freebsd-nq/contrib/capsicum-test/procdesc.cc
Alex Richardson 955a3f9ad5 Update capsicum-test to git commit f4d97414d48b8f8356b971ab9f45dc5c70d53c40
This includes various fixes that I submitted recently such as updating the
pdkill() tests for the actual implemented behaviour
(https://github.com/google/capsicum-test/pull/53) and lots of changes to
avoid calling sleep() and replacing it with reliable synchronization
(pull requests 49,51,52,53,54). This should make the testsuite more reliable
when running on Jenkins. Additionally, process status is now retrieved using
libprocstat instead of running `ps` and parsing the output
(https://github.com/google/capsicum-test/pull/50). This fixes one previously
failing test and speeds up execution.

Overall, this update reduces the total runtime from ~60s to about 4-5 seconds.
2021-03-02 16:38:05 +00:00

1098 lines
34 KiB
C++

// Tests for the process descriptor API for Linux.
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <iomanip>
#include <map>
#include "capsicum.h"
#include "syscalls.h"
#include "capsicum-test.h"
#ifndef __WALL
// Linux requires __WALL in order for waitpid(specific_pid,...) to
// see and reap any specific pid. Define this to nothing for platforms
// (FreeBSD) where it doesn't exist, to reduce macroing.
#define __WALL 0
#endif
//------------------------------------------------
// Utilities for the tests.
static pid_t pdwait4_(int pd, int *status, int options, struct rusage *ru) {
#ifdef HAVE_PDWAIT4
return pdwait4(pd, status, options, ru);
#else
// Simulate pdwait4() with wait4(pdgetpid()); this won't work in capability mode.
pid_t pid = -1;
int rc = pdgetpid(pd, &pid);
if (rc < 0) {
return rc;
}
options |= __WALL;
return wait4(pid, status, options, ru);
#endif
}
static void print_rusage(FILE *f, struct rusage *ru) {
fprintf(f, " User CPU time=%ld.%06ld\n", (long)ru->ru_utime.tv_sec, (long)ru->ru_utime.tv_usec);
fprintf(f, " System CPU time=%ld.%06ld\n", (long)ru->ru_stime.tv_sec, (long)ru->ru_stime.tv_usec);
fprintf(f, " Max RSS=%ld\n", ru->ru_maxrss);
}
static void print_stat(FILE *f, const struct stat *stat) {
fprintf(f,
"{ .st_dev=%ld, st_ino=%ld, st_mode=%04o, st_nlink=%ld, st_uid=%d, st_gid=%d,\n"
" .st_rdev=%ld, .st_size=%ld, st_blksize=%ld, .st_block=%ld,\n "
#ifdef HAVE_STAT_BIRTHTIME
".st_birthtime=%ld, "
#endif
".st_atime=%ld, .st_mtime=%ld, .st_ctime=%ld}\n",
(long)stat->st_dev, (long)stat->st_ino, stat->st_mode,
(long)stat->st_nlink, stat->st_uid, stat->st_gid,
(long)stat->st_rdev, (long)stat->st_size, (long)stat->st_blksize,
(long)stat->st_blocks,
#ifdef HAVE_STAT_BIRTHTIME
(long)stat->st_birthtime,
#endif
(long)stat->st_atime, (long)stat->st_mtime, (long)stat->st_ctime);
}
static volatile sig_atomic_t had_signal[NSIG];
void clear_had_signals() {
memset(const_cast<sig_atomic_t *>(had_signal), 0, sizeof(had_signal));
}
static void handle_signal(int x) {
had_signal[x] = true;
}
// Check that the given child process terminates as expected.
void CheckChildFinished(pid_t pid, bool signaled=false) {
// Wait for the child to finish.
int rc;
int status = 0;
do {
rc = waitpid(pid, &status, __WALL);
if (rc < 0) {
fprintf(stderr, "Warning: waitpid error %s (%d)\n", strerror(errno), errno);
ADD_FAILURE() << "Failed to wait for child";
break;
} else if (rc == pid) {
break;
}
} while (true);
EXPECT_EQ(pid, rc);
if (rc == pid) {
if (signaled) {
EXPECT_TRUE(WIFSIGNALED(status));
} else {
EXPECT_TRUE(WIFEXITED(status)) << std::hex << status;
EXPECT_EQ(0, WEXITSTATUS(status));
}
}
}
//------------------------------------------------
// Basic tests of process descriptor functionality
TEST(Pdfork, Simple) {
int pd = -1;
int pipefds[2];
pid_t parent = getpid_();
EXPECT_OK(pipe(pipefds));
int pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: check pid values.
EXPECT_EQ(-1, pd);
EXPECT_NE(parent, getpid_());
EXPECT_EQ(parent, getppid());
close(pipefds[0]);
SEND_INT_MESSAGE(pipefds[1], MSG_CHILD_STARTED);
if (verbose) fprintf(stderr, "Child waiting for exit message\n");
// Terminate once the parent has completed the checks
AWAIT_INT_MESSAGE(pipefds[1], MSG_PARENT_REQUEST_CHILD_EXIT);
exit(testing::Test::HasFailure());
}
close(pipefds[1]);
// Ensure the child has started.
AWAIT_INT_MESSAGE(pipefds[0], MSG_CHILD_STARTED);
EXPECT_NE(-1, pd);
EXPECT_PID_ALIVE(pid);
int pid_got;
EXPECT_OK(pdgetpid(pd, &pid_got));
EXPECT_EQ(pid, pid_got);
// Tell the child to exit and wait until it is a zombie.
