2434 lines
64 KiB
C
2434 lines
64 KiB
C
/*
|
|
* Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
/*
|
|
* $FreeBSD$
|
|
*
|
|
* This module supports memory mapped access to network devices,
|
|
* see netmap(4).
|
|
*
|
|
* The module uses a large, memory pool allocated by the kernel
|
|
* and accessible as mmapped memory by multiple userspace threads/processes.
|
|
* The memory pool contains packet buffers and "netmap rings",
|
|
* i.e. user-accessible copies of the interface's queues.
|
|
*
|
|
* Access to the network card works like this:
|
|
* 1. a process/thread issues one or more open() on /dev/netmap, to create
|
|
* select()able file descriptor on which events are reported.
|
|
* 2. on each descriptor, the process issues an ioctl() to identify
|
|
* the interface that should report events to the file descriptor.
|
|
* 3. on each descriptor, the process issues an mmap() request to
|
|
* map the shared memory region within the process' address space.
|
|
* The list of interesting queues is indicated by a location in
|
|
* the shared memory region.
|
|
* 4. using the functions in the netmap(4) userspace API, a process
|
|
* can look up the occupation state of a queue, access memory buffers,
|
|
* and retrieve received packets or enqueue packets to transmit.
|
|
* 5. using some ioctl()s the process can synchronize the userspace view
|
|
* of the queue with the actual status in the kernel. This includes both
|
|
* receiving the notification of new packets, and transmitting new
|
|
* packets on the output interface.
|
|
* 6. select() or poll() can be used to wait for events on individual
|
|
* transmit or receive queues (or all queues for a given interface).
|
|
*
|
|
|
|
SYNCHRONIZATION (USER)
|
|
|
|
The netmap rings and data structures may be shared among multiple
|
|
user threads or even independent processes.
|
|
Any synchronization among those threads/processes is delegated
|
|
to the threads themselves. Only one thread at a time can be in
|
|
a system call on the same netmap ring. The OS does not enforce
|
|
this and only guarantees against system crashes in case of
|
|
invalid usage.
|
|
|
|
LOCKING (INTERNAL)
|
|
|
|
Within the kernel, access to the netmap rings is protected as follows:
|
|
|
|
- a spinlock on each ring, to handle producer/consumer races on
|
|
RX rings attached to the host stack (against multiple host
|
|
threads writing from the host stack to the same ring),
|
|
and on 'destination' rings attached to a VALE switch
|
|
(i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
|
|
protecting multiple active senders for the same destination)
|
|
|
|
- an atomic variable to guarantee that there is at most one
|
|
instance of *_*xsync() on the ring at any time.
|
|
For rings connected to user file
|
|
descriptors, an atomic_test_and_set() protects this, and the
|
|
lock on the ring is not actually used.
|
|
For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
|
|
is also used to prevent multiple executions (the driver might indeed
|
|
already guarantee this).
|
|
For NIC TX rings connected to a VALE switch, the lock arbitrates
|
|
access to the queue (both when allocating buffers and when pushing
|
|
them out).
|
|
|
|
- *xsync() should be protected against initializations of the card.
|
|
On FreeBSD most devices have the reset routine protected by
|
|
a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
|
|
the RING protection on rx_reset(), this should be added.
|
|
|
|
On linux there is an external lock on the tx path, which probably
|
|
also arbitrates access to the reset routine. XXX to be revised
|
|
|
|
- a per-interface core_lock protecting access from the host stack
|
|
while interfaces may be detached from netmap mode.
|
|
XXX there should be no need for this lock if we detach the interfaces
|
|
only while they are down.
|
|
|
|
|
|
--- VALE SWITCH ---
|
|
|
|
NMG_LOCK() serializes all modifications to switches and ports.
|
|
A switch cannot be deleted until all ports are gone.
|
|
|
|
For each switch, an SX lock (RWlock on linux) protects
|
|
deletion of ports. When configuring or deleting a new port, the
|
|
lock is acquired in exclusive mode (after holding NMG_LOCK).
|
|
When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
|
|
The lock is held throughout the entire forwarding cycle,
|
|
during which the thread may incur in a page fault.
|
|
Hence it is important that sleepable shared locks are used.
|
|
|
|
On the rx ring, the per-port lock is grabbed initially to reserve
|
|
a number of slot in the ring, then the lock is released,
|
|
packets are copied from source to destination, and then
|
|
the lock is acquired again and the receive ring is updated.
