d4fcf3cba5
and amd64. The optimization is a trivial on recent machines. Reviewed by: -arch (imp, marcel, dfr)
1570 lines
40 KiB
C
1570 lines
40 KiB
C
/*-
|
|
* CAM SCSI interface for the the Advanced Systems Inc.
|
|
* Second Generation SCSI controllers.
|
|
*
|
|
* Product specific probe and attach routines can be found in:
|
|
*
|
|
* adw_pci.c ABP[3]940UW, ABP950UW, ABP3940U2W
|
|
*
|
|
* Copyright (c) 1998, 1999, 2000 Justin Gibbs.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* Ported from:
|
|
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
|
|
*
|
|
* Copyright (c) 1995-1998 Advanced System Products, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that redistributions of source
|
|
* code retain the above copyright notice and this comment without
|
|
* modification.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/bus.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
|
|
#include <sys/rman.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_sim.h>
|
|
#include <cam/cam_xpt_sim.h>
|
|
#include <cam/cam_debug.h>
|
|
|
|
#include <cam/scsi/scsi_message.h>
|
|
|
|
#include <dev/advansys/adwvar.h>
|
|
|
|
/* Definitions for our use of the SIM private CCB area */
|
|
#define ccb_acb_ptr spriv_ptr0
|
|
#define ccb_adw_ptr spriv_ptr1
|
|
|
|
u_long adw_unit;
|
|
|
|
static __inline cam_status adwccbstatus(union ccb*);
|
|
static __inline struct acb* adwgetacb(struct adw_softc *adw);
|
|
static __inline void adwfreeacb(struct adw_softc *adw,
|
|
struct acb *acb);
|
|
|
|
static void adwmapmem(void *arg, bus_dma_segment_t *segs,
|
|
int nseg, int error);
|
|
static struct sg_map_node*
|
|
adwallocsgmap(struct adw_softc *adw);
|
|
static int adwallocacbs(struct adw_softc *adw);
|
|
|
|
static void adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs,
|
|
int nseg, int error);
|
|
static void adw_action(struct cam_sim *sim, union ccb *ccb);
|
|
static void adw_poll(struct cam_sim *sim);
|
|
static void adw_async(void *callback_arg, u_int32_t code,
|
|
struct cam_path *path, void *arg);
|
|
static void adwprocesserror(struct adw_softc *adw, struct acb *acb);
|
|
static void adwtimeout(void *arg);
|
|
static void adw_handle_device_reset(struct adw_softc *adw,
|
|
u_int target);
|
|
static void adw_handle_bus_reset(struct adw_softc *adw,
|
|
int initiated);
|
|
|
|
static __inline cam_status
|
|
adwccbstatus(union ccb* ccb)
|
|
{
|
|
return (ccb->ccb_h.status & CAM_STATUS_MASK);
|
|
}
|
|
|
|
static __inline struct acb*
|
|
adwgetacb(struct adw_softc *adw)
|
|
{
|
|
struct acb* acb;
|
|
int s;
|
|
|
|
s = splcam();
|
|
if ((acb = SLIST_FIRST(&adw->free_acb_list)) != NULL) {
|
|
SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
|
|
} else if (adw->num_acbs < adw->max_acbs) {
|
|
adwallocacbs(adw);
|
|
acb = SLIST_FIRST(&adw->free_acb_list);
|
|
if (acb == NULL)
|
|
printf("%s: Can't malloc ACB\n", adw_name(adw));
|
|
else {
|
|
SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
|
|
}
|
|
}
|
|
splx(s);
|
|
|
|
return (acb);
|
|
}
|
|
|
|
static __inline void
|
|
adwfreeacb(struct adw_softc *adw, struct acb *acb)
|
|
{
|
|
int s;
|
|
|
|
s = splcam();
|
|
if ((acb->state & ACB_ACTIVE) != 0)
|
|
LIST_REMOVE(&acb->ccb->ccb_h, sim_links.le);
|
|
if ((acb->state & ACB_RELEASE_SIMQ) != 0)
|
|
acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
|
|
else if ((adw->state & ADW_RESOURCE_SHORTAGE) != 0
|
|
&& (acb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
|
|
acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
|
|
adw->state &= ~ADW_RESOURCE_SHORTAGE;
|
|
}
|
|
acb->state = ACB_FREE;
|
|
SLIST_INSERT_HEAD(&adw->free_acb_list, acb, links);
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
adwmapmem(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
bus_addr_t *busaddrp;
|
|
|
|
busaddrp = (bus_addr_t *)arg;
|
|
*busaddrp = segs->ds_addr;
|
|
}
|
|
|
|
static struct sg_map_node *
|
|
adwallocsgmap(struct adw_softc *adw)
|
|
{
|
|
struct sg_map_node *sg_map;
|
|
|
|
sg_map = malloc(sizeof(*sg_map), M_DEVBUF, M_NOWAIT);
|
|
|
|
if (sg_map == NULL)
|
|
return (NULL);
|
|
|
|
/* Allocate S/G space for the next batch of ACBS */
|
|
if (bus_dmamem_alloc(adw->sg_dmat, (void **)&sg_map->sg_vaddr,
|
|
BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) {
|
|
free(sg_map, M_DEVBUF);
|
|
return (NULL);
|
|
}
|
|
|
|
SLIST_INSERT_HEAD(&adw->sg_maps, sg_map, links);
|
|
|
|
bus_dmamap_load(adw->sg_dmat, sg_map->sg_dmamap, sg_map->sg_vaddr,
|
|
PAGE_SIZE, adwmapmem, &sg_map->sg_physaddr, /*flags*/0);
|
|
|
|
bzero(sg_map->sg_vaddr, PAGE_SIZE);
|
|
return (sg_map);
|
|
}
|
|
|
|
/*
|
|
* Allocate another chunk of CCB's. Return count of entries added.
|
|
* Assumed to be called at splcam().
