freebsd-nq/sys/dev/usb/if_aue.c
Warner Losh b1aafdf7af USB Ethernet Adaptor "ELECOM LD-USB20"
PR: 86195
Submitted by: kato <redzonemiata@yahoo.co.jp>
Approved by: re (kensmith)
2007-06-22 05:20:11 +00:00

1482 lines
37 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Copyright (c) 2006
* Alfred Perlstein <alfred@freebsd.org>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* ADMtek AN986 Pegasus and AN8511 Pegasus II USB to ethernet driver.
* Datasheet is available from http://www.admtek.com.tw.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*
* SMP locking by Alfred Perlstein <alfred@freebsd.org>.
* RED Inc.
*/
/*
* The Pegasus chip uses four USB "endpoints" to provide 10/100 ethernet
* support: the control endpoint for reading/writing registers, burst
* read endpoint for packet reception, burst write for packet transmission
* and one for "interrupts." The chip uses the same RX filter scheme
* as the other ADMtek ethernet parts: one perfect filter entry for the
* the station address and a 64-bit multicast hash table. The chip supports
* both MII and HomePNA attachments.
*
* Since the maximum data transfer speed of USB is supposed to be 12Mbps,
* you're never really going to get 100Mbps speeds from this device. I
* think the idea is to allow the device to connect to 10 or 100Mbps
* networks, not necessarily to provide 100Mbps performance. Also, since
* the controller uses an external PHY chip, it's possible that board
* designers might simply choose a 10Mbps PHY.
*
* Registers are accessed using usbd_do_request(). Packet transfers are
* done using usbd_transfer() and friends.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/kdb.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sx.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include "usbdevs.h"
#include <dev/usb/usb_ethersubr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/usb/if_auereg.h>
MODULE_DEPEND(aue, usb, 1, 1, 1);
MODULE_DEPEND(aue, ether, 1, 1, 1);
MODULE_DEPEND(aue, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Various supported device vendors/products.
*/
struct aue_type {
struct usb_devno aue_dev;
u_int16_t aue_flags;
#define LSYS 0x0001 /* use Linksys reset */
#define PNA 0x0002 /* has Home PNA */
#define PII 0x0004 /* Pegasus II chip */
};
static const struct aue_type aue_devs[] = {
{{ USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460B}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX1}, PNA|PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX2}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE1000}, LSYS },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX4}, PNA },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX5}, PNA },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX6}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX7}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX8}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX9}, PNA },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX10}, 0 },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_DSB650TX_PNA}, 0 },
{{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_USB320_EC}, 0 },
{{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_SS1001}, PII },
{{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUS}, PNA },
{{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII}, PII },
{{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_2}, PII },
{{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_3}, PII },
{{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_USB2LAN}, PII },
{{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB100}, 0 },
{{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBLP100}, PNA },
{{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBEL100}, 0 },
{{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBE100}, PII },
{{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TX}, 0 },
{{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TXS},PII },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX4}, LSYS|PII },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX1}, LSYS },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX}, LSYS },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX_PNA}, PNA },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX3}, LSYS|PII },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX2}, LSYS|PII },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650}, LSYS },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSB20}, PII },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX0}, 0 },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX1}, LSYS },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX2}, 0 },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX3}, LSYS },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBLTX}, PII },
{{ USB_VENDOR_ELSA, USB_PRODUCT_ELSA_USB2ETHERNET}, 0 },
