0295184c7e
do its work for SIGINFO. Always install libpthread signal handler wrapper for SIGINFO even if user SIG_IGN's or SIG_DFL's it. SIGINFO has a special meaning for libpthread: when LIBPTHREAD_DEBUG enviroment variable defined it is used for dumping an information about threads to /tmp/. Reported by: mi Reviewed by: deischen MFC after: 2 weeks
1254 lines
36 KiB
C
1254 lines
36 KiB
C
/*
|
|
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by John Birrell.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/signalvar.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <pthread.h>
|
|
#include "thr_private.h"
|
|
|
|
/* Prototypes: */
|
|
static inline void build_siginfo(siginfo_t *info, int signo);
|
|
#ifndef SYSTEM_SCOPE_ONLY
|
|
static struct pthread *thr_sig_find(struct kse *curkse, int sig,
|
|
siginfo_t *info);
|
|
#endif
|
|
static inline void thr_sigframe_restore(struct pthread *thread,
|
|
struct pthread_sigframe *psf);
|
|
static inline void thr_sigframe_save(struct pthread *thread,
|
|
struct pthread_sigframe *psf);
|
|
|
|
#define SA_KILL 0x01 /* terminates process by default */
|
|
#define SA_STOP 0x02
|
|
#define SA_CONT 0x04
|
|
|
|
static int sigproptbl[NSIG] = {
|
|
SA_KILL, /* SIGHUP */
|
|
SA_KILL, /* SIGINT */
|
|
SA_KILL, /* SIGQUIT */
|
|
SA_KILL, /* SIGILL */
|
|
SA_KILL, /* SIGTRAP */
|
|
SA_KILL, /* SIGABRT */
|
|
SA_KILL, /* SIGEMT */
|
|
SA_KILL, /* SIGFPE */
|
|
SA_KILL, /* SIGKILL */
|
|
SA_KILL, /* SIGBUS */
|
|
SA_KILL, /* SIGSEGV */
|
|
SA_KILL, /* SIGSYS */
|
|
SA_KILL, /* SIGPIPE */
|
|
SA_KILL, /* SIGALRM */
|
|
SA_KILL, /* SIGTERM */
|
|
0, /* SIGURG */
|
|
SA_STOP, /* SIGSTOP */
|
|
SA_STOP, /* SIGTSTP */
|
|
SA_CONT, /* SIGCONT */
|
|
0, /* SIGCHLD */
|
|
SA_STOP, /* SIGTTIN */
|
|
SA_STOP, /* SIGTTOU */
|
|
0, /* SIGIO */
|
|
SA_KILL, /* SIGXCPU */
|
|
SA_KILL, /* SIGXFSZ */
|
|
SA_KILL, /* SIGVTALRM */
|
|
SA_KILL, /* SIGPROF */
|
|
0, /* SIGWINCH */
|
|
0, /* SIGINFO */
|
|
SA_KILL, /* SIGUSR1 */
|
|
SA_KILL /* SIGUSR2 */
|
|
};
|
|
|
|
/* #define DEBUG_SIGNAL */
|
|
#ifdef DEBUG_SIGNAL
|
|
#define DBG_MSG stdout_debug
|
|
#else
|
|
#define DBG_MSG(x...)
|
|
#endif
|
|
|
|
/*
|
|
* Signal setup and delivery.
|
|
*
|
|
* 1) Delivering signals to threads in the same KSE.
|
|
* These signals are sent by upcall events and are set in the
|
|
* km_sigscaught field of the KSE mailbox. Since these signals
|
|
* are received while operating on the KSE stack, they can be
|
|
* delivered either by using signalcontext() to add a stack frame
|
|
* to the target thread's stack, or by adding them in the thread's
|
|
* pending set and having the thread run them down after it
|
|
* 2) Delivering signals to threads in other KSEs/KSEGs.
|
|
* 3) Delivering signals to threads in critical regions.
|
|
* 4) Delivering signals to threads after they change their signal masks.
|
|
*
|
|
* Methods of delivering signals.
|
|
*
|
|
* 1) Add a signal frame to the thread's saved context.
|
|
* 2) Add the signal to the thread structure, mark the thread as
|
|
* having signals to handle, and let the thread run them down
|
|
* after it resumes from the KSE scheduler.
|
|
*
|
|
* Problem with 1). You can't do this to a running thread or a
|
|
* thread in a critical region.
|
|
*
|
|
* Problem with 2). You can't do this to a thread that doesn't
|
|
* yield in some way (explicitly enters the scheduler). A thread
|
|
* blocked in the kernel or a CPU hungry thread will not see the
|
|
* signal without entering the scheduler.
|
|
*
|
|
* The solution is to use both 1) and 2) to deliver signals:
|
|
*
|
|
* o Thread in critical region - use 2). When the thread
|
|
* leaves the critical region it will check to see if it
|
|
* has pending signals and run them down.
|
|
*
|
|
* o Thread enters scheduler explicitly - use 2). The thread
|
|
* can check for pending signals after it returns from the
|
|
* the scheduler.
|
|
*
|
|
* o Thread is running and not current thread - use 2). When the
|
|
* thread hits a condition specified by one of the other bullets,
|
|
* the signal will be delivered.
|
|
*
|
|
* o Thread is running and is current thread (e.g., the thread
|
|
* has just changed its signal mask and now sees that it has
|
|
* pending signals) - just run down the pending signals.
|
|
*
|
|
* o Thread is swapped out due to quantum expiration - use 1)
|
|
*
|
|
* o Thread is blocked in kernel - kse_thr_wakeup() and then
|
|
* use 1)
|
|
*/
|
|
|
|
/*
|
|
* Rules for selecting threads for signals received:
|
|
*
|
|
* 1) If the signal is a sychronous signal, it is delivered to
|
|
* the generating (current thread). If the thread has the
|
|
* signal masked, it is added to the threads pending signal
|
|
* set until the thread unmasks it.
|
|
*
|
|
* 2) A thread in sigwait() where the signal is in the thread's
|
|
* waitset.
|
|
*
|
|
* 3) A thread in sigsuspend() where the signal is not in the
|
|
* thread's suspended signal mask.
|
|
*
|
|
* 4) Any thread (first found/easiest to deliver) that has the
|
|
* signal unmasked.
