
|
get_mapping(alist_t *ta, int srcid)
|
|
{
|
|
long ltgtid;
|
|
|
|
if (alist_find(ta, (void *)srcid, (void **)<gtid))
|
|
return ((int)ltgtid);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determining equivalence of tdesc_t subgraphs
|
|
*/
|
|
|
|
struct equiv_data {
|
|
alist_t *ed_ta;
|
|
tdesc_t *ed_node;
|
|
tdesc_t *ed_tgt;
|
|
|
|
int ed_clear_mark;
|
|
int ed_cur_mark;
|
|
int ed_selfuniquify;
|
|
}; /* equiv_data_t */
|
|
|
|
static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
|
|
|
|
/*ARGSUSED2*/
|
|
static int
|
|
equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
|
|
{
|
|
intr_t *si = stdp->t_intr;
|
|
intr_t *ti = ttdp->t_intr;
|
|
|
|
if (si->intr_type != ti->intr_type ||
|
|
si->intr_signed != ti->intr_signed ||
|
|
si->intr_offset != ti->intr_offset ||
|
|
si->intr_nbits != ti->intr_nbits)
|
|
return (0);
|
|
|
|
if (si->intr_type == INTR_INT &&
|
|
si->intr_iformat != ti->intr_iformat)
|
|
return (0);
|
|
else if (si->intr_type == INTR_REAL &&
|
|
si->intr_fformat != ti->intr_fformat)
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
|
|
{
|
|
return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
|
|
}
|
|
|
|
static int
|
|
equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
|
|
{
|
|
fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
|
|
int i;
|
|
|
|
if (fn1->fn_nargs != fn2->fn_nargs ||
|
|
fn1->fn_vargs != fn2->fn_vargs)
|
|
return (0);
|
|
|
|
if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
|
|
return (0);
|
|
|
|
for (i = 0; i < fn1->fn_nargs; i++) {
|
|
if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
|
|
{
|
|
ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
|
|
|
|
if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
|
|
!equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
|
|
return (0);
|
|
|
|
if (ar1->ad_nelems != ar2->ad_nelems)
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
|
|
{
|
|
mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
|
|
mlist_t *olm1 = NULL;
|
|
|
|
while (ml1 && ml2) {
|
|
if (ml1->ml_offset != ml2->ml_offset ||
|
|
strcmp(ml1->ml_name, ml2->ml_name) != 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Don't do the recursive equivalency checking more than
|
|
* we have to.
|
|
*/
|
|
if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) {
|
|
if (ml1->ml_size != ml2->ml_size ||
|
|
!equiv_node(ml1->ml_type, ml2->ml_type, ed))
|
|
return (0);
|
|
}
|
|
|
|
olm1 = ml1;
|
|
ml1 = ml1->ml_next;
|
|
ml2 = ml2->ml_next;
|
|
}
|
|
|
|
if (ml1 || ml2)
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*ARGSUSED2*/
|
|
static int
|
|
equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
|
|
{
|
|
elist_t *el1 = stdp->t_emem;
|
|
elist_t *el2 = ttdp->t_emem;
|
|
|
|
while (el1 && el2) {
|
|
if (el1->el_number != el2->el_number ||
|
|
strcmp(el1->el_name, el2->el_name) != 0)
|
|
return (0);
|
|
|
|
el1 = el1->el_next;
|
|
el2 = el2->el_next;
|
|
}
|
|
|
|
if (el1 || el2)
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
equiv_assert(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
|
|
{
|
|
/* foul, evil, and very bad - this is a "shouldn't happen" */
|
|
assert(1 == 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
|
|
{
|
|
tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
|
|
|
|
return (defn->t_type == STRUCT || defn->t_type == UNION);
|
|
}
|
|
|
|
static int
|
|
equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
|
|
{
|
|
int (*equiv)();
|
|
int mapping;
|
|
|
|
if (ctdp->t_emark > ed->ed_clear_mark ||
|
|
mtdp->t_emark > ed->ed_clear_mark)
|
|
return (ctdp->t_emark == mtdp->t_emark);
|
|
|
|
/*
|
|
* In normal (non-self-uniquify) mode, we don't want to do equivalency
|
|
* checking on a subgraph that has already been checked. If a mapping
|
|
* has already been established for a given child node, we can simply
|
|
* compare the mapping for the child node with the ID of the parent
|
|
* node. If we are in self-uniquify mode, then we're comparing two
|
|
* subgraphs within the child graph, and thus need to ignore any
|
|
* type mappings that have been created, as they are only valid into the
|
|
* parent.
