Robert Watson 763bbd2f4f Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception.  For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system.  With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance.  This
also corrects sematics for shared vnode locks, which were not
previously present in the system.  This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form.  With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception.  We'll introduce a work around for this shortly.

Approved by:	re
Obtained from:	TrustedBSD Project
Sponsored by:	DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
2002-10-26 00:18:06 +00:00
2002-10-26 13:55:35 +00:00
2002-10-26 12:36:38 +00:00
2002-10-25 22:40:37 +00:00
2002-10-25 22:02:10 +00:00
2002-07-21 16:45:30 +00:00

This is the top level of the FreeBSD source directory.  This file
was last revised on:
$FreeBSD$

For copyright information, please see the file COPYRIGHT in this
directory (additional copyright information also exists for some
sources in this tree - please see the specific source directories for
more information).

The Makefile in this directory supports a number of targets for
building components (or all) of the FreeBSD source tree, the most
commonly used one being ``world'', which rebuilds and installs
everything in the FreeBSD system from the source tree except the
kernel, the kernel-modules and the contents of /etc.  The
``buildkernel'' and ``installkernel'' targets build and install
the kernel and the modules (see below).  Please see the top of
the Makefile in this directory for more information on the
standard build targets and compile-time flags.

Building a kernel is a somewhat more involved process, documentation
for which can be found at:
   http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html
And in the config(8) man page.
Note: If you want to build and install the kernel with the
``buildkernel'' and ``installkernel'' targets, you might need to build
world before.  More information is available in the handbook.

The sample kernel configuration files reside in the sys/<arch>/conf
sub-directory (assuming that you've installed the kernel sources), the
file named GENERIC being the one used to build your initial installation
kernel.  The file NOTES contains entries and documentation for all possible
devices, not just those commonly used.  It is the successor of the ancient
LINT file, but in contrast to LINT, it is not buildable as a kernel but a
pure reference and documentation file.


Source Roadmap:
---------------
bin		System/user commands.

contrib		Packages contributed by 3rd parties.

crypto		Cryptography stuff (see crypto/README).

etc		Template files for /etc.

games		Amusements.

gnu		Various commands and libraries under the GNU Public License.
		Please see gnu/COPYING* for more information.

include		System include files.

kerberos5	Kerberos5 (Heimdal) package.

kerberosIV	KerberosIV (eBones) package.

lib		System libraries.

libexec		System daemons.

release		Release building Makefile & associated tools.

sbin		System commands.

secure		Cryptographic libraries and commands.

share		Shared resources.

sys		Kernel sources.

tools		Utilities for regression testing and miscellaneous tasks.

usr.bin		User commands.

usr.sbin	System administration commands.


For information on synchronizing your source tree with one or more of
the FreeBSD Project's development branches, please see:

  http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html
Description
freebsd with flexible iflib nic queues
Readme 2.6 GiB
Languages
C 60.1%
C++ 26.1%
Roff 4.9%
Shell 3%
Assembly 1.7%
Other 3.7%