|
|
*/
|
|
|
|
#ifndef SYSTEM_SCOPE_ONLY
|
|
|
|
static void *
|
|
sig_daemon(void *arg /* Unused */)
|
|
{
|
|
int i;
|
|
kse_critical_t crit;
|
|
struct timespec ts;
|
|
sigset_t set;
|
|
struct kse *curkse;
|
|
struct pthread *curthread = _get_curthread();
|
|
|
|
DBG_MSG("signal daemon started(%p)\n", curthread);
|
|
|
|
curthread->name = strdup("signal thread");
|
|
crit = _kse_critical_enter();
|
|
curkse = _get_curkse();
|
|
|
|
/*
|
|
* Daemon thread is a bound thread and we must be created with
|
|
* all signals masked
|
|
*/
|
|
#if 0
|
|
SIGFILLSET(set);
|
|
__sys_sigprocmask(SIG_SETMASK, &set, NULL);
|
|
#endif
|
|
__sys_sigpending(&set);
|
|
ts.tv_sec = 0;
|
|
ts.tv_nsec = 0;
|
|
while (1) {
|
|
KSE_LOCK_ACQUIRE(curkse, &_thread_signal_lock);
|
|
_thr_proc_sigpending = set;
|
|
KSE_LOCK_RELEASE(curkse, &_thread_signal_lock);
|
|
for (i = 1; i <= _SIG_MAXSIG; i++) {
|
|
if (SIGISMEMBER(set, i) != 0)
|
|
_thr_sig_dispatch(curkse, i,
|
|
NULL /* no siginfo */);
|
|
}
|
|
ts.tv_sec = 30;
|
|
ts.tv_nsec = 0;
|
|
curkse->k_kcb->kcb_kmbx.km_flags =
|
|
KMF_NOUPCALL | KMF_NOCOMPLETED | KMF_WAITSIGEVENT;
|
|
kse_release(&ts);
|
|
curkse->k_kcb->kcb_kmbx.km_flags = 0;
|
|
set = curkse->k_kcb->kcb_kmbx.km_sigscaught;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
/* Utility function to create signal daemon thread */
|
|
int
|
|
_thr_start_sig_daemon(void)
|
|
{
|
|
pthread_attr_t attr;
|
|
sigset_t sigset, oldset;
|
|
|
|
SIGFILLSET(sigset);
|
|
pthread_sigmask(SIG_SETMASK, &sigset, &oldset);
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
|
|
attr->flags |= THR_SIGNAL_THREAD;
|
|
/* sigmask will be inherited */
|
|
if (pthread_create(&_thr_sig_daemon, &attr, sig_daemon, NULL))
|
|
PANIC("can not create signal daemon thread!\n");
|
|
pthread_attr_destroy(&attr);
|
|
pthread_sigmask(SIG_SETMASK, &oldset, NULL);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This signal handler only delivers asynchronous signals.
|
|
* This must be called with upcalls disabled and without
|
|
* holding any locks.
|
|
*/
|
|
void
|
|
_thr_sig_dispatch(struct kse *curkse, int sig, siginfo_t *info)
|
|
{
|
|
struct kse_mailbox *kmbx;
|
|
struct pthread *thread;
|
|
|
|
DBG_MSG(">>> _thr_sig_dispatch(%d)\n", sig);
|
|
|
|
/* Check if the signal requires a dump of thread information: */
|
|
if (_thr_dump_enabled() && (sig == SIGINFO)) {
|
|
/* Dump thread information to file: */
|
|
_thread_dump_info();
|
|
}
|
|
|
|
while ((thread = thr_sig_find(curkse, sig, info)) != NULL) {
|
|
/*
|
|
* Setup the target thread to receive the signal:
|
|
*/
|
|
DBG_MSG("Got signal %d, selecting thread %p\n", sig, thread);
|
|
KSE_SCHED_LOCK(curkse, thread->kseg);
|
|
if ((thread->state == PS_DEAD) ||
|
|
(thread->state == PS_DEADLOCK) ||
|
|
THR_IS_EXITING(thread) || THR_IS_SUSPENDED(thread)) {
|
|
KSE_SCHED_UNLOCK(curkse, thread->kseg);
|
|
_thr_ref_delete(NULL, thread);
|
|
} else if (SIGISMEMBER(thread->sigmask, sig)) {
|
|
KSE_SCHED_UNLOCK(curkse, thread->kseg);
|
|
_thr_ref_delete(NULL, thread);
|
|
} else {
|
|
kmbx = _thr_sig_add(thread, sig, info);
|
|
KSE_SCHED_UNLOCK(curkse, thread->kseg);
|
|
_thr_ref_delete(NULL, thread);
|
|
if (kmbx != NULL)
|
|
kse_wakeup(kmbx);
|
|
break;
|
|
}
|
|
}
|
|
DBG_MSG("<<< _thr_sig_dispatch\n");
|
|
}
|
|
|
|
#endif /* ! SYSTEM_SCOPE_ONLY */
|
|
|
|
static __inline int
|
|
sigprop(int sig)
|
|
{
|
|
|
|
if (sig > 0 && sig < NSIG)
|
|
return (sigproptbl[_SIG_IDX(sig)]);
|
|
return (0);
|
|
}
|
|
|
|
typedef void (*ohandler)(int sig, int code,
|
|
struct sigcontext *scp, char *addr, __sighandler_t *catcher);
|
|
|
|
void
|
|
_thr_sig_handler(int sig, siginfo_t *info, ucontext_t *ucp)
|
|
{
|
|
struct pthread_sigframe psf;
|
|
__siginfohandler_t *sigfunc;
|
|
struct pthread *curthread;
|
|
struct kse *curkse;
|
|
struct sigaction act;
|
|
int sa_flags, err_save;
|
|
|
|
err_save = errno;
|
|
|
|
DBG_MSG(">>> _thr_sig_handler(%d)\n", sig);
|
|
|
|
curthread = _get_curthread();
|
|
if (curthread == NULL)
|
|
PANIC("No current thread.\n");
|
|
if (!(curthread->attr.flags & PTHREAD_SCOPE_SYSTEM))
|
|
PANIC("Thread is not system scope.\n");
|
|
if (curthread->flags & THR_FLAGS_EXITING) {
|
|
errno = err_save;
|
|
return;
|
|
}
|
|
|
|
curkse = _get_curkse();
|
|
/*
|
|
* If thread is in critical region or if thread is on
|
|
* the way of state transition, then latch signal into buffer.
|
|
*/
|
|
if (_kse_in_critical() || THR_IN_CRITICAL(curthread) ||
|
|
curthread->state != PS_RUNNING) {
|
|
DBG_MSG(">>> _thr_sig_handler(%d) in critical\n", sig);
|
|
curthread->siginfo[sig-1] = *info;
|
|
curthread->check_pending = 1;
|
|
curkse->k_sigseqno++;
|
|
SIGADDSET(curthread->sigpend, sig);
|
|
/*
|
|
* If the kse is on the way to idle itself, but
|
|
* we have signal ready, we should prevent it
|
|
* to sleep, kernel will latch the wakeup request,
|
|
* so kse_release will return from kernel immediately.
