1806 lines
42 KiB
C
1806 lines
42 KiB
C
/*
|
|
* Copyright (c) 1984, 1985, 1986, 1987, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)spp_usrreq.c 8.1 (Berkeley) 6/10/93
|
|
* $Id: spp_usrreq.c,v 1.3 1995/03/19 14:29:04 davidg Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/errno.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_pcb.h>
|
|
#include <netns/idp.h>
|
|
#include <netns/idp_var.h>
|
|
#include <netns/ns_error.h>
|
|
#include <netns/sp.h>
|
|
#include <netns/spidp.h>
|
|
#include <netns/spp_timer.h>
|
|
#include <netns/spp_var.h>
|
|
#include <netns/spp_debug.h>
|
|
|
|
/*
|
|
* SP protocol implementation.
|
|
*/
|
|
spp_init()
|
|
{
|
|
|
|
spp_iss = 1; /* WRONG !! should fish it out of TODR */
|
|
}
|
|
struct spidp spp_savesi;
|
|
int traceallspps = 0;
|
|
extern int sppconsdebug;
|
|
int spp_hardnosed;
|
|
int spp_use_delack = 0;
|
|
u_short spp_newchecks[50];
|
|
|
|
/*ARGSUSED*/
|
|
spp_input(m, nsp)
|
|
register struct mbuf *m;
|
|
register struct nspcb *nsp;
|
|
{
|
|
register struct sppcb *cb;
|
|
register struct spidp *si = mtod(m, struct spidp *);
|
|
register struct socket *so;
|
|
short ostate;
|
|
int dropsocket = 0;
|
|
|
|
|
|
sppstat.spps_rcvtotal++;
|
|
if (nsp == 0) {
|
|
panic("No nspcb in spp_input");
|
|
return;
|
|
}
|
|
|
|
cb = nstosppcb(nsp);
|
|
if (cb == 0) goto bad;
|
|
|
|
if (m->m_len < sizeof(*si)) {
|
|
if ((m = m_pullup(m, sizeof(*si))) == 0) {
|
|
sppstat.spps_rcvshort++;
|
|
return;
|
|
}
|
|
si = mtod(m, struct spidp *);
|
|
}
|
|
si->si_seq = ntohs(si->si_seq);
|
|
si->si_ack = ntohs(si->si_ack);
|
|
si->si_alo = ntohs(si->si_alo);
|
|
|
|
so = nsp->nsp_socket;
|
|
if (so->so_options & SO_DEBUG || traceallspps) {
|
|
ostate = cb->s_state;
|
|
spp_savesi = *si;
|
|
}
|
|
if (so->so_options & SO_ACCEPTCONN) {
|
|
struct sppcb *ocb = cb;
|
|
|
|
so = sonewconn(so, 0);
|
|
if (so == 0) {
|
|
goto drop;
|
|
}
|
|
/*
|
|
* This is ugly, but ....
|
|
*
|
|
* Mark socket as temporary until we're
|
|
* committed to keeping it. The code at
|
|
* ``drop'' and ``dropwithreset'' check the
|
|
* flag dropsocket to see if the temporary
|
|
* socket created here should be discarded.
|
|
* We mark the socket as discardable until
|
|
* we're committed to it below in TCPS_LISTEN.
|
|
*/
|
|
dropsocket++;
|
|
nsp = (struct nspcb *)so->so_pcb;
|
|
nsp->nsp_laddr = si->si_dna;
|
|
cb = nstosppcb(nsp);
|
|
cb->s_mtu = ocb->s_mtu; /* preserve sockopts */
|
|
cb->s_flags = ocb->s_flags; /* preserve sockopts */
|
|
cb->s_flags2 = ocb->s_flags2; /* preserve sockopts */
|
|
cb->s_state = TCPS_LISTEN;
|
|
}
|
|
|
|
/*
|
|
* Packet received on connection.
|
|
* reset idle time and keep-alive timer;
|
|
*/
|
|
cb->s_idle = 0;
|
|
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
|
|
|
|
switch (cb->s_state) {
|
|
|
|
case TCPS_LISTEN:{
|
|
struct mbuf *am;
|
|
register struct sockaddr_ns *sns;
|
|
struct ns_addr laddr;
|
|
|
|
/*
|
|
* If somebody here was carying on a conversation
|
|
* and went away, and his pen pal thinks he can
|
|
* still talk, we get the misdirected packet.
|
|
*/
|
|
if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) {
|
|
spp_istat.gonawy++;
|
|
goto dropwithreset;
|
|
}
|
|
am = m_get(M_DONTWAIT, MT_SONAME);
|
|
if (am == NULL)
|
|
goto drop;
|
|
am->m_len = sizeof (struct sockaddr_ns);
|
|
sns = mtod(am, struct sockaddr_ns *);
|
|
sns->sns_len = sizeof(*sns);
|
|
sns->sns_family = AF_NS;
|
|
sns->sns_addr = si->si_sna;
|
|
laddr = nsp->nsp_laddr;
|
|
if (ns_nullhost(laddr))
|
|
nsp->nsp_laddr = si->si_dna;
|
|
if (ns_pcbconnect(nsp, am)) {
|
|
nsp->nsp_laddr = laddr;
|
|
(void) m_free(am);
|
|
spp_istat.noconn++;
|
|
goto drop;
|
|
}
|
|
(void) m_free(am);
|
|
spp_template(cb);
|
|
dropsocket = 0; /* committed to socket */
|
|
cb->s_did = si->si_sid;
|
|
cb->s_rack = si->si_ack;
|
|
cb->s_ralo = si->si_alo;
|
|
#define THREEWAYSHAKE
|
|
#ifdef THREEWAYSHAKE
|
|
cb->s_state = TCPS_SYN_RECEIVED;
|
|
cb->s_force = 1 + SPPT_KEEP;
|
|
sppstat.spps_accepts++;
|
|
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
|
|
}
|
|
break;
|
|
/*
|
|
* This state means that we have heard a response
|
|
* to our acceptance of their connection
|
|
* It is probably logically unnecessary in this
|
|
* implementation.
|
|
*/
|
|
case TCPS_SYN_RECEIVED: {
|
|
if (si->si_did!=cb->s_sid) {
|
|
spp_istat.wrncon++;
|
|
goto drop;
|
|
}
|
|
#endif
|
|
nsp->nsp_fport = si->si_sport;
|
|
cb->s_timer[SPPT_REXMT] = 0;
|
|
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
|
|
soisconnected(so);
|
|
cb->s_state = TCPS_ESTABLISHED;
|
|
sppstat.spps_accepts++;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* This state means that we have gotten a response
|
|
* to our attempt to establish a connection.
|
|
* We fill in the data from the other side,
|
|
* telling us which port to respond to, instead of the well-
|
|
* known one we might have sent to in the first place.
|
|
* We also require that this is a response to our
|
|
* connection id.
|
|
*/
|
|
case TCPS_SYN_SENT:
|
|
if (si->si_did!=cb->s_sid) {
|
|
spp_istat.notme++;
|
|
goto drop;
|
|
}
|
|
sppstat.spps_connects++;
|
|
cb->s_did = si->si_sid;
|
|
cb->s_rack = si->si_ack;
|
|
cb->s_ralo = si->si_alo;
|
|
cb->s_dport = nsp->nsp_fport = si->si_sport;
|
|
cb->s_timer[SPPT_REXMT] = 0;
|
|
cb->s_flags |= SF_ACKNOW;
|
|
soisconnected(so);
|
|
cb->s_state = TCPS_ESTABLISHED;
|
|
/* Use roundtrip time of connection request for initial rtt */
|
|
if (cb->s_rtt) {
|
|
cb->s_srtt = cb->s_rtt << 3;
|
|
cb->s_rttvar = cb->s_rtt << 1;
|
|
SPPT_RANGESET(cb->s_rxtcur,
|
|
((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
|
|
SPPTV_MIN, SPPTV_REXMTMAX);
|
|
cb->s_rtt = 0;
|
|
}
|
|
}
|
|
if (so->so_options & SO_DEBUG || traceallspps)
|
|
spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0);
|
|
|
|
m->m_len -= sizeof (struct idp);
|
|
m->m_pkthdr.len -= sizeof (struct idp);
|
|
m->m_data += sizeof (struct idp);
|
|
|
|
if (spp_reass(cb, si)) {
|
|
(void) m_freem(m);
|
|
}
|
|
if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT)))
|
|
(void) spp_output(cb, (struct mbuf *)0);
|
|
cb->s_flags &= ~(SF_WIN|SF_RXT);
|
|
return;
|
|
|
|
dropwithreset:
|
|
if (dropsocket)
|
|
(void) soabort(so);
|
|
si->si_seq = ntohs(si->si_seq);
|
|
si->si_ack = ntohs(si->si_ack);
|
|
si->si_alo = ntohs(si->si_alo);
|
|
ns_error(dtom(si), NS_ERR_NOSOCK, 0);
|
|
if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps)
|
|
spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
|
|
return;
|
|
|
|
drop:
|
|
bad:
|
|
if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG ||
|
|
traceallspps)
|
|
spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
|
|
m_freem(m);
|
|
}
|
|
|
|
int spprexmtthresh = 3;
|
|
|
|
/*
|
|
* This is structurally similar to the tcp reassembly routine
|
|
* but its function is somewhat different: It merely queues
|
|
* packets up, and suppresses duplicates.