{{ USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_UF100}, PII },
{{ USB_VENDOR_HP, USB_PRODUCT_HP_HN210E}, PII },
{{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTX}, 0 },
{{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTXS}, PII },
{{ USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_KNU101TX}, 0 },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX1}, LSYS|PII },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T}, LSYS },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100TX}, LSYS },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100H1}, LSYS|PNA },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TA}, LSYS },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX2}, LSYS|PII },
{{ USB_VENDOR_MICROSOFT, USB_PRODUCT_MICROSOFT_MN110}, PII },
{{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX1}, 0 },
{{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX5}, 0 },
{{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUA2TX5}, PII },
{{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA101}, PII },
{{ USB_VENDOR_SIEMENS, USB_PRODUCT_SIEMENS_SPEEDSTREAM}, PII },
{{ USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTNIC},PII },
{{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2202USB}, 0 },
{{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2206USB}, PII },
{{ USB_VENDOR_SOHOWARE, USB_PRODUCT_SOHOWARE_NUB100}, 0 },
};
#define aue_lookup(v, p) ((const struct aue_type *)usb_lookup(aue_devs, v, p))
static device_probe_t aue_match;
static device_attach_t aue_attach;
static device_detach_t aue_detach;
static device_shutdown_t aue_shutdown;
static miibus_readreg_t aue_miibus_readreg;
static miibus_writereg_t aue_miibus_writereg;
static miibus_statchg_t aue_miibus_statchg;
static void aue_reset_pegasus_II(struct aue_softc *sc);
static int aue_encap(struct aue_softc *, struct mbuf *, int);
#ifdef AUE_INTR_PIPE
static void aue_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
#endif
static void aue_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
static void aue_rxeof_thread(struct aue_softc *sc);
static void aue_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
static void aue_txeof_thread(struct aue_softc *);
static void aue_task_sched(struct aue_softc *, int);
static void aue_task(void *xsc, int pending);
static void aue_tick(void *);
static void aue_rxstart(struct ifnet *);
static void aue_rxstart_thread(struct aue_softc *);
static void aue_start(struct ifnet *);
static void aue_start_thread(struct aue_softc *);
static int aue_ioctl(struct ifnet *, u_long, caddr_t);
static void aue_init(void *);
static void aue_init_body(struct aue_softc *);
static void aue_stop(struct aue_softc *);
static void aue_watchdog(struct aue_softc *);
static int aue_ifmedia_upd(struct ifnet *);
static void aue_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void aue_eeprom_getword(struct aue_softc *, int, u_int16_t *);
static void aue_read_eeprom(struct aue_softc *, caddr_t, int, int, int);
static void aue_setmulti(struct aue_softc *);
static void aue_reset(struct aue_softc *);
static int aue_csr_read_1(struct aue_softc *, int);
static int aue_csr_write_1(struct aue_softc *, int, int);
static int aue_csr_read_2(struct aue_softc *, int);
static int aue_csr_write_2(struct aue_softc *, int, int);
static device_method_t aue_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, aue_match),
DEVMETHOD(device_attach, aue_attach),
DEVMETHOD(device_detach, aue_detach),
DEVMETHOD(device_shutdown, aue_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, aue_miibus_readreg),
DEVMETHOD(miibus_writereg, aue_miibus_writereg),
DEVMETHOD(miibus_statchg, aue_miibus_statchg),
{ 0, 0 }
};
static driver_t aue_driver = {
"aue",
aue_methods,
sizeof(struct aue_softc)
};
static devclass_t aue_devclass;
DRIVER_MODULE(aue, uhub, aue_driver, aue_devclass, usbd_driver_load, 0);
DRIVER_MODULE(miibus, aue, miibus_driver, miibus_devclass, 0, 0);
#define AUE_SETBIT(sc, reg, x) \
aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) | (x))
#define AUE_CLRBIT(sc, reg, x) \
aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) & ~(x))
static int
aue_csr_read_1(struct aue_softc *sc, int reg)
{
usb_device_request_t req;
usbd_status err;
u_int8_t val = 0;
AUE_SXASSERTLOCKED(sc);
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = AUE_UR_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request(sc->aue_udev, &req, &val);
if (err) {
return (0);
}
return (val);
}
static int
aue_csr_read_2(struct aue_softc *sc, int reg)
{
usb_device_request_t req;
usbd_status err;
u_int16_t val = 0;
AUE_SXASSERTLOCKED(sc);
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = AUE_UR_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request(sc->aue_udev, &req, &val);
if (err) {
return (0);
}
return (val);
}
static int
aue_csr_write_1(struct aue_softc *sc, int reg, int val)
{
usb_device_request_t req;