|
|
*/
|
|
if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
|
|
mapping == mtdp->t_id && !ed->ed_selfuniquify)
|
|
return (1);
|
|
|
|
if (!streq(ctdp->t_name, mtdp->t_name))
|
|
return (0);
|
|
|
|
if (ctdp->t_type != mtdp->t_type) {
|
|
if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
|
|
return (fwd_equiv(ctdp, mtdp));
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
ctdp->t_emark = ed->ed_cur_mark;
|
|
mtdp->t_emark = ed->ed_cur_mark;
|
|
ed->ed_cur_mark++;
|
|
|
|
if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
|
|
return (equiv(ctdp, mtdp, ed));
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* We perform an equivalency check on two subgraphs by traversing through them
|
|
* in lockstep. If a given node is equivalent in both the parent and the child,
|
|
* we mark it in both subgraphs, using the t_emark field, with a monotonically
|
|
* increasing number. If, in the course of the traversal, we reach a node that
|
|
* we have visited and numbered during this equivalency check, we have a cycle.
|
|
* If the previously-visited nodes don't have the same emark, then the edges
|
|
* that brought us to these nodes are not equivalent, and so the check ends.
|
|
* If the emarks are the same, the edges are equivalent. We then backtrack and
|
|
* continue the traversal. If we have exhausted all edges in the subgraph, and
|
|
* have not found any inequivalent nodes, then the subgraphs are equivalent.
|
|
*/
|
|
static int
|
|
equiv_cb(void *bucket, void *arg)
|
|
{
|
|
equiv_data_t *ed = arg;
|
|
tdesc_t *mtdp = bucket;
|
|
tdesc_t *ctdp = ed->ed_node;
|
|
|
|
ed->ed_clear_mark = ed->ed_cur_mark + 1;
|
|
ed->ed_cur_mark = ed->ed_clear_mark + 1;
|
|
|
|
if (equiv_node(ctdp, mtdp, ed)) {
|
|
debug(3, "equiv_node matched %d %d\n", ctdp->t_id, mtdp->t_id);
|
|
ed->ed_tgt = mtdp;
|
|
/* matched. stop looking */
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*ARGSUSED1*/
|
|
static int
|
|
map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
|
|
{
|
|
merge_cb_data_t *mcd = private;
|
|
|
|
if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*ARGSUSED1*/
|
|
static int
|
|
map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
|
|
{
|
|
merge_cb_data_t *mcd = private;
|
|
equiv_data_t ed;
|
|
|
|
ed.ed_ta = mcd->md_ta;
|
|
ed.ed_clear_mark = mcd->md_parent->td_curemark;
|
|
ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
|
|
ed.ed_node = ctdp;
|
|
ed.ed_selfuniquify = 0;
|
|
|
|
debug(3, "map_td_tree_post on %d %s\n", ctdp->t_id, tdesc_name(ctdp));
|
|
|
|
if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
|
|
equiv_cb, &ed) < 0) {
|
|
/* We found an equivalent node */
|
|
if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
|
|
int id = mcd->md_tgt->td_nextid++;
|
|
|
|
debug(3, "Creating new defn type %d\n", id);
|
|
add_mapping(mcd->md_ta, ctdp->t_id, id);
|
|
alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
|
|
(void *)(ulong_t)id);
|
|
hash_add(mcd->md_tdtba, ctdp);
|
|
} else
|
|
add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
|
|
|
|
} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
|
|
equiv_cb, &ed) < 0) {
|
|
/*
|
|
* We didn't find an equivalent node by looking through the
|
|
* layout hash, but we somehow found it by performing an
|
|
* exhaustive search through the entire graph. This usually
|
|
* means that the "name" hash function is broken.