|
|
*/
|
|
if (KSE_IS_IDLE(curkse))
|
|
kse_wakeup(&curkse->k_kcb->kcb_kmbx);
|
|
errno = err_save;
|
|
return;
|
|
}
|
|
|
|
/* Check if the signal requires a dump of thread information: */
|
|
if (_thr_dump_enabled() && (sig == SIGINFO)) {
|
|
/* Dump thread information to file: */
|
|
_thread_dump_info();
|
|
}
|
|
|
|
/* Check the threads previous state: */
|
|
curthread->critical_count++;
|
|
if (curthread->sigbackout != NULL)
|
|
curthread->sigbackout((void *)curthread);
|
|
curthread->critical_count--;
|
|
thr_sigframe_save(curthread, &psf);
|
|
THR_ASSERT(!(curthread->sigbackout), "sigbackout was not cleared.");
|
|
|
|
_kse_critical_enter();
|
|
/* Get a fresh copy of signal mask */
|
|
__sys_sigprocmask(SIG_BLOCK, NULL, &curthread->sigmask);
|
|
KSE_LOCK_ACQUIRE(curkse, &_thread_signal_lock);
|
|
sigfunc = _thread_sigact[sig - 1].sa_sigaction;
|
|
sa_flags = _thread_sigact[sig - 1].sa_flags;
|
|
if (sa_flags & SA_RESETHAND) {
|
|
act.sa_handler = SIG_DFL;
|
|
act.sa_flags = SA_RESTART;
|
|
SIGEMPTYSET(act.sa_mask);
|
|
__sys_sigaction(sig, &act, NULL);
|
|
__sys_sigaction(sig, NULL, &_thread_sigact[sig - 1]);
|
|
}
|
|
KSE_LOCK_RELEASE(curkse, &_thread_signal_lock);
|
|
_kse_critical_leave(&curthread->tcb->tcb_tmbx);
|
|
|
|
/* Now invoke real handler */
|
|
if (((__sighandler_t *)sigfunc != SIG_DFL) &&
|
|
((__sighandler_t *)sigfunc != SIG_IGN) &&
|
|
(sigfunc != (__siginfohandler_t *)_thr_sig_handler)) {
|
|
if ((sa_flags & SA_SIGINFO) != 0 || info == NULL)
|
|
(*(sigfunc))(sig, info, ucp);
|
|
else {
|
|
((ohandler)(*sigfunc))(
|
|
sig, info->si_code, (struct sigcontext *)ucp,
|
|
info->si_addr, (__sighandler_t *)sigfunc);
|
|
}
|
|
} else {
|
|
if ((__sighandler_t *)sigfunc == SIG_DFL) {
|
|
if (sigprop(sig) & SA_KILL) {
|
|
if (_kse_isthreaded())
|
|
kse_thr_interrupt(NULL,
|
|
KSE_INTR_SIGEXIT, sig);
|
|
else
|
|
kill(getpid(), sig);
|
|
}
|
|
#ifdef NOTYET
|
|
else if (sigprop(sig) & SA_STOP)
|
|
kse_thr_interrupt(NULL, KSE_INTR_JOBSTOP, sig);
|
|
#endif
|
|
}
|
|
}
|
|
_kse_critical_enter();
|
|
curthread->sigmask = ucp->uc_sigmask;
|
|
SIG_CANTMASK(curthread->sigmask);
|
|
_kse_critical_leave(&curthread->tcb->tcb_tmbx);
|
|
|
|
thr_sigframe_restore(curthread, &psf);
|
|
|
|
DBG_MSG("<<< _thr_sig_handler(%d)\n", sig);
|
|
|
|
errno = err_save;
|
|
}
|
|
|
|
struct sighandle_info {
|
|
__siginfohandler_t *sigfunc;
|
|
int sa_flags;
|
|
int sig;
|
|
siginfo_t *info;
|
|
ucontext_t *ucp;
|
|
};
|
|
|
|
static void handle_signal(struct pthread *curthread,
|
|
struct sighandle_info *shi);
|
|
static void handle_signal_altstack(struct pthread *curthread,
|
|
struct sighandle_info *shi);
|
|
|
|
/* Must be called with signal lock and schedule lock held in order */
|
|
static void
|
|
thr_sig_invoke_handler(struct pthread *curthread, int sig, siginfo_t *info,
|
|
ucontext_t *ucp)
|
|
{
|
|
__siginfohandler_t *sigfunc;
|
|
sigset_t sigmask;
|
|
int sa_flags;
|
|
int onstack;
|
|
struct sigaction act;
|
|
struct kse *curkse;
|
|
struct sighandle_info shi;
|
|
|
|
/*
|
|
* Invoke the signal handler without going through the scheduler:
|
|
*/
|
|
DBG_MSG("Got signal %d, calling handler for current thread %p\n",
|
|
sig, curthread);
|
|
|
|
if (!_kse_in_critical())
|
|
PANIC("thr_sig_invoke_handler without in critical\n");
|
|
curkse = curthread->kse;
|
|
/*
|
|
* Check that a custom handler is installed and if
|
|
* the signal is not blocked:
|
|
*/
|
|
sigfunc = _thread_sigact[sig - 1].sa_sigaction;
|
|
sa_flags = _thread_sigact[sig - 1].sa_flags;
|
|
sigmask = curthread->sigmask;
|
|
SIGSETOR(curthread->sigmask, _thread_sigact[sig - 1].sa_mask);
|
|
if (!(sa_flags & (SA_NODEFER | SA_RESETHAND)))
|
|
SIGADDSET(curthread->sigmask, sig);
|
|
if ((sig != SIGILL) && (sa_flags & SA_RESETHAND)) {
|
|
act.sa_handler = SIG_DFL;
|
|
act.sa_flags = SA_RESTART;
|
|
SIGEMPTYSET(act.sa_mask);
|
|
__sys_sigaction(sig, &act, NULL);
|
|
__sys_sigaction(sig, NULL, &_thread_sigact[sig - 1]);
|
|
}
|
|
KSE_LOCK_RELEASE(curkse, &_thread_signal_lock);
|
|
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
|
|
/*
|
|
* We are processing buffered signals, synchronize working
|
|
* signal mask into kernel.