usbd_status err;
AUE_SXASSERTLOCKED(sc);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AUE_UR_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request(sc->aue_udev, &req, &val);
if (err) {
return (-1);
}
return (0);
}
static int
aue_csr_write_2(struct aue_softc *sc, int reg, int val)
{
usb_device_request_t req;
usbd_status err;
AUE_SXASSERTLOCKED(sc);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AUE_UR_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request(sc->aue_udev, &req, &val);
if (err) {
return (-1);
}
return (0);
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
aue_eeprom_getword(struct aue_softc *sc, int addr, u_int16_t *dest)
{
int i;
u_int16_t word = 0;
aue_csr_write_1(sc, AUE_EE_REG, addr);
aue_csr_write_1(sc, AUE_EE_CTL, AUE_EECTL_READ);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (aue_csr_read_1(sc, AUE_EE_CTL) & AUE_EECTL_DONE)
break;
}
if (i == AUE_TIMEOUT) {
printf("aue%d: EEPROM read timed out\n",
sc->aue_unit);
}
word = aue_csr_read_2(sc, AUE_EE_DATA);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
aue_read_eeprom(struct aue_softc *sc, caddr_t dest, int off, int cnt, int swap)
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
aue_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
static int
aue_miibus_readreg(device_t dev, int phy, int reg)
{
struct aue_softc *sc = device_get_softc(dev);
int i;
u_int16_t val = 0;
/*
* The Am79C901 HomePNA PHY actually contains
* two transceivers: a 1Mbps HomePNA PHY and a
* 10Mbps full/half duplex ethernet PHY with
* NWAY autoneg. However in the ADMtek adapter,
* only the 1Mbps PHY is actually connected to
* anything, so we ignore the 10Mbps one. It
* happens to be configured for MII address 3,
* so we filter that out.
*/
if (sc->aue_vendor == USB_VENDOR_ADMTEK &&
sc->aue_product == USB_PRODUCT_ADMTEK_PEGASUS) {
if (phy == 3)
return (0);
#ifdef notdef
if (phy != 1)
return (0);
#endif
}
aue_csr_write_1(sc, AUE_PHY_ADDR, phy);
aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_READ);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE)
break;
}
if (i == AUE_TIMEOUT) {
printf("aue%d: MII read timed out\n", sc->aue_unit);
}
val = aue_csr_read_2(sc, AUE_PHY_DATA);
return (val);
}
static int
aue_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct aue_softc *sc = device_get_softc(dev);
int i;
if (phy == 3)
return (0);
aue_csr_write_2(sc, AUE_PHY_DATA, data);
aue_csr_write_1(sc, AUE_PHY_ADDR, phy);
aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_WRITE);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE)
break;
}
if (i == AUE_TIMEOUT) {
printf("aue%d: MII read timed out\n",
sc->aue_unit);
}
return(0);
}
static void
aue_miibus_statchg(device_t dev)
{
struct aue_softc *sc = device_get_softc(dev);
struct mii_data *mii = GET_MII(sc);
AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL);
} else {
AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL);
}
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX);
else
AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX);
AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB);
/*
* Set the LED modes on the LinkSys adapter.
* This turns on the 'dual link LED' bin in the auxmode
* register of the Broadcom PHY.
*/
if (sc->aue_flags & LSYS) {
u_int16_t auxmode;
auxmode = aue_miibus_readreg(dev, 0, 0x1b);
aue_miibus_writereg(dev, 0, 0x1b, auxmode | 0x04);
}
return;
}
#define AUE_BITS 6
static void
aue_setmulti(struct aue_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h = 0, i;
u_int8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
AUE_SXASSERTLOCKED(sc);
ifp = sc->aue_ifp;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI);
return;
}
AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI);
/* now program new ones */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
{
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) & ((1 << AUE_BITS) - 1);
hashtbl[(h >> 3)] |= 1 << (h & 0x7);
}
IF_ADDR_UNLOCK(ifp);
/* write the hashtable */
for (i = 0; i < 8; i++)
aue_csr_write_1(sc, AUE_MAR0 + i, hashtbl[i]);
return;
}
static void
aue_reset_pegasus_II(struct aue_softc *sc)
{
/* Magic constants taken from Linux driver. */
aue_csr_write_1(sc, AUE_REG_1D, 0);
aue_csr_write_1(sc, AUE_REG_7B, 2);
#if 0
if ((sc->aue_flags & HAS_HOME_PNA) && mii_mode)
aue_csr_write_1(sc, AUE_REG_81, 6);
else
#endif
aue_csr_write_1(sc, AUE_REG_81, 2);
}
static void
aue_reset(struct aue_softc *sc)
{
int i;
AUE_SXASSERTLOCKED(sc);
AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_RESETMAC);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (!(aue_csr_read_1(sc, AUE_CTL1) & AUE_CTL1_RESETMAC))
break;
}
if (i == AUE_TIMEOUT)
printf("aue%d: reset failed\n", sc->aue_unit);
/*
* The PHY(s) attached to the Pegasus chip may be held
* in reset until we flip on the GPIO outputs. Make sure
* to set the GPIO pins high so that the PHY(s) will
* be enabled.