|
|
*/
|
|
static int
|
|
adwallocacbs(struct adw_softc *adw)
|
|
{
|
|
struct acb *next_acb;
|
|
struct sg_map_node *sg_map;
|
|
bus_addr_t busaddr;
|
|
struct adw_sg_block *blocks;
|
|
int newcount;
|
|
int i;
|
|
|
|
next_acb = &adw->acbs[adw->num_acbs];
|
|
sg_map = adwallocsgmap(adw);
|
|
|
|
if (sg_map == NULL)
|
|
return (0);
|
|
|
|
blocks = sg_map->sg_vaddr;
|
|
busaddr = sg_map->sg_physaddr;
|
|
|
|
newcount = (PAGE_SIZE / (ADW_SG_BLOCKCNT * sizeof(*blocks)));
|
|
for (i = 0; adw->num_acbs < adw->max_acbs && i < newcount; i++) {
|
|
int error;
|
|
|
|
error = bus_dmamap_create(adw->buffer_dmat, /*flags*/0,
|
|
&next_acb->dmamap);
|
|
if (error != 0)
|
|
break;
|
|
next_acb->queue.scsi_req_baddr = acbvtob(adw, next_acb);
|
|
next_acb->queue.scsi_req_bo = acbvtobo(adw, next_acb);
|
|
next_acb->queue.sense_baddr =
|
|
acbvtob(adw, next_acb) + offsetof(struct acb, sense_data);
|
|
next_acb->sg_blocks = blocks;
|
|
next_acb->sg_busaddr = busaddr;
|
|
next_acb->state = ACB_FREE;
|
|
SLIST_INSERT_HEAD(&adw->free_acb_list, next_acb, links);
|
|
blocks += ADW_SG_BLOCKCNT;
|
|
busaddr += ADW_SG_BLOCKCNT * sizeof(*blocks);
|
|
next_acb++;
|
|
adw->num_acbs++;
|
|
}
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
|
|
{
|
|
struct acb *acb;
|
|
union ccb *ccb;
|
|
struct adw_softc *adw;
|
|
int s;
|
|
|
|
acb = (struct acb *)arg;
|
|
ccb = acb->ccb;
|
|
adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
|
|
|
|
if (error != 0) {
|
|
if (error != EFBIG)
|
|
printf("%s: Unexepected error 0x%x returned from "
|
|
"bus_dmamap_load\n", adw_name(adw), error);
|
|
if (ccb->ccb_h.status == CAM_REQ_INPROG) {
|
|
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
|
|
ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN;
|
|
}
|
|
adwfreeacb(adw, acb);
|
|
xpt_done(ccb);
|
|
return;
|
|
}
|
|
|
|
if (nseg != 0) {
|
|
bus_dmasync_op_t op;
|
|
|
|
acb->queue.data_addr = dm_segs[0].ds_addr;
|
|
acb->queue.data_cnt = ccb->csio.dxfer_len;
|
|
if (nseg > 1) {
|
|
struct adw_sg_block *sg_block;
|
|
struct adw_sg_elm *sg;
|
|
bus_addr_t sg_busaddr;
|
|
u_int sg_index;
|
|
bus_dma_segment_t *end_seg;
|
|
|
|
end_seg = dm_segs + nseg;
|
|
|
|
sg_busaddr = acb->sg_busaddr;
|
|
sg_index = 0;
|
|
/* Copy the segments into our SG list */
|
|
for (sg_block = acb->sg_blocks;; sg_block++) {
|
|
u_int i;
|
|
|
|
sg = sg_block->sg_list;
|
|
for (i = 0; i < ADW_NO_OF_SG_PER_BLOCK; i++) {
|
|
if (dm_segs >= end_seg)
|
|
break;
|
|
|
|
sg->sg_addr = dm_segs->ds_addr;
|
|
sg->sg_count = dm_segs->ds_len;
|
|
sg++;
|
|
dm_segs++;
|
|
}
|
|
sg_block->sg_cnt = i;
|
|
sg_index += i;
|
|
if (dm_segs == end_seg) {
|
|
sg_block->sg_busaddr_next = 0;
|
|
break;
|
|
} else {
|
|
sg_busaddr +=
|
|
sizeof(struct adw_sg_block);
|
|
sg_block->sg_busaddr_next = sg_busaddr;
|
|
}
|
|
}
|
|
acb->queue.sg_real_addr = acb->sg_busaddr;
|
|
} else {
|
|
acb->queue.sg_real_addr = 0;
|
|
}
|
|
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
|
|
op = BUS_DMASYNC_PREREAD;
|
|
else
|
|
op = BUS_DMASYNC_PREWRITE;
|
|
|
|
bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
|
|
|
|
} else {
|
|
acb->queue.data_addr = 0;
|
|
acb->queue.data_cnt = 0;
|
|
acb->queue.sg_real_addr = 0;
|
|
}
|
|
|
|
s = splcam();
|
|
|
|
/*
|
|
* Last time we need to check if this CCB needs to
|
|
* be aborted.
|
|
*/
|
|
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
|
|
if (nseg != 0)
|
|
bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
|
|
adwfreeacb(adw, acb);
|
|
xpt_done(ccb);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
acb->state |= ACB_ACTIVE;
|
|
ccb->ccb_h.status |= CAM_SIM_QUEUED;
|
|
LIST_INSERT_HEAD(&adw->pending_ccbs, &ccb->ccb_h, sim_links.le);
|
|
ccb->ccb_h.timeout_ch =
|
|
timeout(adwtimeout, (caddr_t)acb,
|
|
(ccb->ccb_h.timeout * hz) / 1000);
|
|
|
|
adw_send_acb(adw, acb, acbvtob(adw, acb));
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
adw_action(struct cam_sim *sim, union ccb *ccb)
|
|
{
|
|
struct adw_softc *adw;
|
|
|
|
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adw_action\n"));
|
|
|
|
adw = (struct adw_softc *)cam_sim_softc(sim);
|
|
|
|
switch (ccb->ccb_h.func_code) {
|
|
/* Common cases first */
|
|
case XPT_SCSI_IO: /* Execute the requested I/O operation */
|
|
{
|
|
struct ccb_scsiio *csio;
|
|
struct ccb_hdr *ccbh;
|
|
struct acb *acb;
|
|
|
|
csio = &ccb->csio;
|
|
ccbh = &ccb->ccb_h;
|
|
|
|
/* Max supported CDB length is 12 bytes */
|
|
if (csio->cdb_len > 12) {
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
xpt_done(ccb);
|
|
return;
|
|
}
|
|
|
|
if ((acb = adwgetacb(adw)) == NULL) {
|
|
int s;
|
|
|
|
s = splcam();
|
|
adw->state |= ADW_RESOURCE_SHORTAGE;
|
|
splx(s);
|
|
xpt_freeze_simq(sim, /*count*/1);
|
|
ccb->ccb_h.status = CAM_REQUEUE_REQ;
|
|
xpt_done(ccb);
|
|
return;
|
|
}
|
|
|
|
/* Link acb and ccb so we can find one from the other */
|
|
acb->ccb = ccb;
|
|
ccb->ccb_h.ccb_acb_ptr = acb;
|
|
ccb->ccb_h.ccb_adw_ptr = adw;
|
|
|
|
acb->queue.cntl = 0;
|
|
acb->queue.target_cmd = 0;
|
|
acb->queue.target_id = ccb->ccb_h.target_id;
|
|
acb->queue.target_lun = ccb->ccb_h.target_lun;
|
|
|
|
acb->queue.mflag = 0;
|
|
acb->queue.sense_len =
|
|
MIN(csio->sense_len, sizeof(acb->sense_data));
|
|
acb->queue.cdb_len = csio->cdb_len;
|
|
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
|
|
switch (csio->tag_action) {
|
|
case MSG_SIMPLE_Q_TAG:
|
|
acb->queue.scsi_cntl = ADW_QSC_SIMPLE_Q_TAG;
|
|
break;
|
|
case MSG_HEAD_OF_Q_TAG:
|
|
acb->queue.scsi_cntl = ADW_QSC_HEAD_OF_Q_TAG;
|
|
break;
|
|
case MSG_ORDERED_Q_TAG:
|
|
acb->queue.scsi_cntl = ADW_QSC_ORDERED_Q_TAG;
|
|
break;
|
|
default:
|
|
acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
|
|
break;
|
|
}
|
|
} else
|
|
acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
|
|
|
|
if ((ccb->ccb_h.flags & CAM_DIS_DISCONNECT) != 0)
|
|
acb->queue.scsi_cntl |= ADW_QSC_NO_DISC;
|
|
|
|
acb->queue.done_status = 0;
|
|
acb->queue.scsi_status = 0;
|
|
acb->queue.host_status = 0;
|
|
acb->queue.sg_wk_ix = 0;
|
|
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
|
|
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) {
|
|
bcopy(csio->cdb_io.cdb_ptr,
|
|
acb->queue.cdb, csio->cdb_len);
|
|
} else {
|
|
/* I guess I could map it in... */
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
adwfreeacb(adw, acb);
|
|
xpt_done(ccb);
|
|
return;
|
|
}
|
|
} else {
|
|
bcopy(csio->cdb_io.cdb_bytes,
|
|
acb->queue.cdb, csio->cdb_len);
|
|
}
|
|
|
|
/*
|
|
* If we have any data to send with this command,
|
|
* map it into bus space.