|
|
*/
|
|
if (curthread->attr.flags & PTHREAD_SCOPE_SYSTEM)
|
|
__sys_sigprocmask(SIG_SETMASK, &curthread->sigmask, NULL);
|
|
onstack = _thr_sigonstack(&sigfunc);
|
|
ucp->uc_stack = curthread->sigstk;
|
|
ucp->uc_stack.ss_flags = (curthread->sigstk.ss_flags & SS_DISABLE)
|
|
? SS_DISABLE : ((onstack) ? SS_ONSTACK : 0);
|
|
if (curthread->oldsigmask) {
|
|
ucp->uc_sigmask = *(curthread->oldsigmask);
|
|
curthread->oldsigmask = NULL;
|
|
} else
|
|
ucp->uc_sigmask = sigmask;
|
|
shi.sigfunc = sigfunc;
|
|
shi.sig = sig;
|
|
shi.sa_flags = sa_flags;
|
|
shi.info = info;
|
|
shi.ucp = ucp;
|
|
if ((curthread->sigstk.ss_flags & SS_DISABLE) == 0) {
|
|
/* Deliver signal on alternative stack */
|
|
if (sa_flags & SA_ONSTACK && !onstack)
|
|
handle_signal_altstack(curthread, &shi);
|
|
else
|
|
handle_signal(curthread, &shi);
|
|
} else {
|
|
handle_signal(curthread, &shi);
|
|
}
|
|
|
|
_kse_critical_enter();
|
|
/* Don't trust after critical leave/enter */
|
|
curkse = curthread->kse;
|
|
|
|
/*
|
|
* Restore the thread's signal mask.
|
|
*/
|
|
curthread->sigmask = ucp->uc_sigmask;
|
|
SIG_CANTMASK(curthread->sigmask);
|
|
if (curthread->attr.flags & PTHREAD_SCOPE_SYSTEM)
|
|
__sys_sigprocmask(SIG_SETMASK, &ucp->uc_sigmask, NULL);
|
|
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
|
|
KSE_LOCK_ACQUIRE(curkse, &_thread_signal_lock);
|
|
|
|
DBG_MSG("Got signal %d, handler returned %p\n", sig, curthread);
|
|
}
|
|
|
|
static void
|
|
handle_signal(struct pthread *curthread, struct sighandle_info *shi)
|
|
{
|
|
_kse_critical_leave(&curthread->tcb->tcb_tmbx);
|
|
|
|
/* Check if the signal requires a dump of thread information: */
|
|
if (_thr_dump_enabled() && (shi->sig == SIGINFO)) {
|
|
/* Dump thread information to file: */
|
|
_thread_dump_info();
|
|
}
|
|
|
|
if (((__sighandler_t *)shi->sigfunc != SIG_DFL) &&
|
|
((__sighandler_t *)shi->sigfunc != SIG_IGN)) {
|
|
if ((shi->sa_flags & SA_SIGINFO) != 0 || shi->info == NULL)
|
|
(*(shi->sigfunc))(shi->sig, shi->info, shi->ucp);
|
|
else {
|
|
((ohandler)(*shi->sigfunc))(
|
|
shi->sig, shi->info->si_code,
|
|
(struct sigcontext *)shi->ucp,
|
|
shi->info->si_addr,
|
|
(__sighandler_t *)shi->sigfunc);
|
|
}
|
|
} else {
|
|
if ((__sighandler_t *)shi->sigfunc == SIG_DFL) {
|
|
if (sigprop(shi->sig) & SA_KILL) {
|
|
if (_kse_isthreaded())
|
|
kse_thr_interrupt(NULL,
|
|
KSE_INTR_SIGEXIT, shi->sig);
|
|
else
|
|
kill(getpid(), shi->sig);
|
|
}
|
|
#ifdef NOTYET
|
|
else if (sigprop(shi->sig) & SA_STOP)
|
|
kse_thr_interrupt(NULL, KSE_INTR_JOBSTOP,
|
|
shi->sig);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
handle_signal_wrapper(struct pthread *curthread, ucontext_t *ret_uc,
|
|
struct sighandle_info *shi)
|
|
{
|
|
shi->ucp->uc_stack.ss_flags = SS_ONSTACK;
|
|
handle_signal(curthread, shi);
|
|
if (curthread->attr.flags & PTHREAD_SCOPE_SYSTEM)
|
|
setcontext(ret_uc);
|
|
else {
|
|
/* Work around for ia64, THR_SETCONTEXT does not work */
|
|
_kse_critical_enter();
|
|
curthread->tcb->tcb_tmbx.tm_context = *ret_uc;
|
|
_thread_switch(curthread->kse->k_kcb, curthread->tcb, 1);
|
|
/* THR_SETCONTEXT */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Jump to stack set by sigaltstack before invoking signal handler
|
|
*/
|
|
static void
|
|
handle_signal_altstack(struct pthread *curthread, struct sighandle_info *shi)
|
|
{
|
|
volatile int once;
|
|
ucontext_t uc1, *uc2;
|
|
|
|
THR_ASSERT(_kse_in_critical(), "Not in critical");
|
|
|
|
once = 0;
|
|
THR_GETCONTEXT(&uc1);
|
|
if (once == 0) {
|
|
once = 1;
|
|
/* XXX
|
|
* We are still in critical region, it is safe to operate thread
|
|
* context
|
|
*/
|
|
uc2 = &curthread->tcb->tcb_tmbx.tm_context;
|
|
uc2->uc_stack = curthread->sigstk;
|
|
makecontext(uc2, (void (*)(void))handle_signal_wrapper,
|
|
3, curthread, &uc1, shi);
|
|
if (curthread->attr.flags & PTHREAD_SCOPE_SYSTEM)
|
|
setcontext(uc2);
|
|
else {
|
|
_thread_switch(curthread->kse->k_kcb, curthread->tcb, 1);
|
|
/* THR_SETCONTEXT(uc2); */
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
_thr_getprocsig(int sig, siginfo_t *siginfo)
|
|
{
|
|
kse_critical_t crit;
|
|
struct kse *curkse;
|
|
int ret;
|
|
|
|
DBG_MSG(">>> _thr_getprocsig\n");
|
|
|
|
crit = _kse_critical_enter();
|
|
curkse = _get_curkse();
|
|
KSE_LOCK_ACQUIRE(curkse, &_thread_signal_lock);
|
|
ret = _thr_getprocsig_unlocked(sig, siginfo);
|
|
KSE_LOCK_RELEASE(curkse, &_thread_signal_lock);
|
|
_kse_critical_leave(crit);
|
|
|
|
DBG_MSG("<<< _thr_getprocsig\n");
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
_thr_getprocsig_unlocked(int sig, siginfo_t *siginfo)
|
|
{
|
|
sigset_t sigset;
|
|
struct timespec ts;
|
|
|
|
/* try to retrieve signal from kernel */
|
|
SIGEMPTYSET(sigset);
|
|
SIGADDSET(sigset, sig);
|
|
ts.tv_sec = 0;
|
|
ts.tv_nsec = 0;
|
|
SIGDELSET(_thr_proc_sigpending, sig);
|
|
if (__sys_sigtimedwait(&sigset, siginfo, &ts) > 0)
|
|
return (sig);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef SYSTEM_SCOPE_ONLY
|
|
/*
|
|
* Find a thread that can handle the signal. This must be called
|
|
* with upcalls disabled.