|
|
*/
|
|
spp_reass(cb, si)
|
|
register struct sppcb *cb;
|
|
register struct spidp *si;
|
|
{
|
|
register struct spidp_q *q;
|
|
register struct mbuf *m;
|
|
register struct socket *so = cb->s_nspcb->nsp_socket;
|
|
char packetp = cb->s_flags & SF_HI;
|
|
int incr;
|
|
char wakeup = 0;
|
|
|
|
if (si == SI(0))
|
|
goto present;
|
|
/*
|
|
* Update our news from them.
|
|
*/
|
|
if (si->si_cc & SP_SA)
|
|
cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW);
|
|
if (SSEQ_GT(si->si_alo, cb->s_ralo))
|
|
cb->s_flags |= SF_WIN;
|
|
if (SSEQ_LEQ(si->si_ack, cb->s_rack)) {
|
|
if ((si->si_cc & SP_SP) && cb->s_rack != (cb->s_smax + 1)) {
|
|
sppstat.spps_rcvdupack++;
|
|
/*
|
|
* If this is a completely duplicate ack
|
|
* and other conditions hold, we assume
|
|
* a packet has been dropped and retransmit
|
|
* it exactly as in tcp_input().
|
|
*/
|
|
if (si->si_ack != cb->s_rack ||
|
|
si->si_alo != cb->s_ralo)
|
|
cb->s_dupacks = 0;
|
|
else if (++cb->s_dupacks == spprexmtthresh) {
|
|
u_short onxt = cb->s_snxt;
|
|
int cwnd = cb->s_cwnd;
|
|
|
|
cb->s_snxt = si->si_ack;
|
|
cb->s_cwnd = CUNIT;
|
|
cb->s_force = 1 + SPPT_REXMT;
|
|
(void) spp_output(cb, (struct mbuf *)0);
|
|
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
|
|
cb->s_rtt = 0;
|
|
if (cwnd >= 4 * CUNIT)
|
|
cb->s_cwnd = cwnd / 2;
|
|
if (SSEQ_GT(onxt, cb->s_snxt))
|
|
cb->s_snxt = onxt;
|
|
return (1);
|
|
}
|
|
} else
|
|
cb->s_dupacks = 0;
|
|
goto update_window;
|
|
}
|
|
cb->s_dupacks = 0;
|
|
/*
|
|
* If our correspondent acknowledges data we haven't sent
|
|
* TCP would drop the packet after acking. We'll be a little
|
|
* more permissive
|
|
*/
|
|
if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) {
|
|
sppstat.spps_rcvacktoomuch++;
|
|
si->si_ack = cb->s_smax + 1;
|
|
}
|
|
sppstat.spps_rcvackpack++;
|
|
/*
|
|
* If transmit timer is running and timed sequence
|
|
* number was acked, update smoothed round trip time.
|
|
* See discussion of algorithm in tcp_input.c
|
|
*/
|
|
if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) {
|
|
sppstat.spps_rttupdated++;
|
|
if (cb->s_srtt != 0) {
|
|
register short delta;
|
|
delta = cb->s_rtt - (cb->s_srtt >> 3);
|
|
if ((cb->s_srtt += delta) <= 0)
|
|
cb->s_srtt = 1;
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
delta -= (cb->s_rttvar >> 2);
|
|
if ((cb->s_rttvar += delta) <= 0)
|
|
cb->s_rttvar = 1;
|
|
} else {
|
|
/*
|
|
* No rtt measurement yet
|
|
*/
|
|
cb->s_srtt = cb->s_rtt << 3;
|
|
cb->s_rttvar = cb->s_rtt << 1;
|
|
}
|
|
cb->s_rtt = 0;
|
|
cb->s_rxtshift = 0;
|
|
SPPT_RANGESET(cb->s_rxtcur,
|
|
((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
|
|
SPPTV_MIN, SPPTV_REXMTMAX);
|
|
}
|
|
/*
|
|
* If all outstanding data is acked, stop retransmit
|
|
* timer and remember to restart (more output or persist).
|
|
* If there is more data to be acked, restart retransmit
|
|
* timer, using current (possibly backed-off) value;
|
|
*/
|
|
if (si->si_ack == cb->s_smax + 1) {
|
|
cb->s_timer[SPPT_REXMT] = 0;
|
|
cb->s_flags |= SF_RXT;
|
|
} else if (cb->s_timer[SPPT_PERSIST] == 0)
|
|
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
|
|
/*
|
|
* When new data is acked, open the congestion window.
|
|
* If the window gives us less than ssthresh packets
|
|
* in flight, open exponentially (maxseg at a time).
|
|
* Otherwise open linearly (maxseg^2 / cwnd at a time).
|
|
*/
|
|
incr = CUNIT;
|
|
if (cb->s_cwnd > cb->s_ssthresh)
|
|
incr = max(incr * incr / cb->s_cwnd, 1);
|
|
cb->s_cwnd = min(cb->s_cwnd + incr, cb->s_cwmx);
|
|
/*
|
|
* Trim Acked data from output queue.
|
|
*/
|
|
while ((m = so->so_snd.sb_mb) != NULL) {
|
|
if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack))
|
|
sbdroprecord(&so->so_snd);
|
|
else
|
|
break;
|
|
}
|
|
sowwakeup(so);
|
|
cb->s_rack = si->si_ack;
|
|
update_window:
|
|
if (SSEQ_LT(cb->s_snxt, cb->s_rack))
|
|
cb->s_snxt = cb->s_rack;
|
|
if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq &&
|
|
(SSEQ_LT(cb->s_swl2, si->si_ack) ||
|
|
cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) {
|
|
/* keep track of pure window updates */
|
|
if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack
|
|
&& SSEQ_LT(cb->s_ralo, si->si_alo)) {
|
|
sppstat.spps_rcvwinupd++;
|
|
sppstat.spps_rcvdupack--;
|
|
}
|
|
cb->s_ralo = si->si_alo;
|
|
cb->s_swl1 = si->si_seq;
|
|
cb->s_swl2 = si->si_ack;
|
|
cb->s_swnd = (1 + si->si_alo - si->si_ack);
|
|
if (cb->s_swnd > cb->s_smxw)
|
|
cb->s_smxw = cb->s_swnd;
|
|
cb->s_flags |= SF_WIN;
|
|
}
|
|
/*
|
|
* If this packet number is higher than that which
|
|
* we have allocated refuse it, unless urgent
|
|
*/
|
|
if (SSEQ_GT(si->si_seq, cb->s_alo)) {
|
|
if (si->si_cc & SP_SP) {
|
|
sppstat.spps_rcvwinprobe++;
|
|
return (1);
|
|
} else
|
|
sppstat.spps_rcvpackafterwin++;
|
|
if (si->si_cc & SP_OB) {
|
|
if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) {
|
|
ns_error(dtom(si), NS_ERR_FULLUP, 0);
|
|
return (0);
|
|
} /* else queue this packet; */
|
|
} else {
|
|
/*register struct socket *so = cb->s_nspcb->nsp_socket;
|
|
if (so->so_state && SS_NOFDREF) {
|
|
ns_error(dtom(si), NS_ERR_NOSOCK, 0);
|
|
(void)spp_close(cb);
|
|
} else
|
|
would crash system*/
|
|
spp_istat.notyet++;
|
|
ns_error(dtom(si), NS_ERR_FULLUP, 0);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* If this is a system packet, we don't need to
|
|
* queue it up, and won't update acknowledge #
|
|
*/
|
|
if (si->si_cc & SP_SP) {
|
|
return (1);
|
|
}
|
|
/*
|
|
* We have already seen this packet, so drop.