|
|
*/
|
|
if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
|
|
if ((ccbh->flags & CAM_SCATTER_VALID) == 0) {
|
|
/*
|
|
* We've been given a pointer
|
|
* to a single buffer.
|
|
*/
|
|
if ((ccbh->flags & CAM_DATA_PHYS) == 0) {
|
|
int s;
|
|
int error;
|
|
|
|
s = splsoftvm();
|
|
error =
|
|
bus_dmamap_load(adw->buffer_dmat,
|
|
acb->dmamap,
|
|
csio->data_ptr,
|
|
csio->dxfer_len,
|
|
adwexecuteacb,
|
|
acb, /*flags*/0);
|
|
if (error == EINPROGRESS) {
|
|
/*
|
|
* So as to maintain ordering,
|
|
* freeze the controller queue
|
|
* until our mapping is
|
|
* returned.
|
|
*/
|
|
xpt_freeze_simq(sim, 1);
|
|
acb->state |= CAM_RELEASE_SIMQ;
|
|
}
|
|
splx(s);
|
|
} else {
|
|
struct bus_dma_segment seg;
|
|
|
|
/* Pointer to physical buffer */
|
|
seg.ds_addr =
|
|
(bus_addr_t)csio->data_ptr;
|
|
seg.ds_len = csio->dxfer_len;
|
|
adwexecuteacb(acb, &seg, 1, 0);
|
|
}
|
|
} else {
|
|
struct bus_dma_segment *segs;
|
|
|
|
if ((ccbh->flags & CAM_DATA_PHYS) != 0)
|
|
panic("adw_action - Physical "
|
|
"segment pointers "
|
|
"unsupported");
|
|
|
|
if ((ccbh->flags&CAM_SG_LIST_PHYS)==0)
|
|
panic("adw_action - Virtual "
|
|
"segment addresses "
|
|
"unsupported");
|
|
|
|
/* Just use the segments provided */
|
|
segs = (struct bus_dma_segment *)csio->data_ptr;
|
|
adwexecuteacb(acb, segs, csio->sglist_cnt,
|
|
(csio->sglist_cnt < ADW_SGSIZE)
|
|
? 0 : EFBIG);
|
|
}
|
|
} else {
|
|
adwexecuteacb(acb, NULL, 0, 0);
|
|
}
|
|
break;
|
|
}
|
|
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
|
|
{
|
|
adw_idle_cmd_status_t status;
|
|
|
|
status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
|
|
ccb->ccb_h.target_id);
|
|
if (status == ADW_IDLE_CMD_SUCCESS) {
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
if (bootverbose) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printf("BDR Delivered\n");
|
|
}
|
|
} else
|
|
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
xpt_done(ccb);
|
|
break;
|
|
}
|
|
case XPT_ABORT: /* Abort the specified CCB */
|
|
/* XXX Implement */
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
xpt_done(ccb);
|
|
break;
|
|
case XPT_SET_TRAN_SETTINGS:
|
|
{
|
|
struct ccb_trans_settings *cts;
|
|
u_int target_mask;
|
|
int s;
|
|
|
|
cts = &ccb->cts;
|
|
target_mask = 0x01 << ccb->ccb_h.target_id;
|
|
|
|
s = splcam();
|
|
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
|
|
u_int sdtrdone;
|
|
|
|
sdtrdone = adw_lram_read_16(adw, ADW_MC_SDTR_DONE);
|
|
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
|
|
u_int discenb;
|
|
|
|
discenb =
|
|
adw_lram_read_16(adw, ADW_MC_DISC_ENABLE);
|
|
|
|
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
|
|
discenb |= target_mask;
|
|
else
|
|
discenb &= ~target_mask;
|
|
|
|
adw_lram_write_16(adw, ADW_MC_DISC_ENABLE,
|
|
discenb);
|
|
}
|
|
|
|
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
|
|
|
|
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
|
|
adw->tagenb |= target_mask;
|
|
else
|
|
adw->tagenb &= ~target_mask;
|
|
}
|
|
|
|
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) {
|
|
u_int wdtrenb_orig;
|
|
u_int wdtrenb;
|
|
u_int wdtrdone;
|
|
|
|
wdtrenb_orig =
|
|
adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
|
|
wdtrenb = wdtrenb_orig;
|
|
wdtrdone = adw_lram_read_16(adw,
|
|
ADW_MC_WDTR_DONE);
|
|
switch (cts->bus_width) {
|
|
case MSG_EXT_WDTR_BUS_32_BIT:
|
|
case MSG_EXT_WDTR_BUS_16_BIT:
|
|
wdtrenb |= target_mask;
|
|
break;
|
|
case MSG_EXT_WDTR_BUS_8_BIT:
|
|
default:
|
|
wdtrenb &= ~target_mask;
|
|
break;
|
|
}
|
|
if (wdtrenb != wdtrenb_orig) {
|
|
adw_lram_write_16(adw,
|
|
ADW_MC_WDTR_ABLE,
|
|
wdtrenb);
|
|
wdtrdone &= ~target_mask;
|
|
adw_lram_write_16(adw,
|
|
ADW_MC_WDTR_DONE,
|
|
wdtrdone);
|
|
/* Wide negotiation forces async */
|
|
sdtrdone &= ~target_mask;
|
|
adw_lram_write_16(adw,
|
|
ADW_MC_SDTR_DONE,
|
|
sdtrdone);
|
|
}
|
|
}
|
|
|
|
if (((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
|
|
|| ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)) {
|
|
u_int sdtr_orig;
|
|
u_int sdtr;
|
|
u_int sdtrable_orig;
|
|
u_int sdtrable;
|
|
|
|
sdtr = adw_get_chip_sdtr(adw,
|
|
ccb->ccb_h.target_id);
|
|
sdtr_orig = sdtr;
|
|
sdtrable = adw_lram_read_16(adw,
|
|
ADW_MC_SDTR_ABLE);
|
|
sdtrable_orig = sdtrable;
|
|
|
|
if ((cts->valid
|
|
& CCB_TRANS_SYNC_RATE_VALID) != 0) {
|
|
|
|
sdtr =
|
|
adw_find_sdtr(adw,
|
|
cts->sync_period);
|
|
}
|
|
|
|
if ((cts->valid
|
|
& CCB_TRANS_SYNC_OFFSET_VALID) != 0) {
|
|
if (cts->sync_offset == 0)
|
|
sdtr = ADW_MC_SDTR_ASYNC;
|
|
}
|
|
|
|
if (sdtr == ADW_MC_SDTR_ASYNC)
|
|
sdtrable &= ~target_mask;
|
|
else
|
|
sdtrable |= target_mask;
|
|
if (sdtr != sdtr_orig
|
|
|| sdtrable != sdtrable_orig) {