|
|
(A similar thing is done on the tx ring for NIC and host stack
|
|
ports attached to the switch)
|
|
|
|
*/
|
|
|
|
/*
|
|
* OS-specific code that is used only within this file.
|
|
* Other OS-specific code that must be accessed by drivers
|
|
* is present in netmap_kern.h
|
|
*/
|
|
|
|
#if defined(__FreeBSD__)
|
|
#include <sys/cdefs.h> /* prerequisite */
|
|
#include <sys/types.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/param.h> /* defines used in kernel.h */
|
|
#include <sys/kernel.h> /* types used in module initialization */
|
|
#include <sys/conf.h> /* cdevsw struct, UID, GID */
|
|
#include <sys/sockio.h>
|
|
#include <sys/socketvar.h> /* struct socket */
|
|
#include <sys/malloc.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/socket.h> /* sockaddrs */
|
|
#include <sys/selinfo.h>
|
|
#include <sys/sysctl.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/bpf.h> /* BIOCIMMEDIATE */
|
|
#include <machine/bus.h> /* bus_dmamap_* */
|
|
#include <sys/endian.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/jail.h>
|
|
|
|
|
|
/* reduce conditional code */
|
|
#define init_waitqueue_head(x) // only needed in linux
|
|
|
|
|
|
|
|
#elif defined(linux)
|
|
|
|
#include "bsd_glue.h"
|
|
|
|
|
|
|
|
#elif defined(__APPLE__)
|
|
|
|
#warning OSX support is only partial
|
|
#include "osx_glue.h"
|
|
|
|
#else
|
|
|
|
#error Unsupported platform
|
|
|
|
#endif /* unsupported */
|
|
|
|
/*
|
|
* common headers
|
|
*/
|
|
#include <net/netmap.h>
|
|
#include <dev/netmap/netmap_kern.h>
|
|
#include <dev/netmap/netmap_mem2.h>
|
|
|
|
|
|
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
|
|
|
|
/*
|
|
* The following variables are used by the drivers and replicate
|
|
* fields in the global memory pool. They only refer to buffers
|
|
* used by physical interfaces.
|
|
*/
|
|
u_int netmap_total_buffers;
|
|
u_int netmap_buf_size;
|
|
char *netmap_buffer_base; /* also address of an invalid buffer */
|
|
|
|
/* user-controlled variables */
|
|
int netmap_verbose;
|
|
|
|
static int netmap_no_timestamp; /* don't timestamp on rxsync */
|
|
|
|
SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
|
|
CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
|
|
CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
|
|
int netmap_mitigate = 1;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, "");
|
|
int netmap_no_pendintr = 1;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr,
|
|
CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets.");
|
|
int netmap_txsync_retry = 2;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
|
|
&netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush.");
|
|
|
|
int netmap_flags = 0; /* debug flags */
|
|
int netmap_fwd = 0; /* force transparent mode */
|
|
int netmap_mmap_unreg = 0; /* allow mmap of unregistered fds */
|
|
|
|
/*
|
|
* netmap_admode selects the netmap mode to use.