|
|
*/
|
|
struct pthread *
|
|
thr_sig_find(struct kse *curkse, int sig, siginfo_t *info)
|
|
{
|
|
struct kse_mailbox *kmbx = NULL;
|
|
struct pthread *pthread;
|
|
struct pthread *suspended_thread, *signaled_thread;
|
|
__siginfohandler_t *sigfunc;
|
|
siginfo_t si;
|
|
|
|
DBG_MSG("Looking for thread to handle signal %d\n", sig);
|
|
|
|
/*
|
|
* Enter a loop to look for threads that have the signal
|
|
* unmasked. POSIX specifies that a thread in a sigwait
|
|
* will get the signal over any other threads. Second
|
|
* preference will be threads in in a sigsuspend. Third
|
|
* preference will be the current thread. If none of the
|
|
* above, then the signal is delivered to the first thread
|
|
* that is found. Note that if a custom handler is not
|
|
* installed, the signal only affects threads in sigwait.
|
|
*/
|
|
suspended_thread = NULL;
|
|
signaled_thread = NULL;
|
|
|
|
KSE_LOCK_ACQUIRE(curkse, &_thread_list_lock);
|
|
TAILQ_FOREACH(pthread, &_thread_list, tle) {
|
|
if (pthread == _thr_sig_daemon)
|
|
continue;
|
|
/* Signal delivering to bound thread is done by kernel */
|
|
if (pthread->attr.flags & PTHREAD_SCOPE_SYSTEM)
|
|
continue;
|
|
/* Take the scheduling lock. */
|
|
KSE_SCHED_LOCK(curkse, pthread->kseg);
|
|
if ((pthread->state == PS_DEAD) ||
|
|
(pthread->state == PS_DEADLOCK) ||
|
|
THR_IS_EXITING(pthread) ||
|
|
THR_IS_SUSPENDED(pthread)) {
|
|
; /* Skip this thread. */
|
|
} else if (pthread->state == PS_SIGWAIT &&
|
|
SIGISMEMBER(*(pthread->data.sigwait->waitset), sig)) {
|
|
/*
|
|
* retrieve signal from kernel, if it is job control
|
|
* signal, and sigaction is SIG_DFL, then we will
|
|
* be stopped in kernel, we hold lock here, but that
|
|
* does not matter, because that's job control, and
|
|
* whole process should be stopped.
|
|
*/
|
|
if (_thr_getprocsig(sig, &si)) {
|
|
DBG_MSG("Waking thread %p in sigwait"
|
|
" with signal %d\n", pthread, sig);
|
|
/* where to put siginfo ? */
|
|
*(pthread->data.sigwait->siginfo) = si;
|
|
kmbx = _thr_setrunnable_unlocked(pthread);
|
|
}
|
|
KSE_SCHED_UNLOCK(curkse, pthread->kseg);
|
|
/*
|
|
* POSIX doesn't doesn't specify which thread
|
|
* will get the signal if there are multiple
|
|
* waiters, so we give it to the first thread
|
|
* we find.
|
|
*
|
|
* Do not attempt to deliver this signal
|
|
* to other threads and do not add the signal
|
|
* to the process pending set.
|
|
*/
|
|
KSE_LOCK_RELEASE(curkse, &_thread_list_lock);
|
|
if (kmbx != NULL)
|
|
kse_wakeup(kmbx);
|
|
if (suspended_thread != NULL)
|
|
_thr_ref_delete(NULL, suspended_thread);
|
|
if (signaled_thread != NULL)
|
|
_thr_ref_delete(NULL, signaled_thread);
|
|
return (NULL);
|
|
} else if (!SIGISMEMBER(pthread->sigmask, sig)) {
|
|
/*
|
|
* If debugger is running, we don't quick exit,
|
|
* and give it a chance to check the signal.
|
|
*/
|
|
if (_libkse_debug == 0) {
|
|
sigfunc = _thread_sigact[sig - 1].sa_sigaction;
|
|
if ((__sighandler_t *)sigfunc == SIG_DFL) {
|
|
if (sigprop(sig) & SA_KILL) {
|
|
kse_thr_interrupt(NULL,
|
|
KSE_INTR_SIGEXIT, sig);
|
|
/* Never reach */
|
|
}
|
|
}
|
|
}
|
|
if (pthread->state == PS_SIGSUSPEND) {
|
|
if (suspended_thread == NULL) {
|
|
suspended_thread = pthread;
|
|
suspended_thread->refcount++;
|
|
}
|
|
} else if (signaled_thread == NULL) {
|
|
signaled_thread = pthread;
|
|
signaled_thread->refcount++;
|
|
}
|
|
}
|
|
KSE_SCHED_UNLOCK(curkse, pthread->kseg);
|
|
}
|
|
KSE_LOCK_RELEASE(curkse, &_thread_list_lock);
|
|
|
|
if (suspended_thread != NULL) {
|
|
pthread = suspended_thread;
|
|
if (signaled_thread)
|
|
_thr_ref_delete(NULL, signaled_thread);
|
|
} else if (signaled_thread) {
|
|
pthread = signaled_thread;
|
|
} else {
|
|
pthread = NULL;
|
|
}
|
|
return (pthread);
|
|
}
|
|
#endif /* ! SYSTEM_SCOPE_ONLY */
|
|
|
|
static inline void
|
|
build_siginfo(siginfo_t *info, int signo)
|
|
{
|
|
bzero(info, sizeof(*info));
|
|
info->si_signo = signo;
|
|
info->si_pid = _thr_pid;
|
|
}
|
|
|
|
/*
|
|
* This is called by a thread when it has pending signals to deliver.
|
|
* It should only be called from the context of the thread.