|
|
*/
|
|
aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
|
|
tdesc_name(ctdp), ed.ed_tgt->t_id);
|
|
} else {
|
|
int id = mcd->md_tgt->td_nextid++;
|
|
|
|
debug(3, "Creating new type %d\n", id);
|
|
add_mapping(mcd->md_ta, ctdp->t_id, id);
|
|
hash_add(mcd->md_tdtba, ctdp);
|
|
}
|
|
|
|
mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*ARGSUSED1*/
|
|
static int
|
|
map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
|
|
{
|
|
merge_cb_data_t *mcd = private;
|
|
equiv_data_t ed;
|
|
|
|
ed.ed_ta = mcd->md_ta;
|
|
ed.ed_clear_mark = mcd->md_parent->td_curemark;
|
|
ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
|
|
ed.ed_node = ctdp;
|
|
ed.ed_selfuniquify = 1;
|
|
ed.ed_tgt = NULL;
|
|
|
|
if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
|
|
debug(3, "Self check found %d in %d\n", ctdp->t_id,
|
|
ed.ed_tgt->t_id);
|
|
add_mapping(mcd->md_ta, ctdp->t_id,
|
|
get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
|
|
} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
|
|
equiv_cb, &ed) < 0) {
|
|
/*
|
|
* We didn't find an equivalent node using the quick way (going
|
|
* through the hash normally), but we did find it by iterating
|
|
* through the entire hash. This usually means that the hash
|
|
* function is broken.
|
|
*/
|
|
aborterr("Self-unique second pass for %d (%s) == %d\n",
|
|
ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id);
|
|
} else {
|
|
int id = mcd->md_tgt->td_nextid++;
|
|
|
|
debug(3, "Creating new type %d\n", id);
|
|
add_mapping(mcd->md_ta, ctdp->t_id, id);
|
|
hash_add(mcd->md_tdtba, ctdp);
|
|
}
|
|
|
|
mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
|
|
|
|
return (1);
|
|
}
|
|
|
|
static tdtrav_cb_f map_pre[] = {
|
|
NULL,
|
|
map_td_tree_pre, /* intrinsic */
|
|
map_td_tree_pre, /* pointer */
|
|
map_td_tree_pre, /* array */
|
|
map_td_tree_pre, /* function */
|
|
map_td_tree_pre, /* struct */
|
|
map_td_tree_pre, /* union */
|
|
map_td_tree_pre, /* enum */
|
|
map_td_tree_pre, /* forward */
|
|
map_td_tree_pre, /* typedef */
|
|
tdtrav_assert, /* typedef_unres */
|
|
map_td_tree_pre, /* volatile */
|
|
map_td_tree_pre, /* const */
|
|
map_td_tree_pre /* restrict */
|
|
};
|
|
|
|
static tdtrav_cb_f map_post[] = {
|
|
NULL,
|
|
map_td_tree_post, /* intrinsic */
|
|
map_td_tree_post, /* pointer */
|
|
map_td_tree_post, /* array */
|
|
map_td_tree_post, /* function */
|
|
map_td_tree_post, /* struct */
|
|
map_td_tree_post, /* union */
|
|
map_td_tree_post, /* enum */
|
|
map_td_tree_post, /* forward */
|
|
map_td_tree_post, /* typedef */
|
|
tdtrav_assert, /* typedef_unres */
|
|
map_td_tree_post, /* volatile */
|
|
map_td_tree_post, /* const */
|
|
map_td_tree_post /* restrict */
|
|
};
|
|
|
|
static tdtrav_cb_f map_self_post[] = {
|
|
NULL,
|
|
map_td_tree_self_post, /* intrinsic */
|
|
map_td_tree_self_post, /* pointer */
|
|
map_td_tree_self_post, /* array */
|
|
map_td_tree_self_post, /* function */
|
|
map_td_tree_self_post, /* struct */
|
|
map_td_tree_self_post, /* union */
|
|
map_td_tree_self_post, /* enum */
|
|
map_td_tree_self_post, /* forward */
|
|
map_td_tree_self_post, /* typedef */
|
|
tdtrav_assert, /* typedef_unres */
|
|
map_td_tree_self_post, /* volatile */
|
|
map_td_tree_self_post, /* const */
|
|
map_td_tree_self_post /* restrict */
|
|
};
|
|
|
|
/*
|
|
* Determining equivalence of iidesc_t nodes
|
|
*/
|
|
|
|
typedef struct iifind_data {
|
|
iidesc_t *iif_template;
|
|
alist_t *iif_ta;
|
|
int iif_newidx;
|
|
int iif_refmerge;
|
|
} iifind_data_t;
|
|
|
|
/*
|
|
* Check to see if this iidesc_t (node) - the current one on the list we're
|
|
* iterating through - matches the target one (iif->iif_template). Return -1
|
|
* if it matches, to stop the iteration.