|
|
* Invalid values are reset to NETMAP_ADMODE_BEST
|
|
*/
|
|
enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */
|
|
NETMAP_ADMODE_NATIVE, /* either native or none */
|
|
NETMAP_ADMODE_GENERIC, /* force generic */
|
|
NETMAP_ADMODE_LAST };
|
|
#define NETMAP_ADMODE_NATIVE 1 /* Force native netmap adapter. */
|
|
#define NETMAP_ADMODE_GENERIC 2 /* Force generic netmap adapter. */
|
|
#define NETMAP_ADMODE_BEST 0 /* Priority to native netmap adapter. */
|
|
static int netmap_admode = NETMAP_ADMODE_BEST;
|
|
|
|
int netmap_generic_mit = 100*1000; /* Generic mitigation interval in nanoseconds. */
|
|
int netmap_generic_ringsize = 1024; /* Generic ringsize. */
|
|
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, mmap_unreg, CTLFLAG_RW, &netmap_mmap_unreg, 0, "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, &netmap_generic_ringsize, 0 , "");
|
|
|
|
NMG_LOCK_T netmap_global_lock;
|
|
|
|
|
|
static void
|
|
nm_kr_get(struct netmap_kring *kr)
|
|
{
|
|
while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
|
|
tsleep(kr, 0, "NM_KR_GET", 4);
|
|
}
|
|
|
|
|
|
void
|
|
netmap_disable_ring(struct netmap_kring *kr)
|
|
{
|
|
kr->nkr_stopped = 1;
|
|
nm_kr_get(kr);
|
|
mtx_lock(&kr->q_lock);
|
|
mtx_unlock(&kr->q_lock);
|
|
nm_kr_put(kr);
|
|
}
|
|
|
|
|
|
static void
|
|
netmap_set_all_rings(struct ifnet *ifp, int stopped)
|
|
{
|
|
struct netmap_adapter *na;
|
|
int i;
|
|
|
|
if (!(ifp->if_capenable & IFCAP_NETMAP))
|
|
return;
|
|
|
|
na = NA(ifp);
|
|
|
|
for (i = 0; i <= na->num_tx_rings; i++) {
|
|
if (stopped)
|
|
netmap_disable_ring(na->tx_rings + i);
|
|
else
|
|
na->tx_rings[i].nkr_stopped = 0;
|
|
na->nm_notify(na, i, NR_TX, NAF_DISABLE_NOTIFY |
|
|
(i == na->num_tx_rings ? NAF_GLOBAL_NOTIFY: 0));
|
|
}
|
|
|
|
for (i = 0; i <= na->num_rx_rings; i++) {
|
|
if (stopped)
|
|
netmap_disable_ring(na->rx_rings + i);
|
|
else
|
|
na->rx_rings[i].nkr_stopped = 0;
|
|
na->nm_notify(na, i, NR_RX, NAF_DISABLE_NOTIFY |
|
|
(i == na->num_rx_rings ? NAF_GLOBAL_NOTIFY: 0));
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
netmap_disable_all_rings(struct ifnet *ifp)
|
|
{
|
|
netmap_set_all_rings(ifp, 1 /* stopped */);
|
|
}
|
|
|
|
|
|
void
|
|
netmap_enable_all_rings(struct ifnet *ifp)
|
|
{
|
|
netmap_set_all_rings(ifp, 0 /* enabled */);
|
|
}
|
|
|
|
|
|
/*
|
|
* generic bound_checking function
|
|
*/
|
|
u_int
|
|
nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
|
|
{
|
|
u_int oldv = *v;
|
|
const char *op = NULL;
|
|
|
|
if (dflt < lo)
|
|
dflt = lo;
|
|
if (dflt > hi)
|
|
dflt = hi;
|
|
if (oldv < lo) {
|
|
*v = dflt;
|
|
op = "Bump";
|
|
} else if (oldv > hi) {
|
|
*v = hi;
|
|
op = "Clamp";
|
|
}
|
|
if (op && msg)
|
|
printf("%s %s to %d (was %d)\n", op, msg, *v, oldv);
|
|
return *v;
|
|
}
|
|
|
|
|
|
/*
|
|
* packet-dump function, user-supplied or static buffer.
|
|
* The destination buffer must be at least 30+4*len
|
|
*/
|
|
const char *
|
|
nm_dump_buf(char *p, int len, int lim, char *dst)
|
|
{
|
|
static char _dst[8192];
|
|
int i, j, i0;
|
|
static char hex[] ="0123456789abcdef";
|
|
char *o; /* output position */
|
|
|
|
#define P_HI(x) hex[((x) & 0xf0)>>4]
|
|
#define P_LO(x) hex[((x) & 0xf)]
|
|
#define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
|
|
if (!dst)
|
|
dst = _dst;
|
|
if (lim <= 0 || lim > len)
|
|
lim = len;
|
|
o = dst;
|
|
sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
|
|
o += strlen(o);
|
|
/* hexdump routine */
|
|
for (i = 0; i < lim; ) {
|
|
sprintf(o, "%5d: ", i);
|
|
o += strlen(o);
|
|
memset(o, ' ', 48);
|
|
i0 = i;
|
|
for (j=0; j < 16 && i < lim; i++, j++) {
|
|
o[j*3] = P_HI(p[i]);
|
|
o[j*3+1] = P_LO(p[i]);
|
|
}
|
|
i = i0;
|
|
for (j=0; j < 16 && i < lim; i++, j++)
|
|
o[j + 48] = P_C(p[i]);
|
|
o[j+48] = '\n';
|
|
o += j+49;
|
|
}
|
|
*o = '\0';
|
|
#undef P_HI
|
|
#undef P_LO
|
|
#undef P_C
|
|
return dst;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Fetch configuration from the device, to cope with dynamic
|
|
* reconfigurations after loading the module.