|
|
*/
|
|
if (SSEQ_LT(si->si_seq, cb->s_ack)) {
|
|
spp_istat.bdreas++;
|
|
sppstat.spps_rcvduppack++;
|
|
if (si->si_seq == cb->s_ack - 1)
|
|
spp_istat.lstdup++;
|
|
return (1);
|
|
}
|
|
/*
|
|
* Loop through all packets queued up to insert in
|
|
* appropriate sequence.
|
|
*/
|
|
for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
|
|
if (si->si_seq == SI(q)->si_seq) {
|
|
sppstat.spps_rcvduppack++;
|
|
return (1);
|
|
}
|
|
if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) {
|
|
sppstat.spps_rcvoopack++;
|
|
break;
|
|
}
|
|
}
|
|
insque(si, q->si_prev);
|
|
/*
|
|
* If this packet is urgent, inform process
|
|
*/
|
|
if (si->si_cc & SP_OB) {
|
|
cb->s_iobc = ((char *)si)[1 + sizeof(*si)];
|
|
sohasoutofband(so);
|
|
cb->s_oobflags |= SF_IOOB;
|
|
}
|
|
present:
|
|
#define SPINC sizeof(struct sphdr)
|
|
/*
|
|
* Loop through all packets queued up to update acknowledge
|
|
* number, and present all acknowledged data to user;
|
|
* If in packet interface mode, show packet headers.
|
|
*/
|
|
for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
|
|
if (SI(q)->si_seq == cb->s_ack) {
|
|
cb->s_ack++;
|
|
m = dtom(q);
|
|
if (SI(q)->si_cc & SP_OB) {
|
|
cb->s_oobflags &= ~SF_IOOB;
|
|
if (so->so_rcv.sb_cc)
|
|
so->so_oobmark = so->so_rcv.sb_cc;
|
|
else
|
|
so->so_state |= SS_RCVATMARK;
|
|
}
|
|
q = q->si_prev;
|
|
remque(q->si_next);
|
|
wakeup = 1;
|
|
sppstat.spps_rcvpack++;
|
|
#ifdef SF_NEWCALL
|
|
if (cb->s_flags2 & SF_NEWCALL) {
|
|
struct sphdr *sp = mtod(m, struct sphdr *);
|
|
u_char dt = sp->sp_dt;
|
|
spp_newchecks[4]++;
|
|
if (dt != cb->s_rhdr.sp_dt) {
|
|
struct mbuf *mm =
|
|
m_getclr(M_DONTWAIT, MT_CONTROL);
|
|
spp_newchecks[0]++;
|
|
if (mm != NULL) {
|
|
u_short *s =
|
|
mtod(mm, u_short *);
|
|
cb->s_rhdr.sp_dt = dt;
|
|
mm->m_len = 5; /*XXX*/
|
|
s[0] = 5;
|
|
s[1] = 1;
|
|
*(u_char *)(&s[2]) = dt;
|
|
sbappend(&so->so_rcv, mm);
|
|
}
|
|
}
|
|
if (sp->sp_cc & SP_OB) {
|
|
MCHTYPE(m, MT_OOBDATA);
|
|
spp_newchecks[1]++;
|
|
so->so_oobmark = 0;
|
|
so->so_state &= ~SS_RCVATMARK;
|
|
}
|
|
if (packetp == 0) {
|
|
m->m_data += SPINC;
|
|
m->m_len -= SPINC;
|
|
m->m_pkthdr.len -= SPINC;
|
|
}
|
|
if ((sp->sp_cc & SP_EM) || packetp) {
|
|
sbappendrecord(&so->so_rcv, m);
|
|
spp_newchecks[9]++;
|
|
} else
|
|
sbappend(&so->so_rcv, m);
|
|
} else
|
|
#endif
|
|
if (packetp) {
|
|
sbappendrecord(&so->so_rcv, m);
|
|
} else {
|
|
cb->s_rhdr = *mtod(m, struct sphdr *);
|
|
m->m_data += SPINC;
|
|
m->m_len -= SPINC;
|
|
m->m_pkthdr.len -= SPINC;
|
|
sbappend(&so->so_rcv, m);
|
|
}
|
|
} else
|
|
break;
|
|
}
|
|
if (wakeup) sorwakeup(so);
|
|
return (0);
|
|
}
|
|
|
|
spp_ctlinput(cmd, arg)
|
|
int cmd;
|
|
caddr_t arg;
|
|
{
|
|
struct ns_addr *na;
|
|
extern u_char nsctlerrmap[];
|
|
extern spp_abort(), spp_quench();
|
|
extern struct nspcb *idp_drop();
|
|
struct ns_errp *errp;
|
|
struct nspcb *nsp;
|
|
struct sockaddr_ns *sns;
|
|
int type;
|
|
|
|
if (cmd < 0 || cmd > PRC_NCMDS)
|
|
return;
|
|
type = NS_ERR_UNREACH_HOST;
|
|
|
|
switch (cmd) {
|
|
|
|
case PRC_ROUTEDEAD:
|
|
return;
|
|
|
|
case PRC_IFDOWN:
|
|
case PRC_HOSTDEAD:
|
|
case PRC_HOSTUNREACH:
|
|
sns = (struct sockaddr_ns *)arg;
|
|
if (sns->sns_family != AF_NS)
|
|
return;
|
|
na = &sns->sns_addr;
|
|
break;
|
|
|
|
default:
|
|
errp = (struct ns_errp *)arg;
|
|
na = &errp->ns_err_idp.idp_dna;
|
|
type = errp->ns_err_num;
|
|
type = ntohs((u_short)type);
|
|
}
|
|
switch (type) {
|
|
|
|
case NS_ERR_UNREACH_HOST:
|
|
ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0);
|
|
break;
|
|
|
|
case NS_ERR_TOO_BIG:
|
|
case NS_ERR_NOSOCK:
|
|
nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port,
|
|
NS_WILDCARD);
|
|
if (nsp) {
|
|
if(nsp->nsp_pcb)
|
|
(void) spp_drop((struct sppcb *)nsp->nsp_pcb,
|
|
(int)nsctlerrmap[cmd]);
|
|
else
|
|
(void) idp_drop(nsp, (int)nsctlerrmap[cmd]);
|
|
}
|
|
break;
|
|
|
|
case NS_ERR_FULLUP:
|
|
ns_pcbnotify(na, 0, spp_quench, (long) 0);
|
|
}
|
|
}
|
|
/*
|
|
* When a source quench is received, close congestion window
|
|
* to one packet. We will gradually open it again as we proceed.
|
|
*/
|
|
spp_quench(nsp)
|
|
struct nspcb *nsp;
|
|
{
|
|
struct sppcb *cb = nstosppcb(nsp);
|
|
|
|
if (cb)
|
|
cb->s_cwnd = CUNIT;
|
|
}
|
|
|
|
#ifdef notdef
|
|
int
|
|
spp_fixmtu(nsp)
|
|
register struct nspcb *nsp;
|
|
{
|
|
register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb);
|
|
register struct mbuf *m;
|
|
register struct spidp *si;
|
|
struct ns_errp *ep;
|
|
struct sockbuf *sb;
|
|
int badseq, len;
|
|
struct mbuf *firstbad, *m0;
|
|
|
|
if (cb) {
|
|
/*
|
|
* The notification that we have sent
|
|
* too much is bad news -- we will
|
|
* have to go through queued up so far
|
|
* splitting ones which are too big and
|
|
* reassigning sequence numbers and checksums.
