freebsd-nq/sys/arm/allwinner/if_awg.c
Emmanuel Vadot 97eb836f8b aw_sid: Add nvmem interface
Rework aw_sid so it can work with the nvmem interface.
Each SoC expose a set of fuses (for now rootkey/boardid and, if available,
the thermal calibration data). A fuse can be private or public, reading private
fuse needs to be done via some registers instead of reading directly.
Each fuse is exposed as a sysctl.
For now leave the possibility for a driver to read any fuse without using
the nvmem interface as the awg and emac driver use this to generate a mac
address.
2018-08-06 05:35:24 +00:00

1967 lines
46 KiB
C

/*-
* Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Allwinner Gigabit Ethernet MAC (EMAC) controller
*/
#include "opt_device_polling.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/kernel.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/module.h>
#include <sys/taskqueue.h>
#include <sys/gpio.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <machine/bus.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/allwinner/if_awgreg.h>
#include <arm/allwinner/aw_sid.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/extres/regulator/regulator.h>
#include <dev/extres/syscon/syscon.h>
#include "syscon_if.h"
#include "miibus_if.h"
#include "gpio_if.h"
#define RD4(sc, reg) bus_read_4((sc)->res[_RES_EMAC], (reg))
#define WR4(sc, reg, val) bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
#define AWG_LOCK(sc) mtx_lock(&(sc)->mtx)
#define AWG_UNLOCK(sc) mtx_unlock(&(sc)->mtx);
#define AWG_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED)
#define AWG_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED)
#define DESC_ALIGN 4
#define TX_DESC_COUNT 1024
#define TX_DESC_SIZE (sizeof(struct emac_desc) * TX_DESC_COUNT)
#define RX_DESC_COUNT 256
#define RX_DESC_SIZE (sizeof(struct emac_desc) * RX_DESC_COUNT)
#define DESC_OFF(n) ((n) * sizeof(struct emac_desc))
#define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
#define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
#define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
#define TX_MAX_SEGS 20
#define SOFT_RST_RETRY 1000
#define MII_BUSY_RETRY 1000
#define MDIO_FREQ 2500000
#define BURST_LEN_DEFAULT 8
#define RX_TX_PRI_DEFAULT 0
#define PAUSE_TIME_DEFAULT 0x400
#define TX_INTERVAL_DEFAULT 64
#define RX_BATCH_DEFAULT 64
/* syscon EMAC clock register */
#define EMAC_CLK_REG 0x30
#define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
#define EMAC_CLK_EPHY_ADDR_SHIFT 20
#define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
#define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
#define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
#define EMAC_CLK_RMII_EN (1 << 13)
#define EMAC_CLK_ETXDC (0x7 << 10)
#define EMAC_CLK_ETXDC_SHIFT 10
#define EMAC_CLK_ERXDC (0x1f << 5)
#define EMAC_CLK_ERXDC_SHIFT 5
#define EMAC_CLK_PIT (0x1 << 2)
#define EMAC_CLK_PIT_MII (0 << 2)
#define EMAC_CLK_PIT_RGMII (1 << 2)
#define EMAC_CLK_SRC (0x3 << 0)
#define EMAC_CLK_SRC_MII (0 << 0)
#define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
#define EMAC_CLK_SRC_RGMII (2 << 0)
/* Burst length of RX and TX DMA transfers */
static int awg_burst_len = BURST_LEN_DEFAULT;
TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
/* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
/* Pause time field in the transmitted control frame */
static int awg_pause_time = PAUSE_TIME_DEFAULT;
TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
/* Request a TX interrupt every <n> descriptors */
static int awg_tx_interval = TX_INTERVAL_DEFAULT;
TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
/* Maximum number of mbufs to send to if_input */
static int awg_rx_batch = RX_BATCH_DEFAULT;
TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
enum awg_type {
EMAC_A83T = 1,
EMAC_H3,
EMAC_A64,
};
static struct ofw_compat_data compat_data[] = {
{ "allwinner,sun8i-a83t-emac", EMAC_A83T },
{ "allwinner,sun8i-h3-emac", EMAC_H3 },
{ "allwinner,sun50i-a64-emac", EMAC_A64 },
{ NULL, 0 }
};
struct awg_bufmap {
bus_dmamap_t map;
struct mbuf *mbuf;
};
struct awg_txring {
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
struct emac_desc *desc_ring;
bus_addr_t desc_ring_paddr;
bus_dma_tag_t buf_tag;
struct awg_bufmap buf_map[TX_DESC_COUNT];
u_int cur, next, queued;
u_int segs;
};
struct awg_rxring {
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
struct emac_desc *desc_ring;
bus_addr_t desc_ring_paddr;
bus_dma_tag_t buf_tag;
struct awg_bufmap buf_map[RX_DESC_COUNT];
bus_dmamap_t buf_spare_map;
u_int cur;
};
enum {
_RES_EMAC,
_RES_IRQ,
_RES_SYSCON,
_RES_NITEMS
};
struct awg_softc {
struct resource *res[_RES_NITEMS];
struct mtx mtx;
if_t ifp;
device_t dev;
device_t miibus;
struct callout stat_ch;
struct task link_task;
void *ih;
u_int mdc_div_ratio_m;
int link;
int if_flags;
enum awg_type type;
