freebsd-nq/sys/vm/vm_object.h
Attilio Rao 774d251d99 Sync back vmcontention branch into HEAD:
Replace the per-object resident and cached pages splay tree with a
path-compressed multi-digit radix trie.
Along with this, switch also the x86-specific handling of idle page
tables to using the radix trie.

This change is supposed to do the following:
- Allowing the acquisition of read locking for lookup operations of the
  resident/cached pages collections as the per-vm_page_t splay iterators
  are now removed.
- Increase the scalability of the operations on the page collections.

The radix trie does rely on the consumers locking to ensure atomicity of
its operations.  In order to avoid deadlocks the bisection nodes are
pre-allocated in the UMA zone.  This can be done safely because the
algorithm needs at maximum one new node per insert which means the
maximum number of the desired nodes is the number of available physical
frames themselves.  However, not all the times a new bisection node is
really needed.

The radix trie implements path-compression because UFS indirect blocks
can lead to several objects with a very sparse trie, increasing the number
of levels to usually scan.  It also helps in the nodes pre-fetching by
introducing the single node per-insert property.

This code is not generalized (yet) because of the possible loss of
performance by having much of the sizes in play configurable.
However, efforts to make this code more general and then reusable in
further different consumers might be really done.

The only KPI change is the removal of the function vm_page_splay() which
is now reaped.
The only KBI change, instead, is the removal of the left/right iterators
from struct vm_page, which are now reaped.

Further technical notes broken into mealpieces can be retrieved from the
svn branch:
http://svn.freebsd.org/base/user/attilio/vmcontention/

Sponsored by:	EMC / Isilon storage division
In collaboration with:	alc, jeff
Tested by:	flo, pho, jhb, davide
Tested by:	ian (arm)
Tested by:	andreast (powerpc)
2013-03-18 00:25:02 +00:00

