freebsd-nq/sys/dev/fe/if_fe.c
1995-12-15 00:54:32 +00:00

2751 lines
73 KiB
C

/*
* All Rights Reserved, Copyright (C) Fujitsu Limited 1995
*
* This software may be used, modified, copied, distributed, and sold, in
* both source and binary form provided that the above copyright, these
* terms and the following disclaimer are retained. The name of the author
* and/or the contributor may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define FE_VERSION "if_fe.c ver. 0.8a"
/*
* Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
* To be used with FreeBSD 2.0 RELEASE.
* Contributed by M.S. <seki@sysrap.cs.fujitsu.co.jp>
*
* This version is intended to be a generic template for various
* MB86960A/MB86965A based Ethernet cards. It currently supports
* Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
* Telesis AT1700 series and RE2000 series. There are some
* unnecessary hooks embedded, which are primarily intended to support
* other types of Ethernet cards, but the author is not sure whether
* they are useful.
*
* This software is a derivative work of if_ed.c version 1.56 by David
* Greenman available as a part of FreeBSD 2.0 RELEASE source distribution.
*
* The following lines are retained from the original if_ed.c:
*
* Copyright (C) 1993, David Greenman. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided
* that the above copyright and these terms are retained. Under no
* circumstances is the author responsible for the proper functioning
* of this software, nor does the author assume any responsibility
* for damages incurred with its use.
*/
#include "fe.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/devconf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/clock.h>
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/icu.h>
#include <i386/isa/ic/mb86960.h>
#include <i386/isa/if_fereg.h>
#ifdef __GNUC__
#define INLINE inline
#else
#define INLINE
#endif
/*
* Default settings for fe driver specific options.
* They can be set in config file by "options" statements.
*/
/*
* Debug control.
* 0: No debug at all. All debug specific codes are stripped off.
* 1: Silent. No debug messages are logged except emergent ones.
* 2: Brief. Lair events and/or important information are logged.
* 3: Detailed. Logs all information which *may* be useful for debugging.
* 4: Trace. All actions in the driver is logged. Super verbose.
*/
#ifndef FE_DEBUG
#define FE_DEBUG 1
#endif
/*
* Delay padding of short transmission packets to minimum Ethernet size.
* This may or may not gain performance. An EXPERIMENTAL option.
*/
#ifndef FE_DELAYED_PADDING
#define FE_DELAYED_PADDING 0
#endif
/*
* Transmit just one packet per a "send"command to 86960.
* This option is intended for performance test. An EXPERIMENTAL option.
*/
#ifndef FE_SINGLE_TRANSMISSION
#define FE_SINGLE_TRANSMISSION 0
#endif
/*
* Device configuration flags.
*/
/* DLCR6 settings. */
#define FE_FLAGS_DLCR6_VALUE 0x007F
/* Force DLCR6 override. */
#define FE_FLAGS_OVERRIDE_DLCR6 0x0080
/* A cludge for PCMCIA support. */
#define FE_FLAGS_PCMCIA 0x8000
/* Shouldn't this be defined somewhere else such as isa_device.h? */
#define NO_IOADDR 0xFFFFFFFF
/* Identification of the driver version. */
static char const fe_version [] = FE_VERSION " / " FE_REG_VERSION;
/*
* Supported hardware (Ethernet card) types
* This information is currently used only for debugging
*/
enum fe_type
{
/* For cards which are successfully probed but not identified. */
FE_TYPE_UNKNOWN,
/* Fujitsu FMV-180 series. */
FE_TYPE_FMV181,
FE_TYPE_FMV182,
/* Allied-Telesis AT1700 series and RE2000 series. */
FE_TYPE_AT1700,
/* PCMCIA by Fujitsu. */
FE_TYPE_MBH10302,
FE_TYPE_MBH10304,
/* More can be here. */
};
/*
* Data type for a multicast address filter on 86960.
*/
struct fe_filter { u_char data [ FE_FILTER_LEN ]; };
/*
* Special filter values.
*/
static struct fe_filter const fe_filter_nothing = { FE_FILTER_NOTHING };
static struct fe_filter const fe_filter_all = { FE_FILTER_ALL };
/*
* fe_softc: per line info and status
*/
static struct fe_softc {
/* Used by "common" codes. */
struct arpcom arpcom; /* ethernet common */
/* Used by config codes. */
struct kern_devconf kdc;/* Kernel configuration database info. */
/* Set by probe() and not modified in later phases. */
enum fe_type type; /* interface type code */
char * typestr; /* printable name of the interface. */
u_short addr; /* MB86960A I/O base address */
u_short txb_size; /* size of TX buffer, in bytes */
u_char proto_dlcr4; /* DLCR4 prototype. */
u_char proto_dlcr5; /* DLCR5 prototype. */
u_char proto_dlcr6; /* DLCR6 prototype. */
u_char proto_dlcr7; /* DLCR7 prototype. */
/* Vendor specific hooks. */
void ( * init )( struct fe_softc * ); /* Just before fe_init(). */
void ( * stop )( struct fe_softc * ); /* Just after fe_stop(). */
/* For BPF. */
caddr_t bpf; /* BPF "magic cookie" */
/* Transmission buffer management. */
u_short txb_free; /* free bytes in TX buffer */
u_char txb_count; /* number of packets in TX buffer */
u_char txb_sched; /* number of scheduled packets */
u_char txb_padding; /* number of delayed padding bytes */
/* Multicast address filter management. */
u_char filter_change; /* MARs must be changed ASAP. */
struct fe_filter filter;/* new filter value. */
} fe_softc[NFE];
/* Frequently accessed members in arpcom and kdc. */
#define sc_if arpcom.ac_if
#define sc_unit arpcom.ac_if.if_unit
#define sc_enaddr arpcom.ac_enaddr
#define sc_dcstate kdc.kdc_state
#define sc_description kdc.kdc_description
/*
* Some entry functions receive a "struct ifnet *" typed pointer as an
* argument. It points to arpcom.ac_if of our softc. Remember arpcom.ac_if
* is located at very first of the fe_softc struct. So, there is no
* difference between "struct fe_softc *" and "struct ifnet *" at the machine
* language level. We just cast to turn a "struct ifnet *" value into "struct
* fe_softc * value". If this were C++, we would need no such cast at all.
*/
#define IFNET2SOFTC(P) ( ( struct fe_softc * )(P) )
/* Standard driver entry points. These can be static. */
static int fe_probe ( struct isa_device * );
static int fe_attach ( struct isa_device * );
static void fe_init ( int );
static int fe_ioctl ( struct ifnet *, int, caddr_t );
static void fe_start ( struct ifnet * );
static void fe_reset ( int );
static void fe_watchdog ( struct ifnet * );
/* Local functions. Order of declaration is confused. FIXME. */
static int fe_probe_fmv ( struct isa_device *, struct fe_softc * );
static int fe_probe_ati ( struct isa_device *, struct fe_softc * );
static int fe_probe_mbh ( struct isa_device *, struct fe_softc * );
static void fe_init_mbh ( struct fe_softc * );
static int fe_get_packet ( struct fe_softc *, u_short );
static void fe_stop ( int );
static void fe_tint ( struct fe_softc *, u_char );
static void fe_rint ( struct fe_softc *, u_char );
static void fe_xmit ( struct fe_softc * );
static void fe_write_mbufs ( struct fe_softc *, struct mbuf * );
static struct fe_filter
fe_mcaf ( struct fe_softc * );
static int fe_hash ( u_char * );
static void fe_setmode ( struct fe_softc * );
static void fe_loadmar ( struct fe_softc * );
static void fe_setlinkaddr ( struct fe_softc * );
#if FE_DEBUG >= 1
static void fe_dump ( int, struct fe_softc *, char * );
#endif
/* Ethernet constants. To be defined in if_ehter.h? FIXME. */
#define ETHER_MIN_LEN 60 /* with header, without CRC. */
#define ETHER_MAX_LEN 1514 /* with header, without CRC. */
#define ETHER_ADDR_LEN 6 /* number of bytes in an address. */
#define ETHER_TYPE_LEN 2 /* number of bytes in a data type field. */
#define ETHER_HDR_SIZE 14 /* src addr, dst addr, and data type. */
#define ETHER_CRC_LEN 4 /* number of bytes in CRC field. */
/* Driver struct used in the config code. This must be public (external.) */
struct isa_driver fedriver =
{
fe_probe,
fe_attach,
"fe",
0 /* Assume we are insensitive. FIXME. */
};
/* Initial value for a kdc struct. */
static struct kern_devconf const fe_kdc_template =
{
0, 0, 0,
"fe", 0, { MDDT_ISA, 0, "net" },
isa_generic_externalize, 0, 0, ISA_EXTERNALLEN,
&kdc_isa0, /* We are an ISA device. */
0,
DC_UNCONFIGURED, /* Not yet configured. */
"Ethernet (fe)", /* Tentative description (filled in later.) */
DC_CLS_NETIF /* We are a network interface. */
};
/*
* Fe driver specific constants which relate to 86960/86965.
* They are here (not in if_fereg.h), since selection of those
* values depend on driver design. I want to keep definitions in
* if_fereg.h "clean", so that if someone wrote another driver
* for 86960/86965, if_fereg.h were usable unchanged.
*
* The above statement sounds somothing like it's better to name
* it "ic/mb86960.h" but "if_fereg.h"... Should I do so? FIXME.
*/
/* Interrupt masks */
#define FE_TMASK ( FE_D2_COLL16 | FE_D2_TXDONE )
#define FE_RMASK ( FE_D3_OVRFLO | FE_D3_CRCERR \
| FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY )
/* Maximum number of iterrations for a receive interrupt. */
#define FE_MAX_RECV_COUNT ( ( 65536 - 2048 * 2 ) / 64 )
/* Maximum size of SRAM is 65536,
* minimum size of transmission buffer in fe is 2x2KB,
* and minimum amount of received packet including headers
* added by the chip is 64 bytes.