|
|
*/
|
|
void
|
|
_thr_sig_rundown(struct pthread *curthread, ucontext_t *ucp)
|
|
{
|
|
struct pthread_sigframe psf;
|
|
siginfo_t siginfo;
|
|
int i, err_save;
|
|
kse_critical_t crit;
|
|
struct kse *curkse;
|
|
sigset_t sigmask;
|
|
|
|
err_save = errno;
|
|
|
|
DBG_MSG(">>> thr_sig_rundown (%p)\n", curthread);
|
|
|
|
/* Check the threads previous state: */
|
|
curthread->critical_count++;
|
|
if (curthread->sigbackout != NULL)
|
|
curthread->sigbackout((void *)curthread);
|
|
curthread->critical_count--;
|
|
|
|
THR_ASSERT(!(curthread->sigbackout), "sigbackout was not cleared.");
|
|
THR_ASSERT((curthread->state == PS_RUNNING), "state is not PS_RUNNING");
|
|
|
|
thr_sigframe_save(curthread, &psf);
|
|
/*
|
|
* Lower the priority before calling the handler in case
|
|
* it never returns (longjmps back):
|
|
*/
|
|
crit = _kse_critical_enter();
|
|
curkse = curthread->kse;
|
|
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
|
|
KSE_LOCK_ACQUIRE(curkse, &_thread_signal_lock);
|
|
curthread->active_priority &= ~THR_SIGNAL_PRIORITY;
|
|
SIGFILLSET(sigmask);
|
|
while (1) {
|
|
/*
|
|
* For bound thread, we mask all signals and get a fresh
|
|
* copy of signal mask from kernel
|
|
*/
|
|
if (curthread->attr.flags & PTHREAD_SCOPE_SYSTEM) {
|
|
__sys_sigprocmask(SIG_SETMASK, &sigmask,
|
|
&curthread->sigmask);
|
|
}
|
|
for (i = 1; i <= _SIG_MAXSIG; i++) {
|
|
if (SIGISMEMBER(curthread->sigmask, i))
|
|
continue;
|
|
if (SIGISMEMBER(curthread->sigpend, i)) {
|
|
SIGDELSET(curthread->sigpend, i);
|
|
siginfo = curthread->siginfo[i-1];
|
|
break;
|
|
}
|
|
if (!(curthread->attr.flags & PTHREAD_SCOPE_SYSTEM)
|
|
&& SIGISMEMBER(_thr_proc_sigpending, i)) {
|
|
if (_thr_getprocsig_unlocked(i, &siginfo))
|
|
break;
|
|
}
|
|
}
|
|
if (i <= _SIG_MAXSIG)
|
|
thr_sig_invoke_handler(curthread, i, &siginfo, ucp);
|
|
else {
|
|
if (curthread->attr.flags & PTHREAD_SCOPE_SYSTEM) {
|
|
__sys_sigprocmask(SIG_SETMASK,
|
|
&curthread->sigmask, NULL);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Don't trust after signal handling */
|
|
curkse = curthread->kse;
|
|
KSE_LOCK_RELEASE(curkse, &_thread_signal_lock);
|
|
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
|
|
_kse_critical_leave(&curthread->tcb->tcb_tmbx);
|
|
/* repost masked signal to kernel, it hardly happens in real world */
|
|
if ((curthread->attr.flags & PTHREAD_SCOPE_SYSTEM) &&
|
|
!SIGISEMPTY(curthread->sigpend)) { /* dirty read */
|
|
__sys_sigprocmask(SIG_SETMASK, &sigmask, &curthread->sigmask);
|
|
for (i = 1; i <= _SIG_MAXSIG; ++i) {
|
|
if (SIGISMEMBER(curthread->sigpend, i)) {
|
|
SIGDELSET(curthread->sigpend, i);
|
|
if (!_kse_isthreaded())
|
|
kill(getpid(), i);
|
|
else
|
|
kse_thr_interrupt(
|
|
&curthread->tcb->tcb_tmbx,
|
|
KSE_INTR_SENDSIG,
|
|
i);
|
|
}
|
|
}
|
|
__sys_sigprocmask(SIG_SETMASK, &curthread->sigmask, NULL);
|
|
}
|
|
DBG_MSG("<<< thr_sig_rundown (%p)\n", curthread);
|
|
|
|
thr_sigframe_restore(curthread, &psf);
|
|
errno = err_save;
|
|
}
|
|
|
|
/*
|
|
* This checks pending signals for the current thread. It should be
|
|
* called whenever a thread changes its signal mask. Note that this
|
|
* is called from a thread (using its stack).
|
|
*
|
|
* XXX - We might want to just check to see if there are pending
|
|
* signals for the thread here, but enter the UTS scheduler
|
|
* to actually install the signal handler(s).
|
|
*/
|
|
void
|
|
_thr_sig_check_pending(struct pthread *curthread)
|
|
{
|
|
ucontext_t uc;
|
|
volatile int once;
|
|
int errsave;
|
|
|
|
/*
|
|
* If the thread is in critical region, delay processing signals.
|
|
* If the thread state is not PS_RUNNING, it might be switching
|
|
* into UTS and but a THR_LOCK_RELEASE saw check_pending, and it
|
|
* goes here, in the case we delay processing signals, lets UTS
|
|
* process complicated things, normally UTS will call _thr_sig_add
|
|
* to resume the thread, so we needn't repeat doing it here.
|
|
*/
|
|
if (THR_IN_CRITICAL(curthread) || curthread->state != PS_RUNNING)
|
|
return;
|
|
|
|
errsave = errno;
|
|
once = 0;
|
|
THR_GETCONTEXT(&uc);
|
|
if (once == 0) {
|
|
once = 1;
|
|
curthread->check_pending = 0;
|
|
_thr_sig_rundown(curthread, &uc);
|
|
}
|
|
errno = errsave;
|
|
}
|
|
|
|
/*
|
|
* Perform thread specific actions in response to a signal.
|
|
* This function is only called if there is a handler installed
|
|
* for the signal, and if the target thread has the signal
|
|
* unmasked.
|
|
*
|
|
* This must be called with the thread's scheduling lock held.