struct syscon *syscon;
struct awg_txring tx;
struct awg_rxring rx;
};
static struct resource_spec awg_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ SYS_RES_MEMORY, 1, RF_ACTIVE | RF_OPTIONAL },
{ -1, 0 }
};
static void awg_txeof(struct awg_softc *sc);
static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
uint32_t *rx_delay);
static uint32_t syscon_read_emac_clk_reg(device_t dev);
static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
static phandle_t awg_get_phy_node(device_t dev);
static bool awg_has_internal_phy(device_t dev);
static int
awg_miibus_readreg(device_t dev, int phy, int reg)
{
struct awg_softc *sc;
int retry, val;
sc = device_get_softc(dev);
val = 0;
WR4(sc, EMAC_MII_CMD,
(sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
(phy << PHY_ADDR_SHIFT) |
(reg << PHY_REG_ADDR_SHIFT) |
MII_BUSY);
for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
val = RD4(sc, EMAC_MII_DATA);
break;
}
DELAY(10);
}
if (retry == 0)
device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
phy, reg);
return (val);
}
static int
awg_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct awg_softc *sc;
int retry;
sc = device_get_softc(dev);
WR4(sc, EMAC_MII_DATA, val);
WR4(sc, EMAC_MII_CMD,
(sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
(phy << PHY_ADDR_SHIFT) |
(reg << PHY_REG_ADDR_SHIFT) |
MII_WR | MII_BUSY);
for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
break;
DELAY(10);
}
if (retry == 0)
device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
phy, reg);
return (0);
}
static void
awg_update_link_locked(struct awg_softc *sc)
{
struct mii_data *mii;
uint32_t val;
AWG_ASSERT_LOCKED(sc);
if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
return;
mii = device_get_softc(sc->miibus);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
case IFM_1000_SX:
case IFM_100_TX:
case IFM_10_T:
sc->link = 1;
break;
default:
sc->link = 0;
break;
}
} else
sc->link = 0;
if (sc->link == 0)
return;
val = RD4(sc, EMAC_BASIC_CTL_0);
val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
else
val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
val |= BASIC_CTL_DUPLEX;
WR4(sc, EMAC_BASIC_CTL_0, val);
val = RD4(sc, EMAC_RX_CTL_0);
val &= ~RX_FLOW_CTL_EN;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
val |= RX_FLOW_CTL_EN;
WR4(sc, EMAC_RX_CTL_0, val);
val = RD4(sc, EMAC_TX_FLOW_CTL);
val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
val |= TX_FLOW_CTL_EN;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
val |= awg_pause_time << PAUSE_TIME_SHIFT;
WR4(sc, EMAC_TX_FLOW_CTL, val);
}
static void
awg_link_task(void *arg, int pending)
{
struct awg_softc *sc;
sc = arg;
AWG_LOCK(sc);
awg_update_link_locked(sc);
AWG_UNLOCK(sc);
}
static void
awg_miibus_statchg(device_t dev)
{
struct awg_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->link_task);
}
static void
awg_media_status(if_t ifp, struct ifmediareq *ifmr)
{
struct awg_softc *sc;
struct mii_data *mii;
sc = if_getsoftc(ifp);
mii = device_get_softc(sc->miibus);
AWG_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
AWG_UNLOCK(sc);
}
static int
awg_media_change(if_t ifp)
{
struct awg_softc *sc;
struct mii_data *mii;
int error;
sc = if_getsoftc(ifp);
mii = device_get_softc(sc->miibus);
AWG_LOCK(sc);
error = mii_mediachg(mii);
AWG_UNLOCK(sc);
return (error);
}
static int
awg_encap(struct awg_softc *sc, struct mbuf **mp)
{
bus_dmamap_t map;
bus_dma_segment_t segs[TX_MAX_SEGS];
int error, nsegs, cur, first, last, i;
u_int csum_flags;
uint32_t flags, status;
struct mbuf *m;
cur = first = sc->tx.cur;
map = sc->tx.buf_map[first].map;
m = *mp;
error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
if (m == NULL) {
device_printf(sc->dev, "awg_encap: m_collapse failed\n");
m_freem(*mp);
*mp = NULL;
return (ENOMEM);
}
*mp = m;
error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*mp);
*mp = NULL;
}
}
if (error != 0) {
device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
return (error);
}
if (nsegs == 0) {
m_freem(*mp);
*mp = NULL;
return (EIO);
}
if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
bus_dmamap_unload(sc->tx.buf_tag, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
flags = TX_FIR_DESC;
status = 0;
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
csum_flags = TX_CHECKSUM_CTL_FULL;
else
csum_flags = TX_CHECKSUM_CTL_IP;
flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
}
for (i = 0; i < nsegs; i++) {
sc->tx.segs++;
if (i == nsegs - 1) {
flags |= TX_LAST_DESC;
/*
* Can only request TX completion
* interrupt on last descriptor.
*/
if (sc->tx.segs >= awg_tx_interval) {
sc->tx.segs = 0;
flags |= TX_INT_CTL;
}
}
sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
sc->tx.desc_ring[cur].status = htole32(status);
flags &= ~TX_FIR_DESC;
/*
* Setting of the valid bit in the first descriptor is
* deferred until the whole chain is fully set up.