|
|
* we should then retransmit all packets from
|
|
* one above the offending packet to the last one
|
|
* we had sent (or our allocation)
|
|
* then the offending one so that the any queued
|
|
* data at our destination will be discarded.
|
|
*/
|
|
ep = (struct ns_errp *)nsp->nsp_notify_param;
|
|
sb = &nsp->nsp_socket->so_snd;
|
|
cb->s_mtu = ep->ns_err_param;
|
|
badseq = SI(&ep->ns_err_idp)->si_seq;
|
|
for (m = sb->sb_mb; m; m = m->m_act) {
|
|
si = mtod(m, struct spidp *);
|
|
if (si->si_seq == badseq)
|
|
break;
|
|
}
|
|
if (m == 0) return;
|
|
firstbad = m;
|
|
/*for (;;) {*/
|
|
/* calculate length */
|
|
for (m0 = m, len = 0; m ; m = m->m_next)
|
|
len += m->m_len;
|
|
if (len > cb->s_mtu) {
|
|
}
|
|
/* FINISH THIS
|
|
} */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
spp_output(cb, m0)
|
|
register struct sppcb *cb;
|
|
struct mbuf *m0;
|
|
{
|
|
struct socket *so = cb->s_nspcb->nsp_socket;
|
|
register struct mbuf *m;
|
|
register struct spidp *si = (struct spidp *) 0;
|
|
register struct sockbuf *sb = &so->so_snd;
|
|
int len = 0, win, rcv_win;
|
|
short span, off, recordp = 0;
|
|
u_short alo;
|
|
int error = 0, sendalot;
|
|
#ifdef notdef
|
|
int idle;
|
|
#endif
|
|
struct mbuf *mprev;
|
|
extern int idpcksum;
|
|
|
|
if (m0) {
|
|
int mtu = cb->s_mtu;
|
|
int datalen;
|
|
/*
|
|
* Make sure that packet isn't too big.
|
|
*/
|
|
for (m = m0; m ; m = m->m_next) {
|
|
mprev = m;
|
|
len += m->m_len;
|
|
if (m->m_flags & M_EOR)
|
|
recordp = 1;
|
|
}
|
|
datalen = (cb->s_flags & SF_HO) ?
|
|
len - sizeof (struct sphdr) : len;
|
|
if (datalen > mtu) {
|
|
if (cb->s_flags & SF_PI) {
|
|
m_freem(m0);
|
|
return (EMSGSIZE);
|
|
} else {
|
|
int oldEM = cb->s_cc & SP_EM;
|
|
|
|
cb->s_cc &= ~SP_EM;
|
|
while (len > mtu) {
|
|
/*
|
|
* Here we are only being called
|
|
* from usrreq(), so it is OK to
|
|
* block.
|
|
*/
|
|
m = m_copym(m0, 0, mtu, M_WAIT);
|
|
if (cb->s_flags & SF_NEWCALL) {
|
|
struct mbuf *mm = m;
|
|
spp_newchecks[7]++;
|
|
while (mm) {
|
|
mm->m_flags &= ~M_EOR;
|
|
mm = mm->m_next;
|
|
}
|
|
}
|
|
error = spp_output(cb, m);
|
|
if (error) {
|
|
cb->s_cc |= oldEM;
|
|
m_freem(m0);
|
|
return(error);
|
|
}
|
|
m_adj(m0, mtu);
|
|
len -= mtu;
|
|
}
|
|
cb->s_cc |= oldEM;
|
|
}
|
|
}
|
|
/*
|
|
* Force length even, by adding a "garbage byte" if
|
|
* necessary.
|
|
*/
|
|
if (len & 1) {
|
|
m = mprev;
|
|
if (M_TRAILINGSPACE(m) >= 1)
|
|
m->m_len++;
|
|
else {
|
|
struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA);
|
|
|
|
if (m1 == 0) {
|
|
m_freem(m0);
|
|
return (ENOBUFS);
|
|
}
|
|
m1->m_len = 1;
|
|
*(mtod(m1, u_char *)) = 0;
|
|
m->m_next = m1;
|
|
}
|
|
}
|
|
m = m_gethdr(M_DONTWAIT, MT_HEADER);
|
|
if (m == 0) {
|
|
m_freem(m0);
|
|
return (ENOBUFS);
|
|
}
|
|
/*
|
|
* Fill in mbuf with extended SP header
|
|
* and addresses and length put into network format.
|
|
*/
|
|
MH_ALIGN(m, sizeof (struct spidp));
|
|
m->m_len = sizeof (struct spidp);
|
|
m->m_next = m0;
|
|
si = mtod(m, struct spidp *);
|
|
si->si_i = *cb->s_idp;
|
|
si->si_s = cb->s_shdr;
|
|
if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) {
|
|
register struct sphdr *sh;
|
|
if (m0->m_len < sizeof (*sh)) {
|
|
if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) {
|
|
(void) m_free(m);
|
|
m_freem(m0);
|
|
return (EINVAL);
|
|
}
|
|
m->m_next = m0;
|
|
}
|
|
sh = mtod(m0, struct sphdr *);
|
|
si->si_dt = sh->sp_dt;
|
|
si->si_cc |= sh->sp_cc & SP_EM;
|
|
m0->m_len -= sizeof (*sh);
|
|
m0->m_data += sizeof (*sh);
|
|
len -= sizeof (*sh);
|
|
}
|
|
len += sizeof(*si);
|
|
if ((cb->s_flags2 & SF_NEWCALL) && recordp) {
|
|
si->si_cc |= SP_EM;
|
|
spp_newchecks[8]++;
|
|
}
|
|
if (cb->s_oobflags & SF_SOOB) {
|
|
/*
|
|
* Per jqj@cornell:
|
|
* make sure OB packets convey exactly 1 byte.
|
|
* If the packet is 1 byte or larger, we
|
|
* have already guaranted there to be at least
|
|
* one garbage byte for the checksum, and
|
|
* extra bytes shouldn't hurt!
|
|
*/
|
|
if (len > sizeof(*si)) {
|
|
si->si_cc |= SP_OB;
|
|
len = (1 + sizeof(*si));
|
|
}
|
|
}
|
|
si->si_len = htons((u_short)len);
|
|
m->m_pkthdr.len = ((len - 1) | 1) + 1;
|
|
/*
|
|
* queue stuff up for output
|
|
*/
|
|
sbappendrecord(sb, m);
|
|
cb->s_seq++;
|
|
}
|
|
#ifdef notdef
|
|
idle = (cb->s_smax == (cb->s_rack - 1));
|
|
#endif
|
|
again:
|
|
sendalot = 0;
|
|
off = cb->s_snxt - cb->s_rack;
|
|
win = min(cb->s_swnd, (cb->s_cwnd/CUNIT));
|
|
|
|
/*
|
|
* If in persist timeout with window of 0, send a probe.
|
|
* Otherwise, if window is small but nonzero
|
|
* and timer expired, send what we can and go into
|
|
* transmit state.
|
|
*/
|
|
if (cb->s_force == 1 + SPPT_PERSIST) {
|
|
if (win != 0) {
|
|
cb->s_timer[SPPT_PERSIST] = 0;
|
|
cb->s_rxtshift = 0;
|
|
}
|
|
}
|
|
span = cb->s_seq - cb->s_rack;
|
|
len = min(span, win) - off;
|
|
|
|
if (len < 0) {
|
|
/*
|
|
* Window shrank after we went into it.
|
|
* If window shrank to 0, cancel pending
|
|
* restransmission and pull s_snxt back
|
|
* to (closed) window. We will enter persist
|
|
* state below. If the widndow didn't close completely,
|
|
* just wait for an ACK.
|
|
*/
|
|
len = 0;
|
|
if (win == 0) {
|
|
cb->s_timer[SPPT_REXMT] = 0;
|
|
cb->s_snxt = cb->s_rack;
|
|
}
|
|
}
|
|
if (len > 1)
|
|
sendalot = 1;
|
|
rcv_win = sbspace(&so->so_rcv);
|
|
|
|
/*
|
|
* Send if we owe peer an ACK.