* Hence FE_MAX_RECV_COUNT is the upper limit for number
* of packets in the receive buffer. */
/*
* Convenient routines to access contiguous I/O ports.
*/
static INLINE void
inblk ( u_short addr, u_char * mem, int len )
{
while ( --len >= 0 ) {
*mem++ = inb( addr++ );
}
}
static INLINE void
outblk ( u_short addr, u_char const * mem, int len )
{
while ( --len >= 0 ) {
outb( addr++, *mem++ );
}
}
/*
* Hardware probe routines.
*/
/* How and where to probe; to support automatic I/O address detection. */
struct fe_probe_list
{
int ( * probe ) ( struct isa_device *, struct fe_softc * );
u_short const * addresses;
};
/* Lists of possible addresses. */
static u_short const fe_fmv_addr [] =
{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340, 0 };
static u_short const fe_ati_addr [] =
{ 0x240, 0x260, 0x280, 0x2A0, 0x300, 0x320, 0x340, 0x380, 0 };
static struct fe_probe_list const fe_probe_list [] =
{
{ fe_probe_fmv, fe_fmv_addr },
{ fe_probe_ati, fe_ati_addr },
{ fe_probe_mbh, NULL }, /* PCMCIAs cannot be auto-detected. */
{ NULL, NULL }
};
/*
* Determine if the device is present
*
* on entry:
* a pointer to an isa_device struct
* on exit:
* zero if device not found
* or number of i/o addresses used (if found)
*/
static int
fe_probe ( struct isa_device * isa_dev )
{
struct fe_softc * sc, * u;
int nports;
struct fe_probe_list const * list;
u_short const * addr;
u_short single [ 2 ];
/* Initialize "minimum" parts of our softc. */
sc = &fe_softc[ isa_dev->id_unit ];
sc->sc_unit = isa_dev->id_unit;
#if FE_DEBUG >= 2
log( LOG_INFO, "fe%d: %s\n", sc->sc_unit, fe_version );
#endif
#ifndef DEV_LKM
/* Fill the device config data and register it. */
sc->kdc = fe_kdc_template;
sc->kdc.kdc_unit = sc->sc_unit;
sc->kdc.kdc_parentdata = isa_dev;
dev_attach( &sc->kdc );
#endif
/* Probe each possibility, one at a time. */
for ( list = fe_probe_list; list->probe != NULL; list++ ) {
if ( isa_dev->id_iobase != NO_IOADDR ) {
/* Probe one specific address. */
single[ 0 ] = isa_dev->id_iobase;
single[ 1 ] = 0;
addr = single;
} else if ( list->addresses != NULL ) {
/* Auto detect. */
addr = list->addresses;
} else {
/* We need a list of addresses to do auto detect. */
continue;
}
/* Probe all possible addresses for the board. */
while ( *addr != 0 ) {
/* Don't probe already used address. */
for ( u = &fe_softc[0]; u < &fe_softc[NFE]; u++ ) {
if ( u->addr == *addr ) break;
}
if ( u < &fe_softc[NFE] ) continue;
/* Probe an address. */
sc->addr = *addr;
nports = list->probe( isa_dev, sc );
if ( nports > 0 ) {
/* Found. */
isa_dev->id_iobase = *addr;
return ( nports );
}
/* Try next. */
sc->addr = 0;
addr++;
}
}
/* Probe failed. */
return ( 0 );
}
/*
* Check for specific bits in specific registers have specific values.
*/
struct fe_simple_probe_struct
{
u_char port; /* Offset from the base I/O address. */
u_char mask; /* Bits to be checked. */
u_char bits; /* Values to be compared against. */
};
static INLINE int
fe_simple_probe ( u_short addr, struct fe_simple_probe_struct const * sp )
{
struct fe_simple_probe_struct const * p;
for ( p = sp; p->mask != 0; p++ ) {
if ( ( inb( addr + p->port ) & p->mask ) != p->bits ) {
return ( 0 );
}
}
return ( 1 );
}
/*
* Routines to read all bytes from the config EEPROM through MB86965A.
* I'm not sure what exactly I'm doing here... I was told just to follow
* the steps, and it worked. Could someone tell me why the following
* code works? (Or, why all similar codes I tried previously doesn't
* work.) FIXME.
*/
static INLINE void
strobe ( u_short bmpr16 )
{
/*
* Output same value twice. To speed-down execution?
*/
outb( bmpr16, FE_B16_SELECT );
outb( bmpr16, FE_B16_SELECT );
outb( bmpr16, FE_B16_SELECT | FE_B16_CLOCK );
outb( bmpr16, FE_B16_SELECT | FE_B16_CLOCK );
outb( bmpr16, FE_B16_SELECT );
outb( bmpr16, FE_B16_SELECT );
}
static void
fe_read_eeprom ( struct fe_softc * sc, u_char * data )
{
u_short bmpr16 = sc->addr + FE_BMPR16;
u_short bmpr17 = sc->addr + FE_BMPR17;
u_char n, val, bit;
u_char save16, save17;
/* Save old values of the registers. */
save16 = inb( bmpr16 );
save17 = inb( bmpr17 );
/* Read bytes from EEPROM; two bytes per an iterration. */
for ( n = 0; n < FE_EEPROM_SIZE / 2; n++ ) {
/* Reset the EEPROM interface. */
outb( bmpr16, 0x00 );
outb( bmpr17, 0x00 );
outb( bmpr16, FE_B16_SELECT );
/* Start EEPROM access. */
outb( bmpr17, FE_B17_DATA );
strobe( bmpr16 );
/* Pass the iterration count to the chip. */
val = 0x80 | n;
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
outb( bmpr17, ( val & bit ) ? FE_B17_DATA : 0 );
strobe( bmpr16 );
}
outb( bmpr17, 0x00 );
/* Read a byte. */
val = 0;
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
strobe( bmpr16 );
if ( inb( bmpr17 ) & FE_B17_DATA ) {
val |= bit;
}
}
*data++ = val;
/* Read one more byte. */
val = 0;
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
strobe( bmpr16 );
if ( inb( bmpr17 ) & FE_B17_DATA ) {
val |= bit;
}
}
*data++ = val;
}
/* Restore register values, in the case we had no 86965. */
outb( bmpr16, save16 );
outb( bmpr17, save17 );
#if FE_DEBUG >= 3
/* Report what we got. */
data -= FE_EEPROM_SIZE;
log( LOG_INFO, "fe%d: EEPROM:"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x\n",
sc->sc_unit,
data[ 0], data[ 1], data[ 2], data[ 3],
data[ 4], data[ 5], data[ 6], data[ 7],
data[ 8], data[ 9], data[10], data[11],
data[12], data[13], data[14], data[15],
data[16], data[17], data[18], data[19],
data[20], data[21], data[22], data[23],
data[24], data[25], data[26], data[27],
data[28], data[29], data[30], data[31] );
#endif
}
/*
* Hardware (vendor) specific probe routines.
*/
/*
* Probe and initialization for Fujitsu FMV-180 series boards
*/
static int
fe_probe_fmv ( struct isa_device *isa_dev, struct fe_softc * sc )
{
int i, n;
static u_short const ioaddr [ 8 ] =
{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
static u_short const irqmap [ 4 ] =
{ IRQ3, IRQ7, IRQ10, IRQ15 };
static struct fe_simple_probe_struct const probe_table [] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
/* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
{ FE_FMV0, FE_FMV0_MAGIC_MASK, FE_FMV0_MAGIC_VALUE },
{ FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID },
{ FE_FMV3, FE_FMV3_EXTRA_MASK, FE_FMV3_EXTRA_VALUE },
#if 1
/*
* Test *vendor* part of the station address for Fujitsu.
* The test will gain reliability of probe process, but
* it rejects FMV-180 clone boards manufactured by other vendors.
* We have to turn the test off when such cards are made available.
*/
{ FE_FMV4, 0xFF, 0x00 },
{ FE_FMV5, 0xFF, 0x00 },
{ FE_FMV6, 0xFF, 0x0E },
#else
/*
* We can always verify the *first* 2 bits (in Ehternet
* bit order) are "no multicast" and "no local" even for
* unknown vendors.
*/
{ FE_FMV4, 0x03, 0x00 },
#endif
{ 0 }
};
#if 0
/*
* Dont probe at all if the config says we are PCMCIA...
*/
if ( isa_dev->id_flags & FE_FLAGS_PCMCIA ) return ( 0 );
#endif
/*
* See if the sepcified address is possible for FMV-180 series.
*/
for ( i = 0; i < 8; i++ ) {
if ( ioaddr[ i ] == sc->addr ) break;
}
if ( i == 8 ) return 0;
/* Simple probe. */
if ( !fe_simple_probe( sc->addr, probe_table ) ) return 0;
/* Check if our I/O address matches config info on EEPROM. */
n = ( inb( sc->addr + FE_FMV2 ) & FE_FMV2_ADDR ) >> FE_FMV2_ADDR_SHIFT;
if ( ioaddr[ n ] != sc->addr ) return 0;
/* Determine the card type. */
switch ( inb( sc->addr + FE_FMV0 ) & FE_FMV0_MODEL ) {
case FE_FMV0_MODEL_FMV181:
sc->type = FE_TYPE_FMV181;
sc->typestr = "FMV-181";
sc->sc_description = "Ethernet adapter: FMV-181";
break;
case FE_FMV0_MODEL_FMV182:
sc->type = FE_TYPE_FMV182;
sc->typestr = "FMV-182";
sc->sc_description = "Ethernet adapter: FMV-182";
break;
default:
/* Unknown card type: maybe a new model, but... */
return 0;
}
/*
* An FMV-180 has successfully been proved.
* Determine which IRQ to be used.
*
* In this version, we always get an IRQ assignment from the
* FMV-180's configuration EEPROM, ignoring that specified in
* config file.