*/
status = TX_DESC_CTL;
++sc->tx.queued;
cur = TX_NEXT(cur);
}
sc->tx.cur = cur;
/* Store mapping and mbuf in the last segment */
last = TX_SKIP(cur, TX_DESC_COUNT - 1);
sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
sc->tx.buf_map[last].map = map;
sc->tx.buf_map[last].mbuf = m;
/*
* The whole mbuf chain has been DMA mapped,
* fix the first descriptor.
*/
sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
return (0);
}
static void
awg_clean_txbuf(struct awg_softc *sc, int index)
{
struct awg_bufmap *bmap;
--sc->tx.queued;
bmap = &sc->tx.buf_map[index];
if (bmap->mbuf != NULL) {
bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
m_freem(bmap->mbuf);
bmap->mbuf = NULL;
}
}
static void
awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
{
uint32_t status, size;
status = RX_DESC_CTL;
size = MCLBYTES - 1;
sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
sc->rx.desc_ring[index].size = htole32(size);
sc->rx.desc_ring[index].status = htole32(status);
}
static void
awg_reuse_rxdesc(struct awg_softc *sc, int index)
{
sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
}
static int
awg_newbuf_rx(struct awg_softc *sc, int index)
{
struct mbuf *m;
bus_dma_segment_t seg;
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
if (sc->rx.buf_map[index].mbuf != NULL) {
bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
}
map = sc->rx.buf_map[index].map;
sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
sc->rx.buf_spare_map = map;
bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
BUS_DMASYNC_PREREAD);
sc->rx.buf_map[index].mbuf = m;
awg_setup_rxdesc(sc, index, seg.ds_addr);
return (0);
}
static void
awg_start_locked(struct awg_softc *sc)
{
struct mbuf *m;
uint32_t val;
if_t ifp;
int cnt, err;
AWG_ASSERT_LOCKED(sc);
if (!sc->link)
return;
ifp = sc->ifp;
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
for (cnt = 0; ; cnt++) {
m = if_dequeue(ifp);
if (m == NULL)
break;
err = awg_encap(sc, &m);
if (err != 0) {
if (err == ENOBUFS)
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
if (m != NULL)
if_sendq_prepend(ifp, m);
break;
}
if_bpfmtap(ifp, m);
}
if (cnt != 0) {
bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Start and run TX DMA */
val = RD4(sc, EMAC_TX_CTL_1);
WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
}
}
static void
awg_start(if_t ifp)
{
struct awg_softc *sc;
sc = if_getsoftc(ifp);
AWG_LOCK(sc);
awg_start_locked(sc);
AWG_UNLOCK(sc);
}
static void
awg_tick(void *softc)
{
struct awg_softc *sc;
struct mii_data *mii;
if_t ifp;
int link;
sc = softc;
ifp = sc->ifp;
mii = device_get_softc(sc->miibus);
AWG_ASSERT_LOCKED(sc);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
return;
link = sc->link;
mii_tick(mii);
if (sc->link && !link)
awg_start_locked(sc);
callout_reset(&sc->stat_ch, hz, awg_tick, sc);
}
/* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
static uint32_t
bitrev32(uint32_t x)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return (x >> 16) | (x << 16);
}
static void
awg_setup_rxfilter(struct awg_softc *sc)
{
uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
int mc_count, mcnt, i;
uint8_t *eaddr, *mta;
if_t ifp;
AWG_ASSERT_LOCKED(sc);
ifp = sc->ifp;
val = 0;
hash[0] = hash[1] = 0;
mc_count = if_multiaddr_count(ifp, -1);
if (if_getflags(ifp) & IFF_PROMISC)
val |= DIS_ADDR_FILTER;
else if (if_getflags(ifp) & IFF_ALLMULTI) {
val |= RX_ALL_MULTICAST;
hash[0] = hash[1] = ~0;
} else if (mc_count > 0) {
val |= HASH_MULTICAST;
mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count,
M_DEVBUF, M_NOWAIT);
if (mta == NULL) {
if_printf(ifp,
"failed to allocate temporary multicast list\n");
return;
}
if_multiaddr_array(ifp, mta, &mcnt, mc_count);
for (i = 0; i < mcnt; i++) {
crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
ETHER_ADDR_LEN) & 0x7f;
crc = bitrev32(~crc) >> 26;
hashreg = (crc >> 5);
hashbit = (crc & 0x1f);
hash[hashreg] |= (1 << hashbit);
}
free(mta, M_DEVBUF);
}
/* Write our unicast address */
eaddr = IF_LLADDR(ifp);
machi = (eaddr[5] << 8) | eaddr[4];
maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
(eaddr[0] << 0);
WR4(sc, EMAC_ADDR_HIGH(0), machi);
WR4(sc, EMAC_ADDR_LOW(0), maclo);
/* Multicast hash filters */
WR4(sc, EMAC_RX_HASH_0, hash[1]);
WR4(sc, EMAC_RX_HASH_1, hash[0]);
/* RX frame filter config */
WR4(sc, EMAC_RX_FRM_FLT, val);
}
static void
awg_enable_intr(struct awg_softc *sc)
{
/* Enable interrupts */
WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
}
static void
awg_disable_intr(struct awg_softc *sc)
{
/* Disable interrupts */
WR4(sc, EMAC_INT_EN, 0);
}
static void
awg_init_locked(struct awg_softc *sc)
{
struct mii_data *mii;
uint32_t val;
if_t ifp;
mii = device_get_softc(sc->miibus);
ifp = sc->ifp;
AWG_ASSERT_LOCKED(sc);
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
return;
awg_setup_rxfilter(sc);
