Dag-Erling Smørgrav 8c9ba8414c Restore the auto-reseed logic, but move it to a much later point,
immediately before kick_init.

Approved by:	so (self)
2014-11-02 02:01:55 +00:00

524 lines
15 KiB
C

/*-
* Copyright (c) 2000-2013 Mark R V Murray
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef _KERNEL
#include "opt_random.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <machine/cpu.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha2.h>
#include <dev/random/hash.h>
#include <dev/random/randomdev.h>
#include <dev/random/random_adaptors.h>
#include <dev/random/random_harvestq.h>
#include <dev/random/uint128.h>
#include <dev/random/yarrow.h>
#else /* !_KERNEL */
#include <sys/param.h>
#include <sys/types.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <threads.h>
#include "unit_test.h"
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha2.h>
#include <dev/random/hash.h>
#include <dev/random/randomdev.h>
#include <dev/random/uint128.h>
#include <dev/random/yarrow.h>
#endif /* _KERNEL */
#if !defined(RANDOM_YARROW) && !defined(RANDOM_FORTUNA)
#define RANDOM_YARROW
#elif defined(RANDOM_YARROW) && defined(RANDOM_FORTUNA)
#error "Must define either RANDOM_YARROW or RANDOM_FORTUNA"
#endif
#if defined(RANDOM_YARROW)
#define TIMEBIN 16 /* max value for Pt/t */
#define FAST 0
#define SLOW 1
/* This algorithm (and code) presumes that KEYSIZE is twice as large as BLOCKSIZE */
CTASSERT(BLOCKSIZE == sizeof(uint128_t));
CTASSERT(KEYSIZE == 2*BLOCKSIZE);
/* This is the beastie that needs protecting. It contains all of the
* state that we are excited about.
* Exactly one is instantiated.
*/
static struct yarrow_state {
union {
uint8_t byte[BLOCKSIZE];
uint128_t whole;
} counter; /* C */
struct randomdev_key key; /* K */
u_int gengateinterval; /* Pg */
u_int bins; /* Pt/t */
u_int outputblocks; /* count output blocks for gates */
u_int slowoverthresh; /* slow pool overthreshhold reseed count */
struct pool {
struct source {
u_int bits; /* estimated bits of entropy */
} source[ENTROPYSOURCE];/* ... per source */
u_int thresh; /* pool reseed threshhold */
struct randomdev_hash hash; /* accumulated entropy */
} pool[2]; /* pool[0] is fast, pool[1] is slow */
int seeded;
struct start_cache {
uint8_t junk[KEYSIZE];
struct randomdev_hash hash;
} start_cache;
} yarrow_state;
/* The random_reseed_mtx mutex protects seeding and polling/blocking. */
static mtx_t random_reseed_mtx;
#ifdef _KERNEL
static struct sysctl_ctx_list random_clist;
RANDOM_CHECK_UINT(gengateinterval, 4, 64);
RANDOM_CHECK_UINT(bins, 2, 16);
RANDOM_CHECK_UINT(fastthresh, (BLOCKSIZE*8)/4, (BLOCKSIZE*8)); /* Bit counts */
RANDOM_CHECK_UINT(slowthresh, (BLOCKSIZE*8)/4, (BLOCKSIZE*8)); /* Bit counts */
RANDOM_CHECK_UINT(slowoverthresh, 1, 5);
#else /* !_KERNEL */
static u_int harvest_destination[ENTROPYSOURCE];
#endif /* _KERNEL */
static void generator_gate(void);
static void reseed(u_int);
void
random_yarrow_init_alg(void)
{
int i, j;
#ifdef _KERNEL
struct sysctl_oid *random_yarrow_o;
#endif /* _KERNEL */
memset(yarrow_state.start_cache.junk, 0, KEYSIZE);
randomdev_hash_init(&yarrow_state.start_cache.hash);
/* Set up the lock for the reseed/gate state */
#ifdef _KERNEL
mtx_init(&random_reseed_mtx, "reseed mutex", NULL, MTX_DEF);
#else /* !_KERNEL */
mtx_init(&random_reseed_mtx, mtx_plain);
#endif /* _KERNEL */
/* Start unseeded, therefore blocked. */
yarrow_state.seeded = 0;
#ifdef _KERNEL
/* Yarrow parameters. Do not adjust these unless you have
* have a very good clue about what they do!