*/
n = ( inb( sc->addr + FE_FMV2 ) & FE_FMV2_IRQ ) >> FE_FMV2_IRQ_SHIFT;
isa_dev->id_irq = irqmap[ n ];
/*
* Initialize constants in the per-line structure.
*/
/* Get our station address from EEPROM. */
inblk( sc->addr + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN );
/* Make sure we got a valid station address. */
if ( ( sc->sc_enaddr[ 0 ] & 0x03 ) != 0x00
|| ( sc->sc_enaddr[ 0 ] == 0x00
&& sc->sc_enaddr[ 1 ] == 0x00
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) return 0;
/* Register values which depend on board design. */
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
sc->proto_dlcr5 = 0;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
/*
* Program the 86960 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
* We cannot change these values but TXBSIZE, because they
* are hard-wired on the board. Modifying TXBSIZE will affect
* the driver performance.
*/
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
/*
* Minimum initialization of the hardware.
* We write into registers; hope I/O ports have no
* overlap with other boards.
*/
/* Initialize ASIC. */
outb( sc->addr + FE_FMV3, 0 );
outb( sc->addr + FE_FMV10, 0 );
/* Wait for a while. I'm not sure this is necessary. FIXME. */
DELAY(200);
/* Initialize 86960. */
outb( sc->addr + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY(200);
/* Disable all interrupts. */
outb( sc->addr + FE_DLCR2, 0 );
outb( sc->addr + FE_DLCR3, 0 );
/* Turn the "master interrupt control" flag of ASIC on. */
outb( sc->addr + FE_FMV3, FE_FMV3_ENABLE_FLAG );
/*
* That's all. FMV-180 occupies 32 I/O addresses, by the way.
*/
return 32;
}
/*
* Probe and initialization for Allied-Telesis AT1700/RE2000 series.
*/
static int
fe_probe_ati ( struct isa_device * isa_dev, struct fe_softc * sc )
{
int i, n;
u_char eeprom [ FE_EEPROM_SIZE ];
static u_short const ioaddr [ 8 ] =
{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
static u_short const irqmap_lo [ 4 ] =
{ IRQ3, IRQ4, IRQ5, IRQ9 };
static u_short const irqmap_hi [ 4 ] =
{ IRQ10, IRQ11, IRQ12, IRQ15 };
static struct fe_simple_probe_struct const probe_table [] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
{ FE_DLCR5, 0x80, 0x00 },
#if 0
{ FE_BMPR16, 0x1B, 0x00 },
{ FE_BMPR17, 0x7F, 0x00 },
#endif
{ 0 }
};
#if 0
/*
* Don't probe at all if the config says we are PCMCIA...
*/
if ( isa_dev->id_flags & FE_FLAGS_PCMCIA ) return ( 0 );
#endif
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: probe (0x%x) for ATI\n", sc->sc_unit, sc->addr );
fe_dump( LOG_INFO, sc, NULL );
#endif
/*
* See if the sepcified address is possible for MB86965A JLI mode.
*/
for ( i = 0; i < 8; i++ ) {
if ( ioaddr[ i ] == sc->addr ) break;
}
if ( i == 8 ) return 0;
/*
* We should test if MB86965A is on the base address now.
* Unfortunately, it is very hard to probe it reliably, since
* we have no way to reset the chip under software control.
* On cold boot, we could check the "signature" bit patterns
* described in the Fujitsu document. On warm boot, however,
* we can predict almost nothing about register values.
*/
if ( !fe_simple_probe( sc->addr, probe_table ) ) return 0;
/* Check if our I/O address matches config info on 86965. */
n = ( inb( sc->addr + FE_BMPR19 ) & FE_B19_ADDR ) >> FE_B19_ADDR_SHIFT;
if ( ioaddr[ n ] != sc->addr ) return 0;
/*
* We are now almost sure we have an AT1700 at the given
* address. So, read EEPROM through 86965. We have to write
* into LSI registers to read from EEPROM. I want to avoid it
* at this stage, but I cannot test the presense of the chip
* any further without reading EEPROM. FIXME.
*/
fe_read_eeprom( sc, eeprom );
/* Make sure that config info in EEPROM and 86965 agree. */
if ( eeprom[ FE_EEPROM_CONF ] != inb( sc->addr + FE_BMPR19 ) ) {
return 0;
}
/*
* Determine the card type.
* There may be a way to identify various models. FIXME.
*/
sc->type = FE_TYPE_AT1700;
sc->typestr = "AT1700/RE2000";
sc->sc_description = "Ethernet adapter: AT1700 or RE2000";
/*
* I was told that RE2000 series has two variants on IRQ
* selection. They are 3/4/5/9 and 10/11/12/15. I don't know
* how we can distinguish which model is which. For now, we
* just trust irq setting in config. FIXME.
*
* I've heard that ATI puts an identification between these
* two models in the EEPROM. Sounds reasonable. I've also
* heard that Linux driver for AT1700 tests it. O.K. Let's
* try using it and see what happens. Anyway, we will use an
* IRQ value passed by config (i.e., user), if one is
* available. FIXME.
*/
n = ( inb( sc->addr + FE_BMPR19 ) & FE_B19_IRQ ) >> FE_B19_IRQ_SHIFT;
if ( isa_dev->id_irq == 0 ) {
/* Try to determine IRQ settings. */
if ( eeprom[ FE_EEP_ATI_TYPE ] & FE_EEP_ATI_TYPE_HIGHIRQ ) {
isa_dev->id_irq = irqmap_hi[ n ];
} else {
isa_dev->id_irq = irqmap_lo[ n ];
}
}
/*
* Initialize constants in the per-line structure.
*/
/* Get our station address from EEPROM. */
bcopy( eeprom + FE_EEP_ATI_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN );
#if 1
/*
* This test doesn't work well for AT1700 look-alike by
* other vendors.
*/
/* Make sure the vendor part is for Allied-Telesis. */
if ( sc->sc_enaddr[ 0 ] != 0x00
|| sc->sc_enaddr[ 1 ] != 0x00
|| sc->sc_enaddr[ 2 ] != 0xF4 ) return 0;
#else
/* Make sure we got a valid station address. */
if ( ( sc->sc_enaddr[ 0 ] & 0x03 ) != 0x00
|| ( sc->sc_enaddr[ 0 ] == 0x00
&& sc->sc_enaddr[ 1 ] == 0x00
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) return 0;
#endif
/* Should find all register prototypes here. FIXME. */
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; /* FIXME */
sc->proto_dlcr5 = 0;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
/*
* Program the 86960 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
* We cannot change these values but TXBSIZE, because they
* are hard-wired on the board. Modifying TXBSIZE will affect
* the driver performance.
*/
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "ATI found" );
#endif
/* Initialize 86965. */
outb( sc->addr + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY(200);
/* Disable all interrupts. */
outb( sc->addr + FE_DLCR2, 0 );
outb( sc->addr + FE_DLCR3, 0 );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "end of fe_probe_ati()" );
#endif
/*
* That's all. AT1700 occupies 32 I/O addresses, by the way.
*/
return 32;
}
/*
* Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
*/
static int
fe_probe_mbh ( struct isa_device * isa_dev, struct fe_softc * sc )
{
static struct fe_simple_probe_struct probe_table [] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
/* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
#if 0
/*
* Test *vendor* part of the address for Fujitsu.
* The test will gain reliability of probe process, but
* it rejects clones by other vendors, or OEM product
* supplied by resalers other than Fujitsu.
*/
{ FE_MBH10, 0xFF, 0x00 },
{ FE_MBH11, 0xFF, 0x00 },
{ FE_MBH12, 0xFF, 0x0E },
#else
/*
* We can always verify the *first* 2 bits (in Ehternet
* bit order) are "global" and "unicast" even for
* unknown vendors.
*/
{ FE_MBH10, 0x03, 0x00 },
#endif
/* Just a gap? Seems reliable, anyway. */
{ 0x12, 0xFF, 0x00 },
{ 0x13, 0xFF, 0x00 },
{ 0x14, 0xFF, 0x00 },
{ 0x15, 0xFF, 0x00 },
{ 0x16, 0xFF, 0x00 },
{ 0x17, 0xFF, 0x00 },
{ 0x18, 0xFF, 0xFF },
{ 0x19, 0xFF, 0xFF },
{ 0 }
};
#if 0
/*
* We need a PCMCIA flag.
*/
if ( ( isa_dev->id_flags & FE_FLAGS_PCMCIA ) == 0 ) return ( 0 );
#endif
/*
* We need explicit IRQ and supported address.
*/
if ( isa_dev->id_irq == 0 || ( sc->addr & ~0x3E0 ) != 0 ) return ( 0 );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "top of probe" );
#endif
/*
* See if MBH10302 is on its address.
* I'm not sure the following probe code works. FIXME.
*/
if ( !fe_simple_probe( sc->addr, probe_table ) ) return 0;
/* Determine the card type. */
sc->type = FE_TYPE_MBH10302;
sc->typestr = "MBH10302 (PCMCIA)";
sc->sc_description = "Ethernet adapter: MBH10302 (PCMCIA)";
/*
* Initialize constants in the per-line structure.
*/
/* Get our station address from EEPROM. */
inblk( sc->addr + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN );
/* Make sure we got a valid station address. */
if ( ( sc->sc_enaddr[ 0 ] & 0x03 ) != 0x00
|| ( sc->sc_enaddr[ 0 ] == 0x00
&& sc->sc_enaddr[ 1 ] == 0x00
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) return 0;
/* Should find all register prototypes here. FIXME. */
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
sc->proto_dlcr5 = 0;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
/*
* Program the 86960 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
* We cannot change these values but TXBSIZE, because they
* are hard-wired on the board. Modifying TXBSIZE will affect
* the driver performance.
*/
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
/* Setup hooks. We need a special initialization procedure. */
sc->init = fe_init_mbh;
/*
* Minimum initialization.