SEND_INT_MESSAGE(pipefds[0], MSG_PARENT_REQUEST_CHILD_EXIT);
// EXPECT_PID_ZOMBIE waits for up to ~500ms, that should be enough time for
// the child to exit successfully.
EXPECT_PID_ZOMBIE(pid);
close(pipefds[0]);
// Wait for the the child.
int status;
struct rusage ru;
memset(&ru, 0, sizeof(ru));
int waitrc = pdwait4_(pd, &status, 0, &ru);
EXPECT_EQ(pid, waitrc);
if (verbose) {
fprintf(stderr, "For pd %d pid %d:\n", pd, pid);
print_rusage(stderr, &ru);
}
EXPECT_PID_GONE(pid);
// Can only pdwait4(pd) once (as initial call reaps zombie).
memset(&ru, 0, sizeof(ru));
EXPECT_EQ(-1, pdwait4_(pd, &status, 0, &ru));
EXPECT_EQ(ECHILD, errno);
EXPECT_OK(close(pd));
}
TEST(Pdfork, InvalidFlag) {
int pd = -1;
int pid = pdfork(&pd, PD_DAEMON<<5);
if (pid == 0) {
exit(1);
}
EXPECT_EQ(-1, pid);
EXPECT_EQ(EINVAL, errno);
if (pid > 0) waitpid(pid, NULL, __WALL);
}
TEST(Pdfork, TimeCheck) {
time_t now = time(NULL); // seconds since epoch
EXPECT_NE(-1, now);
if (verbose) fprintf(stderr, "Calling pdfork around %ld\n", (long)(long)now);
int pd = -1;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: check we didn't get a valid process descriptor then exit.
EXPECT_EQ(-1, pdgetpid(pd, &pid));
EXPECT_EQ(EBADF, errno);
exit(HasFailure());
}
#ifdef HAVE_PROCDESC_FSTAT
// Parent process. Ensure that [acm]times have been set correctly.
struct stat stat;
memset(&stat, 0, sizeof(stat));
EXPECT_OK(fstat(pd, &stat));
if (verbose) print_stat(stderr, &stat);
#ifdef HAVE_STAT_BIRTHTIME
EXPECT_GE(now, stat.st_birthtime);
EXPECT_EQ(stat.st_birthtime, stat.st_atime);
#endif
EXPECT_LT((now - stat.st_atime), 2);
EXPECT_EQ(stat.st_atime, stat.st_ctime);
EXPECT_EQ(stat.st_ctime, stat.st_mtime);
#endif
// Wait for the child to finish.
pid_t pd_pid = -1;
EXPECT_OK(pdgetpid(pd, &pd_pid));
EXPECT_EQ(pid, pd_pid);
CheckChildFinished(pid);
}
TEST(Pdfork, UseDescriptor) {
int pd = -1;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: immediately exit
exit(0);
}
CheckChildFinished(pid);
}
TEST(Pdfork, NonProcessDescriptor) {
int fd = open("/etc/passwd", O_RDONLY);
EXPECT_OK(fd);
// pd*() operations should fail on a non-process descriptor.
EXPECT_EQ(-1, pdkill(fd, SIGUSR1));
int status;
EXPECT_EQ(-1, pdwait4_(fd, &status, 0, NULL));
pid_t pid;
EXPECT_EQ(-1, pdgetpid(fd, &pid));
close(fd);
}
static void *SubThreadMain(void *arg) {
// Notify the main thread that we have started
if (verbose) fprintf(stderr, " subthread started: pipe=%p\n", arg);
SEND_INT_MESSAGE((int)(intptr_t)arg, MSG_CHILD_STARTED);
while (true) {
if (verbose) fprintf(stderr, " subthread: \"I aten't dead\"\n");
usleep(100000);
}
return NULL;
}
static void *ThreadMain(void *) {
int pd;
int pipefds[2];
EXPECT_EQ(0, pipe(pipefds));
pid_t child = pdfork(&pd, 0);
if (child == 0) {
close(pipefds[0]);
// Child: start a subthread then loop.
pthread_t child_subthread;
// Wait for the subthread startup using another pipe.
int thread_pipefds[2];
EXPECT_EQ(0, pipe(thread_pipefds));
EXPECT_OK(pthread_create(&child_subthread, NULL, SubThreadMain,
(void *)(intptr_t)thread_pipefds[0]));
if (verbose) {
fprintf(stderr, " pdforked process %d: waiting for subthread.\n",
getpid());
}
AWAIT_INT_MESSAGE(thread_pipefds[1], MSG_CHILD_STARTED);
close(thread_pipefds[0]);
close(thread_pipefds[1]);
// Child: Notify parent that all threads have started
if (verbose) fprintf(stderr, " pdforked process %d: subthread started\n", getpid());
SEND_INT_MESSAGE(pipefds[1], MSG_CHILD_STARTED);
while (true) {
if (verbose) fprintf(stderr, " pdforked process %d: \"I aten't dead\"\n", getpid());
usleep(100000);
}
exit(0);
}
if (verbose) fprintf(stderr, " thread generated pd %d\n", pd);
close(pipefds[1]);
AWAIT_INT_MESSAGE(pipefds[0], MSG_CHILD_STARTED);
if (verbose) fprintf(stderr, "[%d] got child startup message\n", getpid_());
// Pass the process descriptor back to the main thread.