|
|
*/
|
|
int
|
|
netmap_update_config(struct netmap_adapter *na)
|
|
{
|
|
struct ifnet *ifp = na->ifp;
|
|
u_int txr, txd, rxr, rxd;
|
|
|
|
txr = txd = rxr = rxd = 0;
|
|
if (na->nm_config) {
|
|
na->nm_config(na, &txr, &txd, &rxr, &rxd);
|
|
} else {
|
|
/* take whatever we had at init time */
|
|
txr = na->num_tx_rings;
|
|
txd = na->num_tx_desc;
|
|
rxr = na->num_rx_rings;
|
|
rxd = na->num_rx_desc;
|
|
}
|
|
|
|
if (na->num_tx_rings == txr && na->num_tx_desc == txd &&
|
|
na->num_rx_rings == rxr && na->num_rx_desc == rxd)
|
|
return 0; /* nothing changed */
|
|
if (netmap_verbose || na->active_fds > 0) {
|
|
D("stored config %s: txring %d x %d, rxring %d x %d",
|
|
NM_IFPNAME(ifp),
|
|
na->num_tx_rings, na->num_tx_desc,
|
|
na->num_rx_rings, na->num_rx_desc);
|
|
D("new config %s: txring %d x %d, rxring %d x %d",
|
|
NM_IFPNAME(ifp), txr, txd, rxr, rxd);
|
|
}
|
|
if (na->active_fds == 0) {
|
|
D("configuration changed (but fine)");
|
|
na->num_tx_rings = txr;
|
|
na->num_tx_desc = txd;
|
|
na->num_rx_rings = rxr;
|
|
na->num_rx_desc = rxd;
|
|
return 0;
|
|
}
|
|
D("configuration changed while active, this is bad...");
|
|
return 1;
|
|
}
|
|
|
|
|
|
int
|
|
netmap_krings_create(struct netmap_adapter *na, u_int ntx, u_int nrx, u_int tailroom)
|
|
{
|
|
u_int i, len, ndesc;
|
|
struct netmap_kring *kring;
|
|
|
|
len = (ntx + nrx) * sizeof(struct netmap_kring) + tailroom;
|
|
|
|
na->tx_rings = malloc((size_t)len, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (na->tx_rings == NULL) {
|
|
D("Cannot allocate krings");
|
|
return ENOMEM;
|
|
}
|
|
na->rx_rings = na->tx_rings + ntx;
|
|
|
|
ndesc = na->num_tx_desc;
|
|
for (i = 0; i < ntx; i++) { /* Transmit rings */
|
|
kring = &na->tx_rings[i];
|
|
bzero(kring, sizeof(*kring));
|
|
kring->na = na;
|
|
kring->nkr_num_slots = ndesc;
|
|
/*
|
|
* IMPORTANT:
|
|
* Always keep one slot empty, so we can detect new
|
|
* transmissions comparing cur and nr_hwcur (they are
|
|
* the same only if there are no new transmissions).