|
|
*/
|
|
if (cb->s_oobflags & SF_SOOB) {
|
|
/*
|
|
* must transmit this out of band packet
|
|
*/
|
|
cb->s_oobflags &= ~ SF_SOOB;
|
|
sendalot = 1;
|
|
sppstat.spps_sndurg++;
|
|
goto found;
|
|
}
|
|
if (cb->s_flags & SF_ACKNOW)
|
|
goto send;
|
|
if (cb->s_state < TCPS_ESTABLISHED)
|
|
goto send;
|
|
/*
|
|
* Silly window can't happen in spp.
|
|
* Code from tcp deleted.
|
|
*/
|
|
if (len)
|
|
goto send;
|
|
/*
|
|
* Compare available window to amount of window
|
|
* known to peer (as advertised window less
|
|
* next expected input.) If the difference is at least two
|
|
* packets or at least 35% of the mximum possible window,
|
|
* then want to send a window update to peer.
|
|
*/
|
|
if (rcv_win > 0) {
|
|
u_short delta = 1 + cb->s_alo - cb->s_ack;
|
|
int adv = rcv_win - (delta * cb->s_mtu);
|
|
|
|
if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) ||
|
|
(100 * adv / so->so_rcv.sb_hiwat >= 35)) {
|
|
sppstat.spps_sndwinup++;
|
|
cb->s_flags |= SF_ACKNOW;
|
|
goto send;
|
|
}
|
|
|
|
}
|
|
/*
|
|
* Many comments from tcp_output.c are appropriate here
|
|
* including . . .
|
|
* If send window is too small, there is data to transmit, and no
|
|
* retransmit or persist is pending, then go to persist state.
|
|
* If nothing happens soon, send when timer expires:
|
|
* if window is nonzero, transmit what we can,
|
|
* otherwise send a probe.
|
|
*/
|
|
if (so->so_snd.sb_cc && cb->s_timer[SPPT_REXMT] == 0 &&
|
|
cb->s_timer[SPPT_PERSIST] == 0) {
|
|
cb->s_rxtshift = 0;
|
|
spp_setpersist(cb);
|
|
}
|
|
/*
|
|
* No reason to send a packet, just return.
|
|
*/
|
|
cb->s_outx = 1;
|
|
return (0);
|
|
|
|
send:
|
|
/*
|
|
* Find requested packet.
|
|
*/
|
|
si = 0;
|
|
if (len > 0) {
|
|
cb->s_want = cb->s_snxt;
|
|
for (m = sb->sb_mb; m; m = m->m_act) {
|
|
si = mtod(m, struct spidp *);
|
|
if (SSEQ_LEQ(cb->s_snxt, si->si_seq))
|
|
break;
|
|
}
|
|
found:
|
|
if (si) {
|
|
if (si->si_seq == cb->s_snxt)
|
|
cb->s_snxt++;
|
|
else
|
|
sppstat.spps_sndvoid++, si = 0;
|
|
}
|
|
}
|
|
/*
|
|
* update window
|
|
*/
|
|
if (rcv_win < 0)
|
|
rcv_win = 0;
|
|
alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu));
|
|
if (SSEQ_LT(alo, cb->s_alo))
|
|
alo = cb->s_alo;
|
|
|
|
if (si) {
|
|
/*
|
|
* must make a copy of this packet for
|
|
* idp_output to monkey with
|
|
*/
|
|
m = m_copy(dtom(si), 0, (int)M_COPYALL);
|
|
if (m == NULL) {
|
|
return (ENOBUFS);
|
|
}
|
|
si = mtod(m, struct spidp *);
|
|
if (SSEQ_LT(si->si_seq, cb->s_smax))
|
|
sppstat.spps_sndrexmitpack++;
|
|
else
|
|
sppstat.spps_sndpack++;
|
|
} else if (cb->s_force || cb->s_flags & SF_ACKNOW) {
|
|
/*
|
|
* Must send an acknowledgement or a probe
|
|
*/
|
|
if (cb->s_force)
|
|
sppstat.spps_sndprobe++;
|
|
if (cb->s_flags & SF_ACKNOW)
|
|
sppstat.spps_sndacks++;
|
|
m = m_gethdr(M_DONTWAIT, MT_HEADER);
|
|
if (m == 0)
|
|
return (ENOBUFS);
|
|
/*
|
|
* Fill in mbuf with extended SP header
|
|
* and addresses and length put into network format.
|
|
*/
|
|
MH_ALIGN(m, sizeof (struct spidp));
|
|
m->m_len = sizeof (*si);
|
|
m->m_pkthdr.len = sizeof (*si);
|
|
si = mtod(m, struct spidp *);
|
|
si->si_i = *cb->s_idp;
|
|
si->si_s = cb->s_shdr;
|
|
si->si_seq = cb->s_smax + 1;
|
|
si->si_len = htons(sizeof (*si));
|
|
si->si_cc |= SP_SP;
|
|
} else {
|
|
cb->s_outx = 3;
|
|
if (so->so_options & SO_DEBUG || traceallspps)
|
|
spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
|
|
return (0);
|
|
}
|
|
/*
|
|
* Stuff checksum and output datagram.
|
|
*/
|
|
if ((si->si_cc & SP_SP) == 0) {
|
|
if (cb->s_force != (1 + SPPT_PERSIST) ||
|
|
cb->s_timer[SPPT_PERSIST] == 0) {
|
|
/*
|
|
* If this is a new packet and we are not currently
|
|
* timing anything, time this one.
|
|
*/
|
|
if (SSEQ_LT(cb->s_smax, si->si_seq)) {
|
|
cb->s_smax = si->si_seq;
|
|
if (cb->s_rtt == 0) {
|
|
sppstat.spps_segstimed++;
|
|
cb->s_rtseq = si->si_seq;
|
|
cb->s_rtt = 1;
|
|
}
|
|
}
|
|
/*
|
|
* Set rexmt timer if not currently set,
|
|
* Initial value for retransmit timer is smoothed
|
|
* round-trip time + 2 * round-trip time variance.
|
|
* Initialize shift counter which is used for backoff
|
|
* of retransmit time.
|
|
*/
|
|
if (cb->s_timer[SPPT_REXMT] == 0 &&
|
|
cb->s_snxt != cb->s_rack) {
|
|
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
|
|
if (cb->s_timer[SPPT_PERSIST]) {
|
|
cb->s_timer[SPPT_PERSIST] = 0;
|
|
cb->s_rxtshift = 0;
|
|
}
|
|
}
|
|
} else if (SSEQ_LT(cb->s_smax, si->si_seq)) {
|
|
cb->s_smax = si->si_seq;
|
|
}
|
|
} else if (cb->s_state < TCPS_ESTABLISHED) {
|
|
if (cb->s_rtt == 0)
|
|
cb->s_rtt = 1; /* Time initial handshake */
|
|
if (cb->s_timer[SPPT_REXMT] == 0)
|
|
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
|
|
}
|
|
{
|
|
/*
|
|
* Do not request acks when we ack their data packets or
|
|
* when we do a gratuitous window update.
|
|
*/
|
|
if (((si->si_cc & SP_SP) == 0) || cb->s_force)
|
|
si->si_cc |= SP_SA;
|
|
si->si_seq = htons(si->si_seq);
|
|
si->si_alo = htons(alo);
|
|
si->si_ack = htons(cb->s_ack);
|
|
|
|
if (idpcksum) {
|
|
si->si_sum = 0;
|
|
len = ntohs(si->si_len);
|
|
if (len & 1)
|
|
len++;
|
|
si->si_sum = ns_cksum(m, len);
|
|
} else
|
|
si->si_sum = 0xffff;
|
|
|
|
cb->s_outx = 4;
|
|
if (so->so_options & SO_DEBUG || traceallspps)
|
|
spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
|
|
|
|
if (so->so_options & SO_DONTROUTE)
|
|
error = ns_output(m, (struct route *)0, NS_ROUTETOIF);
|
|
else
|
|
error = ns_output(m, &cb->s_nspcb->nsp_route, 0);
|
|
}
|
|
if (error) {
|
|
return (error);
|
|
}
|
|
sppstat.spps_sndtotal++;
|
|
/*
|
|
* Data sent (as far as we can tell).
|
|
* If this advertises a larger window than any other segment,
|
|
* then remember the size of the advertized window.