return reinterpret_cast<void *>(pd);
}
TEST(Pdfork, FromThread) {
// Fire off a new thread to do all of the creation work.
pthread_t child_thread;
EXPECT_OK(pthread_create(&child_thread, NULL, ThreadMain, NULL));
void *data;
EXPECT_OK(pthread_join(child_thread, &data));
int pd = reinterpret_cast<intptr_t>(data);
if (verbose) fprintf(stderr, "retrieved pd %d from terminated thread\n", pd);
// Kill and reap.
pid_t pid;
EXPECT_OK(pdgetpid(pd, &pid));
EXPECT_OK(pdkill(pd, SIGKILL));
int status;
EXPECT_EQ(pid, pdwait4_(pd, &status, 0, NULL));
EXPECT_TRUE(WIFSIGNALED(status));
}
//------------------------------------------------
// More complicated tests.
// Test fixture that pdfork()s off a child process, which terminates
// when it receives anything on a pipe.
class PipePdforkBase : public ::testing::Test {
public:
PipePdforkBase(int pdfork_flags) : pd_(-1), pid_(-1) {
clear_had_signals();
int pipes[2];
EXPECT_OK(pipe(pipes));
pipe_ = pipes[1];
int parent = getpid_();
if (verbose) fprintf(stderr, "[%d] about to pdfork()\n", getpid_());
int rc = pdfork(&pd_, pdfork_flags);
EXPECT_OK(rc);
if (rc == 0) {
// Child process: blocking-read an int from the pipe then exit with that value.
EXPECT_NE(parent, getpid_());
EXPECT_EQ(parent, getppid());
if (verbose) fprintf(stderr, " [%d] child of %d waiting for value on pipe\n", getpid_(), getppid());
read(pipes[0], &rc, sizeof(rc));
if (verbose) fprintf(stderr, " [%d] got value %d on pipe, exiting\n", getpid_(), rc);
exit(rc);
}
pid_ = rc;
usleep(100); // ensure the child has a chance to run
}
~PipePdforkBase() {
// Terminate by any means necessary.
if (pd_ > 0) {
pdkill(pd_, SIGKILL);
close(pd_);
}
if (pid_ > 0) {
kill(pid_, SIGKILL);
waitpid(pid_, NULL, __WALL|WNOHANG);
}
// Check signal expectations.
EXPECT_FALSE(had_signal[SIGCHLD]);
}
int TerminateChild() {
// Tell the child to exit.
int zero = 0;
if (verbose) fprintf(stderr, "[%d] write 0 to pipe\n", getpid_());
return write(pipe_, &zero, sizeof(zero));
}
protected:
int pd_;
int pipe_;
pid_t pid_;
};
class PipePdfork : public PipePdforkBase {
public:
PipePdfork() : PipePdforkBase(0) {}
};
class PipePdforkDaemon : public PipePdforkBase {
public:
PipePdforkDaemon() : PipePdforkBase(PD_DAEMON) {}
};
// Can we poll a process descriptor?
TEST_F(PipePdfork, Poll) {
// Poll the process descriptor, nothing happening.
struct pollfd fdp;
fdp.fd = pd_;
fdp.events = POLLIN | POLLERR | POLLHUP;
fdp.revents = 0;
EXPECT_EQ(0, poll(&fdp, 1, 0));
TerminateChild();
// Poll again, should have activity on the process descriptor.
EXPECT_EQ(1, poll(&fdp, 1, 2000));
EXPECT_TRUE(fdp.revents & POLLHUP);
// Poll a third time, still have POLLHUP.
fdp.revents = 0;
EXPECT_EQ(1, poll(&fdp, 1, 0));
EXPECT_TRUE(fdp.revents & POLLHUP);
}
// Can multiple processes poll on the same descriptor?
TEST_F(PipePdfork, PollMultiple) {
int pipefds[2];
EXPECT_EQ(0, pipe(pipefds));
int child = fork();
EXPECT_OK(child);
if (child == 0) {
close(pipefds[0]);
// Child: wait for parent to acknowledge startup
SEND_INT_MESSAGE(pipefds[1], MSG_CHILD_STARTED);
// Child: wait for two messages from the parent and the forked process
// before telling the other process to terminate.
if (verbose) fprintf(stderr, "[%d] waiting for read 1\n", getpid_());
AWAIT_INT_MESSAGE(pipefds[1], MSG_PARENT_REQUEST_CHILD_EXIT);
if (verbose) fprintf(stderr, "[%d] waiting for read 2\n", getpid_());
AWAIT_INT_MESSAGE(pipefds[1], MSG_PARENT_REQUEST_CHILD_EXIT);
TerminateChild();
if (verbose) fprintf(stderr, "[%d] about to exit\n", getpid_());
exit(testing::Test::HasFailure());
}
close(pipefds[1]);
AWAIT_INT_MESSAGE(pipefds[0], MSG_CHILD_STARTED);
if (verbose) fprintf(stderr, "[%d] got child startup message\n", getpid_());
// Fork again
int doppel = fork();
EXPECT_OK(doppel);
// We now have:
// pid A: main process, here
// |--pid B: pdfork()ed process, blocked on read()
// |--pid C: fork()ed process, in read() above
// +--pid D: doppel process, here
// Both A and D execute the following code.