|
|
*/
|
|
static int
|
|
iidesc_match(void *data, void *arg)
|
|
{
|
|
iidesc_t *node = data;
|
|
iifind_data_t *iif = arg;
|
|
int i;
|
|
|
|
if (node->ii_type != iif->iif_template->ii_type ||
|
|
!streq(node->ii_name, iif->iif_template->ii_name) ||
|
|
node->ii_dtype->t_id != iif->iif_newidx)
|
|
return (0);
|
|
|
|
if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
|
|
!streq(node->ii_owner, iif->iif_template->ii_owner))
|
|
return (0);
|
|
|
|
if (node->ii_nargs != iif->iif_template->ii_nargs)
|
|
return (0);
|
|
|
|
for (i = 0; i < node->ii_nargs; i++) {
|
|
if (get_mapping(iif->iif_ta,
|
|
iif->iif_template->ii_args[i]->t_id) !=
|
|
node->ii_args[i]->t_id)
|
|
return (0);
|
|
}
|
|
|
|
if (iif->iif_refmerge) {
|
|
switch (iif->iif_template->ii_type) {
|
|
case II_GFUN:
|
|
case II_SFUN:
|
|
case II_GVAR:
|
|
case II_SVAR:
|
|
debug(3, "suppressing duping of %d %s from %s\n",
|
|
iif->iif_template->ii_type,
|
|
iif->iif_template->ii_name,
|
|
(iif->iif_template->ii_owner ?
|
|
iif->iif_template->ii_owner : "NULL"));
|
|
return (0);
|
|
case II_NOT:
|
|
case II_PSYM:
|
|
case II_SOU:
|
|
case II_TYPE:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (-1);
|
|
}
|
|
|
|
static int
|
|
merge_type_cb(void *data, void *arg)
|
|
{
|
|
iidesc_t *sii = data;
|
|
merge_cb_data_t *mcd = arg;
|
|
iifind_data_t iif;
|
|
tdtrav_cb_f *post;
|
|
|
|
post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
|
|
|
|
/* Map the tdesc nodes */
|
|
(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
|
|
mcd);
|
|
|
|
/* Map the iidesc nodes */
|
|
iif.iif_template = sii;
|
|
iif.iif_ta = mcd->md_ta;
|
|
iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
|
|
iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
|
|
|
|
if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
|
|
&iif) == 1)
|
|
/* successfully mapped */
|
|
return (1);
|
|
|
|
debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
|
|
sii->ii_type);
|
|
|
|
list_add(mcd->md_iitba, sii);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
|
|
merge_cb_data_t *mcd)
|
|
{
|
|
tdesc_t *tgt = NULL;
|
|
tdesc_t template;
|
|
int oldid = oldtgt->t_id;
|
|
|
|
if (oldid == selftid) {
|
|
*tgtp = newself;
|
|
return (1);
|
|
}
|
|
|
|
if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
|
|
aborterr("failed to get mapping for tid %d\n", oldid);
|
|
|
|
if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
|
|
(void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
|
|
!hash_find(mcd->md_tgt->td_idhash, (void *)&template,
|
|
(void *)&tgt))) {
|
|
debug(3, "Remap couldn't find %d (from %d)\n", template.t_id,
|
|
oldid);
|
|
*tgtp = oldtgt;
|
|
list_add(mcd->md_tdtbr, tgtp);
|
|
return (0);
|
|
}
|
|
|
|
*tgtp = tgt;
|
|
return (1);
|
|
}
|
|
|
|
static tdesc_t *
|
|
conjure_template(tdesc_t *old, int newselfid)
|
|
{
|
|
tdesc_t *new = xcalloc(sizeof (tdesc_t));
|
|
|
|
new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
|
|
new->t_type = old->t_type;
|
|
new->t_size = old->t_size;
|
|
new->t_id = newselfid;
|
|
new->t_flags = old->t_flags;
|
|
|
|
return (new);
|
|
}
|
|
|
|
/*ARGSUSED2*/
|
|
static tdesc_t *
|
|
conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
|
|
{
|
|
tdesc_t *new = conjure_template(old, newselfid);
|
|
|
|
new->t_intr = xmalloc(sizeof (intr_t));
|
|
bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
|
|
|
|
return (new);
|
|
}
|