*
* Note: We force all of the GPIO pins low first, *then*
* enable the ones we want.
*/
aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0|AUE_GPIO_SEL0);
aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0|AUE_GPIO_SEL0|AUE_GPIO_SEL1);
if (sc->aue_flags & LSYS) {
/* Grrr. LinkSys has to be different from everyone else. */
aue_csr_write_1(sc, AUE_GPIO0,
AUE_GPIO_SEL0 | AUE_GPIO_SEL1);
aue_csr_write_1(sc, AUE_GPIO0,
AUE_GPIO_SEL0 | AUE_GPIO_SEL1 | AUE_GPIO_OUT0);
}
if (sc->aue_flags & PII)
aue_reset_pegasus_II(sc);
/* Wait a little while for the chip to get its brains in order. */
DELAY(10000);
return;
}
/*
* Probe for a Pegasus chip.
*/
static int
aue_match(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->iface != NULL)
return (UMATCH_NONE);
return (aue_lookup(uaa->vendor, uaa->product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
aue_attach(device_t self)
{
struct aue_softc *sc = device_get_softc(self);
struct usb_attach_arg *uaa = device_get_ivars(self);
u_char eaddr[ETHER_ADDR_LEN];
struct ifnet *ifp;
usbd_interface_handle iface;
usbd_status err;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
sc->aue_dev = self;
sc->aue_udev = uaa->device;
sc->aue_unit = device_get_unit(self);
if (usbd_set_config_no(sc->aue_udev, AUE_CONFIG_NO, 0)) {
device_printf(self, "getting interface handle failed\n");
return ENXIO;
}
err = usbd_device2interface_handle(uaa->device, AUE_IFACE_IDX, &iface);
if (err) {
device_printf(self, "getting interface handle failed\n");
return ENXIO;
}
sc->aue_iface = iface;
sc->aue_flags = aue_lookup(uaa->vendor, uaa->product)->aue_flags;
sc->aue_product = uaa->product;
sc->aue_vendor = uaa->vendor;
id = usbd_get_interface_descriptor(sc->aue_iface);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(iface, i);
if (ed == NULL) {
device_printf(self, "couldn't get ep %d\n", i);
return ENXIO;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->aue_ed[AUE_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->aue_ed[AUE_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
sc->aue_ed[AUE_ENDPT_INTR] = ed->bEndpointAddress;
}
}
mtx_init(&sc->aue_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
sx_init(&sc->aue_sx, device_get_nameunit(self));
TASK_INIT(&sc->aue_task, 0, aue_task, sc);
usb_ether_task_init(self, 0, &sc->aue_taskqueue);
AUE_SXLOCK(sc);
/* Reset the adapter. */
aue_reset(sc);
/*
* Get station address from the EEPROM.
*/
aue_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0);
ifp = sc->aue_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(self, "can not if_alloc()\n");
AUE_SXUNLOCK(sc);
mtx_destroy(&sc->aue_mtx);
sx_destroy(&sc->aue_sx);
usb_ether_task_destroy(&sc->aue_taskqueue);
return ENXIO;
}
ifp->if_softc = sc;
if_initname(ifp, "aue", sc->aue_unit);
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = aue_ioctl;
ifp->if_start = aue_start;
ifp->if_init = aue_init;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
/*
* Do MII setup.
* NOTE: Doing this causes child devices to be attached to us,
* which we would normally disconnect at in the detach routine
* using device_delete_child(). However the USB code is set up
* such that when this driver is removed, all children devices
* are removed as well. In effect, the USB code ends up detaching
* all of our children for us, so we don't have to do is ourselves
* in aue_detach(). It's important to point this out since if
* we *do* try to detach the child devices ourselves, we will
* end up getting the children deleted twice, which will crash
* the system.