// First, check no activity on the process descriptor yet.
struct pollfd fdp;
fdp.fd = pd_;
fdp.events = POLLIN | POLLERR | POLLHUP;
fdp.revents = 0;
EXPECT_EQ(0, poll(&fdp, 1, 0));
// Both A and D ask C to exit, allowing it to do so.
if (verbose) fprintf(stderr, "[%d] telling child to exit\n", getpid_());
SEND_INT_MESSAGE(pipefds[0], MSG_PARENT_REQUEST_CHILD_EXIT);
close(pipefds[0]);
// Now, wait (indefinitely) for activity on the process descriptor.
// We expect:
// - pid C will finish its two read() calls, write to the pipe and exit.
// - pid B will unblock from read(), and exit
// - this will generate an event on the process descriptor...
// - ...in both process A and process D.
if (verbose) fprintf(stderr, "[%d] waiting for child to exit\n", getpid_());
EXPECT_EQ(1, poll(&fdp, 1, 2000));
EXPECT_TRUE(fdp.revents & POLLHUP);
if (doppel == 0) {
// Child: process D exits.
exit(0);
} else {
// Parent: wait on process D.
int rc = 0;
waitpid(doppel, &rc, __WALL);
EXPECT_TRUE(WIFEXITED(rc));
EXPECT_EQ(0, WEXITSTATUS(rc));
// Also wait on process B.
CheckChildFinished(child);
}
}
// Check that exit status/rusage for a dead pdfork()ed child can be retrieved
// via any process descriptor, multiple times.
TEST_F(PipePdfork, MultipleRetrieveExitStatus) {
EXPECT_PID_ALIVE(pid_);
int pd_copy = dup(pd_);
EXPECT_LT(0, TerminateChild());
int status;
struct rusage ru;
memset(&ru, 0, sizeof(ru));
int waitrc = pdwait4_(pd_copy, &status, 0, &ru);
EXPECT_EQ(pid_, waitrc);
if (verbose) {
fprintf(stderr, "For pd %d -> pid %d:\n", pd_, pid_);
print_rusage(stderr, &ru);
}
EXPECT_PID_GONE(pid_);
#ifdef NOTYET
// Child has been reaped, so original process descriptor dangles but
// still has access to rusage information.
memset(&ru, 0, sizeof(ru));
EXPECT_EQ(0, pdwait4_(pd_, &status, 0, &ru));
#endif
close(pd_copy);
}
TEST_F(PipePdfork, ChildExit) {
EXPECT_PID_ALIVE(pid_);
EXPECT_LT(0, TerminateChild());
EXPECT_PID_DEAD(pid_);
int status;
int rc = pdwait4_(pd_, &status, 0, NULL);
EXPECT_OK(rc);
EXPECT_EQ(pid_, rc);
pid_ = 0;
}
#ifdef HAVE_PROC_FDINFO
TEST_F(PipePdfork, FdInfo) {
char buffer[1024];
sprintf(buffer, "/proc/%d/fdinfo/%d", getpid_(), pd_);
int procfd = open(buffer, O_RDONLY);
EXPECT_OK(procfd);
EXPECT_OK(read(procfd, buffer, sizeof(buffer)));
// The fdinfo should include the file pos of the underlying file
EXPECT_NE((char*)NULL, strstr(buffer, "pos:\t0")) << buffer;
// ...and the underlying pid
char pidline[256];
sprintf(pidline, "pid:\t%d", pid_);
EXPECT_NE((char*)NULL, strstr(buffer, pidline)) << buffer;
close(procfd);
}
#endif
// Closing a normal process descriptor terminates the underlying process.
TEST_F(PipePdfork, Close) {
sighandler_t original = signal(SIGCHLD, handle_signal);
EXPECT_PID_ALIVE(pid_);
int status;
EXPECT_EQ(0, waitpid(pid_, &status, __WALL|WNOHANG));
EXPECT_OK(close(pd_));
pd_ = -1;
EXPECT_FALSE(had_signal[SIGCHLD]);
EXPECT_PID_DEAD(pid_);
#ifdef __FreeBSD__
EXPECT_EQ(-1, waitpid(pid_, NULL, __WALL));
EXPECT_EQ(errno, ECHILD);
#else
// Having closed the process descriptor means that pdwait4(pd) now doesn't work.
int rc = pdwait4_(pd_, &status, 0, NULL);
EXPECT_EQ(-1, rc);
EXPECT_EQ(EBADF, errno);
// Closing all process descriptors means the the child can only be reaped via pid.
EXPECT_EQ(pid_, waitpid(pid_, &status, __WALL|WNOHANG));
#endif
signal(SIGCHLD, original);
}
TEST_F(PipePdfork, CloseLast) {
sighandler_t original = signal(SIGCHLD, handle_signal);
// Child should only die when last process descriptor is closed.
EXPECT_PID_ALIVE(pid_);
int pd_other = dup(pd_);
EXPECT_OK(close(pd_));
pd_ = -1;
EXPECT_PID_ALIVE(pid_);
int status;
EXPECT_EQ(0, waitpid(pid_, &status, __WALL|WNOHANG));
// Can no longer pdwait4() the closed process descriptor...
EXPECT_EQ(-1, pdwait4_(pd_, &status, WNOHANG, NULL));
EXPECT_EQ(EBADF, errno);
// ...but can pdwait4() the still-open process descriptor.
errno = 0;
EXPECT_EQ(0, pdwait4_(pd_other, &status, WNOHANG, NULL));
EXPECT_EQ(0, errno);
EXPECT_OK(close(pd_other));
EXPECT_PID_DEAD(pid_);
EXPECT_FALSE(had_signal[SIGCHLD]);
signal(SIGCHLD, original);
}
FORK_TEST(Pdfork, OtherUserIfRoot) {
GTEST_SKIP_IF_NOT_ROOT();
int pd;
int status;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child process: loop forever.
while (true) usleep(100000);
}
usleep(100);
// Now that the second process has been pdfork()ed, change euid.