|
|
|
static tdesc_t *
|
|
conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
|
|
{
|
|
tdesc_t *new = conjure_template(old, newselfid);
|
|
|
|
(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
|
|
|
|
return (new);
|
|
}
|
|
|
|
static tdesc_t *
|
|
conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
|
|
{
|
|
tdesc_t *new = conjure_template(old, newselfid);
|
|
fndef_t *nfn = xmalloc(sizeof (fndef_t));
|
|
fndef_t *ofn = old->t_fndef;
|
|
int i;
|
|
|
|
(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
|
|
|
|
nfn->fn_nargs = ofn->fn_nargs;
|
|
nfn->fn_vargs = ofn->fn_vargs;
|
|
|
|
if (nfn->fn_nargs > 0)
|
|
nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
|
|
|
|
for (i = 0; i < ofn->fn_nargs; i++) {
|
|
(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
|
|
new, mcd);
|
|
}
|
|
|
|
new->t_fndef = nfn;
|
|
|
|
return (new);
|
|
}
|
|
|
|
static tdesc_t *
|
|
conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
|
|
{
|
|
tdesc_t *new = conjure_template(old, newselfid);
|
|
ardef_t *nar = xmalloc(sizeof (ardef_t));
|
|
ardef_t *oar = old->t_ardef;
|
|
|
|
(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
|
|
mcd);
|
|
(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
|
|
mcd);
|
|
|
|
nar->ad_nelems = oar->ad_nelems;
|
|
|
|
new->t_ardef = nar;
|
|
|
|
return (new);
|
|
}
|
|
|
|
static tdesc_t *
|
|
conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
|
|
{
|
|
tdesc_t *new = conjure_template(old, newselfid);
|
|
mlist_t *omem, **nmemp;
|
|
|
|
for (omem = old->t_members, nmemp = &new->t_members;
|
|
omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
|
|
*nmemp = xmalloc(sizeof (mlist_t));
|
|
(*nmemp)->ml_offset = omem->ml_offset;
|
|
(*nmemp)->ml_size = omem->ml_size;
|
|
(*nmemp)->ml_name = xstrdup(omem->ml_name);
|
|
(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
|
|
old->t_id, new, mcd);
|
|
}
|
|
*nmemp = NULL;
|
|
|
|
return (new);
|
|
}
|
|
|
|
/*ARGSUSED2*/
|
|
static tdesc_t *
|
|
conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
|
|
{
|
|
tdesc_t *new = conjure_template(old, newselfid);
|
|
elist_t *oel, **nelp;
|
|
|
|
for (oel = old->t_emem, nelp = &new->t_emem;
|
|
oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
|
|
*nelp = xmalloc(sizeof (elist_t));
|
|
(*nelp)->el_name = xstrdup(oel->el_name);
|
|
(*nelp)->el_number = oel->el_number;
|
|
}
|
|
*nelp = NULL;
|
|
|
|
return (new);
|
|
}
|
|
|
|
/*ARGSUSED2*/
|
|
static tdesc_t *
|
|
conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
|
|
{
|
|
tdesc_t *new = conjure_template(old, newselfid);
|
|
|
|
list_add(&mcd->md_tgt->td_fwdlist, new);
|
|
|
|
return (new);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static tdesc_t *
|
|
conjure_assert(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
|
|
{
|
|
assert(1 == 0);
|
|
return (NULL);
|
|
}
|
|
|
|
static iidesc_t *
|
|
conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
|
|
{
|
|
iidesc_t *new = iidesc_dup(old);
|
|
int i;
|
|
|
|
(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
|
|
for (i = 0; i < new->ii_nargs; i++) {
|
|
(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
|
|
mcd);
|
|
}
|
|
|
|
return (new);
|
|
}
|
|
|
|
static int
|
|
fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
|
|
{
|
|
alist_t *map = private;
|
|
tdesc_t *defn;
|
|
|
|
if (!alist_find(map, (void *)fwd, (void **)&defn))
|
|