|
|
*/
|
|
kring->nr_hwavail = ndesc - 1;
|
|
mtx_init(&kring->q_lock, "nm_txq_lock", NULL, MTX_DEF);
|
|
init_waitqueue_head(&kring->si);
|
|
}
|
|
|
|
ndesc = na->num_rx_desc;
|
|
for (i = 0; i < nrx; i++) { /* Receive rings */
|
|
kring = &na->rx_rings[i];
|
|
bzero(kring, sizeof(*kring));
|
|
kring->na = na;
|
|
kring->nkr_num_slots = ndesc;
|
|
mtx_init(&kring->q_lock, "nm_rxq_lock", NULL, MTX_DEF);
|
|
init_waitqueue_head(&kring->si);
|
|
}
|
|
init_waitqueue_head(&na->tx_si);
|
|
init_waitqueue_head(&na->rx_si);
|
|
|
|
na->tailroom = na->rx_rings + nrx;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
void
|
|
netmap_krings_delete(struct netmap_adapter *na)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < na->num_tx_rings + 1; i++) {
|
|
mtx_destroy(&na->tx_rings[i].q_lock);
|
|
}
|
|
for (i = 0; i < na->num_rx_rings + 1; i++) {
|
|
mtx_destroy(&na->rx_rings[i].q_lock);
|
|
}
|
|
free(na->tx_rings, M_DEVBUF);
|
|
na->tx_rings = na->rx_rings = na->tailroom = NULL;
|
|
}
|
|
|
|
|
|
static struct netmap_if*
|
|
netmap_if_new(const char *ifname, struct netmap_adapter *na)
|
|
{
|
|
struct netmap_if *nifp;
|
|
|
|
if (netmap_update_config(na)) {
|
|
/* configuration mismatch, report and fail */
|
|
return NULL;
|
|
}
|
|
|
|
if (na->active_fds)
|
|
goto final;
|
|
|
|
if (na->nm_krings_create(na))
|
|
goto cleanup;
|
|
|
|
if (netmap_mem_rings_create(na))
|
|
goto cleanup;
|
|
|
|
final:
|
|
|
|
nifp = netmap_mem_if_new(ifname, na);
|
|
if (nifp == NULL)
|
|
goto cleanup;
|
|
|
|
return (nifp);
|
|
|
|
cleanup:
|
|
|
|
if (na->active_fds == 0) {
|
|
netmap_mem_rings_delete(na);
|
|
na->nm_krings_delete(na);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* grab a reference to the memory allocator, if we don't have one already. The
|
|
* reference is taken from the netmap_adapter registered with the priv.
|
|
*
|
|
*/
|
|
static int
|
|
netmap_get_memory_locked(struct netmap_priv_d* p)
|
|
{
|
|
struct netmap_mem_d *nmd;
|
|
int error = 0;
|
|
|
|
if (p->np_na == NULL) {
|
|
if (!netmap_mmap_unreg)
|
|
return ENODEV;
|
|
/* for compatibility with older versions of the API
|
|
* we use the global allocator when no interface has been
|
|
* registered
|
|
*/
|
|
nmd = &nm_mem;
|
|
} else {
|
|
nmd = p->np_na->nm_mem;
|
|
}
|
|
if (p->np_mref == NULL) {
|
|
error = netmap_mem_finalize(nmd);
|
|
if (!error)
|
|
p->np_mref = nmd;
|
|
} else if (p->np_mref != nmd) {
|
|
/* a virtual port has been registered, but previous
|
|
* syscalls already used the global allocator.
|
|
* We cannot continue
|
|
*/
|
|
error = ENODEV;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
|
|
int
|
|
netmap_get_memory(struct netmap_priv_d* p)
|
|
{
|
|
int error;
|
|
NMG_LOCK();
|
|
error = netmap_get_memory_locked(p);
|
|
NMG_UNLOCK();
|
|
return error;
|
|
}
|
|
|
|
|
|
static int
|
|
netmap_have_memory_locked(struct netmap_priv_d* p)
|
|
{
|
|
return p->np_mref != NULL;
|
|
}
|
|
|
|
|
|
static void
|
|
netmap_drop_memory_locked(struct netmap_priv_d* p)
|
|
{
|
|
if (p->np_mref) {
|
|
netmap_mem_deref(p->np_mref);
|
|
p->np_mref = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* File descriptor's private data destructor.
|
|
*
|
|
* Call nm_register(ifp,0) to stop netmap mode on the interface and
|
|
* revert to normal operation. We expect that np_na->ifp has not gone.
|
|
* The second argument is the nifp to work on. In some cases it is
|
|
* not attached yet to the netmap_priv_d so we need to pass it as
|
|
* a separate argument.
|
|
*/
|
|
/* call with NMG_LOCK held */
|
|
static void
|
|
netmap_do_unregif(struct netmap_priv_d *priv, struct netmap_if *nifp)
|
|
{
|
|
struct netmap_adapter *na = priv->np_na;
|
|
struct ifnet *ifp = na->ifp;
|
|
|
|
NMG_LOCK_ASSERT();
|
|
na->active_fds--;
|
|
if (na->active_fds <= 0) { /* last instance */
|
|
|
|
if (netmap_verbose)
|
|
D("deleting last instance for %s", NM_IFPNAME(ifp));
|
|
/*
|
|
* (TO CHECK) This function is only called
|
|
* when the last reference to this file descriptor goes
|
|
* away. This means we cannot have any pending poll()
|
|
* or interrupt routine operating on the structure.