|
|
* Any pending ACK has now been sent.
|
|
*/
|
|
cb->s_force = 0;
|
|
cb->s_flags &= ~(SF_ACKNOW|SF_DELACK);
|
|
if (SSEQ_GT(alo, cb->s_alo))
|
|
cb->s_alo = alo;
|
|
if (sendalot)
|
|
goto again;
|
|
cb->s_outx = 5;
|
|
return (0);
|
|
}
|
|
|
|
int spp_do_persist_panics = 0;
|
|
|
|
spp_setpersist(cb)
|
|
register struct sppcb *cb;
|
|
{
|
|
register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
|
|
extern int spp_backoff[];
|
|
|
|
if (cb->s_timer[SPPT_REXMT] && spp_do_persist_panics)
|
|
panic("spp_output REXMT");
|
|
/*
|
|
* Start/restart persistance timer.
|
|
*/
|
|
SPPT_RANGESET(cb->s_timer[SPPT_PERSIST],
|
|
t*spp_backoff[cb->s_rxtshift],
|
|
SPPTV_PERSMIN, SPPTV_PERSMAX);
|
|
if (cb->s_rxtshift < SPP_MAXRXTSHIFT)
|
|
cb->s_rxtshift++;
|
|
}
|
|
/*ARGSUSED*/
|
|
spp_ctloutput(req, so, level, name, value)
|
|
int req;
|
|
struct socket *so;
|
|
int name;
|
|
struct mbuf **value;
|
|
{
|
|
register struct mbuf *m;
|
|
struct nspcb *nsp = sotonspcb(so);
|
|
register struct sppcb *cb;
|
|
int mask, error = 0;
|
|
|
|
if (level != NSPROTO_SPP) {
|
|
/* This will have to be changed when we do more general
|
|
stacking of protocols */
|
|
return (idp_ctloutput(req, so, level, name, value));
|
|
}
|
|
if (nsp == NULL) {
|
|
error = EINVAL;
|
|
goto release;
|
|
} else
|
|
cb = nstosppcb(nsp);
|
|
|
|
switch (req) {
|
|
|
|
case PRCO_GETOPT:
|
|
if (value == NULL)
|
|
return (EINVAL);
|
|
m = m_get(M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
switch (name) {
|
|
|
|
case SO_HEADERS_ON_INPUT:
|
|
mask = SF_HI;
|
|
goto get_flags;
|
|
|
|
case SO_HEADERS_ON_OUTPUT:
|
|
mask = SF_HO;
|
|
get_flags:
|
|
m->m_len = sizeof(short);
|
|
*mtod(m, short *) = cb->s_flags & mask;
|
|
break;
|
|
|
|
case SO_MTU:
|
|
m->m_len = sizeof(u_short);
|
|
*mtod(m, short *) = cb->s_mtu;
|
|
break;
|
|
|
|
case SO_LAST_HEADER:
|
|
m->m_len = sizeof(struct sphdr);
|
|
*mtod(m, struct sphdr *) = cb->s_rhdr;
|
|
break;
|
|
|
|
case SO_DEFAULT_HEADERS:
|
|
m->m_len = sizeof(struct spidp);
|
|
*mtod(m, struct sphdr *) = cb->s_shdr;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
*value = m;
|
|
break;
|
|
|
|
case PRCO_SETOPT:
|
|
if (value == 0 || *value == 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
switch (name) {
|
|
int *ok;
|
|
|
|
case SO_HEADERS_ON_INPUT:
|
|
mask = SF_HI;
|
|
goto set_head;
|
|
|
|
case SO_HEADERS_ON_OUTPUT:
|
|
mask = SF_HO;
|
|
set_head:
|
|
if (cb->s_flags & SF_PI) {
|
|
ok = mtod(*value, int *);
|
|
if (*ok)
|
|
cb->s_flags |= mask;
|
|
else
|
|
cb->s_flags &= ~mask;
|
|
} else error = EINVAL;
|
|
break;
|
|
|
|
case SO_MTU:
|
|
cb->s_mtu = *(mtod(*value, u_short *));
|
|
break;
|
|
|
|
#ifdef SF_NEWCALL
|
|
case SO_NEWCALL:
|
|
ok = mtod(*value, int *);
|
|
if (*ok) {
|
|
cb->s_flags2 |= SF_NEWCALL;
|
|
spp_newchecks[5]++;
|
|
} else {
|
|
cb->s_flags2 &= ~SF_NEWCALL;
|
|
spp_newchecks[6]++;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case SO_DEFAULT_HEADERS:
|
|
{
|
|
register struct sphdr *sp
|
|
= mtod(*value, struct sphdr *);
|
|
cb->s_dt = sp->sp_dt;
|
|
cb->s_cc = sp->sp_cc & SP_EM;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
m_freem(*value);
|
|
break;
|
|
}
|
|
release:
|
|
return (error);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
spp_usrreq(so, req, m, nam, controlp)
|
|
struct socket *so;
|
|
int req;
|
|
struct mbuf *m, *nam, *controlp;
|
|
{
|
|
struct nspcb *nsp = sotonspcb(so);
|
|
register struct sppcb *cb;
|
|
int s = splnet();
|
|
int error = 0, ostate;
|
|
struct mbuf *mm;
|
|
register struct sockbuf *sb;
|
|
|
|
if (req == PRU_CONTROL)
|
|
return (ns_control(so, (int)m, (caddr_t)nam,
|
|
(struct ifnet *)controlp));
|
|
if (nsp == NULL) {
|
|
if (req != PRU_ATTACH) {
|
|
error = EINVAL;
|
|
goto release;
|
|
}
|
|
} else
|
|
cb = nstosppcb(nsp);
|
|
|
|
ostate = cb ? cb->s_state : 0;
|
|
|
|
switch (req) {
|
|
|
|
case PRU_ATTACH:
|
|
if (nsp != NULL) {
|
|
error = EISCONN;
|
|
break;
|
|
}
|
|
error = ns_pcballoc(so, &nspcb);
|
|
if (error)
|
|
break;
|
|
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
|
|
error = soreserve(so, (u_long) 3072, (u_long) 3072);
|
|
if (error)
|
|
break;
|
|
}
|
|
nsp = sotonspcb(so);
|
|
|
|
mm = m_getclr(M_DONTWAIT, MT_PCB);
|
|
sb = &so->so_snd;
|
|
|
|
if (mm == NULL) {
|
|
error = ENOBUFS;
|
|
break;
|
|
}
|
|
cb = mtod(mm, struct sppcb *);
|
|
mm = m_getclr(M_DONTWAIT, MT_HEADER);
|
|
if (mm == NULL) {
|
|
(void) m_free(dtom(m));
|
|
error = ENOBUFS;
|
|
break;
|
|
}
|
|
cb->s_idp = mtod(mm, struct idp *);
|
|
cb->s_state = TCPS_LISTEN;
|
|
cb->s_smax = -1;
|
|
cb->s_swl1 = -1;
|
|
cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q;
|
|
cb->s_nspcb = nsp;
|
|
cb->s_mtu = 576 - sizeof (struct spidp);
|
|
cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu;
|
|
cb->s_ssthresh = cb->s_cwnd;
|
|
cb->s_cwmx = sbspace(sb) * CUNIT /
|
|
(2 * sizeof (struct spidp));
|
|
/* Above is recomputed when connecting to account
|
|
for changed buffering or mtu's */
|
|
cb->s_rtt = SPPTV_SRTTBASE;
|
|
cb->s_rttvar = SPPTV_SRTTDFLT << 2;
|
|
SPPT_RANGESET(cb->s_rxtcur,
|
|
((SPPTV_SRTTBASE >> 2) + (SPPTV_SRTTDFLT << 2)) >> 1,
|
|
SPPTV_MIN, SPPTV_REXMTMAX);
|
|
nsp->nsp_pcb = (caddr_t) cb;
|
|
break;
|
|
|
|
case PRU_DETACH:
|
|
if (nsp == NULL) {
|
|
error = ENOTCONN;
|
|
break;
|
|
}
|
|
if (cb->s_state > TCPS_LISTEN)
|
|
cb = spp_disconnect(cb);
|
|
else
|
|
cb = spp_close(cb);
|
|
break;
|
|
|
|
case PRU_BIND:
|
|
error = ns_pcbbind(nsp, nam);
|
|
break;
|
|
|
|
case PRU_LISTEN:
|
|
if (nsp->nsp_lport == 0)
|
|
error = ns_pcbbind(nsp, (struct mbuf *)0);
|
|
if (error == 0)
|
|
cb->s_state = TCPS_LISTEN;
|
|
break;
|
|
|
|
/*
|
|
* Initiate connection to peer.