*/
if (mii_phy_probe(self, &sc->aue_miibus,
aue_ifmedia_upd, aue_ifmedia_sts)) {
device_printf(self, "MII without any PHY!\n");
if_free(ifp);
AUE_SXUNLOCK(sc);
mtx_destroy(&sc->aue_mtx);
sx_destroy(&sc->aue_sx);
usb_ether_task_destroy(&sc->aue_taskqueue);
return ENXIO;
}
sc->aue_qdat.ifp = ifp;
sc->aue_qdat.if_rxstart = aue_rxstart;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
usb_register_netisr();
sc->aue_dying = 0;
sc->aue_link = 1;
AUE_SXUNLOCK(sc);
return 0;
}
static int
aue_detach(device_t dev)
{
struct aue_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
AUE_SXLOCK(sc);
ifp = sc->aue_ifp;
ether_ifdetach(ifp);
sc->aue_dying = 1;
AUE_SXUNLOCK(sc);
callout_drain(&sc->aue_tick_callout);
usb_ether_task_drain(&sc->aue_taskqueue, &sc->aue_task);
usb_ether_task_destroy(&sc->aue_taskqueue);
if_free(ifp);
if (sc->aue_ep[AUE_ENDPT_TX] != NULL)
usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_TX]);
if (sc->aue_ep[AUE_ENDPT_RX] != NULL)
usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_RX]);
#ifdef AUE_INTR_PIPE
if (sc->aue_ep[AUE_ENDPT_INTR] != NULL)
usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_INTR]);
#endif
mtx_destroy(&sc->aue_mtx);
sx_destroy(&sc->aue_sx);
return (0);
}
static void
aue_rxstart(struct ifnet *ifp)
{
struct aue_softc *sc = ifp->if_softc;
aue_task_sched(sc, AUE_TASK_RXSTART);
}
static void
aue_rxstart_thread(struct aue_softc *sc)
{
struct ue_chain *c;
struct ifnet *ifp;
ifp = sc->aue_ifp;
sc = ifp->if_softc;
AUE_SXASSERTLOCKED(sc);
c = &sc->aue_cdata.ue_rx_chain[sc->aue_cdata.ue_rx_prod];
c->ue_mbuf = usb_ether_newbuf();
if (c->ue_mbuf == NULL) {
device_printf(sc->aue_dev, "no memory for rx list -- packet "
"dropped!\n");
ifp->if_ierrors++;
AUE_UNLOCK(sc);
return;
}
/* Setup new transfer. */
usbd_setup_xfer(c->ue_xfer, sc->aue_ep[AUE_ENDPT_RX],
c, mtod(c->ue_mbuf, char *), UE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, aue_rxeof);
usbd_transfer(c->ue_xfer);
return;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
aue_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct ue_chain *c = priv;
c->ue_status = status;
aue_task_sched(c->ue_sc, AUE_TASK_RXEOF);
}
static void
aue_rxeof_thread(struct aue_softc *sc)
{
struct ue_chain *c = &(sc->aue_cdata.ue_rx_chain[0]);
struct mbuf *m;
struct ifnet *ifp;
int total_len = 0;
struct aue_rxpkt r;
usbd_status status = c->ue_status;
AUE_SXASSERTLOCKED(sc);
ifp = sc->aue_ifp;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
return;
}
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
return;
}
if (usbd_ratecheck(&sc->aue_rx_notice))
device_printf(sc->aue_dev, "usb error on rx: %s\n",
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(c->ue_xfer, NULL, NULL, &total_len, NULL);
if (total_len <= 4 + ETHER_CRC_LEN) {
ifp->if_ierrors++;
goto done;
}
m = c->ue_mbuf;
bcopy(mtod(m, char *) + total_len - 4, (char *)&r, sizeof(r));