ASSERT_NE(0u, other_uid) << "other_uid not initialized correctly, "
"please pass the -u <uid> flag.";
EXPECT_EQ(0, setuid(other_uid));
EXPECT_EQ(other_uid, getuid());
if (verbose) fprintf(stderr, "uid=%d euid=%d\n", getuid(), geteuid());
// Fail to kill child with normal PID operation.
EXPECT_EQ(-1, kill(pid, SIGKILL));
EXPECT_EQ(EPERM, errno);
EXPECT_PID_ALIVE(pid);
// Ideally, we should be able to send signals via a process descriptor even
// if it's owned by another user, but this is not implementated on FreeBSD.
#ifdef __FreeBSD__
// On FreeBSD, pdkill() still performs all the same checks that kill() does
// and therefore cannot be used to send a signal to a process with another
// UID unless we are root.
EXPECT_SYSCALL_FAIL(EBADF, pdkill(pid, SIGKILL));
EXPECT_PID_ALIVE(pid);
// However, the process will be killed when we close the process descriptor.
EXPECT_OK(close(pd));
EXPECT_PID_GONE(pid);
// Can't pdwait4() after close() since close() reparents the child to a reaper (init)
EXPECT_SYSCALL_FAIL(EBADF, pdwait4_(pd, &status, WNOHANG, NULL));
#else
// Sending a signal with pdkill() should be permitted though.
EXPECT_OK(pdkill(pd, SIGKILL));
EXPECT_PID_ZOMBIE(pid);
int rc = pdwait4_(pd, &status, WNOHANG, NULL);
EXPECT_OK(rc);
EXPECT_EQ(pid, rc);
EXPECT_TRUE(WIFSIGNALED(status));
#endif
}
TEST_F(PipePdfork, WaitPidThenPd) {
TerminateChild();
int status;
// If we waitpid(pid) first...
int rc = waitpid(pid_, &status, __WALL);
EXPECT_OK(rc);
EXPECT_EQ(pid_, rc);
#ifdef NOTYET
// ...the zombie is reaped but we can still subsequently pdwait4(pd).
EXPECT_EQ(0, pdwait4_(pd_, &status, 0, NULL));
#endif
}
TEST_F(PipePdfork, WaitPdThenPid) {
TerminateChild();
int status;
// If we pdwait4(pd) first...
int rc = pdwait4_(pd_, &status, 0, NULL);
EXPECT_OK(rc);
EXPECT_EQ(pid_, rc);
// ...the zombie is reaped and cannot subsequently waitpid(pid).
EXPECT_EQ(-1, waitpid(pid_, &status, __WALL));
EXPECT_EQ(ECHILD, errno);
}
// Setting PD_DAEMON prevents close() from killing the child.
TEST_F(PipePdforkDaemon, Close) {
EXPECT_OK(close(pd_));
pd_ = -1;
EXPECT_PID_ALIVE(pid_);
// Can still explicitly kill it via the pid.
if (pid_ > 0) {
EXPECT_OK(kill(pid_, SIGKILL));
EXPECT_PID_DEAD(pid_);
}
}
static void TestPdkill(pid_t pid, int pd) {
EXPECT_PID_ALIVE(pid);
// SIGCONT is ignored by default.
EXPECT_OK(pdkill(pd, SIGCONT));
EXPECT_PID_ALIVE(pid);
// SIGINT isn't
EXPECT_OK(pdkill(pd, SIGINT));
EXPECT_PID_DEAD(pid);
// pdkill() on zombie is no-op.
errno = 0;
EXPECT_EQ(0, pdkill(pd, SIGINT));
EXPECT_EQ(0, errno);
// pdkill() on reaped process gives -ESRCH.
CheckChildFinished(pid, true);
EXPECT_EQ(-1, pdkill(pd, SIGINT));
EXPECT_EQ(ESRCH, errno);
}
TEST_F(PipePdfork, Pdkill) {
TestPdkill(pid_, pd_);
}
TEST_F(PipePdforkDaemon, Pdkill) {
TestPdkill(pid_, pd_);
}
TEST(Pdfork, PdkillOtherSignal) {
int pd = -1;
int pipefds[2];
EXPECT_EQ(0, pipe(pipefds));
int pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: tell the parent that we have started before entering the loop,
// and importantly only do so once we have registered the SIGUSR1 handler.
close(pipefds[0]);
clear_had_signals();
signal(SIGUSR1, handle_signal);
SEND_INT_MESSAGE(pipefds[1], MSG_CHILD_STARTED);
// Child: watch for SIGUSR1 forever.
while (!had_signal[SIGUSR1]) {
usleep(100000);
}
exit(123);
}
// Wait for child to start
close(pipefds[1]);
AWAIT_INT_MESSAGE(pipefds[0], MSG_CHILD_STARTED);
close(pipefds[0]);
// Send an invalid signal.
EXPECT_EQ(-1, pdkill(pd, 0xFFFF));
EXPECT_EQ(EINVAL, errno);
// Send an expected SIGUSR1 to the pdfork()ed child.