*/
/* Wait for a while. I'm not sure this is necessary. FIXME. */
DELAY(200);
/* Minimul initialization of 86960. */
outb( sc->addr + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Disable all interrupts. */
outb( sc->addr + FE_DLCR2, 0 );
outb( sc->addr + FE_DLCR3, 0 );
#if 1 /* FIXME. */
/* Initialize system bus interface and encoder/decoder operation. */
outb( sc->addr + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE );
#endif
/*
* That's all. MBH10302 occupies 32 I/O addresses, by the way.
*/
return 32;
}
/* MBH specific initialization routine. */
static void
fe_init_mbh ( struct fe_softc * sc )
{
/* Probably required after hot-insertion... */
/* Wait for a while. I'm not sure this is necessary. FIXME. */
DELAY(200);
/* Minimul initialization of 86960. */
outb( sc->addr + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Disable all interrupts. */
outb( sc->addr + FE_DLCR2, 0 );
outb( sc->addr + FE_DLCR3, 0 );
/* Enable master interrupt flag. */
outb( sc->addr + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE );
}
/*
* Install interface into kernel networking data structures
*/
static int
fe_attach ( struct isa_device *isa_dev )
{
struct fe_softc *sc = &fe_softc[isa_dev->id_unit];
/*
* Initialize ifnet structure
*/
sc->sc_if.if_unit = sc->sc_unit;
sc->sc_if.if_name = "fe";
sc->sc_if.if_output = ether_output;
sc->sc_if.if_start = fe_start;
sc->sc_if.if_ioctl = fe_ioctl;
sc->sc_if.if_watchdog = fe_watchdog;
/*
* Set default interface flags.
*/
sc->sc_if.if_flags = IFF_BROADCAST | IFF_MULTICAST;
/*
* Set maximum size of output queue, if it has not been set.
* It is done here as this driver may be started after the
* system intialization (i.e., the interface is PCMCIA.)
*
* I'm not sure this is really necessary, but, even if it is,
* it should be done somewhere else, e.g., in if_attach(),
* since it must be a common workaround for all network drivers.
* FIXME.
*/
if ( sc->sc_if.if_snd.ifq_maxlen == 0 ) {
sc->sc_if.if_snd.ifq_maxlen = ifqmaxlen;
}
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "attach()" );
#endif
#if FE_SINGLE_TRANSMISSION
/* Override txb config to allocate minimum. */
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
#endif
/* Modify hardware config if it is requested. */
if ( isa_dev->id_flags & FE_FLAGS_OVERRIDE_DLCR6 ) {
sc->proto_dlcr6 = isa_dev->id_flags & FE_FLAGS_DLCR6_VALUE;
}
/* Find TX buffer size, based on the hardware dependent proto. */
switch ( sc->proto_dlcr6 & FE_D6_TXBSIZ ) {
case FE_D6_TXBSIZ_2x2KB: sc->txb_size = 2048; break;
case FE_D6_TXBSIZ_2x4KB: sc->txb_size = 4096; break;
case FE_D6_TXBSIZ_2x8KB: sc->txb_size = 8192; break;
default:
/* Oops, we can't work with single buffer configuration. */
#if FE_DEBUG >= 2
log( LOG_WARNING, "fe%d: strange TXBSIZ config; fixing\n",
sc->sc_unit );
#endif
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
sc->txb_size = 2048;
break;
}
/* Attach and stop the interface. */
if_attach( &sc->sc_if );
fe_stop( sc->sc_unit ); /* This changes the state to IDLE. */
fe_setlinkaddr( sc );
/* Print additional info when attached. */
printf( "fe%d: address %s, type %s\n", sc->sc_unit,
ether_sprintf( sc->sc_enaddr ), sc->typestr );
#if FE_DEBUG >= 3
{
int buf, txb, bbw, sbw, ram;
buf = txb = bbw = sbw = ram = -1;
switch ( sc->proto_dlcr6 & FE_D6_BUFSIZ ) {
case FE_D6_BUFSIZ_8KB: buf = 8; break;
case FE_D6_BUFSIZ_16KB: buf = 16; break;
case FE_D6_BUFSIZ_32KB: buf = 32; break;
case FE_D6_BUFSIZ_64KB: buf = 64; break;
}
switch ( sc->proto_dlcr6 & FE_D6_TXBSIZ ) {
case FE_D6_TXBSIZ_2x2KB: txb = 2; break;
case FE_D6_TXBSIZ_2x4KB: txb = 4; break;
case FE_D6_TXBSIZ_2x8KB: txb = 8; break;
}
switch ( sc->proto_dlcr6 & FE_D6_BBW ) {
case FE_D6_BBW_BYTE: bbw = 8; break;
case FE_D6_BBW_WORD: bbw = 16; break;
}
switch ( sc->proto_dlcr6 & FE_D6_SBW ) {
case FE_D6_SBW_BYTE: sbw = 8; break;
case FE_D6_SBW_WORD: sbw = 16; break;
}
switch ( sc->proto_dlcr6 & FE_D6_SRAM ) {
case FE_D6_SRAM_100ns: ram = 100; break;
case FE_D6_SRAM_150ns: ram = 150; break;
}
printf( "fe%d: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
sc->sc_unit, buf, bbw, ram, txb, sbw );
}
#endif
#if NBPFILTER > 0
/* If BPF is in the kernel, call the attach for it. */
bpfattach(&sc->bpf, &sc->sc_if, DLT_EN10MB,
sizeof(struct ether_header));
#endif
return 1;
}
/*
* Reset interface.
*/
static void
fe_reset ( int unit )
{
/*
* Stop interface and re-initialize.
*/
fe_stop(unit);
fe_init(unit);
}
/*
* Stop everything on the interface.
*
* All buffered packets, both transmitting and receiving,
* if any, will be lost by stopping the interface.
*/
static void
fe_stop ( int unit )
{
struct fe_softc *sc = &fe_softc[unit];
int s;
s = splimp();
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "stop()" );
#endif
/* Disable interrupts. */
outb( sc->addr + FE_DLCR2, 0x00 );
outb( sc->addr + FE_DLCR3, 0x00 );
/* Stop interface hardware. */
DELAY( 200 );
outb( sc->addr + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Clear all interrupt status. */
outb( sc->addr + FE_DLCR0, 0xFF );
outb( sc->addr + FE_DLCR1, 0xFF );
/* Put the chip in stand-by mode. */
DELAY( 200 );
outb( sc->addr + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN );
DELAY( 200 );
/* Reset transmitter variables and interface flags. */
sc->sc_if.if_flags &= ~( IFF_OACTIVE | IFF_RUNNING );
sc->sc_if.if_timer = 0;
sc->txb_free = sc->txb_size;
sc->txb_count = 0;
sc->txb_sched = 0;
/* MAR loading can be delayed. */
sc->filter_change = 0;
/* Update config status also. */
sc->sc_dcstate = DC_IDLE;
/* Call a hook. */
if ( sc->stop ) sc->stop( sc );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "end of stop()" );
#endif
(void) splx(s);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to
* generate an interrupt after a transmit has been started on it.
*/
static void
fe_watchdog ( struct ifnet *ifp )
{
struct fe_softc *sc = (struct fe_softc *)ifp;
#if FE_DEBUG >= 1
log( LOG_ERR, "fe%d: transmission timeout (%d+%d)%s\n",
ifp->if_unit, sc->txb_sched, sc->txb_count,
( ifp->if_flags & IFF_UP ) ? "" : " when down" );
#endif
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, NULL );
#endif
/* Record how many packets are lost by this accident. */
ifp->if_oerrors += sc->txb_sched + sc->txb_count;
/* Put the interface into known initial state. */
if ( ifp->if_flags & IFF_UP ) {
fe_reset( ifp->if_unit );
} else {
fe_stop( ifp->if_unit );
}
}
/*
* Initialize device.
*/
static void
fe_init ( int unit )
{
struct fe_softc *sc = &fe_softc[unit];
int i, s;
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "init()" );
#endif
/* We need an address. */
if (sc->sc_if.if_addrlist == 0) {
#if FE_DEBUG >= 1
log( LOG_ERR, "fe%d: init() without any address\n",
sc->sc_unit );
#endif
return;
}
#if FE_DEBUG >= 1
/*
* Make sure we have a valid station address.
* The following test is applicable for any Ethernet interfaces.
* It can be done in somewhere common to all of them. FIXME.
*/
if ( ( sc->sc_enaddr[ 0 ] & 0x01 ) != 0
|| ( sc->sc_enaddr[ 0 ] == 0x00
&& sc->sc_enaddr[ 1 ] == 0x00
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) {
log( LOG_ERR, "fe%d: invalid station address (%s)\n",
sc->sc_unit, ether_sprintf( sc->sc_enaddr ) );
return;
}
#endif
/* Start initializing 86960. */
s = splimp();
/* Call a hook. */
if ( sc->init ) sc->init( sc );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "after init hook" );
#endif
/*
* Make sure to disable the chip, also.
* This may also help re-programming the chip after
* hot insertion of PCMCIAs.
*/
outb( sc->addr + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
/* Power up the chip and select register bank for DLCRs. */
DELAY(200);
outb( sc->addr + FE_DLCR7,
sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP );
DELAY(200);
/* Feed the station address. */
outblk( sc->addr + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN );
/* Clear multicast address filter to receive nothing. */
outb( sc->addr + FE_DLCR7,
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP );
outblk( sc->addr + FE_MAR8, fe_filter_nothing.data, FE_FILTER_LEN );
/* Select the BMPR bank for runtime register access. */
outb( sc->addr + FE_DLCR7,
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP );
/* Initialize registers. */
outb( sc->addr + FE_DLCR0, 0xFF ); /* Clear all bits. */
outb( sc->addr + FE_DLCR1, 0xFF ); /* ditto. */
outb( sc->addr + FE_DLCR2, 0x00 );
outb( sc->addr + FE_DLCR3, 0x00 );
outb( sc->addr + FE_DLCR4, sc->proto_dlcr4 );
outb( sc->addr + FE_DLCR5, sc->proto_dlcr5 );
outb( sc->addr + FE_BMPR10, 0x00 );
outb( sc->addr + FE_BMPR11, FE_B11_CTRL_SKIP );
outb( sc->addr + FE_BMPR12, 0x00 );
outb( sc->addr + FE_BMPR13, FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO );
outb( sc->addr + FE_BMPR14, 0x00 );
outb( sc->addr + FE_BMPR15, 0x00 );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "just before enabling DLC" );
#endif
/* Enable interrupts. */
outb( sc->addr + FE_DLCR2, FE_TMASK );
outb( sc->addr + FE_DLCR3, FE_RMASK );
/* Enable transmitter and receiver. */
DELAY(200);
outb( sc->addr + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE );
DELAY(200);
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "just after enabling DLC" );
#endif
/*
* Make sure to empty the receive buffer.