|
|
adw_set_chip_sdtr(adw,
|
|
ccb->ccb_h.target_id,
|
|
sdtr);
|
|
sdtrdone &= ~target_mask;
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_ABLE,
|
|
sdtrable);
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_DONE,
|
|
sdtrdone);
|
|
|
|
}
|
|
}
|
|
}
|
|
splx(s);
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(ccb);
|
|
break;
|
|
}
|
|
case XPT_GET_TRAN_SETTINGS:
|
|
/* Get default/user set transfer settings for the target */
|
|
{
|
|
struct ccb_trans_settings *cts;
|
|
u_int target_mask;
|
|
|
|
cts = &ccb->cts;
|
|
target_mask = 0x01 << ccb->ccb_h.target_id;
|
|
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
|
|
u_int mc_sdtr;
|
|
|
|
cts->flags = 0;
|
|
if ((adw->user_discenb & target_mask) != 0)
|
|
cts->flags |= CCB_TRANS_DISC_ENB;
|
|
|
|
if ((adw->user_tagenb & target_mask) != 0)
|
|
cts->flags |= CCB_TRANS_TAG_ENB;
|
|
|
|
if ((adw->user_wdtr & target_mask) != 0)
|
|
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
else
|
|
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
|
|
|
|
mc_sdtr = adw_get_user_sdtr(adw, ccb->ccb_h.target_id);
|
|
cts->sync_period = adw_find_period(adw, mc_sdtr);
|
|
if (cts->sync_period != 0)
|
|
cts->sync_offset = 15; /* XXX ??? */
|
|
else
|
|
cts->sync_offset = 0;
|
|
|
|
cts->valid = CCB_TRANS_SYNC_RATE_VALID
|
|
| CCB_TRANS_SYNC_OFFSET_VALID
|
|
| CCB_TRANS_BUS_WIDTH_VALID
|
|
| CCB_TRANS_DISC_VALID
|
|
| CCB_TRANS_TQ_VALID;
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
} else {
|
|
u_int targ_tinfo;
|
|
|
|
cts->flags = 0;
|
|
if ((adw_lram_read_16(adw, ADW_MC_DISC_ENABLE)
|
|
& target_mask) != 0)
|
|
cts->flags |= CCB_TRANS_DISC_ENB;
|
|
|
|
if ((adw->tagenb & target_mask) != 0)
|
|
cts->flags |= CCB_TRANS_TAG_ENB;
|
|
|
|
targ_tinfo =
|
|
adw_lram_read_16(adw,
|
|
ADW_MC_DEVICE_HSHK_CFG_TABLE
|
|
+ (2 * ccb->ccb_h.target_id));
|
|
|
|
if ((targ_tinfo & ADW_HSHK_CFG_WIDE_XFR) != 0)
|
|
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
else
|
|
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
|
|
|
|
cts->sync_period =
|
|
adw_hshk_cfg_period_factor(targ_tinfo);
|
|
|
|
cts->sync_offset = targ_tinfo & ADW_HSHK_CFG_OFFSET;
|
|
if (cts->sync_period == 0)
|
|
cts->sync_offset = 0;
|
|
|
|
if (cts->sync_offset == 0)
|
|
cts->sync_period = 0;
|
|
}
|
|
cts->valid = CCB_TRANS_SYNC_RATE_VALID
|
|
| CCB_TRANS_SYNC_OFFSET_VALID
|
|
| CCB_TRANS_BUS_WIDTH_VALID
|
|
| CCB_TRANS_DISC_VALID
|
|
| CCB_TRANS_TQ_VALID;
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(ccb);
|
|
break;
|
|
}
|
|
case XPT_CALC_GEOMETRY:
|
|
{
|
|
/*
|
|
* XXX Use Adaptec translation until I find out how to
|
|
* get this information from the card.
|
|
*/
|
|
cam_calc_geometry(&ccb->ccg, /*extended*/1);
|
|
xpt_done(ccb);
|
|
break;
|
|
}
|
|
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
|
|
{
|
|
int failure;
|
|
|
|
failure = adw_reset_bus(adw);
|
|
if (failure != 0) {
|
|
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
} else {
|
|
if (bootverbose) {
|
|
xpt_print_path(adw->path);
|
|
printf("Bus Reset Delivered\n");
|
|
}
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
}
|
|
xpt_done(ccb);
|
|
break;
|
|
}
|
|
case XPT_TERM_IO: /* Terminate the I/O process */
|
|
/* XXX Implement */
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
xpt_done(ccb);
|
|
break;
|
|
case XPT_PATH_INQ: /* Path routing inquiry */
|
|
{
|
|
struct ccb_pathinq *cpi = &ccb->cpi;
|
|
|
|
cpi->version_num = 1;
|
|
cpi->hba_inquiry = PI_WIDE_16|PI_SDTR_ABLE|PI_TAG_ABLE;
|
|
cpi->target_sprt = 0;
|
|
cpi->hba_misc = 0;
|
|
cpi->hba_eng_cnt = 0;
|
|
cpi->max_target = ADW_MAX_TID;
|
|
cpi->max_lun = ADW_MAX_LUN;
|
|
cpi->initiator_id = adw->initiator_id;
|
|
cpi->bus_id = cam_sim_bus(sim);
|
|
cpi->base_transfer_speed = 3300;
|
|
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
|
|
strncpy(cpi->hba_vid, "AdvanSys", HBA_IDLEN);
|
|
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
|
|
cpi->unit_number = cam_sim_unit(sim);
|
|
cpi->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_done(ccb);
|
|
break;
|
|
}
|
|
default:
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
xpt_done(ccb);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
adw_poll(struct cam_sim *sim)
|
|
{
|
|
adw_intr(cam_sim_softc(sim));
|
|
}
|
|
|
|
static void
|
|
adw_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
|
|
{
|
|
}
|
|
|
|
struct adw_softc *
|
|
adw_alloc(device_t dev, struct resource *regs, int regs_type, int regs_id)
|
|
{
|
|
struct adw_softc *adw;
|
|
int i;
|
|
|
|
/*
|
|
* Allocate a storage area for us
|
|
*/
|
|
adw = malloc(sizeof(struct adw_softc), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (adw == NULL) {