/* Turn off all the non-error bits in the rx status word. */
r.aue_rxstat &= AUE_RXSTAT_MASK;
if (r.aue_rxstat) {
ifp->if_ierrors++;
goto done;
}
/* No errors; receive the packet. */
total_len -= (4 + ETHER_CRC_LEN);
ifp->if_ipackets++;
m->m_pkthdr.rcvif = (void *)&sc->aue_qdat;
m->m_pkthdr.len = m->m_len = total_len;
/* Put the packet on the special USB input queue. */
usb_ether_input(m);
return;
done:
/* Setup new transfer. */
usbd_setup_xfer(c->ue_xfer, sc->aue_ep[AUE_ENDPT_RX],
c, mtod(c->ue_mbuf, char *), UE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, aue_rxeof);
usbd_transfer(c->ue_xfer);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
aue_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct ue_chain *c = priv;
c->ue_status = status;
aue_task_sched(c->ue_sc, AUE_TASK_TXEOF);
}
static void
aue_txeof_thread(struct aue_softc *sc)
{
struct ue_chain *c = &(sc->aue_cdata.ue_tx_chain[0]);
struct ifnet *ifp;
usbd_status err, status;
AUE_SXASSERTLOCKED(sc);
status = c->ue_status;
ifp = sc->aue_ifp;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
return;
}
device_printf(sc->aue_dev, "usb error on tx: %s\n",
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_TX]);
return;
}
sc->aue_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
usbd_get_xfer_status(c->ue_xfer, NULL, NULL, NULL, &err);
if (c->ue_mbuf != NULL) {
c->ue_mbuf->m_pkthdr.rcvif = ifp;
usb_tx_done(c->ue_mbuf);
c->ue_mbuf = NULL;
}
if (err)
ifp->if_oerrors++;
else
ifp->if_opackets++;
return;
}
static void
aue_tick(void *xsc)
{
struct aue_softc *sc = xsc;
aue_task_sched(sc, AUE_TASK_TICK);
}
static void
aue_tick_thread(struct aue_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
AUE_SXASSERTLOCKED(sc);
ifp = sc->aue_ifp;
/*
* If a timer is set (non-zero) then decrement it
* and if it hits zero, then call the watchdog routine.
*/
if (sc->aue_timer != 0 && --sc->aue_timer == 0) {
aue_watchdog(sc);
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
return;
}
mii = GET_MII(sc);
if (mii == NULL) {
goto resched;
}
mii_tick(mii);
if (!sc->aue_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->aue_link++;
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
aue_start_thread(sc);
}
resched:
(void) callout_reset(&sc->aue_tick_callout, hz, aue_tick, sc);
return;
}
static int
aue_encap(struct aue_softc *sc, struct mbuf *m, int idx)
{
int total_len;
struct ue_chain *c;
usbd_status err;
AUE_SXASSERTLOCKED(sc);
c = &sc->aue_cdata.ue_tx_chain[idx];
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, c->ue_buf + 2);
c->ue_mbuf = m;
total_len = m->m_pkthdr.len + 2;
/*
* The ADMtek documentation says that the packet length is
* supposed to be specified in the first two bytes of the
* transfer, however it actually seems to ignore this info
* and base the frame size on the bulk transfer length.