|
|
* XXX The file may be closed in a thread while
|
|
* another thread is using it.
|
|
* Linux keeps the file opened until the last reference
|
|
* by any outstanding ioctl/poll or mmap is gone.
|
|
* FreeBSD does not track mmap()s (but we do) and
|
|
* wakes up any sleeping poll(). Need to check what
|
|
* happens if the close() occurs while a concurrent
|
|
* syscall is running.
|
|
*/
|
|
if (ifp)
|
|
na->nm_register(na, 0); /* off, clear flags */
|
|
/* Wake up any sleeping threads. netmap_poll will
|
|
* then return POLLERR
|
|
* XXX The wake up now must happen during *_down(), when
|
|
* we order all activities to stop. -gl
|
|
*/
|
|
/* XXX kqueue(9) needed; these will mirror knlist_init. */
|
|
/* knlist_destroy(&na->tx_si.si_note); */
|
|
/* knlist_destroy(&na->rx_si.si_note); */
|
|
|
|
/* delete rings and buffers */
|
|
netmap_mem_rings_delete(na);
|
|
na->nm_krings_delete(na);
|
|
}
|
|
/* delete the nifp */
|
|
netmap_mem_if_delete(na, nifp);
|
|
}
|
|
|
|
|
|
/*
|
|
* returns 1 if this is the last instance and we can free priv
|
|
*/
|
|
int
|
|
netmap_dtor_locked(struct netmap_priv_d *priv)
|
|
{
|
|
struct netmap_adapter *na = priv->np_na;
|
|
|
|
#ifdef __FreeBSD__
|
|
/*
|
|
* np_refcount is the number of active mmaps on
|
|
* this file descriptor
|
|
*/
|
|
if (--priv->np_refcount > 0) {
|
|
return 0;
|
|
}
|
|
#endif /* __FreeBSD__ */
|
|
if (!na) {
|
|
return 1; //XXX is it correct?
|
|
}
|
|
netmap_do_unregif(priv, priv->np_nifp);
|
|
priv->np_nifp = NULL;
|
|
netmap_drop_memory_locked(priv);
|
|
if (priv->np_na) {
|
|
netmap_adapter_put(na);
|
|
priv->np_na = NULL;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
void
|
|
netmap_dtor(void *data)
|
|
{
|
|
struct netmap_priv_d *priv = data;
|
|
int last_instance;
|
|
|
|
NMG_LOCK();
|
|
last_instance = netmap_dtor_locked(priv);
|
|
NMG_UNLOCK();
|
|
if (last_instance) {
|
|
bzero(priv, sizeof(*priv)); /* for safety */
|
|
free(priv, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Handlers for synchronization of the queues from/to the host.
|
|
* Netmap has two operating modes:
|
|
* - in the default mode, the rings connected to the host stack are
|
|
* just another ring pair managed by userspace;
|
|
* - in transparent mode (XXX to be defined) incoming packets
|
|
* (from the host or the NIC) are marked as NS_FORWARD upon
|
|
* arrival, and the user application has a chance to reset the
|
|
* flag for packets that should be dropped.
|
|
* On the RXSYNC or poll(), packets in RX rings between
|
|
* kring->nr_kcur and ring->cur with NS_FORWARD still set are moved
|
|
* to the other side.
|
|
* The transfer NIC --> host is relatively easy, just encapsulate
|
|
* into mbufs and we are done. The host --> NIC side is slightly
|
|
* harder because there might not be room in the tx ring so it
|
|
* might take a while before releasing the buffer.
|
|
*/
|
|
|
|
|
|
/*
|
|
* pass a chain of buffers to the host stack as coming from 'dst'
|
|
*/
|
|
static void
|
|
netmap_send_up(struct ifnet *dst, struct mbq *q)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
/* send packets up, outside the lock */
|
|
while ((m = mbq_dequeue(q)) != NULL) {
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("sending up pkt %p size %d", m, MBUF_LEN(m));
|
|
NM_SEND_UP(dst, m);
|
|
}
|
|
mbq_destroy(q);
|
|
}
|
|
|
|
|
|
/*
|
|
* put a copy of the buffers marked NS_FORWARD into an mbuf chain.
|
|
* Run from hwcur to cur - reserved
|
|
*/
|
|
static void
|
|
netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
|
|
{
|
|
/* Take packets from hwcur to cur-reserved and pass them up.