|
|
printf("adw%d: cannot malloc!\n", device_get_unit(dev));
|
|
return NULL;
|
|
}
|
|
LIST_INIT(&adw->pending_ccbs);
|
|
SLIST_INIT(&adw->sg_maps);
|
|
adw->device = dev;
|
|
adw->unit = device_get_unit(dev);
|
|
adw->regs_res_type = regs_type;
|
|
adw->regs_res_id = regs_id;
|
|
adw->regs = regs;
|
|
adw->tag = rman_get_bustag(regs);
|
|
adw->bsh = rman_get_bushandle(regs);
|
|
i = adw->unit / 10;
|
|
adw->name = malloc(sizeof("adw") + i + 1, M_DEVBUF, M_NOWAIT);
|
|
if (adw->name == NULL) {
|
|
printf("adw%d: cannot malloc name!\n", adw->unit);
|
|
free(adw, M_DEVBUF);
|
|
return NULL;
|
|
}
|
|
sprintf(adw->name, "adw%d", adw->unit);
|
|
return(adw);
|
|
}
|
|
|
|
void
|
|
adw_free(struct adw_softc *adw)
|
|
{
|
|
switch (adw->init_level) {
|
|
case 9:
|
|
{
|
|
struct sg_map_node *sg_map;
|
|
|
|
while ((sg_map = SLIST_FIRST(&adw->sg_maps)) != NULL) {
|
|
SLIST_REMOVE_HEAD(&adw->sg_maps, links);
|
|
bus_dmamap_unload(adw->sg_dmat,
|
|
sg_map->sg_dmamap);
|
|
bus_dmamem_free(adw->sg_dmat, sg_map->sg_vaddr,
|
|
sg_map->sg_dmamap);
|
|
free(sg_map, M_DEVBUF);
|
|
}
|
|
bus_dma_tag_destroy(adw->sg_dmat);
|
|
}
|
|
case 8:
|
|
bus_dmamap_unload(adw->acb_dmat, adw->acb_dmamap);
|
|
case 7:
|
|
bus_dmamem_free(adw->acb_dmat, adw->acbs,
|
|
adw->acb_dmamap);
|
|
bus_dmamap_destroy(adw->acb_dmat, adw->acb_dmamap);
|
|
case 6:
|
|
bus_dma_tag_destroy(adw->acb_dmat);
|
|
case 5:
|
|
bus_dmamap_unload(adw->carrier_dmat, adw->carrier_dmamap);
|
|
case 4:
|
|
bus_dmamem_free(adw->carrier_dmat, adw->carriers,
|
|
adw->carrier_dmamap);
|
|
bus_dmamap_destroy(adw->carrier_dmat, adw->carrier_dmamap);
|
|
case 3:
|
|
bus_dma_tag_destroy(adw->carrier_dmat);
|
|
case 2:
|
|
bus_dma_tag_destroy(adw->buffer_dmat);
|
|
case 1:
|
|
bus_dma_tag_destroy(adw->parent_dmat);
|
|
case 0:
|
|
break;
|
|
}
|
|
|
|
if (adw->regs != NULL)
|
|
bus_release_resource(adw->device,
|
|
adw->regs_res_type,
|
|
adw->regs_res_id,
|
|
adw->regs);
|
|
|
|
if (adw->irq != NULL)
|
|
bus_release_resource(adw->device,
|
|
adw->irq_res_type,
|
|
0, adw->irq);
|
|
|
|
if (adw->sim != NULL) {
|
|
if (adw->path != NULL) {
|
|
xpt_async(AC_LOST_DEVICE, adw->path, NULL);
|
|
xpt_free_path(adw->path);
|
|
}
|
|
xpt_bus_deregister(cam_sim_path(adw->sim));
|
|
cam_sim_free(adw->sim, /*free_devq*/TRUE);
|
|
}
|
|
free(adw->name, M_DEVBUF);
|
|
free(adw, M_DEVBUF);
|
|
}
|
|
|
|
int
|
|
adw_init(struct adw_softc *adw)
|
|
{
|
|
struct adw_eeprom eep_config;
|
|
u_int tid;
|
|
u_int i;
|
|
u_int16_t checksum;
|
|
u_int16_t scsicfg1;
|
|
|
|
checksum = adw_eeprom_read(adw, &eep_config);
|
|
bcopy(eep_config.serial_number, adw->serial_number,
|
|
sizeof(adw->serial_number));
|
|
if (checksum != eep_config.checksum) {
|
|
u_int16_t serial_number[3];
|
|
|
|
adw->flags |= ADW_EEPROM_FAILED;
|
|
printf("%s: EEPROM checksum failed. Restoring Defaults\n",
|
|
adw_name(adw));
|
|
|
|
/*
|
|
* Restore the default EEPROM settings.
|
|
* Assume the 6 byte board serial number that was read
|
|
* from EEPROM is correct even if the EEPROM checksum
|
|
* failed.
|
|
*/
|
|
bcopy(adw->default_eeprom, &eep_config, sizeof(eep_config));
|
|
bcopy(adw->serial_number, eep_config.serial_number,
|
|
sizeof(serial_number));
|
|
adw_eeprom_write(adw, &eep_config);
|
|
}
|
|
|
|
/* Pull eeprom information into our softc. */
|
|
adw->bios_ctrl = eep_config.bios_ctrl;
|
|
adw->user_wdtr = eep_config.wdtr_able;
|
|
for (tid = 0; tid < ADW_MAX_TID; tid++) {
|
|
u_int mc_sdtr;
|
|
u_int16_t tid_mask;
|
|
|
|
tid_mask = 0x1 << tid;
|
|
if ((adw->features & ADW_ULTRA) != 0) {
|
|
/*
|
|
* Ultra chips store sdtr and ultraenb
|
|
* bits in their seeprom, so we must
|
|
* construct valid mc_sdtr entries for
|
|
* indirectly.
|
|
*/
|
|
if (eep_config.sync1.sync_enable & tid_mask) {
|
|
if (eep_config.sync2.ultra_enable & tid_mask)
|
|
mc_sdtr = ADW_MC_SDTR_20;
|
|
else
|
|
mc_sdtr = ADW_MC_SDTR_10;
|
|
} else
|
|
mc_sdtr = ADW_MC_SDTR_ASYNC;
|
|
} else {
|
|
switch (ADW_TARGET_GROUP(tid)) {
|
|
case 3:
|
|
mc_sdtr = eep_config.sync4.sdtr4;
|
|
break;
|
|
case 2:
|
|
mc_sdtr = eep_config.sync3.sdtr3;
|
|
break;
|
|
case 1:
|
|
mc_sdtr = eep_config.sync2.sdtr2;
|
|
break;
|
|
default: /* Shut up compiler */
|
|
case 0:
|
|
mc_sdtr = eep_config.sync1.sdtr1;
|
|
break;
|
|
}
|
|
mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
|
|
mc_sdtr &= 0xFF;
|
|
}
|
|
adw_set_user_sdtr(adw, tid, mc_sdtr);
|
|
}
|
|
adw->user_tagenb = eep_config.tagqng_able;
|
|
adw->user_discenb = eep_config.disc_enable;
|
|
adw->max_acbs = eep_config.max_host_qng;
|
|
adw->initiator_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
|
|
|
|
/*
|
|
* Sanity check the number of host openings.