/* Configure DMA burst length and priorities */
val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
if (awg_rx_tx_pri)
val |= BASIC_CTL_RX_TX_PRI;
WR4(sc, EMAC_BASIC_CTL_1, val);
/* Enable interrupts */
#ifdef DEVICE_POLLING
if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
awg_enable_intr(sc);
else
awg_disable_intr(sc);
#else
awg_enable_intr(sc);
#endif
/* Enable transmit DMA */
val = RD4(sc, EMAC_TX_CTL_1);
WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
/* Enable receive DMA */
val = RD4(sc, EMAC_RX_CTL_1);
WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
/* Enable transmitter */
val = RD4(sc, EMAC_TX_CTL_0);
WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
/* Enable receiver */
val = RD4(sc, EMAC_RX_CTL_0);
WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
mii_mediachg(mii);
callout_reset(&sc->stat_ch, hz, awg_tick, sc);
}
static void
awg_init(void *softc)
{
struct awg_softc *sc;
sc = softc;
AWG_LOCK(sc);
awg_init_locked(sc);
AWG_UNLOCK(sc);
}
static void
awg_stop(struct awg_softc *sc)
{
if_t ifp;
uint32_t val;
int i;
AWG_ASSERT_LOCKED(sc);
ifp = sc->ifp;
callout_stop(&sc->stat_ch);
/* Stop transmit DMA and flush data in the TX FIFO */
val = RD4(sc, EMAC_TX_CTL_1);
val &= ~TX_DMA_EN;
val |= FLUSH_TX_FIFO;
WR4(sc, EMAC_TX_CTL_1, val);
/* Disable transmitter */
val = RD4(sc, EMAC_TX_CTL_0);
WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
/* Disable receiver */
val = RD4(sc, EMAC_RX_CTL_0);
WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
/* Disable interrupts */
awg_disable_intr(sc);
/* Disable transmit DMA */
val = RD4(sc, EMAC_TX_CTL_1);
WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
/* Disable receive DMA */
val = RD4(sc, EMAC_RX_CTL_1);
WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
sc->link = 0;
/* Finish handling transmitted buffers */
awg_txeof(sc);
/* Release any untransmitted buffers. */
for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
val = le32toh(sc->tx.desc_ring[i].status);
if ((val & TX_DESC_CTL) != 0)
break;
awg_clean_txbuf(sc, i);
}
sc->tx.next = i;
for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
sc->tx.desc_ring[i].status = 0;
awg_clean_txbuf(sc, i);
}
sc->tx.cur = sc->tx.next;
bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Setup RX buffers for reuse */
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
val = le32toh(sc->rx.desc_ring[i].status);
if ((val & RX_DESC_CTL) != 0)
break;
awg_reuse_rxdesc(sc, i);
}
sc->rx.cur = i;
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
static int
awg_rxintr(struct awg_softc *sc)
{
if_t ifp;
struct mbuf *m, *mh, *mt;
int error, index, len, cnt, npkt;
uint32_t status;
ifp = sc->ifp;
mh = mt = NULL;
cnt = 0;
npkt = 0;
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
status = le32toh(sc->rx.desc_ring[index].status);
if ((status & RX_DESC_CTL) != 0)
break;
len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
if (len == 0) {
if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
awg_reuse_rxdesc(sc, index);
continue;
}
m = sc->rx.buf_map[index].mbuf;
error = awg_newbuf_rx(sc, index);
if (error != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
awg_reuse_rxdesc(sc, index);
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
m->m_len = len;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
(status & RX_FRM_TYPE) != 0) {
m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
if ((status & RX_HEADER_ERR) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((status & RX_PAYLOAD_ERR) == 0) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
m->m_nextpkt = NULL;
if (mh == NULL)
mh = m;
else
mt->m_nextpkt = m;
mt = m;
++cnt;
++npkt;
if (cnt == awg_rx_batch) {
AWG_UNLOCK(sc);
if_input(ifp, mh);
AWG_LOCK(sc);
mh = mt = NULL;
cnt = 0;
}
}
if (index != sc->rx.cur) {
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
if (mh != NULL) {
AWG_UNLOCK(sc);
if_input(ifp, mh);
AWG_LOCK(sc);
}
sc->rx.cur = index;
return (npkt);
}
static void
awg_txeof(struct awg_softc *sc)
{
struct emac_desc *desc;
uint32_t status, size;
if_t ifp;
int i, prog;
AWG_ASSERT_LOCKED(sc);
bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ifp = sc->ifp;
prog = 0;
for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
desc = &sc->tx.desc_ring[i];
status = le32toh(desc->status);
if ((status & TX_DESC_CTL) != 0)
break;
size = le32toh(desc->size);
if (size & TX_LAST_DESC) {
if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
else
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
}
prog++;
awg_clean_txbuf(sc, i);
}
if (prog > 0) {
sc->tx.next = i;
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
}
}
static void
awg_intr(void *arg)
{
struct awg_softc *sc;
uint32_t val;
sc = arg;
AWG_LOCK(sc);
val = RD4(sc, EMAC_INT_STA);
WR4(sc, EMAC_INT_STA, val);
if (val & RX_INT)
awg_rxintr(sc);
if (val & TX_INT)