*/
random_yarrow_o = SYSCTL_ADD_NODE(&random_clist,
SYSCTL_STATIC_CHILDREN(_kern_random),
OID_AUTO, "yarrow", CTLFLAG_RW, 0,
"Yarrow Parameters");
SYSCTL_ADD_PROC(&random_clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"gengateinterval", CTLTYPE_INT|CTLFLAG_RW,
&yarrow_state.gengateinterval, 10,
random_check_uint_gengateinterval, "I",
"Generation gate interval");
SYSCTL_ADD_PROC(&random_clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"bins", CTLTYPE_INT|CTLFLAG_RW,
&yarrow_state.bins, 10,
random_check_uint_bins, "I",
"Execution time tuner");
SYSCTL_ADD_PROC(&random_clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"fastthresh", CTLTYPE_INT|CTLFLAG_RW,
&yarrow_state.pool[0].thresh, (3*(BLOCKSIZE*8))/4,
random_check_uint_fastthresh, "I",
"Fast reseed threshold");
SYSCTL_ADD_PROC(&random_clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"slowthresh", CTLTYPE_INT|CTLFLAG_RW,
&yarrow_state.pool[1].thresh, (BLOCKSIZE*8),
random_check_uint_slowthresh, "I",
"Slow reseed threshold");
SYSCTL_ADD_PROC(&random_clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"slowoverthresh", CTLTYPE_INT|CTLFLAG_RW,
&yarrow_state.slowoverthresh, 2,
random_check_uint_slowoverthresh, "I",
"Slow over-threshold reseed");
#endif /* _KERNEL */
yarrow_state.gengateinterval = 10;
yarrow_state.bins = 10;
yarrow_state.pool[FAST].thresh = (3*(BLOCKSIZE*8))/4;
yarrow_state.pool[SLOW].thresh = (BLOCKSIZE*8);
yarrow_state.slowoverthresh = 2;
/* Ensure that the first time we read, we are gated. */
yarrow_state.outputblocks = yarrow_state.gengateinterval;
/* Initialise the fast and slow entropy pools */
for (i = FAST; i <= SLOW; i++) {
randomdev_hash_init(&yarrow_state.pool[i].hash);
for (j = RANDOM_START; j < ENTROPYSOURCE; j++)
yarrow_state.pool[i].source[j].bits = 0U;
}
/* Clear the counter */
uint128_clear(&yarrow_state.counter.whole);
}
void
random_yarrow_deinit_alg(void)
{
mtx_destroy(&random_reseed_mtx);
memset(&yarrow_state, 0, sizeof(yarrow_state));
#ifdef _KERNEL
sysctl_ctx_free(&random_clist);
#endif
}
static __inline void
random_yarrow_post_insert(void)
{
u_int pl, overthreshhold[2];
enum random_entropy_source src;
#ifdef _KERNEL
mtx_assert(&random_reseed_mtx, MA_OWNED);
#endif
/* Count the over-threshold sources in each pool */
for (pl = 0; pl < 2; pl++) {
overthreshhold[pl] = 0;
for (src = RANDOM_START; src < ENTROPYSOURCE; src++) {
if (yarrow_state.pool[pl].source[src].bits > yarrow_state.pool[pl].thresh)
overthreshhold[pl]++;
}
}
/* If enough slow sources are over threshhold, then slow reseed
* else if any fast source over threshhold, then fast reseed.
*/
if (overthreshhold[SLOW] >= yarrow_state.slowoverthresh)
reseed(SLOW);
else if (overthreshhold[FAST] > 0 && yarrow_state.seeded)
reseed(FAST);
}
/* Process a single stochastic event off the harvest queue */
void
random_yarrow_process_event(struct harvest_event *event)
{
u_int pl;
mtx_lock(&random_reseed_mtx);
/* Accumulate the event into the appropriate pool
* where each event carries the destination information.
* We lock against pool state modification which can happen
* during accumulation/reseeding and reading/regating
*/
pl = event->he_destination % 2;
randomdev_hash_iterate(&yarrow_state.pool[pl].hash, event, sizeof(*event));
yarrow_state.pool[pl].source[event->he_source].bits += event->he_bits;
random_yarrow_post_insert();
mtx_unlock(&random_reseed_mtx);
}
/* Process a block of data suspected to be slightly stochastic */
static void
random_yarrow_process_buffer(uint8_t *buf, u_int length)
{
static struct harvest_event event;
u_int i, pl;
/* Accumulate the data into the appropriate pools
* where each event carries the destination information.