|
|
*/
|
|
if (adw->max_acbs > ADW_DEF_MAX_HOST_QNG)
|
|
adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
|
|
else if (adw->max_acbs < ADW_DEF_MIN_HOST_QNG) {
|
|
/* If the value is zero, assume it is uninitialized. */
|
|
if (adw->max_acbs == 0)
|
|
adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
|
|
else
|
|
adw->max_acbs = ADW_DEF_MIN_HOST_QNG;
|
|
}
|
|
|
|
scsicfg1 = 0;
|
|
if ((adw->features & ADW_ULTRA2) != 0) {
|
|
switch (eep_config.termination_lvd) {
|
|
default:
|
|
printf("%s: Invalid EEPROM LVD Termination Settings.\n",
|
|
adw_name(adw));
|
|
printf("%s: Reverting to Automatic LVD Termination\n",
|
|
adw_name(adw));
|
|
/* FALLTHROUGH */
|
|
case ADW_EEPROM_TERM_AUTO:
|
|
break;
|
|
case ADW_EEPROM_TERM_BOTH_ON:
|
|
scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_LO;
|
|
/* FALLTHROUGH */
|
|
case ADW_EEPROM_TERM_HIGH_ON:
|
|
scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_HI;
|
|
/* FALLTHROUGH */
|
|
case ADW_EEPROM_TERM_OFF:
|
|
scsicfg1 |= ADW2_SCSI_CFG1_DIS_TERM_DRV;
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (eep_config.termination_se) {
|
|
default:
|
|
printf("%s: Invalid SE EEPROM Termination Settings.\n",
|
|
adw_name(adw));
|
|
printf("%s: Reverting to Automatic SE Termination\n",
|
|
adw_name(adw));
|
|
/* FALLTHROUGH */
|
|
case ADW_EEPROM_TERM_AUTO:
|
|
break;
|
|
case ADW_EEPROM_TERM_BOTH_ON:
|
|
scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
|
|
/* FALLTHROUGH */
|
|
case ADW_EEPROM_TERM_HIGH_ON:
|
|
scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
|
|
/* FALLTHROUGH */
|
|
case ADW_EEPROM_TERM_OFF:
|
|
scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_MANUAL;
|
|
break;
|
|
}
|
|
printf("%s: SCSI ID %d, ", adw_name(adw), adw->initiator_id);
|
|
|
|
/* DMA tag for mapping buffers into device visible space. */
|
|
if (bus_dma_tag_create(
|
|
/* parent */ adw->parent_dmat,
|
|
/* alignment */ 1,
|
|
/* boundary */ 0,
|
|
/* lowaddr */ BUS_SPACE_MAXADDR_32BIT,
|
|
/* highaddr */ BUS_SPACE_MAXADDR,
|
|
/* filter */ NULL,
|
|
/* filterarg */ NULL,
|
|
/* maxsize */ MAXBSIZE,
|
|
/* nsegments */ ADW_SGSIZE,
|
|
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
|
|
/* flags */ BUS_DMA_ALLOCNOW,
|
|
/* lockfunc */ busdma_lock_mutex,
|
|
/* lockarg */ &Giant,
|
|
&adw->buffer_dmat) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
adw->init_level++;
|
|
|
|
/* DMA tag for our ccb carrier structures */
|
|
if (bus_dma_tag_create(
|
|
/* parent */ adw->parent_dmat,
|
|
/* alignment */ 0x10,
|
|
/* boundary */ 0,
|
|
/* lowaddr */ BUS_SPACE_MAXADDR_32BIT,
|
|
/* highaddr */ BUS_SPACE_MAXADDR,
|
|
/* filter */ NULL,
|
|
/* filterarg */ NULL,
|
|
/* maxsize */ (adw->max_acbs +
|
|
ADW_NUM_CARRIER_QUEUES + 1) *
|
|
sizeof(struct adw_carrier),
|
|
/* nsegments */ 1,
|
|
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
|
|
/* flags */ 0,
|
|
/* lockfunc */ busdma_lock_mutex,
|
|
/* lockarg */ &Giant,
|
|
&adw->carrier_dmat) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
adw->init_level++;
|
|
|
|
/* Allocation for our ccb carrier structures */
|
|
if (bus_dmamem_alloc(adw->carrier_dmat, (void **)&adw->carriers,
|
|
BUS_DMA_NOWAIT, &adw->carrier_dmamap) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
adw->init_level++;
|
|
|
|
/* And permanently map them */
|
|
bus_dmamap_load(adw->carrier_dmat, adw->carrier_dmamap,
|
|
adw->carriers,
|
|
(adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
|
|
* sizeof(struct adw_carrier),
|
|
adwmapmem, &adw->carrier_busbase, /*flags*/0);
|
|
|
|
/* Clear them out. */
|
|
bzero(adw->carriers, (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
|
|
* sizeof(struct adw_carrier));
|
|
|
|
/* Setup our free carrier list */
|
|
adw->free_carriers = adw->carriers;
|
|
for (i = 0; i < adw->max_acbs + ADW_NUM_CARRIER_QUEUES; i++) {
|
|
adw->carriers[i].carr_offset =
|
|
carriervtobo(adw, &adw->carriers[i]);
|
|
adw->carriers[i].carr_ba =
|
|
carriervtob(adw, &adw->carriers[i]);
|
|
adw->carriers[i].areq_ba = 0;
|
|
adw->carriers[i].next_ba =
|
|
carriervtobo(adw, &adw->carriers[i+1]);
|
|
}
|
|
/* Terminal carrier. Never leaves the freelist */
|
|
adw->carriers[i].carr_offset =
|
|
carriervtobo(adw, &adw->carriers[i]);
|
|
adw->carriers[i].carr_ba =
|
|
carriervtob(adw, &adw->carriers[i]);
|
|
adw->carriers[i].areq_ba = 0;
|
|
adw->carriers[i].next_ba = ~0;
|
|
|
|
adw->init_level++;
|
|
|
|
/* DMA tag for our acb structures */
|
|
if (bus_dma_tag_create(
|
|
/* parent */ adw->parent_dmat,
|
|
/* alignment */ 1,
|
|
/* boundary */ 0,
|
|
/* lowaddr */ BUS_SPACE_MAXADDR,
|
|
/* highaddr */ BUS_SPACE_MAXADDR,
|
|
/* filter */ NULL,
|
|
/* filterarg */ NULL,
|
|
/* maxsize */ adw->max_acbs * sizeof(struct acb),
|
|
/* nsegments */ 1,
|
|
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
|
|
/* flags */ 0,
|
|
/* lockfunc */ busdma_lock_mutex,
|
|
/* lockarg */ &Giant,
|
|
&adw->acb_dmat) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
adw->init_level++;
|
|
|
|
/* Allocation for our ccbs */
|
|
if (bus_dmamem_alloc(adw->acb_dmat, (void **)&adw->acbs,
|
|
BUS_DMA_NOWAIT, &adw->acb_dmamap) != 0)
|
|
return (ENOMEM);
|
|
|
|
adw->init_level++;
|
|
|
|
/* And permanently map them */
|
|
bus_dmamap_load(adw->acb_dmat, adw->acb_dmamap,
|
|
adw->acbs,
|
|
adw->max_acbs * sizeof(struct acb),
|
|
adwmapmem, &adw->acb_busbase, /*flags*/0);
|
|
|
|
/* Clear them out. */
|
|
bzero(adw->acbs, adw->max_acbs * sizeof(struct acb));
|
|
|
|
/* DMA tag for our S/G structures. We allocate in page sized chunks */
|
|
if (bus_dma_tag_create(
|
|
/* parent */ adw->parent_dmat,
|
|
/* alignment */ 1,
|
|
/* boundary */ 0,
|
|
/* lowaddr */ BUS_SPACE_MAXADDR,
|
|
/* highaddr */ BUS_SPACE_MAXADDR,
|
|
/* filter */ NULL,
|
|
/* filterarg */ NULL,
|
|
/* maxsize */ PAGE_SIZE,
|
|
/* nsegments */ 1,
|
|
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
|
|
/* flags */ 0,
|
|
/* lockfunc */ busdma_lock_mutex,
|
|
/* lockarg */ &Giant,
|
|
&adw->sg_dmat) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
adw->init_level++;
|
|
|
|
/* Allocate our first batch of ccbs */
|
|
if (adwallocacbs(adw) == 0)
|
|
return (ENOMEM);
|
|
|
|
if (adw_init_chip(adw, scsicfg1) != 0)
|
|
return (ENXIO);
|
|
|
|
printf("Queue Depth %d\n", adw->max_acbs);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Attach all the sub-devices we can find
|
|
*/
|
|
int
|
|
adw_attach(struct adw_softc *adw)
|
|
{
|
|
struct ccb_setasync csa;
|
|
struct cam_devq *devq;
|
|
int s;
|
|
int error;
|
|
|
|
error = 0;
|
|
s = splcam();
|
|
/* Hook up our interrupt handler */
|
|
if ((error = bus_setup_intr(adw->device, adw->irq,
|
|
INTR_TYPE_CAM | INTR_ENTROPY, adw_intr,
|
|
adw, &adw->ih)) != 0) {
|
|
device_printf(adw->device, "bus_setup_intr() failed: %d\n",
|
|
error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Start the Risc processor now that we are fully configured. */
|
|
adw_outw(adw, ADW_RISC_CSR, ADW_RISC_CSR_RUN);
|
|
|
|
/*
|
|
* Create the device queue for our SIM.