*
* This may be redundant, but *if* the receive buffer were full
* at this point, the driver would hang. I have experienced
* some strange hangups just after UP. I hope the following
* code solve the problem.
*
* I have changed the order of hardware initialization.
* I think the receive buffer cannot have any packets at this
* point in this version. The following code *must* be
* redundant now. FIXME.
*/
for ( i = 0; i < FE_MAX_RECV_COUNT; i++ ) {
if ( inb( sc->addr + FE_DLCR5 ) & FE_D5_BUFEMP ) break;
outb( sc->addr + FE_BMPR14, FE_B14_SKIP );
}
#if FE_DEBUG >= 1
if ( i >= FE_MAX_RECV_COUNT ) {
log( LOG_ERR, "fe%d: cannot empty receive buffer\n",
sc->sc_unit );
}
#endif
#if FE_DEBUG >= 3
if ( i < FE_MAX_RECV_COUNT ) {
log( LOG_INFO, "fe%d: receive buffer emptied (%d)\n",
sc->sc_unit, i );
}
#endif
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "after ERB loop" );
#endif
/* Do we need this here? */
outb( sc->addr + FE_DLCR0, 0xFF ); /* Clear all bits. */
outb( sc->addr + FE_DLCR1, 0xFF ); /* ditto. */
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "after FIXME" );
#endif
/* Set 'running' flag, because we are now running. */
sc->sc_if.if_flags |= IFF_RUNNING;
/* Update device config status. */
sc->sc_dcstate = DC_BUSY;
/*
* At this point, the interface is runnung properly,
* except that it receives *no* packets. we then call
* fe_setmode() to tell the chip what packets to be
* received, based on the if_flags and multicast group
* list. It completes the initialization process.
*/
fe_setmode( sc );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "after setmode" );
#endif
/* ...and attempt to start output queued packets. */
fe_start( &sc->sc_if );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "init() done" );
#endif
(void) splx(s);
}
/*
* This routine actually starts the transmission on the interface
*/
static INLINE void
fe_xmit ( struct fe_softc * sc )
{
/*
* Set a timer just in case we never hear from the board again.
* We use longer timeout for multiple packet transmission.
* I'm not sure this timer value is appropriate. FIXME.
*/
sc->sc_if.if_timer = 1 + sc->txb_count;
/* Update txb variables. */
sc->txb_sched = sc->txb_count;
sc->txb_count = 0;
sc->txb_free = sc->txb_size;
#if FE_DELAYED_PADDING
/* Omit the postponed padding process. */
sc->txb_padding = 0;
#endif
/* Start transmitter, passing packets in TX buffer. */
outb( sc->addr + FE_BMPR10, sc->txb_sched | FE_B10_START );
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splimp _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
void
fe_start ( struct ifnet *ifp )
{
struct fe_softc *sc = IFNET2SOFTC( ifp );
struct mbuf *m;
#if FE_DEBUG >= 1
/* Just a sanity check. */
if ( ( sc->txb_count == 0 ) != ( sc->txb_free == sc->txb_size ) ) {
/*
* Txb_count and txb_free co-works to manage the
* transmission buffer. Txb_count keeps track of the
* used potion of the buffer, while txb_free does unused
* potion. So, as long as the driver runs properly,
* txb_count is zero if and only if txb_free is same
* as txb_size (which represents whole buffer.)
*/
log( LOG_ERR, "fe%d: inconsistent txb variables (%d, %d)\n",
sc->sc_unit, sc->txb_count, sc->txb_free );
/*
* So, what should I do, then?
*
* We now know txb_count and txb_free contradicts. We
* cannot, however, tell which is wrong. More
* over, we cannot peek 86960 transmission buffer or
* reset the transmission buffer. (In fact, we can
* reset the entire interface. I don't want to do it.)
*
* If txb_count is incorrect, leaving it as is will cause
* sending of gabages after next interrupt. We have to
* avoid it. Hence, we reset the txb_count here. If
* txb_free was incorrect, resetting txb_count just loose
* some packets. We can live with it.
*/
sc->txb_count = 0;
}
#endif
#if FE_DEBUG >= 1
/*
* First, see if there are buffered packets and an idle
* transmitter - should never happen at this point.
*/
if ( ( sc->txb_count > 0 ) && ( sc->txb_sched == 0 ) ) {
log( LOG_ERR,
"fe%d: transmitter idle with %d buffered packets\n",
sc->sc_unit, sc->txb_count );
fe_xmit( sc );
}
#endif
/*
* Stop accepting more transmission packets temporarily, when
* a filter change request is delayed. Updating the MARs on
* 86960 flushes the transmisstion buffer, so it is delayed
* until all buffered transmission packets have been sent
* out.
*/
if ( sc->filter_change ) {
/*
* Filter change requst is delayed only when the DLC is
* working. DLC soon raise an interrupt after finishing
* the work.
*/
goto indicate_active;
}
for (;;) {
/*
* See if there is room to put another packet in the buffer.
* We *could* do better job by peeking the send queue to
* know the length of the next packet. Current version just
* tests against the worst case (i.e., longest packet). FIXME.
*
* When adding the packet-peek feature, don't forget adding a
* test on txb_count against QUEUEING_MAX.
* There is a little chance the packet count exceeds
* the limit. Assume transmission buffer is 8KB (2x8KB
* configuration) and an application sends a bunch of small
* (i.e., minimum packet sized) packets rapidly. An 8KB
* buffer can hold 130 blocks of 62 bytes long...
*/
if ( sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN ) {
/* No room. */
goto indicate_active;
}
#if FE_SINGLE_TRANSMISSION
if ( sc->txb_count > 0 ) {
/* Just one packet per a transmission buffer. */
goto indicate_active;
}
#endif
/*
* Get the next mbuf chain for a packet to send.
*/
IF_DEQUEUE( &sc->sc_if.if_snd, m );
if ( m == NULL ) {
/* No more packets to send. */
goto indicate_inactive;
}
/*
* Copy the mbuf chain into the transmission buffer.
* txb_* variables are updated as necessary.
*/
fe_write_mbufs( sc, m );
/* Start transmitter if it's idle. */
if ( sc->txb_sched == 0 ) fe_xmit( sc );
#if 0 /* Turned of, since our interface is now duplex. */
/*
* Tap off here if there is a bpf listener.
*/
#if NBPFILTER > 0
if ( sc->bpf ) bpf_mtap( sc->bpf, m );
#endif
#endif
m_freem( m );
}
indicate_inactive:
/*
* We are using the !OACTIVE flag to indicate to
* the outside world that we can accept an
* additional packet rather than that the
* transmitter is _actually_ active. Indeed, the
* transmitter may be active, but if we haven't
* filled all the buffers with data then we still
* want to accept more.
*/
sc->sc_if.if_flags &= ~IFF_OACTIVE;
return;
indicate_active:
/*
* The transmitter is active, and there are no room for
* more outgoing packets in the transmission buffer.
*/
sc->sc_if.if_flags |= IFF_OACTIVE;
return;
}
/*
* Drop (skip) a packet from receive buffer in 86960 memory.
*/
static INLINE void
fe_droppacket ( struct fe_softc * sc )
{
outb( sc->addr + FE_BMPR14, FE_B14_SKIP );
}
/*
* Transmission interrupt handler
* The control flow of this function looks silly. FIXME.
*/
static void
fe_tint ( struct fe_softc * sc, u_char tstat )
{
int left;
int col;
/*
* Handle "excessive collision" interrupt.
*/
if ( tstat & FE_D0_COLL16 ) {
/*
* Find how many packets (including this collided one)
* are left unsent in transmission buffer.
*/
left = inb( sc->addr + FE_BMPR10 );
#if FE_DEBUG >= 2
log( LOG_WARNING, "fe%d: excessive collision (%d/%d)\n",
sc->sc_unit, left, sc->txb_sched );
#endif
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, NULL );
#endif
/*
* Update statistics.
*/
sc->sc_if.if_collisions += 16;
sc->sc_if.if_oerrors++;
sc->sc_if.if_opackets += sc->txb_sched - left;
/*
* Collision statistics has been updated.
* Clear the collision flag on 86960 now to avoid confusion.
*/
outb( sc->addr + FE_DLCR0, FE_D0_COLLID );
/*
* Restart transmitter, skipping the
* collided packet.
*
* We *must* skip the packet to keep network running
* properly. Excessive collision error is an
* indication of the network overload. If we
* tried sending the same packet after excessive
* collision, the network would be filled with
* out-of-time packets. Packets belonging
* to reliable transport (such as TCP) are resent
* by some upper layer.
*/
outb( sc->addr + FE_BMPR11,
FE_B11_CTRL_SKIP | FE_B11_MODE1 );
sc->txb_sched = left - 1;
}
/*
* Handle "transmission complete" interrupt.
*/
if ( tstat & FE_D0_TXDONE ) {
/*
* Add in total number of collisions on last
* transmission. We also clear "collision occurred" flag
* here.
*
* 86960 has a design flaw on collision count on multiple
* packet transmission. When we send two or more packets
* with one start command (that's what we do when the
* transmission queue is clauded), 86960 informs us number
* of collisions occured on the last packet on the
* transmission only. Number of collisions on previous
* packets are lost. I have told that the fact is clearly
* stated in the Fujitsu document.