|
|
*/
|
|
struct kse_mailbox *
|
|
_thr_sig_add(struct pthread *pthread, int sig, siginfo_t *info)
|
|
{
|
|
siginfo_t siginfo;
|
|
struct kse *curkse;
|
|
struct kse_mailbox *kmbx = NULL;
|
|
struct pthread *curthread = _get_curthread();
|
|
int restart;
|
|
int suppress_handler = 0;
|
|
int fromproc = 0;
|
|
__sighandler_t *sigfunc;
|
|
|
|
DBG_MSG(">>> _thr_sig_add %p (%d)\n", pthread, sig);
|
|
|
|
curkse = _get_curkse();
|
|
restart = _thread_sigact[sig - 1].sa_flags & SA_RESTART;
|
|
sigfunc = _thread_sigact[sig - 1].sa_handler;
|
|
fromproc = (curthread == _thr_sig_daemon);
|
|
|
|
if (pthread->state == PS_DEAD || pthread->state == PS_DEADLOCK ||
|
|
pthread->state == PS_STATE_MAX)
|
|
return (NULL); /* return false */
|
|
|
|
if ((pthread->attr.flags & PTHREAD_SCOPE_SYSTEM) &&
|
|
(curthread != pthread)) {
|
|
PANIC("Please use _thr_send_sig for bound thread");
|
|
return (NULL);
|
|
}
|
|
|
|
if (pthread->state != PS_SIGWAIT &&
|
|
SIGISMEMBER(pthread->sigmask, sig)) {
|
|
/* signal is masked, just add signal to thread. */
|
|
if (!fromproc) {
|
|
SIGADDSET(pthread->sigpend, sig);
|
|
if (info == NULL)
|
|
build_siginfo(&pthread->siginfo[sig-1], sig);
|
|
else if (info != &pthread->siginfo[sig-1])
|
|
memcpy(&pthread->siginfo[sig-1], info,
|
|
sizeof(*info));
|
|
} else {
|
|
if (!_thr_getprocsig(sig, &pthread->siginfo[sig-1]))
|
|
return (NULL);
|
|
SIGADDSET(pthread->sigpend, sig);
|
|
}
|
|
}
|
|
else {
|
|
/* if process signal not exists, just return */
|
|
if (fromproc) {
|
|
if (!_thr_getprocsig(sig, &siginfo))
|
|
return (NULL);
|
|
info = &siginfo;
|
|
}
|
|
|
|
if (pthread->state != PS_SIGWAIT && sigfunc == SIG_DFL &&
|
|
(sigprop(sig) & SA_KILL)) {
|
|
kse_thr_interrupt(NULL, KSE_INTR_SIGEXIT, sig);
|
|
/* Never reach */
|
|
}
|
|
|
|
/*
|
|
* Process according to thread state:
|
|
*/
|
|
switch (pthread->state) {
|
|
case PS_DEAD:
|
|
case PS_DEADLOCK:
|
|
case PS_STATE_MAX:
|
|
return (NULL); /* XXX return false */
|
|
case PS_LOCKWAIT:
|
|
case PS_SUSPENDED:
|
|
/*
|
|
* You can't call a signal handler for threads in these
|
|
* states.
|
|
*/
|
|
suppress_handler = 1;
|
|
break;
|
|
case PS_RUNNING:
|
|
if ((pthread->flags & THR_FLAGS_IN_RUNQ)) {
|
|
THR_RUNQ_REMOVE(pthread);
|
|
pthread->active_priority |= THR_SIGNAL_PRIORITY;
|
|
THR_RUNQ_INSERT_TAIL(pthread);
|
|
} else {
|
|
/* Possible not in RUNQ and has curframe ? */
|
|
pthread->active_priority |= THR_SIGNAL_PRIORITY;
|
|
}
|
|
break;
|
|
/*
|
|
* States which cannot be interrupted but still require the
|
|
* signal handler to run:
|
|
*/
|
|
case PS_COND_WAIT:
|
|
case PS_MUTEX_WAIT:
|
|
break;
|
|
|
|
case PS_SLEEP_WAIT:
|
|
/*
|
|
* Unmasked signals always cause sleep to terminate
|
|
* early regardless of SA_RESTART:
|
|
*/
|
|
pthread->interrupted = 1;
|
|
break;
|
|
|
|
case PS_JOIN:
|
|
break;
|
|
|
|
case PS_SIGSUSPEND:
|
|
pthread->interrupted = 1;
|
|
break;
|
|
|
|
case PS_SIGWAIT:
|
|
if (info == NULL)
|
|
build_siginfo(&pthread->siginfo[sig-1], sig);
|
|
else if (info != &pthread->siginfo[sig-1])
|
|
memcpy(&pthread->siginfo[sig-1], info,
|
|
sizeof(*info));
|
|
/*
|
|
* The signal handler is not called for threads in
|
|
* SIGWAIT.
|
|
*/
|
|
suppress_handler = 1;
|
|
/* Wake up the thread if the signal is not blocked. */
|
|
if (SIGISMEMBER(*(pthread->data.sigwait->waitset), sig)) {
|
|
/* Return the signal number: */
|
|
*(pthread->data.sigwait->siginfo) = pthread->siginfo[sig-1];
|
|
/* Make the thread runnable: */
|
|
kmbx = _thr_setrunnable_unlocked(pthread);
|
|
} else {
|
|
/* Increment the pending signal count. */
|
|
SIGADDSET(pthread->sigpend, sig);
|
|
if (!SIGISMEMBER(pthread->sigmask, sig)) {
|
|
if (sigfunc == SIG_DFL &&
|
|
sigprop(sig) & SA_KILL) {
|
|
kse_thr_interrupt(NULL,
|
|
KSE_INTR_SIGEXIT,
|
|
sig);
|
|
/* Never reach */
|
|
}
|
|
pthread->check_pending = 1;
|
|
pthread->interrupted = 1;
|
|
kmbx = _thr_setrunnable_unlocked(pthread);
|
|
}
|
|
}
|
|
return (kmbx);
|
|
}
|
|
|
|
SIGADDSET(pthread->sigpend, sig);
|
|
if (info == NULL)
|
|
build_siginfo(&pthread->siginfo[sig-1], sig);
|
|
else if (info != &pthread->siginfo[sig-1])
|
|
memcpy(&pthread->siginfo[sig-1], info, sizeof(*info));
|
|
pthread->check_pending = 1;
|
|
if (!(pthread->attr.flags & PTHREAD_SCOPE_SYSTEM) &&
|
|
(pthread->blocked != 0) && !THR_IN_CRITICAL(pthread))
|
|
kse_thr_interrupt(&pthread->tcb->tcb_tmbx,
|
|
restart ? KSE_INTR_RESTART : KSE_INTR_INTERRUPT, 0);
|
|
if (suppress_handler == 0) {
|
|
/*
|
|
* Setup a signal frame and save the current threads
|
|
* state:
|
|
*/
|
|
if (pthread->state != PS_RUNNING) {
|
|
if (pthread->flags & THR_FLAGS_IN_RUNQ)
|
|
THR_RUNQ_REMOVE(pthread);
|
|
pthread->active_priority |= THR_SIGNAL_PRIORITY;
|
|
kmbx = _thr_setrunnable_unlocked(pthread);
|
|
}
|
|
}
|
|
}
|
|
return (kmbx);
|
|
}
|
|
|
|
/*
|
|
* Send a signal to a specific thread (ala pthread_kill):
|
|
*/
|
|
void
|
|
_thr_sig_send(struct pthread *pthread, int sig)
|
|
{
|
|
struct pthread *curthread = _get_curthread();
|
|
struct kse_mailbox *kmbx;
|
|
|
|
if (pthread->attr.flags & PTHREAD_SCOPE_SYSTEM) {
|
|
kse_thr_interrupt(&pthread->tcb->tcb_tmbx, KSE_INTR_SENDSIG, sig);
|
|
return;
|
|
}
|
|
|
|
/* Lock the scheduling queue of the target thread. */
|
|
THR_SCHED_LOCK(curthread, pthread);
|
|
if (_thread_sigact[sig - 1].sa_handler != SIG_IGN) {
|
|
kmbx = _thr_sig_add(pthread, sig, NULL);
|
|
/* Add a preemption point. */
|
|
if (kmbx == NULL && (curthread->kseg == pthread->kseg) &&
|
|
(pthread->active_priority > curthread->active_priority))
|
|
curthread->critical_yield = 1;
|
|
THR_SCHED_UNLOCK(curthread, pthread);
|
|
if (kmbx != NULL)
|
|
kse_wakeup(kmbx);
|
|
/* XXX
|
|
* If thread sent signal to itself, check signals now.