EXPECT_PID_ALIVE(pid);
pdkill(pd, SIGUSR1);
EXPECT_PID_DEAD(pid);
// Child's exit status confirms whether it received the signal.
int status;
int rc = waitpid(pid, &status, __WALL);
EXPECT_OK(rc);
EXPECT_EQ(pid, rc);
EXPECT_TRUE(WIFEXITED(status)) << "status: 0x" << std::hex << status;
EXPECT_EQ(123, WEXITSTATUS(status));
}
pid_t PdforkParentDeath(int pdfork_flags) {
// Set up:
// pid A: main process, here
// +--pid B: fork()ed process, starts a child process with pdfork() then
// waits for parent to send a shutdown message.
// +--pid C: pdfork()ed process, looping forever
int sock_fds[2];
EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, sock_fds));
if (verbose) fprintf(stderr, "[%d] parent about to fork()...\n", getpid_());
pid_t child = fork();
EXPECT_OK(child);
if (child == 0) {
int pd;
if (verbose) fprintf(stderr, " [%d] child about to pdfork()...\n", getpid_());
int pipefds[2]; // for startup notification
EXPECT_OK(pipe(pipefds));
pid_t grandchild = pdfork(&pd, pdfork_flags);
if (grandchild == 0) {
close(pipefds[0]);
pid_t grandchildPid = getpid_();
EXPECT_EQ(sizeof(grandchildPid), (size_t)write(pipefds[1], &grandchildPid, sizeof(grandchildPid)));
while (true) {
if (verbose) fprintf(stderr, " [%d] grandchild: \"I aten't dead\"\n", grandchildPid);
sleep(1);
}
}
close(pipefds[1]);
if (verbose) fprintf(stderr, " [%d] pdfork()ed grandchild %d, sending ID to parent\n", getpid_(), grandchild);
// Wait for grandchild to start.
pid_t grandchild2;
EXPECT_EQ(sizeof(grandchild2), (size_t)read(pipefds[0], &grandchild2, sizeof(grandchild2)));
EXPECT_EQ(grandchild, grandchild2) << "received invalid grandchild pid";
if (verbose) fprintf(stderr, " [%d] grandchild %d has started successfully\n", getpid_(), grandchild);
close(pipefds[0]);
// Send grandchild pid to parent.
EXPECT_EQ(sizeof(grandchild), (size_t)write(sock_fds[1], &grandchild, sizeof(grandchild)));
if (verbose) fprintf(stderr, " [%d] sent grandchild pid %d to parent\n", getpid_(), grandchild);
// Wait for parent to acknowledge the message.
AWAIT_INT_MESSAGE(sock_fds[1], MSG_PARENT_REQUEST_CHILD_EXIT);
if (verbose) fprintf(stderr, " [%d] parent acknowledged grandchild pid %d\n", getpid_(), grandchild);
if (verbose) fprintf(stderr, " [%d] child terminating\n", getpid_());
exit(testing::Test::HasFailure());
}
if (verbose) fprintf(stderr, "[%d] fork()ed child is %d\n", getpid_(), child);
pid_t grandchild;
read(sock_fds[0], &grandchild, sizeof(grandchild));
if (verbose) fprintf(stderr, "[%d] received grandchild id %d\n", getpid_(), grandchild);
EXPECT_PID_ALIVE(child);
EXPECT_PID_ALIVE(grandchild);
// Tell child to exit.
if (verbose) fprintf(stderr, "[%d] telling child %d to exit\n", getpid_(), child);
SEND_INT_MESSAGE(sock_fds[0], MSG_PARENT_REQUEST_CHILD_EXIT);
// Child dies, closing its process descriptor for the grandchild.
EXPECT_PID_DEAD(child);
CheckChildFinished(child);
return grandchild;
}
TEST(Pdfork, Bagpuss) {
// "And of course when Bagpuss goes to sleep, all his friends go to sleep too"
pid_t grandchild = PdforkParentDeath(0);
// By default: child death => closed process descriptor => grandchild death.
EXPECT_PID_DEAD(grandchild);
}
TEST(Pdfork, BagpussDaemon) {
pid_t grandchild = PdforkParentDeath(PD_DAEMON);
// With PD_DAEMON: child death => closed process descriptor => no effect on grandchild.
EXPECT_PID_ALIVE(grandchild);
if (grandchild > 0) {
EXPECT_OK(kill(grandchild, SIGKILL));
}
}
// The exit of a pdfork()ed process should not generate SIGCHLD.
TEST_F(PipePdfork, NoSigchld) {
clear_had_signals();
sighandler_t original = signal(SIGCHLD, handle_signal);
TerminateChild();
int rc = 0;
// Can waitpid() for the specific pid of the pdfork()ed child.
EXPECT_EQ(pid_, waitpid(pid_, &rc, __WALL));
EXPECT_TRUE(WIFEXITED(rc)) << "0x" << std::hex << rc;
EXPECT_FALSE(had_signal[SIGCHLD]);
signal(SIGCHLD, original);
}
// The exit of a pdfork()ed process whose process descriptors have
// all been closed should generate SIGCHLD. The child process needs
// PD_DAEMON to survive the closure of the process descriptors.
TEST_F(PipePdforkDaemon, NoPDSigchld) {
clear_had_signals();
sighandler_t original = signal(SIGCHLD, handle_signal);
EXPECT_OK(close(pd_));
TerminateChild();
#ifdef __FreeBSD__
EXPECT_EQ(-1, waitpid(pid_, NULL, __WALL));
EXPECT_EQ(errno, ECHILD);
#else
int rc = 0;
// Can waitpid() for the specific pid of the pdfork()ed child.