*/
c->ue_buf[0] = (u_int8_t)m->m_pkthdr.len;
c->ue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8);
usbd_setup_xfer(c->ue_xfer, sc->aue_ep[AUE_ENDPT_TX],
c, c->ue_buf, total_len, USBD_FORCE_SHORT_XFER,
10000, aue_txeof);
/* Transmit */
err = usbd_transfer(c->ue_xfer);
if (err != USBD_IN_PROGRESS) {
aue_stop(sc);
return (EIO);
}
sc->aue_cdata.ue_tx_cnt++;
return (0);
}
static void
aue_start(struct ifnet *ifp)
{
struct aue_softc *sc = ifp->if_softc;
aue_task_sched(sc, AUE_TASK_START);
}
static void
aue_start_thread(struct aue_softc *sc)
{
struct ifnet *ifp = sc->aue_ifp;
struct mbuf *m_head = NULL;
AUE_SXASSERTLOCKED(sc);
if (!sc->aue_link) {
return;
}
if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
return;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL) {
return;
}
if (aue_encap(sc, m_head, 0)) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->aue_timer = 5;
return;
}
static void
aue_init(void *xsc)
{
struct aue_softc *sc = xsc;
AUE_SXLOCK(sc);
aue_init_body(sc);
AUE_SXUNLOCK(sc);
}
static void
aue_init_body(struct aue_softc *sc)
{
struct ifnet *ifp = sc->aue_ifp;
struct mii_data *mii = GET_MII(sc);
struct ue_chain *c;
usbd_status err;
int i;
AUE_SXASSERTLOCKED(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
return;
}
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
aue_reset(sc);
/* Set MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
aue_csr_write_1(sc, AUE_PAR0 + i, IF_LLADDR(sc->aue_ifp)[i]);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
else
AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
/* Init TX ring. */
if (usb_ether_tx_list_init(sc, &sc->aue_cdata,
sc->aue_udev) == ENOBUFS) {
device_printf(sc->aue_dev, "tx list init failed\n");
return;
}
/* Init RX ring. */
if (usb_ether_rx_list_init(sc, &sc->aue_cdata,
sc->aue_udev) == ENOBUFS) {
device_printf(sc->aue_dev, "rx list init failed\n");
return;
}
/* Load the multicast filter. */
aue_setmulti(sc);
/* Enable RX and TX */
aue_csr_write_1(sc, AUE_CTL0, AUE_CTL0_RXSTAT_APPEND | AUE_CTL0_RX_ENB);
AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_TX_ENB);
AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_EP3_CLR);
mii_mediachg(mii);
/* Open RX and TX pipes. */
err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_RX],
USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_RX]);
if (err) {
device_printf(sc->aue_dev, "open rx pipe failed: %s\n",
usbd_errstr(err));
return;
}
err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_TX],
USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_TX]);
if (err) {
device_printf(sc->aue_dev, "open tx pipe failed: %s\n",
usbd_errstr(err));
return;
}
/* Start up the receive pipe. */
for (i = 0; i < UE_RX_LIST_CNT; i++) {
c = &sc->aue_cdata.ue_rx_chain[i];
usbd_setup_xfer(c->ue_xfer, sc->aue_ep[AUE_ENDPT_RX],
c, mtod(c->ue_mbuf, char *), UE_BUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, aue_rxeof);
usbd_transfer(c->ue_xfer);
}
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_init(&sc->aue_tick_callout, 1);
(void) callout_reset(&sc->aue_tick_callout, hz, aue_tick, sc);
return;
}
/*
* Set media options.
*/
static int
aue_ifmedia_upd(struct ifnet *ifp)
{
struct aue_softc *sc = ifp->if_softc;
struct mii_data *mii = GET_MII(sc);
sc->aue_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
mii_mediachg(mii);
sc->aue_link = 1;
return (0);
}
/*
* Report current media status.
*/
static void
aue_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct aue_softc *sc = ifp->if_softc;
struct mii_data *mii = GET_MII(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
aue_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct aue_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct mii_data *mii;
int error = 0;
/*
* This prevents recursion in the interface while it's
* being torn down.
*/
if (sc->aue_dying)
return(0);
AUE_GIANTLOCK();
switch(command) {
case SIOCSIFFLAGS:
AUE_SXLOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->aue_if_flags & IFF_PROMISC)) {
AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->aue_if_flags & IFF_PROMISC) {
AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
} else if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
aue_init_body(sc);
}
sc->aue_dying = 0;
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
aue_stop(sc);
}
sc->aue_if_flags = ifp->if_flags;
AUE_SXUNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
AUE_SXLOCK(sc);
aue_setmulti(sc);
AUE_SXUNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
AUE_SXLOCK(sc);
mii = GET_MII(sc);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
AUE_SXUNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
AUE_GIANTUNLOCK();
return (error);
}
static void
aue_watchdog(struct aue_softc *sc)
{
struct ifnet *ifp = sc->aue_ifp;
struct ue_chain *c;
usbd_status stat;
AUE_SXASSERTLOCKED(sc);
ifp->if_oerrors++;
device_printf(sc->aue_dev, "watchdog timeout\n");
c = &sc->aue_cdata.ue_tx_chain[0];
usbd_get_xfer_status(c->ue_xfer, NULL, NULL, NULL, &stat);
c->ue_status = stat;
aue_txeof_thread(sc);
if (!IFQ_IS_EMPTY(&ifp->if_snd))
aue_start_thread(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
aue_stop(struct aue_softc *sc)
{
usbd_status err;
struct ifnet *ifp;
AUE_SXASSERTLOCKED(sc);
ifp = sc->aue_ifp;
sc->aue_timer = 0;
aue_csr_write_1(sc, AUE_CTL0, 0);
aue_csr_write_1(sc, AUE_CTL1, 0);
aue_reset(sc);
sc->aue_dying = 1;
/* Stop transfers. */
if (sc->aue_ep[AUE_ENDPT_RX] != NULL) {
err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_RX]);
if (err) {
device_printf(sc->aue_dev,
"abort rx pipe failed: %s\n", usbd_errstr(err));
}
err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_RX]);
if (err) {
device_printf(sc->aue_dev,
"close rx pipe failed: %s\n", usbd_errstr(err));
}
sc->aue_ep[AUE_ENDPT_RX] = NULL;
}
if (sc->aue_ep[AUE_ENDPT_TX] != NULL) {
err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_TX]);
if (err) {
device_printf(sc->aue_dev,
"abort tx pipe failed: %s\n", usbd_errstr(err));
}
err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_TX]);
if (err) {
device_printf(sc->aue_dev,
"close tx pipe failed: %s\n", usbd_errstr(err));
}
sc->aue_ep[AUE_ENDPT_TX] = NULL;
}
#ifdef AUE_INTR_PIPE
if (sc->aue_ep[AUE_ENDPT_INTR] != NULL) {
err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_INTR]);
if (err) {
device_printf(sc->aue_dev,
"abort intr pipe failed: %s\n", usbd_errstr(err));
}
err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_INTR]);
if (err) {
device_printf(sc->aue_dev,
"close intr pipe failed: %s\n", usbd_errstr(err));
}
sc->aue_ep[AUE_ENDPT_INTR] = NULL;
}
#endif
/* Free RX resources. */
usb_ether_rx_list_free(&sc->aue_cdata);
/* Free TX resources. */
usb_ether_tx_list_free(&sc->aue_cdata);
#ifdef AUE_INTR_PIPE
free(sc->aue_cdata.ue_ibuf, M_USBDEV);
sc->aue_cdata.ue_ibuf = NULL;
#endif
sc->aue_link = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
aue_shutdown(device_t dev)
{
struct aue_softc *sc;
sc = device_get_softc(dev);
AUE_SXLOCK(sc);
sc->aue_dying++;
aue_reset(sc);
aue_stop(sc);
AUE_SXUNLOCK(sc);
return (0);
}
static void
aue_task_sched(struct aue_softc *sc, int task)
{
AUE_LOCK(sc);
sc->aue_deferedtasks |= task;
usb_ether_task_enqueue(&sc->aue_taskqueue, &sc->aue_task);
AUE_UNLOCK(sc);
}
/*
* We defer all interrupt operations to this function.
*
* This allows us to do more complex operations, such as synchronous
* usb io that normally would not be allowed from interrupt context.
*/
static void
aue_task(void *arg, int pending)
{
struct aue_softc *sc = arg;
int tasks;
for ( ;; ) {
AUE_LOCK(sc);
tasks = sc->aue_deferedtasks;
sc->aue_deferedtasks = 0;
AUE_UNLOCK(sc);
if (tasks == 0)
break;
AUE_GIANTLOCK(); // XXX: usb not giant safe
AUE_SXLOCK(sc);
if (sc->aue_dying) {
AUE_SXUNLOCK(sc);
break;
}
if ((tasks & AUE_TASK_TICK) != 0) {
aue_tick_thread(sc);
}
if ((tasks & AUE_TASK_START) != 0) {
aue_start_thread(sc);
}
if ((tasks & AUE_TASK_RXSTART) != 0) {
aue_rxstart_thread(sc);
}
if ((tasks & AUE_TASK_RXEOF) != 0) {
aue_rxeof_thread(sc);
}
if ((tasks & AUE_TASK_TXEOF) != 0) {
aue_txeof_thread(sc);
}
AUE_SXUNLOCK(sc);
AUE_GIANTUNLOCK(); // XXX: usb not giant safe
}
}