|
|
* It is not really needed, _kse_critical_leave should
|
|
* have already checked signals.
|
|
*/
|
|
if (pthread == curthread && curthread->check_pending)
|
|
_thr_sig_check_pending(curthread);
|
|
|
|
} else {
|
|
THR_SCHED_UNLOCK(curthread, pthread);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
thr_sigframe_restore(struct pthread *curthread, struct pthread_sigframe *psf)
|
|
{
|
|
kse_critical_t crit;
|
|
struct kse *curkse;
|
|
|
|
THR_THREAD_LOCK(curthread, curthread);
|
|
curthread->cancelflags = psf->psf_cancelflags;
|
|
crit = _kse_critical_enter();
|
|
curkse = curthread->kse;
|
|
KSE_SCHED_LOCK(curkse, curthread->kseg);
|
|
curthread->flags = psf->psf_flags;
|
|
curthread->interrupted = psf->psf_interrupted;
|
|
curthread->timeout = psf->psf_timeout;
|
|
curthread->data = psf->psf_wait_data;
|
|
curthread->wakeup_time = psf->psf_wakeup_time;
|
|
curthread->continuation = psf->psf_continuation;
|
|
KSE_SCHED_UNLOCK(curkse, curthread->kseg);
|
|
_kse_critical_leave(crit);
|
|
THR_THREAD_UNLOCK(curthread, curthread);
|
|
}
|
|
|
|
static inline void
|
|
thr_sigframe_save(struct pthread *curthread, struct pthread_sigframe *psf)
|
|
{
|
|
kse_critical_t crit;
|
|
struct kse *curkse;
|
|
|
|
THR_THREAD_LOCK(curthread, curthread);
|
|
psf->psf_cancelflags = curthread->cancelflags;
|
|
crit = _kse_critical_enter();
|
|
curkse = curthread->kse;
|
|
KSE_SCHED_LOCK(curkse, curthread->kseg);
|
|
/* This has to initialize all members of the sigframe. */
|
|
psf->psf_flags = (curthread->flags & (THR_FLAGS_PRIVATE | THR_FLAGS_EXITING));
|
|
psf->psf_interrupted = curthread->interrupted;
|
|
psf->psf_timeout = curthread->timeout;
|
|
psf->psf_wait_data = curthread->data;
|
|
psf->psf_wakeup_time = curthread->wakeup_time;
|
|
psf->psf_continuation = curthread->continuation;
|
|
KSE_SCHED_UNLOCK(curkse, curthread->kseg);
|
|
_kse_critical_leave(crit);
|
|
THR_THREAD_UNLOCK(curthread, curthread);
|
|
}
|
|
|
|
void
|
|
_thr_signal_init(void)
|
|
{
|
|
struct sigaction act;
|
|
__siginfohandler_t *sigfunc;
|
|
int i;
|
|
sigset_t sigset;
|
|
|
|
SIGFILLSET(sigset);
|
|
__sys_sigprocmask(SIG_SETMASK, &sigset, &_thr_initial->sigmask);
|
|
/* Enter a loop to get the existing signal status: */
|
|
for (i = 1; i <= _SIG_MAXSIG; i++) {
|
|
/* Get the signal handler details: */
|
|
if (__sys_sigaction(i, NULL, &_thread_sigact[i - 1]) != 0) {
|
|
/*
|
|
* Abort this process if signal
|
|
* initialisation fails:
|
|
*/
|
|
PANIC("Cannot read signal handler info");
|
|
}
|
|
/* Intall wrapper if handler was set */
|
|
sigfunc = _thread_sigact[i - 1].sa_sigaction;
|
|
if (((__sighandler_t *)sigfunc) != SIG_DFL &&
|
|
((__sighandler_t *)sigfunc) != SIG_IGN) {
|
|
act = _thread_sigact[i - 1];
|
|
act.sa_flags |= SA_SIGINFO;
|
|
act.sa_sigaction =
|
|
(__siginfohandler_t *)_thr_sig_handler;
|
|
__sys_sigaction(i, &act, NULL);
|
|
}
|
|
}
|
|
if (_thr_dump_enabled()) {
|
|
/*
|
|
* Install the signal handler for SIGINFO. It isn't
|
|
* really needed, but it is nice to have for debugging
|
|
* purposes.
|
|
*/
|
|
_thread_sigact[SIGINFO - 1].sa_flags = SA_SIGINFO | SA_RESTART;
|
|
SIGEMPTYSET(act.sa_mask);
|
|
act.sa_flags = SA_SIGINFO | SA_RESTART;
|
|
act.sa_sigaction = (__siginfohandler_t *)&_thr_sig_handler;
|
|
if (__sys_sigaction(SIGINFO, &act, NULL) != 0) {
|
|
__sys_sigprocmask(SIG_SETMASK, &_thr_initial->sigmask,
|
|
NULL);
|
|
/*
|
|
* Abort this process if signal initialisation fails:
|
|
*/
|
|
PANIC("Cannot initialize signal handler");
|
|
}
|
|
}
|
|
__sys_sigprocmask(SIG_SETMASK, &_thr_initial->sigmask, NULL);
|
|
__sys_sigaltstack(NULL, &_thr_initial->sigstk);
|
|
}
|
|
|
|
void
|
|
_thr_signal_deinit(void)
|
|
{
|
|
int i;
|
|
struct pthread *curthread = _get_curthread();
|
|
|
|
/* Clear process pending signals. */
|
|
sigemptyset(&_thr_proc_sigpending);
|
|
|
|
/* Enter a loop to get the existing signal status: */
|
|
for (i = 1; i <= _SIG_MAXSIG; i++) {
|
|
/* Check for signals which cannot be trapped: */
|
|
if (i == SIGKILL || i == SIGSTOP) {
|
|
}
|
|
|
|
/* Set the signal handler details: */
|
|
else if (__sys_sigaction(i, &_thread_sigact[i - 1],
|
|
NULL) != 0) {
|
|
/*
|
|
* Abort this process if signal
|
|
* initialisation fails:
|
|
*/
|
|
PANIC("Cannot set signal handler info");
|
|
}
|
|
}
|
|
__sys_sigaltstack(&curthread->sigstk, NULL);
|
|
}
|
|
|