return (0);
|
|
|
|
debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
|
|
|
|
*fwdp = defn;
|
|
|
|
return (1);
|
|
}
|
|
|
|
static tdtrav_cb_f fwd_redir_cbs[] = {
|
|
NULL,
|
|
NULL, /* intrinsic */
|
|
NULL, /* pointer */
|
|
NULL, /* array */
|
|
NULL, /* function */
|
|
NULL, /* struct */
|
|
NULL, /* union */
|
|
NULL, /* enum */
|
|
fwd_redir, /* forward */
|
|
NULL, /* typedef */
|
|
tdtrav_assert, /* typedef_unres */
|
|
NULL, /* volatile */
|
|
NULL, /* const */
|
|
NULL /* restrict */
|
|
};
|
|
|
|
typedef struct redir_mstr_data {
|
|
tdata_t *rmd_tgt;
|
|
alist_t *rmd_map;
|
|
} redir_mstr_data_t;
|
|
|
|
static int
|
|
redir_mstr_fwd_cb(void *name, void *value, void *arg)
|
|
{
|
|
tdesc_t *fwd = name;
|
|
int defnid = (int)value;
|
|
redir_mstr_data_t *rmd = arg;
|
|
tdesc_t template;
|
|
tdesc_t *defn;
|
|
|
|
template.t_id = defnid;
|
|
|
|
if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
|
|
(void *)&defn)) {
|
|
aborterr("Couldn't unforward %d (%s)\n", defnid,
|
|
tdesc_name(defn));
|
|
}
|
|
|
|
debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
|
|
|
|
alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
redir_mstr_fwds(merge_cb_data_t *mcd)
|
|
{
|
|
redir_mstr_data_t rmd;
|
|
alist_t *map = alist_new(NULL, NULL);
|
|
|
|
rmd.rmd_tgt = mcd->md_tgt;
|
|
rmd.rmd_map = map;
|
|
|
|
if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
|
|
(void) iitraverse_hash(mcd->md_tgt->td_iihash,
|
|
&mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
|
|
}
|
|
|
|
alist_free(map);
|
|
}
|
|
|
|
static int
|
|
add_iitba_cb(void *data, void *private)
|
|
{
|
|
merge_cb_data_t *mcd = private;
|
|
iidesc_t *tba = data;
|
|
iidesc_t *new;
|
|
iifind_data_t iif;
|
|
int newidx;
|
|
|
|
newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
|
|
assert(newidx != -1);
|
|
|
|
(void) list_remove(mcd->md_iitba, data, NULL, NULL);
|
|
|
|
iif.iif_template = tba;
|
|
iif.iif_ta = mcd->md_ta;
|
|
iif.iif_newidx = newidx;
|
|
iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
|
|
|
|
if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
|
|
&iif) == 1) {
|
|
debug(3, "iidesc_t %s already exists\n",
|
|
(tba->ii_name ? tba->ii_name : "(anon)"));
|
|
return (1);
|
|
}
|
|
|
|
new = conjure_iidesc(tba, mcd);
|
|
hash_add(mcd->md_tgt->td_iihash, new);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
|
|
{
|
|
tdesc_t *newtdp;
|
|
tdesc_t template;
|
|
|
|
template.t_id = newid;
|
|
assert(hash_find(mcd->md_parent->td_idhash,
|
|
(void *)&template, NULL) == 0);
|
|
|
|
debug(3, "trying to conjure %d %s (%d) as %d\n",
|
|
oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id, newid);
|
|
|
|
if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
|
|
mcd)) == NULL)
|
|
/* couldn't map everything */
|
|
return (0);
|
|
|
|
debug(3, "succeeded\n");
|
|
|
|
hash_add(mcd->md_tgt->td_idhash, newtdp);
|
|
hash_add(mcd->md_tgt->td_layouthash, newtdp);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
add_tdtba_cb(void *data, void *arg)
|
|
{
|
|
tdesc_t *tdp = data;
|
|
merge_cb_data_t *mcd = arg;
|
|
int newid;
|
|
int rc;
|
|
|
|
newid = get_mapping(mcd->md_ta, tdp->t_id);
|
|
assert(newid != -1);
|
|
|
|
if ((rc = add_tdesc(tdp, newid, mcd)))
|
|
hash_remove(mcd->md_tdtba, (void *)tdp);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static int
|
|
add_tdtbr_cb(void *data, void *arg)
|
|
{
|
|
tdesc_t **tdpp = data;