EXPECT_EQ(pid_, waitpid(pid_, &rc, __WALL));
EXPECT_TRUE(WIFEXITED(rc)) << "0x" << std::hex << rc;
#endif
EXPECT_FALSE(had_signal[SIGCHLD]);
signal(SIGCHLD, original);
}
#ifdef HAVE_PROCDESC_FSTAT
TEST_F(PipePdfork, ModeBits) {
// Owner rwx bits indicate liveness of child
struct stat stat;
memset(&stat, 0, sizeof(stat));
EXPECT_OK(fstat(pd_, &stat));
if (verbose) print_stat(stderr, &stat);
EXPECT_EQ(S_IRWXU, (long)(stat.st_mode & S_IRWXU));
TerminateChild();
usleep(100000);
memset(&stat, 0, sizeof(stat));
EXPECT_OK(fstat(pd_, &stat));
if (verbose) print_stat(stderr, &stat);
EXPECT_EQ(0, (int)(stat.st_mode & S_IRWXU));
}
#endif
TEST_F(PipePdfork, WildcardWait) {
TerminateChild();
EXPECT_PID_ZOMBIE(pid_); // Ensure child is truly dead.
// Wildcard waitpid(-1) should not see the pdfork()ed child because
// there is still a process descriptor for it.
int rc;
EXPECT_EQ(-1, waitpid(-1, &rc, WNOHANG));
EXPECT_EQ(ECHILD, errno);
EXPECT_OK(close(pd_));
pd_ = -1;
}
FORK_TEST(Pdfork, Pdkill) {
clear_had_signals();
int pd;
int pipefds[2];
EXPECT_OK(pipe(pipefds));
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: set a SIGINT handler, notify the parent and sleep.
close(pipefds[0]);
clear_had_signals();
signal(SIGINT, handle_signal);
if (verbose) fprintf(stderr, "[%d] child started\n", getpid_());
SEND_INT_MESSAGE(pipefds[1], MSG_CHILD_STARTED);
if (verbose) fprintf(stderr, "[%d] child about to sleep(10)\n", getpid_());
// Note: we could receive the SIGINT just before sleep(), so we use a loop
// with a short delay instead of one long sleep().
for (int i = 0; i < 50 && !had_signal[SIGINT]; i++) {
usleep(100000);
}
if (verbose) fprintf(stderr, "[%d] child slept, had[SIGINT]=%d\n",
getpid_(), (int)had_signal[SIGINT]);
// Return non-zero if we didn't see SIGINT.
exit(had_signal[SIGINT] ? 0 : 99);
}
// Parent: get child's PID.
pid_t pd_pid;
EXPECT_OK(pdgetpid(pd, &pd_pid));
EXPECT_EQ(pid, pd_pid);
// Interrupt the child once it's registered the SIGINT handler.
close(pipefds[1]);
if (verbose) fprintf(stderr, "[%d] waiting for child\n", getpid_());
AWAIT_INT_MESSAGE(pipefds[0], MSG_CHILD_STARTED);
EXPECT_OK(pdkill(pd, SIGINT));
if (verbose) fprintf(stderr, "[%d] sent SIGINT\n", getpid_());
// Make sure the child finished properly (caught signal then exited).
CheckChildFinished(pid);
}
FORK_TEST(Pdfork, PdkillSignal) {
int pd;
int pipefds[2];
EXPECT_OK(pipe(pipefds));
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
close(pipefds[0]);
if (verbose) fprintf(stderr, "[%d] child started\n", getpid_());
SEND_INT_MESSAGE(pipefds[1], MSG_CHILD_STARTED);
// Child: wait for shutdown message. No SIGINT handler. The message should
// never be received, since SIGINT should terminate the process.
if (verbose) fprintf(stderr, "[%d] child about to read()\n", getpid_());
AWAIT_INT_MESSAGE(pipefds[1], MSG_PARENT_REQUEST_CHILD_EXIT);
fprintf(stderr, "[%d] child read() returned unexpectedly\n", getpid_());
exit(99);
}
// Wait for child to start before signalling.
if (verbose) fprintf(stderr, "[%d] waiting for child\n", getpid_());
close(pipefds[1]);
AWAIT_INT_MESSAGE(pipefds[0], MSG_CHILD_STARTED);
// Kill the child (as it doesn't handle SIGINT).
if (verbose) fprintf(stderr, "[%d] sending SIGINT\n", getpid_());
EXPECT_OK(pdkill(pd, SIGINT));
// Make sure the child finished properly (terminated by signal).
CheckChildFinished(pid, true);
}
//------------------------------------------------
// Test interactions with other parts of Capsicum:
// - capability mode
// - capabilities
FORK_TEST(Pdfork, DaemonUnrestricted) {
EXPECT_OK(cap_enter());
int fd;
// Capability mode leaves pdfork() available, with and without flag.
int rc;
rc = pdfork(&fd, PD_DAEMON);
EXPECT_OK(rc);
if (rc == 0) {
// Child: immediately terminate.
exit(0);
}
rc = pdfork(&fd, 0);
EXPECT_OK(rc);
if (rc == 0) {
// Child: immediately terminate.
exit(0);
}
}
TEST(Pdfork, MissingRights) {
pid_t parent = getpid_();
int pd = -1;
pid_t pid = pdfork(&pd, 0);
EXPECT_OK(pid);
if (pid == 0) {
// Child: loop forever.