|
|
*/
|
|
devq = cam_simq_alloc(adw->max_acbs);
|
|
if (devq == NULL)
|
|
return (ENOMEM);
|
|
|
|
/*
|
|
* Construct our SIM entry.
|
|
*/
|
|
adw->sim = cam_sim_alloc(adw_action, adw_poll, "adw", adw, adw->unit,
|
|
1, adw->max_acbs, devq);
|
|
if (adw->sim == NULL) {
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Register the bus.
|
|
*/
|
|
if (xpt_bus_register(adw->sim, 0) != CAM_SUCCESS) {
|
|
cam_sim_free(adw->sim, /*free devq*/TRUE);
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (xpt_create_path(&adw->path, /*periph*/NULL, cam_sim_path(adw->sim),
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
|
|
== CAM_REQ_CMP) {
|
|
xpt_setup_ccb(&csa.ccb_h, adw->path, /*priority*/5);
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
csa.event_enable = AC_LOST_DEVICE;
|
|
csa.callback = adw_async;
|
|
csa.callback_arg = adw;
|
|
xpt_action((union ccb *)&csa);
|
|
}
|
|
|
|
fail:
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
adw_intr(void *arg)
|
|
{
|
|
struct adw_softc *adw;
|
|
u_int int_stat;
|
|
|
|
adw = (struct adw_softc *)arg;
|
|
if ((adw_inw(adw, ADW_CTRL_REG) & ADW_CTRL_REG_HOST_INTR) == 0)
|
|
return;
|
|
|
|
/* Reading the register clears the interrupt. */
|
|
int_stat = adw_inb(adw, ADW_INTR_STATUS_REG);
|
|
|
|
if ((int_stat & ADW_INTR_STATUS_INTRB) != 0) {
|
|
u_int intrb_code;
|
|
|
|
/* Async Microcode Event */
|
|
intrb_code = adw_lram_read_8(adw, ADW_MC_INTRB_CODE);
|
|
switch (intrb_code) {
|
|
case ADW_ASYNC_CARRIER_READY_FAILURE:
|
|
/*
|
|
* The RISC missed our update of
|
|
* the commandq.
|
|
*/
|
|
if (LIST_FIRST(&adw->pending_ccbs) != NULL)
|
|
adw_tickle_risc(adw, ADW_TICKLE_A);
|
|
break;
|
|
case ADW_ASYNC_SCSI_BUS_RESET_DET:
|
|
/*
|
|
* The firmware detected a SCSI Bus reset.
|
|
*/
|
|
printf("Someone Reset the Bus\n");
|
|
adw_handle_bus_reset(adw, /*initiated*/FALSE);
|
|
break;
|
|
case ADW_ASYNC_RDMA_FAILURE:
|
|
/*
|
|
* Handle RDMA failure by resetting the
|
|
* SCSI Bus and chip.
|
|
*/
|
|
#if XXX
|
|
AdvResetChipAndSB(adv_dvc_varp);
|
|
#endif
|
|
break;
|
|
|
|
case ADW_ASYNC_HOST_SCSI_BUS_RESET:
|
|
/*
|
|
* Host generated SCSI bus reset occurred.
|
|
*/
|
|
adw_handle_bus_reset(adw, /*initiated*/TRUE);
|
|
break;
|
|
default:
|
|
printf("adw_intr: unknown async code 0x%x\n",
|
|
intrb_code);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run down the RequestQ.
|
|
*/
|
|
while ((adw->responseq->next_ba & ADW_RQ_DONE) != 0) {
|
|
struct adw_carrier *free_carrier;
|
|
struct acb *acb;
|
|
union ccb *ccb;
|
|
|
|
#if 0
|
|
printf("0x%x, 0x%x, 0x%x, 0x%x\n",
|
|
adw->responseq->carr_offset,
|
|
adw->responseq->carr_ba,
|
|
adw->responseq->areq_ba,
|
|
adw->responseq->next_ba);
|
|
#endif
|
|
/*
|
|
* The firmware copies the adw_scsi_req_q.acb_baddr
|
|
* field into the areq_ba field of the carrier.
|
|
*/
|
|
acb = acbbotov(adw, adw->responseq->areq_ba);
|
|
|
|
/*
|
|
* The least significant four bits of the next_ba
|
|
* field are used as flags. Mask them out and then
|
|
* advance through the list.