*
* I considered not to mind it seriously. Collision
* count is not so important, anyway. Any comments? FIXME.
*/
if ( inb( sc->addr + FE_DLCR0 ) & FE_D0_COLLID ) {
/* Clear collision flag. */
outb( sc->addr + FE_DLCR0, FE_D0_COLLID );
/* Extract collision count from 86960. */
col = inb( sc->addr + FE_DLCR4 );
col = ( col & FE_D4_COL ) >> FE_D4_COL_SHIFT;
if ( col == 0 ) {
/*
* Status register indicates collisions,
* while the collision count is zero.
* This can happen after multiple packet
* transmission, indicating that one or more
* previous packet(s) had been collided.
*
* Since the accurate number of collisions
* has been lost, we just guess it as 1;
* Am I too optimistic? FIXME.
*/
col = 1;
}
sc->sc_if.if_collisions += col;
#if FE_DEBUG >= 3
log( LOG_WARNING, "fe%d: %d collision(s) (%d)\n",
sc->sc_unit, col, sc->txb_sched );
#endif
}
/*
* Update total number of successfully
* transmitted packets.
*/
sc->sc_if.if_opackets += sc->txb_sched;
sc->txb_sched = 0;
/*
* The transmitter is no more active.
* Reset output active flag and watchdog timer.
*/
sc->sc_if.if_flags &= ~IFF_OACTIVE;
sc->sc_if.if_timer = 0;
/*
* If more data is ready to transmit in the buffer, start
* transmitting them. Otherwise keep transmitter idle,
* even if more data is queued. This gives receive
* process a slight priority.
*/
if ( sc->txb_count > 0 ) fe_xmit( sc );
}
}
/*
* Ethernet interface receiver interrupt.
*/
static void
fe_rint ( struct fe_softc * sc, u_char rstat )
{
u_short len;
u_char status;
int i;
/*
* Update statistics if this interrupt is caused by an error.
*/
if ( rstat & ( FE_D1_OVRFLO | FE_D1_CRCERR
| FE_D1_ALGERR | FE_D1_SRTPKT ) ) {
#if FE_DEBUG >= 3
log( LOG_WARNING,
"fe%d: receive error: %s%s%s%s(%02x)\n",
sc->sc_unit,
rstat & FE_D1_OVRFLO ? "OVR " : "",
rstat & FE_D1_CRCERR ? "CRC " : "",
rstat & FE_D1_ALGERR ? "ALG " : "",
rstat & FE_D1_SRTPKT ? "LEN " : "",
rstat );
#endif
sc->sc_if.if_ierrors++;
}
/*
* MB86960 has a flag indicating "receive queue empty."
* We just loop cheking the flag to pull out all received
* packets.
*
* We limit the number of iterrations to avoid inifnit-loop.
* It can be caused by a very slow CPU (some broken
* peripheral may insert incredible number of wait cycles)
* or, worse, by a broken MB86960 chip.
*/
for ( i = 0; i < FE_MAX_RECV_COUNT; i++ ) {
/* Stop the iterration if 86960 indicates no packets. */
if ( inb( sc->addr + FE_DLCR5 ) & FE_D5_BUFEMP ) break;
/*
* Extract A receive status byte.
* As our 86960 is in 16 bit bus access mode, we have to
* use inw() to get the status byte. The significant
* value is returned in lower 8 bits.
*/
status = ( u_char )inw( sc->addr + FE_BMPR8 );
#if FE_DEBUG >= 4
log( LOG_INFO, "fe%d: receive status = %04x\n",
sc->sc_unit, status );
#endif
/*
* If there was an error, update statistics and drop
* the packet, unless the interface is in promiscuous
* mode.
*/
if ( ( status & 0xF0 ) != 0x20 ) {
if ( !( sc->sc_if.if_flags & IFF_PROMISC ) ) {
sc->sc_if.if_ierrors++;
fe_droppacket(sc);
continue;
}
}
/*
* Extract the packet length.
* It is a sum of a header (14 bytes) and a payload.
* CRC has been stripped off by the 86960.
*/
len = inw( sc->addr + FE_BMPR8 );
/*
* MB86965 checks the packet length and drop big packet
* before passing it to us. There are no chance we can
* get [crufty] packets. Hence, if the length exceeds
* the specified limit, it means some serious failure,
* such as out-of-sync on receive buffer management.
*
* Is this statement true? FIXME.
*/
if ( len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE ) {
#if FE_DEBUG >= 2
log( LOG_WARNING,
"fe%d: received a %s packet? (%u bytes)\n",
sc->sc_unit,
len < ETHER_HDR_SIZE ? "partial" : "big",
len );
#endif
sc->sc_if.if_ierrors++;
fe_droppacket( sc );
continue;
}
/*
* Check for a short (RUNT) packet. We *do* check
* but do nothing other than print a message.
* Short packets are illegal, but does nothing bad
* if it carries data for upper layer.
*/
#if FE_DEBUG >= 2
if ( len < ETHER_MIN_LEN ) {
log( LOG_WARNING,
"fe%d: received a short packet? (%u bytes)\n",
sc->sc_unit, len );
}
#endif
/*
* Go get a packet.
*/
if ( fe_get_packet( sc, len ) < 0 ) {
/* Skip a packet, updating statistics. */
#if FE_DEBUG >= 2
log( LOG_WARNING, "%s%d: no enough mbuf;"
" a packet (%u bytes) dropped\n",
sc->sc_unit, len );
#endif
sc->sc_if.if_ierrors++;
fe_droppacket( sc );
/*
* We stop receiving packets, even if there are
* more in the buffer. We hope we can get more
* mbuf next time.
*/
return;
}
/* Successfully received a packet. Update stat. */
sc->sc_if.if_ipackets++;
}
}
/*
* Ethernet interface interrupt processor
*/
void
feintr ( int unit )
{
struct fe_softc *sc = &fe_softc[unit];
u_char tstat, rstat;
/*
* Loop until there are no more new interrupt conditions.
*/
for (;;) {
#if FE_DEBUG >= 4
fe_dump( LOG_INFO, sc, "intr()" );
#endif
/*
* Get interrupt conditions, masking unneeded flags.
*/
tstat = inb( sc->addr + FE_DLCR0 ) & FE_TMASK;
rstat = inb( sc->addr + FE_DLCR1 ) & FE_RMASK;
if ( tstat == 0 && rstat == 0 ) break;
/*
* Reset the conditions we are acknowledging.
*/
outb( sc->addr + FE_DLCR0, tstat );
outb( sc->addr + FE_DLCR1, rstat );
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if ( tstat ) {
fe_tint( sc, tstat );
}
/*
* Handle receiver interrupts
*/
if ( rstat ) {
fe_rint( sc, rstat );
}
/*
* Update the multicast address filter if it is
* needed and possible. We do it now, because
* we can make sure the transmission buffer is empty,
* and there is a good chance that the receive queue
* is empty. It will minimize the possibility of
* packet lossage.
*/
if ( sc->filter_change
&& sc->txb_count == 0 && sc->txb_sched == 0 ) {
fe_loadmar(sc);
sc->sc_if.if_flags &= ~IFF_OACTIVE;
}
/*
* If it looks like the transmitter can take more data,
* attempt to start output on the interface. This is done
* after handling the receiver interrupt to give the
* receive operation priority.
*
* BTW, I'm not sure in what case the OACTIVE is on at
* this point. Is the following test redundant?
*
* No. This routine polls for both transmitter and
* receiver interrupts. 86960 can raise a receiver
* interrupt when the transmission buffer is full.
*/
if ( ( sc->sc_if.if_flags & IFF_OACTIVE ) == 0 ) {
fe_start( &sc->sc_if );
}
}
}
/*
* Process an ioctl request. This code needs some work - it looks
* pretty ugly.
*/
int
fe_ioctl ( struct ifnet *ifp, int command, caddr_t data )
{
struct fe_softc *sc = IFNET2SOFTC( ifp );
int s, error = 0;
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: ioctl(%x)\n", sc->sc_unit, command );
#endif
s = splimp();
switch (command) {
case SIOCSIFADDR:
{
struct ifaddr * ifa = ( struct ifaddr * )data;
sc->sc_if.if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
fe_init( sc->sc_unit ); /* before arpwhohas */
arp_ifinit( &sc->arpcom, ifa );
break;
#endif
#ifdef IPX
/*
* XXX - This code is probably wrong
*/
case AF_IPX:
{
register struct ipx_addr *ina
= &(IA_SIPX(ifa)->sipx_addr);
if (ipx_nullhost(*ina))
ina->x_host =
*(union ipx_host *) (sc->sc_enaddr);
else {
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->sc_enaddr,
sizeof(sc->sc_enaddr));
}
/*
* Set new address
*/
fe_init(sc->sc_unit);
break;
}
#endif
#ifdef NS
/*
* XXX - This code is probably wrong
*/
case AF_NS:
{
register struct ns_addr *ina
= &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *) (sc->sc_enaddr);
else {
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->sc_enaddr,
sizeof(sc->sc_enaddr));
}
/*
* Set new address
*/
fe_init(sc->sc_unit);
break;
}
#endif
default:
fe_init( sc->sc_unit );
break;
}
break;
}
#ifdef SIOCGIFADDR
case SIOCGIFADDR:
{
struct ifreq * ifr = ( struct ifreq * )data;
struct sockaddr * sa = ( struct sockaddr * )&ifr->ifr_data;
bcopy((caddr_t)sc->sc_enaddr,
(caddr_t)sa->sa_data, ETHER_ADDR_LEN);
break;
}
#endif
#ifdef SIOCGIFPHYSADDR
case SIOCGIFPHYSADDR:
{
struct ifreq * ifr = ( struct ifreq * )data;
bcopy((caddr_t)sc->sc_enaddr,
(caddr_t)&ifr->ifr_data, ETHER_ADDR_LEN);
break;
}
#endif
#ifdef SIOCSIFPHYSADDR
case SIOCSIFPHYSADDR:
{
/*
* Set the physical (Ehternet) address of the interface.