awg_txeof(sc);
if (val & (TX_INT | TX_BUF_UA_INT)) {
if (!if_sendq_empty(sc->ifp))
awg_start_locked(sc);
}
AWG_UNLOCK(sc);
}
#ifdef DEVICE_POLLING
static int
awg_poll(if_t ifp, enum poll_cmd cmd, int count)
{
struct awg_softc *sc;
uint32_t val;
int rx_npkts;
sc = if_getsoftc(ifp);
rx_npkts = 0;
AWG_LOCK(sc);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
AWG_UNLOCK(sc);
return (0);
}
rx_npkts = awg_rxintr(sc);
awg_txeof(sc);
if (!if_sendq_empty(ifp))
awg_start_locked(sc);
if (cmd == POLL_AND_CHECK_STATUS) {
val = RD4(sc, EMAC_INT_STA);
if (val != 0)
WR4(sc, EMAC_INT_STA, val);
}
AWG_UNLOCK(sc);
return (rx_npkts);
}
#endif
static int
awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
{
struct awg_softc *sc;
struct mii_data *mii;
struct ifreq *ifr;
int flags, mask, error;
sc = if_getsoftc(ifp);
mii = device_get_softc(sc->miibus);
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
AWG_LOCK(sc);
if (if_getflags(ifp) & IFF_UP) {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
flags = if_getflags(ifp) ^ sc->if_flags;
if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
awg_setup_rxfilter(sc);
} else
awg_init_locked(sc);
} else {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
awg_stop(sc);
}
sc->if_flags = if_getflags(ifp);
AWG_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
AWG_LOCK(sc);
awg_setup_rxfilter(sc);
AWG_UNLOCK(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
error = ether_poll_register(awg_poll, ifp);
if (error != 0)
break;
AWG_LOCK(sc);
awg_disable_intr(sc);
if_setcapenablebit(ifp, IFCAP_POLLING, 0);
AWG_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
AWG_LOCK(sc);
awg_enable_intr(sc);
if_setcapenablebit(ifp, 0, IFCAP_POLLING);
AWG_UNLOCK(sc);
}
}
#endif
if (mask & IFCAP_VLAN_MTU)
if_togglecapenable(ifp, IFCAP_VLAN_MTU);
if (mask & IFCAP_RXCSUM)
if_togglecapenable(ifp, IFCAP_RXCSUM);
if (mask & IFCAP_TXCSUM)
if_togglecapenable(ifp, IFCAP_TXCSUM);
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
else
if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static uint32_t
syscon_read_emac_clk_reg(device_t dev)
{
struct awg_softc *sc;
sc = device_get_softc(dev);
if (sc->syscon != NULL)
return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
else if (sc->res[_RES_SYSCON] != NULL)
return (bus_read_4(sc->res[_RES_SYSCON], 0));
return (0);
}
static void
syscon_write_emac_clk_reg(device_t dev, uint32_t val)
{
struct awg_softc *sc;
sc = device_get_softc(dev);
if (sc->syscon != NULL)
SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
else if (sc->res[_RES_SYSCON] != NULL)
bus_write_4(sc->res[_RES_SYSCON], 0, val);
}
static phandle_t
awg_get_phy_node(device_t dev)
{
phandle_t node;
pcell_t phy_handle;
node = ofw_bus_get_node(dev);
if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
sizeof(phy_handle)) <= 0)
return (0);
return (OF_node_from_xref(phy_handle));
}
static bool
awg_has_internal_phy(device_t dev)
{
phandle_t node, phy_node;
node = ofw_bus_get_node(dev);
/* Legacy binding */
if (OF_hasprop(node, "allwinner,use-internal-phy"))
return (true);
phy_node = awg_get_phy_node(dev);
return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
"allwinner,sun8i-h3-mdio-internal") != 0);
}
static int
awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
{
phandle_t node;
uint32_t delay;
if (tx_delay == NULL || rx_delay == NULL)
return (EINVAL);
*tx_delay = *rx_delay = 0;
node = ofw_bus_get_node(dev);
if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
*tx_delay = delay;
else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
sizeof(delay)) >= 0) {
if ((delay % 100) != 0) {
device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
return (EDOM);
}
*tx_delay = delay / 100;
}
if (*tx_delay > 7) {
device_printf(dev, "tx-delay out of range\n");
return (ERANGE);
}
if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
*rx_delay = delay;
else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
sizeof(delay)) >= 0) {
if ((delay % 100) != 0) {
device_printf(dev, "rx-delay-ps is not within documented domain\n");
return (EDOM);
}
*rx_delay = delay / 100;
}
if (*rx_delay > 31) {
device_printf(dev, "rx-delay out of range\n");
return (ERANGE);
}
return (0);
}
static int
awg_setup_phy(device_t dev)
{
struct awg_softc *sc;
clk_t clk_tx, clk_tx_parent;
const char *tx_parent_name;
char *phy_type;
phandle_t node;
uint32_t reg, tx_delay, rx_delay;
int error;
bool use_syscon;
sc = device_get_softc(dev);
node = ofw_bus_get_node(dev);
use_syscon = false;
if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
return (0);
if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
use_syscon = true;
if (bootverbose)
device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
use_syscon ? "reg" : "clk");
if (use_syscon) {
/*
* Abstract away writing to syscon for devices like the pine64.