|
|
merge_cb_data_t *mcd = arg;
|
|
|
|
debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
|
|
|
|
if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
|
|
return (0);
|
|
|
|
(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
merge_types(hash_t *src, merge_cb_data_t *mcd)
|
|
{
|
|
list_t *iitba = NULL;
|
|
list_t *tdtbr = NULL;
|
|
int iirc, tdrc;
|
|
|
|
mcd->md_iitba = &iitba;
|
|
mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
|
|
tdesc_layoutcmp);
|
|
mcd->md_tdtbr = &tdtbr;
|
|
|
|
(void) hash_iter(src, merge_type_cb, mcd);
|
|
|
|
tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, (void *)mcd);
|
|
debug(3, "add_tdtba_cb added %d items\n", tdrc);
|
|
|
|
iirc = list_iter(*mcd->md_iitba, add_iitba_cb, (void *)mcd);
|
|
debug(3, "add_iitba_cb added %d items\n", iirc);
|
|
|
|
assert(list_count(*mcd->md_iitba) == 0 &&
|
|
hash_count(mcd->md_tdtba) == 0);
|
|
|
|
tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, (void *)mcd);
|
|
debug(3, "add_tdtbr_cb added %d items\n", tdrc);
|
|
|
|
if (list_count(*mcd->md_tdtbr) != 0)
|
|
aborterr("Couldn't remap all nodes\n");
|
|
|
|
/*
|
|
* We now have an alist of master forwards and the ids of the new master
|
|
* definitions for those forwards in mcd->md_fdida. By this point,
|
|
* we're guaranteed that all of the master definitions referenced in
|
|
* fdida have been added to the master tree. We now traverse through
|
|
* the master tree, redirecting all edges inbound to forwards that have
|
|
* definitions to those definitions.
|
|
*/
|
|
if (mcd->md_parent == mcd->md_tgt) {
|
|
redir_mstr_fwds(mcd);
|
|
}
|
|
}
|
|
|
|
void
|
|
merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
|
|
{
|
|
merge_cb_data_t mcd;
|
|
|
|
cur->td_ref++;
|
|
mstr->td_ref++;
|
|
if (tgt)
|
|
tgt->td_ref++;
|
|
|
|
assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
|
|
(tgt == NULL || tgt->td_ref == 1));
|
|
|
|
mcd.md_parent = mstr;
|
|
mcd.md_tgt = (tgt ? tgt : mstr);
|
|
mcd.md_ta = alist_new(NULL, NULL);
|
|
mcd.md_fdida = alist_new(NULL, NULL);
|
|
mcd.md_flags = 0;
|
|
|
|
if (selfuniquify)
|
|
mcd.md_flags |= MCD_F_SELFUNIQUIFY;
|
|
if (tgt)
|
|
mcd.md_flags |= MCD_F_REFMERGE;
|
|
|
|
mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
|
|
mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
|
|
|
|
merge_types(cur->td_iihash, &mcd);
|
|
|
|
if (debug_level >= 3) {
|
|
debug(3, "Type association stats\n");
|
|
alist_stats(mcd.md_ta, 0);
|
|
debug(3, "Layout hash stats\n");
|
|
hash_stats(mcd.md_tgt->td_layouthash, 1);
|
|
}
|
|
|
|
alist_free(mcd.md_fdida);
|
|
alist_free(mcd.md_ta);
|
|
|
|
cur->td_ref--;
|
|
mstr->td_ref--;
|
|
if (tgt)
|
|
tgt->td_ref--;
|
|
}
|
|
|
|
tdesc_ops_t tdesc_ops[] = {
|
|
{ "ERROR! BAD tdesc TYPE", NULL, NULL },
|
|
{ "intrinsic", equiv_intrinsic, conjure_intrinsic },
|
|
{ "pointer", equiv_plain, conjure_plain },
|
|
{ "array", equiv_array, conjure_array },
|
|
{ "function", equiv_function, conjure_function },
|
|
{ "struct", equiv_su, conjure_su },
|
|
{ "union", equiv_su, conjure_su },
|
|
{ "enum", equiv_enum, conjure_enum },
|
|
{ "forward", NULL, conjure_forward },
|
|
{ "typedef", equiv_plain, conjure_plain },
|
|
{ "typedef_unres", equiv_assert, conjure_assert },
|
|
{ "volatile", equiv_plain, conjure_plain },
|
|
{ "const", equiv_plain, conjure_plain },
|
|
{ "restrict", equiv_plain, conjure_plain }
|
|
};
|