* We lock against pool state modification which can happen
* during accumulation/reseeding and reading/regating
*/
memset(event.he_entropy + sizeof(uint32_t), 0, HARVESTSIZE - sizeof(uint32_t));
for (i = 0; i < length/sizeof(uint32_t); i++) {
event.he_somecounter = get_cyclecount();
event.he_bits = 0; /* Fake */
event.he_source = RANDOM_CACHED;
event.he_destination = harvest_destination[RANDOM_CACHED]++;
event.he_size = sizeof(uint32_t);
*((uint32_t *)event.he_entropy) = *((uint32_t *)buf + i);
/* Do the actual entropy insertion */
pl = event.he_destination % 2;
randomdev_hash_iterate(&yarrow_state.pool[pl].hash, &event, sizeof(event));
#ifdef DONT_DO_THIS_HERE
/* Don't do this here - do it in bulk at the end */
yarrow_state.pool[pl].source[RANDOM_CACHED].bits += bits;
#endif
}
for (pl = FAST; pl <= SLOW; pl++)
yarrow_state.pool[pl].source[RANDOM_CACHED].bits += (length >> 4);
random_yarrow_post_insert();
}
static void
reseed(u_int fastslow)
{
/* Interrupt-context stack is a limited resource; make large
* structures static.
*/
static uint8_t v[TIMEBIN][KEYSIZE]; /* v[i] */
static uint8_t hash[KEYSIZE]; /* h' */
static uint8_t temp[KEYSIZE];
static struct randomdev_hash context;
u_int i;
enum random_entropy_source j;
KASSERT(yarrow_state.pool[FAST].thresh > 0, ("random: Yarrow fast threshold = 0"));
KASSERT(yarrow_state.pool[SLOW].thresh > 0, ("random: Yarrow slow threshold = 0"));
#ifdef RANDOM_DEBUG
#ifdef RANDOM_DEBUG_VERBOSE
printf("random: %s %s\n", __func__, (fastslow == FAST ? "FAST" : "SLOW"));
#endif
if (!yarrow_state.seeded) {
printf("random: %s - fast - thresh %d,1 - ", __func__, yarrow_state.pool[FAST].thresh);
for (i = RANDOM_START; i < ENTROPYSOURCE; i++)
printf(" %d", yarrow_state.pool[FAST].source[i].bits);
printf("\n");
printf("random: %s - slow - thresh %d,%d - ", __func__, yarrow_state.pool[SLOW].thresh, yarrow_state.slowoverthresh);
for (i = RANDOM_START; i < ENTROPYSOURCE; i++)
printf(" %d", yarrow_state.pool[SLOW].source[i].bits);
printf("\n");
}
#endif
#ifdef _KERNEL
mtx_assert(&random_reseed_mtx, MA_OWNED);
#endif
/* 1. Hash the accumulated entropy into v[0] */
randomdev_hash_init(&context);
/* Feed the slow pool hash in if slow */
if (fastslow == SLOW) {
randomdev_hash_finish(&yarrow_state.pool[SLOW].hash, temp);
randomdev_hash_iterate(&context, temp, sizeof(temp));
}
randomdev_hash_finish(&yarrow_state.pool[FAST].hash, temp);
randomdev_hash_iterate(&context, temp, sizeof(temp));
randomdev_hash_finish(&context, v[0]);
/* 2. Compute hash values for all v. _Supposed_ to be computationally
* intensive.
*/
if (yarrow_state.bins > TIMEBIN)
yarrow_state.bins = TIMEBIN;
for (i = 1; i < yarrow_state.bins; i++) {
randomdev_hash_init(&context);
/* v[i] #= h(v[i - 1]) */
randomdev_hash_iterate(&context, v[i - 1], KEYSIZE);
/* v[i] #= h(v[0]) */
randomdev_hash_iterate(&context, v[0], KEYSIZE);
/* v[i] #= h(i) */
randomdev_hash_iterate(&context, &i, sizeof(i));
/* Return the hashval */
randomdev_hash_finish(&context, v[i]);
}
/* 3. Compute a new key; h' is the identity function here;
* it is not being ignored!