* For the pine64, we get dtb from U-Boot and it still uses the
* legacy setup of specifying syscon register in emac node
* rather than as its own node and using an xref in emac.
* These abstractions can go away once U-Boot dts is up-to-date.
*/
reg = syscon_read_emac_clk_reg(dev);
reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
if (strncmp(phy_type, "rgmii", 5) == 0)
reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
else if (strcmp(phy_type, "rmii") == 0)
reg |= EMAC_CLK_RMII_EN;
else
reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
/*
* Fail attach if we fail to parse either of the delay
* parameters. If we don't have the proper delay to write to
* syscon, then awg likely won't function properly anyways.
* Lack of delay is not an error!
*/
error = awg_parse_delay(dev, &tx_delay, &rx_delay);
if (error != 0)
goto fail;
/* Default to 0 and we'll increase it if we need to. */
reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
if (tx_delay > 0)
reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
if (rx_delay > 0)
reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
if (sc->type == EMAC_H3) {
if (awg_has_internal_phy(dev)) {
reg |= EMAC_CLK_EPHY_SELECT;
reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
if (OF_hasprop(node,
"allwinner,leds-active-low"))
reg |= EMAC_CLK_EPHY_LED_POL;
else
reg &= ~EMAC_CLK_EPHY_LED_POL;
/* Set internal PHY addr to 1 */
reg &= ~EMAC_CLK_EPHY_ADDR;
reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
} else {
reg &= ~EMAC_CLK_EPHY_SELECT;
}
}
if (bootverbose)
device_printf(dev, "EMAC clock: 0x%08x\n", reg);
syscon_write_emac_clk_reg(dev, reg);
} else {
if (strncmp(phy_type, "rgmii", 5) == 0)
tx_parent_name = "emac_int_tx";
else
tx_parent_name = "mii_phy_tx";
/* Get the TX clock */
error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
if (error != 0) {
device_printf(dev, "cannot get tx clock\n");
goto fail;
}
/* Find the desired parent clock based on phy-mode property */
error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
if (error != 0) {
device_printf(dev, "cannot get clock '%s'\n",
tx_parent_name);
goto fail;
}
/* Set TX clock parent */
error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
if (error != 0) {
device_printf(dev, "cannot set tx clock parent\n");
goto fail;
}
/* Enable TX clock */
error = clk_enable(clk_tx);
if (error != 0) {
device_printf(dev, "cannot enable tx clock\n");
goto fail;
}
}
error = 0;
fail:
OF_prop_free(phy_type);
return (error);
}
static int
awg_setup_extres(device_t dev)
{
struct awg_softc *sc;
phandle_t node, phy_node;
hwreset_t rst_ahb, rst_ephy;
clk_t clk_ahb, clk_ephy;
regulator_t reg;
uint64_t freq;
int error, div;
sc = device_get_softc(dev);
rst_ahb = rst_ephy = NULL;
clk_ahb = clk_ephy = NULL;
reg = NULL;
node = ofw_bus_get_node(dev);
phy_node = awg_get_phy_node(dev);
if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
error = ENXIO;
device_printf(dev, "cannot get phy handle\n");
goto fail;
}
/* Get AHB clock and reset resources */
error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
if (error != 0)
error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
if (error != 0) {
device_printf(dev, "cannot get ahb reset\n");
goto fail;
}
if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
&rst_ephy) != 0)
rst_ephy = NULL;
error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
if (error != 0)
error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
if (error != 0) {
device_printf(dev, "cannot get ahb clock\n");
goto fail;
}
if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
&clk_ephy) != 0)
clk_ephy = NULL;
if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
"syscon", &sc->syscon) != 0) {
device_printf(dev, "cannot get syscon driver handle\n");
goto fail;
}
/* Configure PHY for MII or RGMII mode */
if (awg_setup_phy(dev) != 0)
goto fail;
/* Enable clocks */
error = clk_enable(clk_ahb);
if (error != 0) {
device_printf(dev, "cannot enable ahb clock\n");
goto fail;
}
if (clk_ephy != NULL) {
error = clk_enable(clk_ephy);
if (error != 0) {
device_printf(dev, "cannot enable ephy clock\n");
goto fail;
}
}
/* De-assert reset */
error = hwreset_deassert(rst_ahb);
if (error != 0) {
device_printf(dev, "cannot de-assert ahb reset\n");
goto fail;
}
if (rst_ephy != NULL) {
error = hwreset_deassert(rst_ephy);
if (error != 0) {
device_printf(dev, "cannot de-assert ephy reset\n");
goto fail;
}
}
/* Enable PHY regulator if applicable */
if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
error = regulator_enable(reg);
if (error != 0) {
device_printf(dev, "cannot enable PHY regulator\n");
goto fail;
}
}
/* Determine MDC clock divide ratio based on AHB clock */
error = clk_get_freq(clk_ahb, &freq);
if (error != 0) {
device_printf(dev, "cannot get AHB clock frequency\n");
goto fail;
}
div = freq / MDIO_FREQ;
if (div <= 16)
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
else if (div <= 32)