* When and by whom is this command used? FIXME.
*/
struct ifreq * ifr = ( struct ifreq * )data;
bcopy((caddr_t)&ifr->ifr_data,
(caddr_t)sc->sc_enaddr, ETHER_ADDR_LEN);
fe_setlinkaddr( sc );
break;
}
#endif
#ifdef SIOCSIFFLAGS
case SIOCSIFFLAGS:
{
/*
* Switch interface state between "running" and
* "stopped", reflecting the UP flag.
*/
if ( sc->sc_if.if_flags & IFF_UP ) {
if ( ( sc->sc_if.if_flags & IFF_RUNNING ) == 0 ) {
fe_init( sc->sc_unit );
}
} else {
if ( ( sc->sc_if.if_flags & IFF_RUNNING ) != 0 ) {
fe_stop( sc->sc_unit );
}
}
/*
* Promiscuous and/or multicast flags may have changed,
* so reprogram the multicast filter and/or receive mode.
*/
fe_setmode( sc );
#if FE_DEBUG >= 1
/* "ifconfig fe0 debug" to print register dump. */
if ( sc->sc_if.if_flags & IFF_DEBUG ) {
fe_dump( LOG_DEBUG, sc, "SIOCSIFFLAGS(DEBUG)" );
}
#endif
break;
}
#endif
#ifdef SIOCADDMULTI
case SIOCADDMULTI:
case SIOCDELMULTI:
{
/*
* Update out multicast list.
*/
struct ifreq * ifr = ( struct ifreq * )data;
error = ( command == SIOCADDMULTI )
? ether_addmulti( ifr, &sc->arpcom )
: ether_delmulti( ifr, &sc->arpcom );
if ( error == ENETRESET ) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
fe_setmode( sc );
error = 0;
}
break;
}
#endif
#ifdef SIOCSIFMTU
case SIOCSIFMTU:
{
/*
* Set the interface MTU.
*/
struct ifreq * ifr = ( struct ifreq * )data;
if ( ifr->ifr_mtu > ETHERMTU ) {
error = EINVAL;
} else {
sc->sc_if.if_mtu = ifr->ifr_mtu;
}
break;
}
#endif
default:
error = EINVAL;
}
(void) splx(s);
return (error);
}
/*
* Retreive packet from receive buffer and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
* Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
*/
static int
fe_get_packet ( struct fe_softc * sc, u_short len )
{
struct ether_header *eh;
struct mbuf *m;
/*
* NFS wants the data be aligned to the word (4 byte)
* boundary. Ethernet header has 14 bytes. There is a
* 2-byte gap.
*/
#define NFS_MAGIC_OFFSET 2
/*
* This function assumes that an Ethernet packet fits in an
* mbuf (with a cluster attached when necessary.) On FreeBSD
* 2.0 for x86, which is the primary target of this driver, an
* mbuf cluster has 4096 bytes, and we are happy. On ancient
* BSDs, such as vanilla 4.3 for 386, a cluster size was 1024,
* however. If the following #error message were printed upon
* compile, you need to rewrite this function.
*/
#if ( MCLBYTES < ETHER_MAX_LEN + NFS_MAGIC_OFFSET )
#error "Too small MCLBYTES to use fe driver."
#endif
/*
* Our strategy has one more problem. There is a policy on
* mbuf cluster allocation. It says that we must have at
* least MINCLSIZE (208 bytes on FreeBSD 2.0 for x86) to
* allocate a cluster. For a packet of a size between
* (MHLEN - 2) to (MINCLSIZE - 2), our code violates the rule...
* On the other hand, the current code is short, simle,
* and fast, however. It does no harmful thing, just waists
* some memory. Any comments? FIXME.
*/
/* Allocate an mbuf with packet header info. */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if ( m == NULL ) return -1;
/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
if ( len > MHLEN - NFS_MAGIC_OFFSET ) {
MCLGET( m, M_DONTWAIT );
if ( !( m->m_flags & M_EXT ) ) {
m_freem( m );
return -1;
}
}
/* Initialize packet header info. */
m->m_pkthdr.rcvif = &sc->sc_if;
m->m_pkthdr.len = len;
/* Set the length of this packet. */
m->m_len = len;
/* The following sillines is to make NFS happy */
m->m_data += NFS_MAGIC_OFFSET;
/* Get a packet. */
insw( sc->addr + FE_BMPR8, m->m_data, ( len + 1 ) >> 1 );
/* Get (actually just point to) the header part. */
eh = mtod( m, struct ether_header *);
#define ETHER_ADDR_IS_MULTICAST(A) (*(char *)(A) & 1)
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If it is, hand off the raw packet to bpf.
*/
if ( sc->bpf ) {
bpf_mtap( sc->bpf, m );
}
#endif
/*
* Make sure this packet is (or may be) directed to us.
* That is, the packet is either unicasted to our address,
* or broad/multi-casted. If any other packets are
* received, it is an indication of an error -- probably
* 86960 is in a wrong operation mode.
* Promiscuous mode is an exception. Under the mode, all
* packets on the media must be received. (We must have
* programmed the 86960 so.)
*/
if ( ( sc->sc_if.if_flags & IFF_PROMISC )
&& !ETHER_ADDR_IS_MULTICAST( eh->ether_dhost )
&& bcmp( eh->ether_dhost, sc->sc_enaddr, ETHER_ADDR_LEN ) != 0 ) {
/*
* The packet was not for us. This is normal since
* we are now in promiscuous mode. Just drop the packet.
*/
m_freem( m );
return 0;
}
#if FE_DEBUG >= 3
if ( !ETHER_ADDR_IS_MULTICAST( eh->ether_dhost )
&& bcmp( eh->ether_dhost, sc->sc_enaddr, ETHER_ADDR_LEN ) != 0 ) {
/*
* This packet was not for us. We can't be in promiscuous
* mode since the case was handled by above test.
* We found an error (of this driver.)
*/
log( LOG_WARNING,
"fe%d: got an unwanted packet, dst = %s\n",
sc->sc_unit,
ether_sprintf( eh->ether_dhost ) );
m_freem( m );
return 0;
}
#endif
/* Strip off the Ethernet header. */
m->m_pkthdr.len -= sizeof ( struct ether_header );
m->m_len -= sizeof ( struct ether_header );
m->m_data += sizeof ( struct ether_header );
/* Feed the packet to upper layer. */
ether_input( &sc->sc_if, eh, m );
return 0;
}
/*
* Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
* Returns number of bytes actually written, including length word.
*
* If an mbuf chain is too long for an Ethernet frame, it is not sent.
* Packets shorter than Ethernet minimum are legal, and we pad them
* before sending out. An exception is "partial" packets which are
* shorter than mandatory Ethernet header.
*
* I wrote a code for an experimental "delayed padding" technique.
* When employed, it postpones the padding process for short packets.
* If xmit() occured at the moment, the padding process is omitted, and
* garbages are sent as pad data. If next packet is stored in the
* transmission buffer before xmit(), write_mbuf() pads the previous
* packet before transmitting new packet. This *may* gain the
* system performance (slightly).
*/
static void
fe_write_mbufs ( struct fe_softc *sc, struct mbuf *m )
{
u_short addr_bmpr8 = sc->addr + FE_BMPR8;
u_short length, len;
short pad;
struct mbuf *mp;
u_char *data;
u_short savebyte; /* WARNING: Architecture dependent! */
#define NO_PENDING_BYTE 0xFFFF
#if FE_DELAYED_PADDING
/* Do the "delayed padding." */
pad = sc->txb_padding >> 1;
if ( pad > 0 ) {
while ( --pad >= 0 ) {
outw( addr_bmpr8, 0 );
}
sc->txb_padding = 0;
}
#endif
#if FE_DEBUG >= 2
/* First, count up the total number of bytes to copy */
length = 0;
for ( mp = m; mp != NULL; mp = mp->m_next ) {
length += mp->m_len;
}
/* Check if this matches the one in the packet header. */
if ( length != m->m_pkthdr.len ) {
log( LOG_WARNING, "fe%d: packet length mismatch? (%d/%d)\n",
sc->sc_unit, length, m->m_pkthdr.len );
}
#else
/* Just use the length value in the packet header. */
length = m->m_pkthdr.len;
#endif
#if FE_DEBUG >= 1
/*
* Should never send big packets. If such a packet is passed,
* it should be a bug of upper layer. We just ignore it.
* ... Partial (too short) packets, neither.
*/
if ( length > ETHER_MAX_LEN || length < ETHER_HDR_SIZE ) {
log( LOG_ERR,
"fe%d: got a %s packet (%u bytes) to send\n",
sc->sc_unit,
length < ETHER_HDR_SIZE ? "partial" : "big", length );
sc->sc_if.if_oerrors++;
return;
}
#endif
/*
* Put the length word for this frame.
* Does 86960 accept odd length? -- Yes.
* Do we need to pad the length to minimum size by ourselves?
* -- Generally yes. But for (or will be) the last
* packet in the transmission buffer, we can skip the
* padding process. It may gain performance slightly. FIXME.
*/
outw( addr_bmpr8, max( length, ETHER_MIN_LEN ) );
/*
* Update buffer status now.
* Truncate the length up to an even number, since we use outw().
*/
length = ( length + 1 ) & ~1;
sc->txb_free -= FE_DATA_LEN_LEN + max( length, ETHER_MIN_LEN );
sc->txb_count++;
#if FE_DELAYED_PADDING
/* Postpone the packet padding if necessary. */
if ( length < ETHER_MIN_LEN ) {
sc->txb_padding = ETHER_MIN_LEN - length;
}
#endif
/*
* Transfer the data from mbuf chain to the transmission buffer.
* MB86960 seems to require that data be transferred as words, and
* only words. So that we require some extra code to patch
* over odd-length mbufs.