*/
randomdev_hash_init(&context);
randomdev_hash_iterate(&context, &yarrow_state.key, KEYSIZE);
for (i = 1; i < yarrow_state.bins; i++)
randomdev_hash_iterate(&context, v[i], KEYSIZE);
randomdev_hash_finish(&context, temp);
randomdev_encrypt_init(&yarrow_state.key, temp);
/* 4. Recompute the counter */
uint128_clear(&yarrow_state.counter.whole);
randomdev_encrypt(&yarrow_state.key, yarrow_state.counter.byte, temp, BLOCKSIZE);
memcpy(yarrow_state.counter.byte, temp, BLOCKSIZE);
/* 5. Reset entropy estimate accumulators to zero */
for (i = 0; i <= fastslow; i++)
for (j = RANDOM_START; j < ENTROPYSOURCE; j++)
yarrow_state.pool[i].source[j].bits = 0;
/* 6. Wipe memory of intermediate values */
memset(v, 0, sizeof(v));
memset(temp, 0, sizeof(temp));
memset(hash, 0, sizeof(hash));
memset(&context, 0, sizeof(context));
#ifdef RANDOM_RWFILE_WRITE_IS_OK /* Not defined so writes ain't gonna happen */
/* 7. Dump to seed file */
/* This pseudo-code is documentation. Please leave it alone. */
seed_file = "<some file>";
error = randomdev_write_file(seed_file, <generated entropy>, PAGE_SIZE);
if (error == 0)
printf("random: entropy seed file '%s' successfully written\n", seed_file);
#endif
/* Unblock the device if it was blocked due to being unseeded */
if (!yarrow_state.seeded) {
yarrow_state.seeded = 1;
random_adaptor_unblock();
}
}
/* Internal function to return processed entropy from the PRNG */
void
random_yarrow_read(uint8_t *buf, u_int bytecount)
{
u_int blockcount, i;
/* Check for initial/final read requests */
if (buf == NULL)
return;
/* The reseed task must not be jumped on */
mtx_lock(&random_reseed_mtx);
blockcount = (bytecount + BLOCKSIZE - 1)/BLOCKSIZE;
for (i = 0; i < blockcount; i++) {
if (yarrow_state.outputblocks++ >= yarrow_state.gengateinterval) {
generator_gate();
yarrow_state.outputblocks = 0;
}
uint128_increment(&yarrow_state.counter.whole);
randomdev_encrypt(&yarrow_state.key, yarrow_state.counter.byte, buf, BLOCKSIZE);
buf += BLOCKSIZE;
}
mtx_unlock(&random_reseed_mtx);
}
/* Internal function to hand external entropy to the PRNG */
void
random_yarrow_write(uint8_t *buf, u_int count)
{
uintmax_t timestamp;
/* We must be locked for all this as plenty of state gets messed with */
mtx_lock(&random_reseed_mtx);
timestamp = get_cyclecount();
randomdev_hash_iterate(&yarrow_state.start_cache.hash, &timestamp, sizeof(timestamp));
randomdev_hash_iterate(&yarrow_state.start_cache.hash, buf, count);
timestamp = get_cyclecount();
randomdev_hash_iterate(&yarrow_state.start_cache.hash, &timestamp, sizeof(timestamp));
randomdev_hash_finish(&yarrow_state.start_cache.hash, yarrow_state.start_cache.junk);
randomdev_hash_init(&yarrow_state.start_cache.hash);
#ifdef RANDOM_DEBUG_VERBOSE
{
int i;
printf("random: %s - ", __func__);
for (i = 0; i < KEYSIZE; i++)
printf("%02X", yarrow_state.start_cache.junk[i]);
printf("\n");
}
#endif
random_yarrow_process_buffer(yarrow_state.start_cache.junk, KEYSIZE);
memset(yarrow_state.start_cache.junk, 0, KEYSIZE);
mtx_unlock(&random_reseed_mtx);
}
static void
generator_gate(void)
{
u_int i;
uint8_t temp[KEYSIZE];
for (i = 0; i < KEYSIZE; i += BLOCKSIZE) {
uint128_increment(&yarrow_state.counter.whole);
randomdev_encrypt(&yarrow_state.key, yarrow_state.counter.byte, temp + i, BLOCKSIZE);
}
randomdev_encrypt_init(&yarrow_state.key, temp);
memset(temp, 0, KEYSIZE);
}
void
random_yarrow_reseed(void)
{
mtx_lock(&random_reseed_mtx);
reseed(SLOW);
mtx_unlock(&random_reseed_mtx);
}
int
random_yarrow_seeded(void)
{
return (yarrow_state.seeded);
}
#endif /* RANDOM_YARROW */