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
else if (div <= 64)
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
else if (div <= 128)
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
else {
device_printf(dev, "cannot determine MDC clock divide ratio\n");
error = ENXIO;
goto fail;
}
if (bootverbose)
device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
(uintmax_t)freq, sc->mdc_div_ratio_m);
return (0);
fail:
if (reg != NULL)
regulator_release(reg);
if (clk_ephy != NULL)
clk_release(clk_ephy);
if (clk_ahb != NULL)
clk_release(clk_ahb);
if (rst_ephy != NULL)
hwreset_release(rst_ephy);
if (rst_ahb != NULL)
hwreset_release(rst_ahb);
return (error);
}
static void
awg_get_eaddr(device_t dev, uint8_t *eaddr)
{
struct awg_softc *sc;
uint32_t maclo, machi, rnd;
u_char rootkey[16];
uint32_t rootkey_size;
sc = device_get_softc(dev);
machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
maclo = RD4(sc, EMAC_ADDR_LOW(0));
rootkey_size = sizeof(rootkey);
if (maclo == 0xffffffff && machi == 0xffff) {
/* MAC address in hardware is invalid, create one */
if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
&rootkey_size) == 0 &&
(rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
rootkey[15]) != 0) {
/* MAC address is derived from the root key in SID */
maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
(rootkey[3] << 8) | 0x02;
machi = (rootkey[15] << 8) | rootkey[14];
} else {
/* Create one */
rnd = arc4random();
maclo = 0x00f2 | (rnd & 0xffff0000);
machi = rnd & 0xffff;
}
}
eaddr[0] = maclo & 0xff;
eaddr[1] = (maclo >> 8) & 0xff;
eaddr[2] = (maclo >> 16) & 0xff;
eaddr[3] = (maclo >> 24) & 0xff;
eaddr[4] = machi & 0xff;
eaddr[5] = (machi >> 8) & 0xff;
}
#ifdef AWG_DEBUG
static void
awg_dump_regs(device_t dev)
{
static const struct {
const char *name;
u_int reg;
} regs[] = {
{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
{ "INT_STA", EMAC_INT_STA },
{ "INT_EN", EMAC_INT_EN },
{ "TX_CTL_0", EMAC_TX_CTL_0 },
{ "TX_CTL_1", EMAC_TX_CTL_1 },
{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
{ "RX_CTL_0", EMAC_RX_CTL_0 },
{ "RX_CTL_1", EMAC_RX_CTL_1 },
{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
{ "RX_HASH_0", EMAC_RX_HASH_0 },
{ "RX_HASH_1", EMAC_RX_HASH_1 },
{ "MII_CMD", EMAC_MII_CMD },
{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
{ "TX_DMA_STA", EMAC_TX_DMA_STA },
{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
{ "RX_DMA_STA", EMAC_RX_DMA_STA },
{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
{ "RGMII_STA", EMAC_RGMII_STA },
};
struct awg_softc *sc;
unsigned int n;
sc = device_get_softc(dev);
for (n = 0; n < nitems(regs); n++)
device_printf(dev, " %-20s %08x\n", regs[n].name,
RD4(sc, regs[n].reg));
}
#endif
#define GPIO_ACTIVE_LOW 1
static int
awg_phy_reset(device_t dev)
{
pcell_t gpio_prop[4], delay_prop[3];
phandle_t node, gpio_node;
device_t gpio;
uint32_t pin, flags;
uint32_t pin_value;
node = ofw_bus_get_node(dev);
if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
sizeof(gpio_prop)) <= 0)
return (0);
if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
sizeof(delay_prop)) <= 0)
return (ENXIO);
gpio_node = OF_node_from_xref(gpio_prop[0]);
if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
return (ENXIO);
if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
gpio_prop + 1, &pin, &flags) != 0)
return (ENXIO);
pin_value = GPIO_PIN_LOW;
if (OF_hasprop(node, "allwinner,reset-active-low"))
pin_value = GPIO_PIN_HIGH;
if (flags & GPIO_ACTIVE_LOW)
pin_value = !pin_value;
GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
GPIO_PIN_SET(gpio, pin, pin_value);
DELAY(delay_prop[0]);
GPIO_PIN_SET(gpio, pin, !pin_value);
DELAY(delay_prop[1]);
GPIO_PIN_SET(gpio, pin, pin_value);
DELAY(delay_prop[2]);
return (0);
}
static int
awg_reset(device_t dev)
{
struct awg_softc *sc;
int retry;
sc = device_get_softc(dev);
/* Reset PHY if necessary */
if (awg_phy_reset(dev) != 0) {
device_printf(dev, "failed to reset PHY\n");
return (ENXIO);
}
/* Soft reset all registers and logic */
WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
/* Wait for soft reset bit to self-clear */
for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
break;
DELAY(10);
}
if (retry == 0) {
device_printf(dev, "soft reset timed out\n");
#ifdef AWG_DEBUG
awg_dump_regs(dev);
#endif
return (ETIMEDOUT);
}
return (0);
}
static void
awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
awg_setup_dma(device_t dev)
{
struct awg_softc *sc;
int error, i;
sc = device_get_softc(dev);
/* Setup TX ring */
error = bus_dma_tag_create(
bus_get_dma_tag(dev), /* Parent tag */
DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
TX_DESC_SIZE, 1, /* maxsize, nsegs */
TX_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->tx.desc_tag);
if (error != 0) {
device_printf(dev, "cannot create TX descriptor ring tag\n");
return (error);
}
error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
if (error != 0) {