|
|
*/
|
|
free_carrier = adw->responseq;
|
|
adw->responseq =
|
|
carrierbotov(adw, free_carrier->next_ba & ADW_NEXT_BA_MASK);
|
|
free_carrier->next_ba = adw->free_carriers->carr_offset;
|
|
adw->free_carriers = free_carrier;
|
|
|
|
/* Process CCB */
|
|
ccb = acb->ccb;
|
|
untimeout(adwtimeout, acb, ccb->ccb_h.timeout_ch);
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
|
|
bus_dmasync_op_t op;
|
|
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
|
|
op = BUS_DMASYNC_POSTREAD;
|
|
else
|
|
op = BUS_DMASYNC_POSTWRITE;
|
|
bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
|
|
bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
|
|
ccb->csio.resid = acb->queue.data_cnt;
|
|
} else
|
|
ccb->csio.resid = 0;
|
|
|
|
/* Common Cases inline... */
|
|
if (acb->queue.host_status == QHSTA_NO_ERROR
|
|
&& (acb->queue.done_status == QD_NO_ERROR
|
|
|| acb->queue.done_status == QD_WITH_ERROR)) {
|
|
ccb->csio.scsi_status = acb->queue.scsi_status;
|
|
ccb->ccb_h.status = 0;
|
|
switch (ccb->csio.scsi_status) {
|
|
case SCSI_STATUS_OK:
|
|
ccb->ccb_h.status |= CAM_REQ_CMP;
|
|
break;
|
|
case SCSI_STATUS_CHECK_COND:
|
|
case SCSI_STATUS_CMD_TERMINATED:
|
|
bcopy(&acb->sense_data, &ccb->csio.sense_data,
|
|
ccb->csio.sense_len);
|
|
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
|
|
ccb->csio.sense_resid = acb->queue.sense_len;
|
|
/* FALLTHROUGH */
|
|
default:
|
|
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR
|
|
| CAM_DEV_QFRZN;
|
|
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
|
|
break;
|
|
}
|
|
adwfreeacb(adw, acb);
|
|
xpt_done(ccb);
|
|
} else {
|
|
adwprocesserror(adw, acb);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
adwprocesserror(struct adw_softc *adw, struct acb *acb)
|
|
{
|
|
union ccb *ccb;
|
|
|
|
ccb = acb->ccb;
|
|
if (acb->queue.done_status == QD_ABORTED_BY_HOST) {
|
|
ccb->ccb_h.status = CAM_REQ_ABORTED;
|
|
} else {
|
|
|
|
switch (acb->queue.host_status) {
|
|
case QHSTA_M_SEL_TIMEOUT:
|
|
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
|
|
break;
|
|
case QHSTA_M_SXFR_OFF_UFLW:
|
|
case QHSTA_M_SXFR_OFF_OFLW:
|
|
case QHSTA_M_DATA_OVER_RUN:
|
|
ccb->ccb_h.status = CAM_DATA_RUN_ERR;
|
|
break;
|
|
case QHSTA_M_SXFR_DESELECTED:
|
|
case QHSTA_M_UNEXPECTED_BUS_FREE:
|
|
ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
|
|
break;
|
|
case QHSTA_M_SCSI_BUS_RESET:
|
|
case QHSTA_M_SCSI_BUS_RESET_UNSOL:
|
|
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
|
|
break;
|
|
case QHSTA_M_BUS_DEVICE_RESET:
|
|
ccb->ccb_h.status = CAM_BDR_SENT;
|
|
break;
|
|
case QHSTA_M_QUEUE_ABORTED:
|
|
/* BDR or Bus Reset */
|
|
printf("Saw Queue Aborted\n");
|
|
ccb->ccb_h.status = adw->last_reset;
|
|
break;
|
|
case QHSTA_M_SXFR_SDMA_ERR:
|
|
case QHSTA_M_SXFR_SXFR_PERR:
|
|
case QHSTA_M_RDMA_PERR:
|
|
ccb->ccb_h.status = CAM_UNCOR_PARITY;
|
|
break;
|
|
case QHSTA_M_WTM_TIMEOUT:
|
|
case QHSTA_M_SXFR_WD_TMO:
|
|
{
|
|
/* The SCSI bus hung in a phase */
|
|
xpt_print_path(adw->path);
|
|
printf("Watch Dog timer expired. Reseting bus\n");
|
|
adw_reset_bus(adw);
|
|
break;
|
|
}
|
|
case QHSTA_M_SXFR_XFR_PH_ERR:
|
|
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
|
|
break;
|
|
case QHSTA_M_SXFR_UNKNOWN_ERROR:
|
|
break;
|
|
case QHSTA_M_BAD_CMPL_STATUS_IN:
|
|
/* No command complete after a status message */
|
|
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
|
|
break;
|
|
case QHSTA_M_AUTO_REQ_SENSE_FAIL:
|
|
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
|
|
break;
|
|
case QHSTA_M_INVALID_DEVICE:
|
|
ccb->ccb_h.status = CAM_PATH_INVALID;
|
|
break;
|
|
case QHSTA_M_NO_AUTO_REQ_SENSE:
|
|
/*
|
|
* User didn't request sense, but we got a
|
|
* check condition.
|
|
*/
|
|
ccb->csio.scsi_status = acb->queue.scsi_status;
|
|
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
|
|
break;
|
|
default:
|
|
panic("%s: Unhandled Host status error %x",
|
|
adw_name(adw), acb->queue.host_status);
|
|
/* NOTREACHED */
|
|
}
|
|
}
|
|
if ((acb->state & ACB_RECOVERY_ACB) != 0) {
|
|
if (ccb->ccb_h.status == CAM_SCSI_BUS_RESET
|
|
|| ccb->ccb_h.status == CAM_BDR_SENT)
|
|
ccb->ccb_h.status = CAM_CMD_TIMEOUT;
|
|
}
|
|
if (ccb->ccb_h.status != CAM_REQ_CMP) {
|
|
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
|
|
ccb->ccb_h.status |= CAM_DEV_QFRZN;
|
|
}
|
|
adwfreeacb(adw, acb);
|
|
xpt_done(ccb);
|
|
}
|
|
|
|
static void
|
|
adwtimeout(void *arg)
|
|
{
|
|
struct acb *acb;
|
|
union ccb *ccb;
|
|
struct adw_softc *adw;
|
|
adw_idle_cmd_status_t status;
|
|
int target_id;
|
|
int s;
|
|
|
|
acb = (struct acb *)arg;
|
|
ccb = acb->ccb;
|
|
adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printf("ACB %p - timed out\n", (void *)acb);
|
|
|
|
s = splcam();
|
|
|
|
if ((acb->state & ACB_ACTIVE) == 0) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printf("ACB %p - timed out CCB already completed\n",
|
|
(void *)acb);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
acb->state |= ACB_RECOVERY_ACB;
|
|
target_id = ccb->ccb_h.target_id;
|
|
|
|
/* Attempt a BDR first */
|
|
status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
|
|
ccb->ccb_h.target_id);
|
|
splx(s);
|
|
if (status == ADW_IDLE_CMD_SUCCESS) {
|
|
printf("%s: BDR Delivered. No longer in timeout\n",
|
|
adw_name(adw));
|
|
adw_handle_device_reset(adw, target_id);
|
|
} else {
|
|
adw_reset_bus(adw);
|
|
xpt_print_path(adw->path);
|
|
printf("Bus Reset Delivered. No longer in timeout\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
adw_handle_device_reset(struct adw_softc *adw, u_int target)
|
|
{
|
|
struct cam_path *path;
|
|
cam_status error;
|
|
|
|
error = xpt_create_path(&path, /*periph*/NULL, cam_sim_path(adw->sim),
|
|
target, CAM_LUN_WILDCARD);
|
|
|
|
if (error == CAM_REQ_CMP) {
|
|
xpt_async(AC_SENT_BDR, path, NULL);
|
|
xpt_free_path(path);
|
|
}
|
|
adw->last_reset = CAM_BDR_SENT;
|
|
}
|
|
|
|
static void
|
|
adw_handle_bus_reset(struct adw_softc *adw, int initiated)
|
|
{
|
|
if (initiated) {
|
|
/*
|
|
* The microcode currently sets the SCSI Bus Reset signal
|
|
* while handling the AscSendIdleCmd() IDLE_CMD_SCSI_RESET
|
|
* command above. But the SCSI Bus Reset Hold Time in the
|
|
* microcode is not deterministic (it may in fact be for less
|
|
* than the SCSI Spec. minimum of 25 us). Therefore on return
|
|
* the Adv Library sets the SCSI Bus Reset signal for
|
|
* ADW_SCSI_RESET_HOLD_TIME_US, which is defined to be greater
|
|
* than 25 us.
|
|
*/
|
|
u_int scsi_ctrl;
|
|
|
|
scsi_ctrl = adw_inw(adw, ADW_SCSI_CTRL) & ~ADW_SCSI_CTRL_RSTOUT;
|
|
adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl | ADW_SCSI_CTRL_RSTOUT);
|
|
DELAY(ADW_SCSI_RESET_HOLD_TIME_US);
|
|
adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl);
|
|
|
|
/*
|
|
* We will perform the async notification when the
|
|
* SCSI Reset interrupt occurs.
|
|
*/
|
|
} else
|
|
xpt_async(AC_BUS_RESET, adw->path, NULL);
|
|
adw->last_reset = CAM_SCSI_BUS_RESET;
|
|
}
|