282 lines
9.8 KiB
C

/*-
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_object.h 8.3 (Berkeley) 1/12/94
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
* $FreeBSD$
*/
/*
* Virtual memory object module definitions.
*/
#ifndef _VM_OBJECT_
#define _VM_OBJECT_
#include <sys/queue.h>
#include <sys/_lock.h>
#include <sys/_mutex.h>
#include <sys/_rwlock.h>
#include <vm/_vm_radix.h>
/*
* Types defined:
*
* vm_object_t Virtual memory object.
*
* The root of cached pages pool is protected by both the per-object lock
* and the free pages queue mutex.
* On insert in the cache radix trie, the per-object lock is expected
* to be already held and the free pages queue mutex will be
* acquired during the operation too.
* On remove and lookup from the cache radix trie, only the free
* pages queue mutex is expected to be locked.
* These rules allow for reliably checking for the presence of cached
* pages with only the per-object lock held, thereby reducing contention
* for the free pages queue mutex.
*
* List of locks
* (c) const until freed
* (o) per-object lock
* (f) free pages queue mutex
*
*/
struct vm_object {
struct rwlock lock;
TAILQ_ENTRY(vm_object) object_list; /* list of all objects */
LIST_HEAD(, vm_object) shadow_head; /* objects that this is a shadow for */
LIST_ENTRY(vm_object) shadow_list; /* chain of shadow objects */
TAILQ_HEAD(, vm_page) memq; /* list of resident pages */
struct vm_radix rtree; /* root of the resident page radix trie*/
vm_pindex_t size; /* Object size */
int generation; /* generation ID */
int ref_count; /* How many refs?? */
int shadow_count; /* how many objects that this is a shadow for */
vm_memattr_t memattr; /* default memory attribute for pages */
objtype_t type; /* type of pager */
u_short flags; /* see below */
u_short pg_color; /* (c) color of first page in obj */
u_int paging_in_progress; /* Paging (in or out) so don't collapse or destroy */
int resident_page_count; /* number of resident pages */
struct vm_object *backing_object; /* object that I'm a shadow of */
vm_ooffset_t backing_object_offset;/* Offset in backing object */
TAILQ_ENTRY(vm_object) pager_object_list; /* list of all objects of this pager type */
LIST_HEAD(, vm_reserv) rvq; /* list of reservations */
struct vm_radix cache; /* (o + f) root of the cache page radix trie */
void *handle;
union {
/*
* VNode pager
*
* vnp_size - current size of file
*/
struct {
off_t vnp_size;
vm_ooffset_t writemappings;
} vnp;
/*
* Device pager
*
* devp_pglist - list of allocated pages
*/
struct {
TAILQ_HEAD(, vm_page) devp_pglist;
struct cdev_pager_ops *ops;
struct cdev *dev;
} devp;
/*
* SG pager
*
* sgp_pglist - list of allocated pages
*/
struct {
TAILQ_HEAD(, vm_page) sgp_pglist;
} sgp;
/*
* Swap pager
*
* swp_bcount - number of swap 'swblock' metablocks, each
* contains up to 16 swapblk assignments.
* see vm/swap_pager.h
*/
struct {
int swp_bcount;
} swp;
} un_pager;
struct ucred *cred;
vm_ooffset_t charge;
};
/*
* Flags
*/
#define OBJ_FICTITIOUS 0x0001 /* (c) contains fictitious pages */
#define OBJ_UNMANAGED 0x0002 /* (c) contains unmanaged pages */
#define OBJ_ACTIVE 0x0004 /* active objects */
#define OBJ_DEAD 0x0008 /* dead objects (during rundown) */
#define OBJ_NOSPLIT 0x0010 /* dont split this object */
#define OBJ_PIPWNT 0x0040 /* paging in progress wanted */
#define OBJ_MIGHTBEDIRTY 0x0100 /* object might be dirty, only for vnode */
#define OBJ_COLORED 0x1000 /* pg_color is defined */
#define OBJ_ONEMAPPING 0x2000 /* One USE (a single, non-forked) mapping flag */
#define OBJ_DISCONNECTWNT 0x4000 /* disconnect from vnode wanted */
#define IDX_TO_OFF(idx) (((vm_ooffset_t)(idx)) << PAGE_SHIFT)
#define OFF_TO_IDX(off) ((vm_pindex_t)(((vm_ooffset_t)(off)) >> PAGE_SHIFT))
#ifdef _KERNEL
#define OBJPC_SYNC 0x1 /* sync I/O */
#define OBJPC_INVAL 0x2 /* invalidate */
#define OBJPC_NOSYNC 0x4 /* skip if PG_NOSYNC */
/*
* The following options are supported by vm_object_page_remove().
*/
#define OBJPR_CLEANONLY 0x1 /* Don't remove dirty pages. */
#define OBJPR_NOTMAPPED 0x2 /* Don't unmap pages. */
TAILQ_HEAD(object_q, vm_object);
extern struct object_q vm_object_list; /* list of allocated objects */
extern struct mtx vm_object_list_mtx; /* lock for object list and count */
extern struct vm_object kernel_object_store;
extern struct vm_object kmem_object_store;
#define kernel_object (&kernel_object_store)
#define kmem_object (&kmem_object_store)
#define VM_OBJECT_ASSERT_LOCKED(object) \
rw_assert(&(object)->lock, RA_LOCKED)
#define VM_OBJECT_ASSERT_RLOCKED(object) \
rw_assert(&(object)->lock, RA_RLOCKED)
#define VM_OBJECT_ASSERT_WLOCKED(object) \
rw_assert(&(object)->lock, RA_WLOCKED)
#define VM_OBJECT_RLOCK(object) \
rw_rlock(&(object)->lock)
#define VM_OBJECT_RUNLOCK(object) \
rw_runlock(&(object)->lock)
#define VM_OBJECT_SLEEP(object, wchan, pri, wmesg, timo) \
rw_sleep((wchan), &(object)->lock, (pri), (wmesg), (timo))
#define VM_OBJECT_TRYRLOCK(object) \
rw_try_rlock(&(object)->lock)
#define VM_OBJECT_TRYWLOCK(object) \
rw_try_wlock(&(object)->lock)
#define VM_OBJECT_WLOCK(object) \
rw_wlock(&(object)->lock)
#define VM_OBJECT_WUNLOCK(object) \
rw_wunlock(&(object)->lock)
/*
* The object must be locked or thread private.
*/
static __inline void
vm_object_set_flag(vm_object_t object, u_short bits)
{
object->flags |= bits;
}
void vm_object_clear_flag(vm_object_t object, u_short bits);
void vm_object_pip_add(vm_object_t object, short i);
void vm_object_pip_subtract(vm_object_t object, short i);
void vm_object_pip_wakeup(vm_object_t object);
void vm_object_pip_wakeupn(vm_object_t object, short i);
void vm_object_pip_wait(vm_object_t object, char *waitid);
static __inline boolean_t
vm_object_cache_is_empty(vm_object_t object)
{
return (vm_radix_is_empty(&object->cache));
}
vm_object_t vm_object_allocate (objtype_t, vm_pindex_t);
boolean_t vm_object_coalesce(vm_object_t, vm_ooffset_t, vm_size_t, vm_size_t,
boolean_t);
void vm_object_collapse (vm_object_t);
void vm_object_deallocate (vm_object_t);
void vm_object_destroy (vm_object_t);
void vm_object_terminate (vm_object_t);
void vm_object_set_writeable_dirty (vm_object_t);
void vm_object_init (void);
void vm_object_madvise(vm_object_t, vm_pindex_t, vm_pindex_t, int);
void vm_object_page_cache(vm_object_t object, vm_pindex_t start,
vm_pindex_t end);
boolean_t vm_object_page_clean(vm_object_t object, vm_ooffset_t start,
vm_ooffset_t end, int flags);
void vm_object_page_remove(vm_object_t object, vm_pindex_t start,
vm_pindex_t end, int options);
boolean_t vm_object_populate(vm_object_t, vm_pindex_t, vm_pindex_t);
void vm_object_print(long addr, boolean_t have_addr, long count, char *modif);
void vm_object_reference (vm_object_t);
void vm_object_reference_locked(vm_object_t);
int vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr);
void vm_object_shadow (vm_object_t *, vm_ooffset_t *, vm_size_t);
void vm_object_split(vm_map_entry_t);
boolean_t vm_object_sync(vm_object_t, vm_ooffset_t, vm_size_t, boolean_t,
boolean_t);
#endif /* _KERNEL */
#endif /* _VM_OBJECT_ */