device_printf(dev, "cannot allocate TX descriptor ring\n");
return (error);
}
error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
&sc->tx.desc_ring_paddr, 0);
if (error != 0) {
device_printf(dev, "cannot load TX descriptor ring\n");
return (error);
}
for (i = 0; i < TX_DESC_COUNT; i++)
sc->tx.desc_ring[i].next =
htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
error = bus_dma_tag_create(
bus_get_dma_tag(dev), /* Parent tag */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, TX_MAX_SEGS, /* maxsize, nsegs */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->tx.buf_tag);
if (error != 0) {
device_printf(dev, "cannot create TX buffer tag\n");
return (error);
}
sc->tx.queued = 0;
for (i = 0; i < TX_DESC_COUNT; i++) {
error = bus_dmamap_create(sc->tx.buf_tag, 0,
&sc->tx.buf_map[i].map);
if (error != 0) {
device_printf(dev, "cannot create TX buffer map\n");
return (error);
}
}
/* Setup RX ring */
error = bus_dma_tag_create(
bus_get_dma_tag(dev), /* Parent tag */
DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
RX_DESC_SIZE, 1, /* maxsize, nsegs */
RX_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rx.desc_tag);
if (error != 0) {
device_printf(dev, "cannot create RX descriptor ring tag\n");
return (error);
}
error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
if (error != 0) {
device_printf(dev, "cannot allocate RX descriptor ring\n");
return (error);
}
error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
&sc->rx.desc_ring_paddr, 0);
if (error != 0) {
device_printf(dev, "cannot load RX descriptor ring\n");
return (error);
}
error = bus_dma_tag_create(
bus_get_dma_tag(dev), /* Parent tag */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegs */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rx.buf_tag);
if (error != 0) {
device_printf(dev, "cannot create RX buffer tag\n");
return (error);
}
error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
if (error != 0) {
device_printf(dev,
"cannot create RX buffer spare map\n");
return (error);
}
for (i = 0; i < RX_DESC_COUNT; i++) {
sc->rx.desc_ring[i].next =
htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
error = bus_dmamap_create(sc->rx.buf_tag, 0,
&sc->rx.buf_map[i].map);
if (error != 0) {
device_printf(dev, "cannot create RX buffer map\n");
return (error);
}
sc->rx.buf_map[i].mbuf = NULL;
error = awg_newbuf_rx(sc, i);
if (error != 0) {
device_printf(dev, "cannot create RX buffer\n");
return (error);
}
}
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
BUS_DMASYNC_PREWRITE);
/* Write transmit and receive descriptor base address registers */
WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
return (0);
}
static int
awg_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
return (ENXIO);
device_set_desc(dev, "Allwinner Gigabit Ethernet");
return (BUS_PROBE_DEFAULT);
}
static int
awg_attach(device_t dev)
{
uint8_t eaddr[ETHER_ADDR_LEN];
struct awg_softc *sc;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
device_printf(dev, "cannot allocate resources for device\n");
return (ENXIO);
}
mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
/* Setup clocks and regulators */
error = awg_setup_extres(dev);
if (error != 0)
return (error);
/* Read MAC address before resetting the chip */
awg_get_eaddr(dev, eaddr);
/* Soft reset EMAC core */
error = awg_reset(dev);
if (error != 0)
return (error);
/* Setup DMA descriptors */
error = awg_setup_dma(dev);
if (error != 0)
return (error);
/* Install interrupt handler */
error = bus_setup_intr(dev, sc->res[_RES_IRQ],
INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
if (error != 0) {
device_printf(dev, "cannot setup interrupt handler\n");
return (error);
}
/* Setup ethernet interface */
sc->ifp = if_alloc(IFT_ETHER);
if_setsoftc(sc->ifp, sc);
if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
if_setstartfn(sc->ifp, awg_start);
if_setioctlfn(sc->ifp, awg_ioctl);
if_setinitfn(sc->ifp, awg_init);
if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
if_setsendqready(sc->ifp);
if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
#ifdef DEVICE_POLLING
if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
#endif
/* Attach MII driver */
error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
MIIF_DOPAUSE);
if (error != 0) {
device_printf(dev, "cannot attach PHY\n");
return (error);
}
/* Attach ethernet interface */
ether_ifattach(sc->ifp, eaddr);
return (0);
}
static device_method_t awg_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, awg_probe),
DEVMETHOD(device_attach, awg_attach),
/* MII interface */
DEVMETHOD(miibus_readreg, awg_miibus_readreg),
DEVMETHOD(miibus_writereg, awg_miibus_writereg),
DEVMETHOD(miibus_statchg, awg_miibus_statchg),
DEVMETHOD_END
};
static driver_t awg_driver = {
"awg",
awg_methods,
sizeof(struct awg_softc),
};
static devclass_t awg_devclass;
DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(awg, ether, 1, 1, 1);
MODULE_DEPEND(awg, miibus, 1, 1, 1);