*/
savebyte = NO_PENDING_BYTE;
for ( mp = m; mp != 0; mp = mp->m_next ) {
/* Ignore empty mbuf. */
len = mp->m_len;
if ( len == 0 ) continue;
/* Find the actual data to send. */
data = mtod(mp, caddr_t);
/* Finish the last byte. */
if ( savebyte != NO_PENDING_BYTE ) {
outw( addr_bmpr8, savebyte | ( *data << 8 ) );
data++;
len--;
savebyte = NO_PENDING_BYTE;
}
/* output contiguous words */
if (len > 1) {
outsw( addr_bmpr8, data, len >> 1);
data += len & ~1;
len &= 1;
}
/* Save a remaining byte, if there is one. */
if ( len > 0 ) {
savebyte = *data;
}
}
/* Spit the last byte, if the length is odd. */
if ( savebyte != NO_PENDING_BYTE ) {
outw( addr_bmpr8, savebyte );
}
#if ! FE_DELAYED_PADDING
/*
* Pad the packet to the minimum length if necessary.
*/
pad = ( ETHER_MIN_LEN >> 1 ) - ( length >> 1 );
while ( --pad >= 0 ) {
outw( addr_bmpr8, 0 );
}
#endif
}
/*
* Compute hash value for an Ethernet address
*/
static int
fe_hash ( u_char * ep )
{
#define FE_HASH_MAGIC_NUMBER 0xEDB88320L
u_long hash = 0xFFFFFFFFL;
int i, j;
u_char b;
u_long m;
for ( i = ETHER_ADDR_LEN; --i >= 0; ) {
b = *ep++;
for ( j = 8; --j >= 0; ) {
m = hash;
hash >>= 1;
if ( ( m ^ b ) & 1 ) hash ^= FE_HASH_MAGIC_NUMBER;
b >>= 1;
}
}
return ( ( int )( hash >> 26 ) );
}
/*
* Compute the multicast address filter from the
* list of multicast addresses we need to listen to.
*/
static struct fe_filter
fe_mcaf ( struct fe_softc *sc )
{
int index;
struct fe_filter filter;
struct ether_multi *enm;
struct ether_multistep step;
filter = fe_filter_nothing;
ETHER_FIRST_MULTI(step, &sc->arpcom, enm);
while ( enm != NULL) {
if ( bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) ) {
return ( fe_filter_all );
}
index = fe_hash( enm->enm_addrlo );
#if FE_DEBUG >= 4
log( LOG_INFO, "fe%d: hash(%s) == %d\n",
sc->sc_unit, ether_sprintf( enm->enm_addrlo ), index );
#endif
filter.data[index >> 3] |= 1 << (index & 7);
ETHER_NEXT_MULTI(step, enm);
}
return ( filter );
}
/*
* Calculate a new "multicast packet filter" and put the 86960
* receiver in appropriate mode.
*/
static void
fe_setmode ( struct fe_softc *sc )
{
int flags = sc->sc_if.if_flags;
/*
* If the interface is not running, we postpone the update
* process for receive modes and multicast address filter
* until the interface is restarted. It reduces some
* complicated job on maintaining chip states. (Earlier versions
* of this driver had a bug on that point...)
*
* To complete the trick, fe_init() calls fe_setmode() after
* restarting the interface.
*/
if ( !( flags & IFF_RUNNING ) ) return;
/*
* Promiscuous mode is handled separately.
*/
if ( flags & IFF_PROMISC ) {
/*
* Program 86960 to receive all packets on the segment
* including those directed to other stations.
* Multicast filter stored in MARs are ignored
* under this setting, so we don't need to update it.
*
* Promiscuous mode in FreeBSD 2 is used solely by
* BPF, and BPF only listens to valid (no error) packets.
* So, we ignore errornous ones even in this mode.
* (Older versions of fe driver mistook the point.)
*/
outb( sc->addr + FE_DLCR5,
sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1 );
sc->filter_change = 0;
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: promiscuous mode\n", sc->sc_unit );
#endif
return;
}
/*
* Turn the chip to the normal (non-promiscuous) mode.
*/
outb( sc->addr + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1 );
/*
* Find the new multicast filter value.
* I'm not sure we have to handle modes other than MULTICAST.
* Who sets ALLMULTI? Who turns MULTICAST off? FIXME.
*/
if ( flags & IFF_ALLMULTI ) {
sc->filter = fe_filter_all;
} else if ( flags & IFF_MULTICAST ) {
sc->filter = fe_mcaf( sc );
} else {
sc->filter = fe_filter_nothing;
}
sc->filter_change = 1;
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: address filter:"
" [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
sc->sc_unit,
sc->filter.data[0], sc->filter.data[1],
sc->filter.data[2], sc->filter.data[3],
sc->filter.data[4], sc->filter.data[5],
sc->filter.data[6], sc->filter.data[7] );
#endif
/*
* We have to update the multicast filter in the 86960, A.S.A.P.
*
* Note that the DLC (Data Linc Control unit, i.e. transmitter
* and receiver) must be stopped when feeding the filter, and
* DLC trushes all packets in both transmission and receive
* buffers when stopped.
*
* ... Are the above sentenses correct? I have to check the
* manual of the MB86960A. FIXME.
*
* To reduce the packet lossage, we delay the filter update
* process until buffers are empty.
*/
if ( sc->txb_sched == 0 && sc->txb_count == 0
&& !( inb( sc->addr + FE_DLCR1 ) & FE_D1_PKTRDY ) ) {
/*
* Buffers are (apparently) empty. Load
* the new filter value into MARs now.
*/
fe_loadmar(sc);
} else {
/*
* Buffers are not empty. Mark that we have to update
* the MARs. The new filter will be loaded by feintr()
* later.
*/
#if FE_DEBUG >= 4
log( LOG_INFO, "fe%d: filter change delayed\n", sc->sc_unit );
#endif
}
}
/*
* Load a new multicast address filter into MARs.
*
* The caller must have splimp'ed befor fe_loadmar.
* This function starts the DLC upon return. So it can be called only
* when the chip is working, i.e., from the driver's point of view, when
* a device is RUNNING. (I mistook the point in previous versions.)
*/
static void
fe_loadmar ( struct fe_softc * sc )
{
/* Stop the DLC (transmitter and receiver). */
outb( sc->addr + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
/* Select register bank 1 for MARs. */
outb( sc->addr + FE_DLCR7,
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP );
/* Copy filter value into the registers. */
outblk( sc->addr + FE_MAR8, sc->filter.data, FE_FILTER_LEN );
/* Restore the bank selection for BMPRs (i.e., runtime registers). */
outb( sc->addr + FE_DLCR7,
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP );
/* Restart the DLC. */
outb( sc->addr + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE );
/* We have just updated the filter. */
sc->filter_change = 0;
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: address filter changed\n", sc->sc_unit );
#endif
}
/*
* Copy the physical (Ethernet) address into the "data link" address
* entry of the address list for an interface.
* This is (said to be) useful for netstat(1) to keep track of which
* interface is which.
*
* What I'm not sure on this function is, why this is a driver's function.
* Probably this should be moved to somewhere independent to a specific
* hardware, such as if_ehtersubr.c. FIXME.
*/
static void
fe_setlinkaddr ( struct fe_softc * sc )
{
struct ifaddr *ifa;
struct sockaddr_dl * sdl;
/*
* Search down the ifa address list looking for the AF_LINK type entry.
*/
for ( ifa = sc->sc_if.if_addrlist; ifa != NULL; ifa = ifa->ifa_next ) {
if ( ifa->ifa_addr != NULL
&& ifa->ifa_addr->sa_family == AF_LINK ) {
/*
* We have found an AF_LINK type entry.
* Fill in the link-level address for this interface
*/
sdl = (struct sockaddr_dl *) ifa->ifa_addr;
sdl->sdl_type = IFT_ETHER;
sdl->sdl_alen = ETHER_ADDR_LEN;
sdl->sdl_slen = 0;
bcopy(sc->sc_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: link address set\n",
sc->sc_unit );
#endif
return;
}
}
}
#if FE_DEBUG >= 1
static void
fe_dump ( int level, struct fe_softc * sc, char * message )
{
log( level, "fe%d: %s,"
" DLCR = %02x %02x %02x %02x %02x %02x %02x %02x,"
" BMPR = xx xx %02x %02x %02x %02x %02x %02x,"
" asic = %02x %02x %02x %02x %02x %02x %02x %02x"
" + %02x %02x %02x %02x %02x %02x %02x %02x\n",
sc->sc_unit, message ? message : "registers",
inb( sc->addr + FE_DLCR0 ), inb( sc->addr + FE_DLCR1 ),
inb( sc->addr + FE_DLCR2 ), inb( sc->addr + FE_DLCR3 ),
inb( sc->addr + FE_DLCR4 ), inb( sc->addr + FE_DLCR5 ),
inb( sc->addr + FE_DLCR6 ), inb( sc->addr + FE_DLCR7 ),
inb( sc->addr + FE_BMPR10 ), inb( sc->addr + FE_BMPR11 ),
inb( sc->addr + FE_BMPR12 ), inb( sc->addr + FE_BMPR13 ),
inb( sc->addr + FE_BMPR14 ), inb( sc->addr + FE_BMPR15 ),
inb( sc->addr + 0x10 ), inb( sc->addr + 0x11 ),
inb( sc->addr + 0x12 ), inb( sc->addr + 0x13 ),
inb( sc->addr + 0x14 ), inb( sc->addr + 0x15 ),
inb( sc->addr + 0x16 ), inb( sc->addr + 0x17 ),
inb( sc->addr + 0x18 ), inb( sc->addr + 0x19 ),
inb( sc->addr + 0x1A ), inb( sc->addr + 0x1B ),
inb( sc->addr + 0x1C ), inb( sc->addr + 0x1D ),
inb( sc->addr + 0x1E ), inb( sc->addr + 0x1F ) );
}
#endif