|
|
* Enter SYN_SENT state, and mark socket as connecting.
|
|
* Start keep-alive timer, setup prototype header,
|
|
* Send initial system packet requesting connection.
|
|
*/
|
|
case PRU_CONNECT:
|
|
if (nsp->nsp_lport == 0) {
|
|
error = ns_pcbbind(nsp, (struct mbuf *)0);
|
|
if (error)
|
|
break;
|
|
}
|
|
error = ns_pcbconnect(nsp, nam);
|
|
if (error)
|
|
break;
|
|
soisconnecting(so);
|
|
sppstat.spps_connattempt++;
|
|
cb->s_state = TCPS_SYN_SENT;
|
|
cb->s_did = 0;
|
|
spp_template(cb);
|
|
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
|
|
cb->s_force = 1 + SPPTV_KEEP;
|
|
/*
|
|
* Other party is required to respond to
|
|
* the port I send from, but he is not
|
|
* required to answer from where I am sending to,
|
|
* so allow wildcarding.
|
|
* original port I am sending to is still saved in
|
|
* cb->s_dport.
|
|
*/
|
|
nsp->nsp_fport = 0;
|
|
error = spp_output(cb, (struct mbuf *) 0);
|
|
break;
|
|
|
|
case PRU_CONNECT2:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
|
|
/*
|
|
* We may decide later to implement connection closing
|
|
* handshaking at the spp level optionally.
|
|
* here is the hook to do it:
|
|
*/
|
|
case PRU_DISCONNECT:
|
|
cb = spp_disconnect(cb);
|
|
break;
|
|
|
|
/*
|
|
* Accept a connection. Essentially all the work is
|
|
* done at higher levels; just return the address
|
|
* of the peer, storing through addr.
|
|
*/
|
|
case PRU_ACCEPT: {
|
|
struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *);
|
|
|
|
nam->m_len = sizeof (struct sockaddr_ns);
|
|
sns->sns_family = AF_NS;
|
|
sns->sns_addr = nsp->nsp_faddr;
|
|
break;
|
|
}
|
|
|
|
case PRU_SHUTDOWN:
|
|
socantsendmore(so);
|
|
cb = spp_usrclosed(cb);
|
|
if (cb)
|
|
error = spp_output(cb, (struct mbuf *) 0);
|
|
break;
|
|
|
|
/*
|
|
* After a receive, possibly send acknowledgment
|
|
* updating allocation.
|
|
*/
|
|
case PRU_RCVD:
|
|
cb->s_flags |= SF_RVD;
|
|
(void) spp_output(cb, (struct mbuf *) 0);
|
|
cb->s_flags &= ~SF_RVD;
|
|
break;
|
|
|
|
case PRU_ABORT:
|
|
(void) spp_drop(cb, ECONNABORTED);
|
|
break;
|
|
|
|
case PRU_SENSE:
|
|
case PRU_CONTROL:
|
|
m = NULL;
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
|
|
case PRU_RCVOOB:
|
|
if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark ||
|
|
(so->so_state & SS_RCVATMARK)) {
|
|
m->m_len = 1;
|
|
*mtod(m, caddr_t) = cb->s_iobc;
|
|
break;
|
|
}
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case PRU_SENDOOB:
|
|
if (sbspace(&so->so_snd) < -512) {
|
|
error = ENOBUFS;
|
|
break;
|
|
}
|
|
cb->s_oobflags |= SF_SOOB;
|
|
/* fall into */
|
|
case PRU_SEND:
|
|
if (controlp) {
|
|
u_short *p = mtod(controlp, u_short *);
|
|
spp_newchecks[2]++;
|
|
if ((p[0] == 5) && p[1] == 1) { /* XXXX, for testing */
|
|
cb->s_shdr.sp_dt = *(u_char *)(&p[2]);
|
|
spp_newchecks[3]++;
|
|
}
|
|
m_freem(controlp);
|
|
}
|
|
controlp = NULL;
|
|
error = spp_output(cb, m);
|
|
m = NULL;
|
|
break;
|
|
|
|
case PRU_SOCKADDR:
|
|
ns_setsockaddr(nsp, nam);
|
|
break;
|
|
|
|
case PRU_PEERADDR:
|
|
ns_setpeeraddr(nsp, nam);
|
|
break;
|
|
|
|
case PRU_SLOWTIMO:
|
|
cb = spp_timers(cb, (int)nam);
|
|
req |= ((int)nam) << 8;
|
|
break;
|
|
|
|
case PRU_FASTTIMO:
|
|
case PRU_PROTORCV:
|
|
case PRU_PROTOSEND:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
|
|
default:
|
|
panic("sp_usrreq");
|
|
}
|
|
if (cb && (so->so_options & SO_DEBUG || traceallspps))
|
|
spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req);
|
|
release:
|
|
if (controlp != NULL)
|
|
m_freem(controlp);
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
spp_usrreq_sp(so, req, m, nam, controlp)
|
|
struct socket *so;
|
|
int req;
|
|
struct mbuf *m, *nam, *controlp;
|
|
{
|
|
int error = spp_usrreq(so, req, m, nam, controlp);
|
|
|
|
if (req == PRU_ATTACH && error == 0) {
|
|
struct nspcb *nsp = sotonspcb(so);
|
|
((struct sppcb *)nsp->nsp_pcb)->s_flags |=
|
|
(SF_HI | SF_HO | SF_PI);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create template to be used to send spp packets on a connection.
|
|
* Called after host entry created, fills
|
|
* in a skeletal spp header (choosing connection id),
|
|
* minimizing the amount of work necessary when the connection is used.
|
|
*/
|
|
spp_template(cb)
|
|
register struct sppcb *cb;
|
|
{
|
|
register struct nspcb *nsp = cb->s_nspcb;
|
|
register struct idp *idp = cb->s_idp;
|
|
register struct sockbuf *sb = &(nsp->nsp_socket->so_snd);
|
|
|
|
idp->idp_pt = NSPROTO_SPP;
|
|
idp->idp_sna = nsp->nsp_laddr;
|
|
idp->idp_dna = nsp->nsp_faddr;
|
|
cb->s_sid = htons(spp_iss);
|
|
spp_iss += SPP_ISSINCR/2;
|
|
cb->s_alo = 1;
|
|
cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu;
|
|
cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement
|
|
of large packets */
|
|
cb->s_cwmx = (sbspace(sb) * CUNIT) / (2 * sizeof(struct spidp));
|
|
cb->s_cwmx = max(cb->s_cwmx, cb->s_cwnd);
|
|
/* But allow for lots of little packets as well */
|
|
}
|
|
|
|
/*
|
|
* Close a SPIP control block:
|
|
* discard spp control block itself
|
|
* discard ns protocol control block
|
|
* wake up any sleepers
|
|
*/
|
|
struct sppcb *
|
|
spp_close(cb)
|
|
register struct sppcb *cb;
|
|
{
|
|
register struct spidp_q *s;
|
|
struct nspcb *nsp = cb->s_nspcb;
|
|
struct socket *so = nsp->nsp_socket;
|
|
register struct mbuf *m;
|
|
|
|
s = cb->s_q.si_next;
|
|
while (s != &(cb->s_q)) {
|
|
s = s->si_next;
|
|
m = dtom(s->si_prev);
|
|
remque(s->si_prev);
|
|
m_freem(m);
|
|
}
|
|
(void) m_free(dtom(cb->s_idp));
|
|
(void) m_free(dtom(cb));
|
|
nsp->nsp_pcb = 0;
|
|
soisdisconnected(so);
|
|
ns_pcbdetach(nsp);
|
|
sppstat.spps_closed++;
|
|
return ((struct sppcb *)0);
|
|
}
|
|
/*
|
|
* Someday we may do level 3 handshaking
|
|
* to close a connection or send a xerox style error.