EXPECT_NE(parent, getpid_());
while (true) sleep(1);
}
// Create two capabilities from the process descriptor.
cap_rights_t r_ro;
cap_rights_init(&r_ro, CAP_READ, CAP_LOOKUP);
int cap_incapable = dup(pd);
EXPECT_OK(cap_incapable);
EXPECT_OK(cap_rights_limit(cap_incapable, &r_ro));
cap_rights_t r_pdall;
cap_rights_init(&r_pdall, CAP_PDGETPID, CAP_PDWAIT, CAP_PDKILL);
int cap_capable = dup(pd);
EXPECT_OK(cap_capable);
EXPECT_OK(cap_rights_limit(cap_capable, &r_pdall));
pid_t other_pid;
EXPECT_NOTCAPABLE(pdgetpid(cap_incapable, &other_pid));
EXPECT_NOTCAPABLE(pdkill(cap_incapable, SIGINT));
int status;
EXPECT_NOTCAPABLE(pdwait4_(cap_incapable, &status, 0, NULL));
EXPECT_OK(pdgetpid(cap_capable, &other_pid));
EXPECT_EQ(pid, other_pid);
EXPECT_OK(pdkill(cap_capable, SIGINT));
int rc = pdwait4_(pd, &status, 0, NULL);
EXPECT_OK(rc);
EXPECT_EQ(pid, rc);
}
//------------------------------------------------
// Passing process descriptors between processes.
TEST_F(PipePdfork, PassProcessDescriptor) {
int sock_fds[2];
EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, sock_fds));
struct msghdr mh;
mh.msg_name = NULL; // No address needed
mh.msg_namelen = 0;
char buffer1[1024];
struct iovec iov[1];
iov[0].iov_base = buffer1;
iov[0].iov_len = sizeof(buffer1);
mh.msg_iov = iov;
mh.msg_iovlen = 1;
char buffer2[1024];
mh.msg_control = buffer2;
mh.msg_controllen = sizeof(buffer2);
struct cmsghdr *cmptr;
if (verbose) fprintf(stderr, "[%d] about to fork()\n", getpid_());
pid_t child2 = fork();
if (child2 == 0) {
// Child: close our copy of the original process descriptor.
close(pd_);
SEND_INT_MESSAGE(sock_fds[0], MSG_CHILD_STARTED);
// Child: wait to receive process descriptor over socket
if (verbose) fprintf(stderr, " [%d] child of %d waiting for process descriptor on socket\n", getpid_(), getppid());
int rc = recvmsg(sock_fds[0], &mh, 0);
EXPECT_OK(rc);
EXPECT_LE(CMSG_LEN(sizeof(int)), mh.msg_controllen);
cmptr = CMSG_FIRSTHDR(&mh);
int pd = *(int*)CMSG_DATA(cmptr);
EXPECT_EQ(CMSG_LEN(sizeof(int)), cmptr->cmsg_len);
cmptr = CMSG_NXTHDR(&mh, cmptr);
EXPECT_TRUE(cmptr == NULL);
if (verbose) fprintf(stderr, " [%d] got process descriptor %d on socket\n", getpid_(), pd);
SEND_INT_MESSAGE(sock_fds[0], MSG_CHILD_FD_RECEIVED);
// Child: confirm we can do pd*() operations on the process descriptor
pid_t other;
EXPECT_OK(pdgetpid(pd, &other));
if (verbose) fprintf(stderr, " [%d] process descriptor %d is pid %d\n", getpid_(), pd, other);
// Wait until the parent has closed the process descriptor.
AWAIT_INT_MESSAGE(sock_fds[0], MSG_PARENT_CLOSED_FD);
if (verbose) fprintf(stderr, " [%d] close process descriptor %d\n", getpid_(), pd);
close(pd);
// Last process descriptor closed, expect death
EXPECT_PID_DEAD(other);
exit(HasFailure());
}
// Wait until the child has started.
AWAIT_INT_MESSAGE(sock_fds[1], MSG_CHILD_STARTED);
// Send the process descriptor over the pipe to the sub-process
mh.msg_controllen = CMSG_LEN(sizeof(int));
cmptr = CMSG_FIRSTHDR(&mh);
cmptr->cmsg_level = SOL_SOCKET;
cmptr->cmsg_type = SCM_RIGHTS;
cmptr->cmsg_len = CMSG_LEN(sizeof(int));
*(int *)CMSG_DATA(cmptr) = pd_;
buffer1[0] = 0;
iov[0].iov_len = 1;
if (verbose) fprintf(stderr, "[%d] send process descriptor %d on socket\n", getpid_(), pd_);
int rc = sendmsg(sock_fds[1], &mh, 0);
EXPECT_OK(rc);
// Wait until the child has received the process descriptor.
AWAIT_INT_MESSAGE(sock_fds[1], MSG_CHILD_FD_RECEIVED);
if (verbose) fprintf(stderr, "[%d] close process descriptor %d\n", getpid_(), pd_);
close(pd_); // Not last open process descriptor
SEND_INT_MESSAGE(sock_fds[1], MSG_PARENT_CLOSED_FD);
// wait for child2
int status;
EXPECT_EQ(child2, waitpid(child2, &status, __WALL));
rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1;
EXPECT_EQ(0, rc);
// confirm death all round
EXPECT_PID_DEAD(child2);
EXPECT_PID_DEAD(pid_);
}