|
|
* For now, just close.
|
|
*/
|
|
struct sppcb *
|
|
spp_usrclosed(cb)
|
|
register struct sppcb *cb;
|
|
{
|
|
return (spp_close(cb));
|
|
}
|
|
struct sppcb *
|
|
spp_disconnect(cb)
|
|
register struct sppcb *cb;
|
|
{
|
|
return (spp_close(cb));
|
|
}
|
|
/*
|
|
* Drop connection, reporting
|
|
* the specified error.
|
|
*/
|
|
struct sppcb *
|
|
spp_drop(cb, errno)
|
|
register struct sppcb *cb;
|
|
int errno;
|
|
{
|
|
struct socket *so = cb->s_nspcb->nsp_socket;
|
|
|
|
/*
|
|
* someday, in the xerox world
|
|
* we will generate error protocol packets
|
|
* announcing that the socket has gone away.
|
|
*/
|
|
if (TCPS_HAVERCVDSYN(cb->s_state)) {
|
|
sppstat.spps_drops++;
|
|
cb->s_state = TCPS_CLOSED;
|
|
/*(void) tcp_output(cb);*/
|
|
} else
|
|
sppstat.spps_conndrops++;
|
|
so->so_error = errno;
|
|
return (spp_close(cb));
|
|
}
|
|
|
|
spp_abort(nsp)
|
|
struct nspcb *nsp;
|
|
{
|
|
|
|
(void) spp_close((struct sppcb *)nsp->nsp_pcb);
|
|
}
|
|
|
|
int spp_backoff[SPP_MAXRXTSHIFT+1] =
|
|
{ 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };
|
|
/*
|
|
* Fast timeout routine for processing delayed acks
|
|
*/
|
|
spp_fasttimo()
|
|
{
|
|
register struct nspcb *nsp;
|
|
register struct sppcb *cb;
|
|
int s = splnet();
|
|
|
|
nsp = nspcb.nsp_next;
|
|
if (nsp)
|
|
for (; nsp != &nspcb; nsp = nsp->nsp_next)
|
|
if ((cb = (struct sppcb *)nsp->nsp_pcb) &&
|
|
(cb->s_flags & SF_DELACK)) {
|
|
cb->s_flags &= ~SF_DELACK;
|
|
cb->s_flags |= SF_ACKNOW;
|
|
sppstat.spps_delack++;
|
|
(void) spp_output(cb, (struct mbuf *) 0);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* spp protocol timeout routine called every 500 ms.
|
|
* Updates the timers in all active pcb's and
|
|
* causes finite state machine actions if timers expire.
|
|
*/
|
|
spp_slowtimo()
|
|
{
|
|
register struct nspcb *ip, *ipnxt;
|
|
register struct sppcb *cb;
|
|
int s = splnet();
|
|
register int i;
|
|
|
|
/*
|
|
* Search through tcb's and update active timers.
|
|
*/
|
|
ip = nspcb.nsp_next;
|
|
if (ip == 0) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
while (ip != &nspcb) {
|
|
cb = nstosppcb(ip);
|
|
ipnxt = ip->nsp_next;
|
|
if (cb == 0)
|
|
goto tpgone;
|
|
for (i = 0; i < SPPT_NTIMERS; i++) {
|
|
if (cb->s_timer[i] && --cb->s_timer[i] == 0) {
|
|
(void) spp_usrreq(cb->s_nspcb->nsp_socket,
|
|
PRU_SLOWTIMO, (struct mbuf *)0,
|
|
(struct mbuf *)i, (struct mbuf *)0,
|
|
(struct mbuf *)0);
|
|
if (ipnxt->nsp_prev != ip)
|
|
goto tpgone;
|
|
}
|
|
}
|
|
cb->s_idle++;
|
|
if (cb->s_rtt)
|
|
cb->s_rtt++;
|
|
tpgone:
|
|
ip = ipnxt;
|
|
}
|
|
spp_iss += SPP_ISSINCR/PR_SLOWHZ; /* increment iss */
|
|
splx(s);
|
|
}
|
|
/*
|
|
* SPP timer processing.
|
|
*/
|
|
struct sppcb *
|
|
spp_timers(cb, timer)
|
|
register struct sppcb *cb;
|
|
int timer;
|
|
{
|
|
long rexmt;
|
|
int win;
|
|
|
|
cb->s_force = 1 + timer;
|
|
switch (timer) {
|
|
|
|
/*
|
|
* 2 MSL timeout in shutdown went off. TCP deletes connection
|
|
* control block.
|
|
*/
|
|
case SPPT_2MSL:
|
|
printf("spp: SPPT_2MSL went off for no reason\n");
|
|
cb->s_timer[timer] = 0;
|
|
break;
|
|
|
|
/*
|
|
* Retransmission timer went off. Message has not
|
|
* been acked within retransmit interval. Back off
|
|
* to a longer retransmit interval and retransmit one packet.
|
|
*/
|
|
case SPPT_REXMT:
|
|
if (++cb->s_rxtshift > SPP_MAXRXTSHIFT) {
|
|
cb->s_rxtshift = SPP_MAXRXTSHIFT;
|
|
sppstat.spps_timeoutdrop++;
|
|
cb = spp_drop(cb, ETIMEDOUT);
|
|
break;
|
|
}
|
|
sppstat.spps_rexmttimeo++;
|
|
rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
|
|
rexmt *= spp_backoff[cb->s_rxtshift];
|
|
SPPT_RANGESET(cb->s_rxtcur, rexmt, SPPTV_MIN, SPPTV_REXMTMAX);
|
|
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
|
|
/*
|
|
* If we have backed off fairly far, our srtt
|
|
* estimate is probably bogus. Clobber it
|
|
* so we'll take the next rtt measurement as our srtt;
|
|
* move the current srtt into rttvar to keep the current
|
|
* retransmit times until then.
|
|
*/
|
|
if (cb->s_rxtshift > SPP_MAXRXTSHIFT / 4 ) {
|
|
cb->s_rttvar += (cb->s_srtt >> 2);
|
|
cb->s_srtt = 0;
|
|
}
|
|
cb->s_snxt = cb->s_rack;
|
|
/*
|
|
* If timing a packet, stop the timer.
|
|
*/
|
|
cb->s_rtt = 0;
|
|
/*
|
|
* See very long discussion in tcp_timer.c about congestion
|
|
* window and sstrhesh
|
|
*/
|
|
win = min(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2;
|
|
if (win < 2)
|
|
win = 2;
|
|
cb->s_cwnd = CUNIT;
|
|
cb->s_ssthresh = win * CUNIT;
|
|
(void) spp_output(cb, (struct mbuf *) 0);
|
|
break;
|
|
|
|
/*
|
|
* Persistance timer into zero window.
|
|
* Force a probe to be sent.
|
|
*/
|
|
case SPPT_PERSIST:
|
|
sppstat.spps_persisttimeo++;
|
|
spp_setpersist(cb);
|
|
(void) spp_output(cb, (struct mbuf *) 0);
|
|
break;
|
|
|
|
/*
|
|
* Keep-alive timer went off; send something
|
|
* or drop connection if idle for too long.
|
|
*/
|
|
case SPPT_KEEP:
|
|
sppstat.spps_keeptimeo++;
|
|
if (cb->s_state < TCPS_ESTABLISHED)
|
|
goto dropit;
|
|
if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) {
|
|
if (cb->s_idle >= SPPTV_MAXIDLE)
|
|
goto dropit;
|
|
sppstat.spps_keepprobe++;
|
|
(void) spp_output(cb, (struct mbuf *) 0);
|
|
} else
|
|
cb->s_idle = 0;
|
|
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
|
|
break;
|
|
dropit:
|
|
sppstat.spps_keepdrops++;
|
|
cb = spp_drop(cb, ETIMEDOUT);
|
|
break;
|
|
}
|
|
return (cb);
|
|
}
|
|
#ifndef lint
|
|
int SppcbSize = sizeof (struct sppcb);
|
|
int NspcbSize = sizeof (struct nspcb);
|
|
#endif /* lint */
|