|
|
* In case of no buffers we give up. At the end of the loop,
|
|
* the queue is drained in all cases.
|
|
* XXX handle reserved
|
|
*/
|
|
u_int lim = kring->nkr_num_slots - 1;
|
|
struct mbuf *m;
|
|
u_int k = kring->ring->cur, n = kring->ring->reserved;
|
|
struct netmap_adapter *na = kring->na;
|
|
|
|
/* compute the final position, ring->cur - ring->reserved */
|
|
if (n > 0) {
|
|
if (k < n)
|
|
k += kring->nkr_num_slots;
|
|
k += n;
|
|
}
|
|
for (n = kring->nr_hwcur; n != k;) {
|
|
struct netmap_slot *slot = &kring->ring->slot[n];
|
|
|
|
n = nm_next(n, lim);
|
|
if ((slot->flags & NS_FORWARD) == 0 && !force)
|
|
continue;
|
|
if (slot->len < 14 || slot->len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) {
|
|
D("bad pkt at %d len %d", n, slot->len);
|
|
continue;
|
|
}
|
|
slot->flags &= ~NS_FORWARD; // XXX needed ?
|
|
/* XXX adapt to the case of a multisegment packet */
|
|
m = m_devget(BDG_NMB(na, slot), slot->len, 0, na->ifp, NULL);
|
|
|
|
if (m == NULL)
|
|
break;
|
|
mbq_enqueue(q, m);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* The host ring has packets from nr_hwcur to (cur - reserved)
|
|
* to be sent down to the NIC.
|
|
* We need to use the queue lock on the source (host RX ring)
|
|
* to protect against netmap_transmit.
|
|
* If the user is well behaved we do not need to acquire locks
|
|
* on the destination(s),
|
|
* so we only need to make sure that there are no panics because
|
|
* of user errors.
|
|
* XXX verify
|
|
*
|
|
* We scan the tx rings, which have just been
|
|
* flushed so nr_hwcur == cur. Pushing packets down means
|
|
* increment cur and decrement avail.
|
|
* XXX to be verified
|
|
*/
|
|
static void
|
|
netmap_sw_to_nic(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
|
|
struct netmap_kring *k1 = &na->tx_rings[0];
|
|
u_int i, howmany, src_lim, dst_lim;
|
|
|
|
/* XXX we should also check that the carrier is on */
|
|
if (kring->nkr_stopped)
|
|
return;
|
|
|
|
mtx_lock(&kring->q_lock);
|
|
|
|
if (kring->nkr_stopped)
|
|
goto out;
|
|
|
|
howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */
|
|
|
|
src_lim = kring->nkr_num_slots - 1;
|
|
for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) {
|
|
ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail);
|
|
dst_lim = k1->nkr_num_slots - 1;
|
|
while (howmany > 0 && k1->ring->avail > 0) {
|
|
struct netmap_slot *src, *dst, tmp;
|
|
src = &kring->ring->slot[kring->nr_hwcur];
|
|
dst = &k1->ring->slot[k1->ring->cur];
|
|
tmp = *src;
|
|
src->buf_idx = dst->buf_idx;
|
|
src->flags = NS_BUF_CHANGED;
|
|
|
|
dst->buf_idx = tmp.buf_idx;
|
|
dst->len = tmp.len;
|
|
dst->flags = NS_BUF_CHANGED;
|
|
ND("out len %d buf %d from %d to %d",
|
|
dst->len, dst->buf_idx,
|
|
kring->nr_hwcur, k1->ring->cur);
|
|
|
|
kring->nr_hwcur = nm_next(kring->nr_hwcur, src_lim);
|
|
howmany--;
|
|
kring->nr_hwavail--;
|
|
k1->ring->cur = nm_next(k1->ring->cur, dst_lim);
|
|
k1->ring->avail--;
|
|
}
|
|
kring->ring->cur = kring->nr_hwcur; // XXX
|
|
k1++; // XXX why?
|
|
}
|
|
out:
|
|
mtx_unlock(&kring->q_lock);
|
|
}
|
|
|
|
|
|
/*
|
|
* netmap_txsync_to_host() passes packets up. We are called from a
|
|
* system call in user process context, and the only contention
|
|
* can be among multiple user threads erroneously calling
|
|
* this routine concurrently.
|
|
*/
|
|
void
|
|
netmap_txsync_to_host(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int k, lim = kring->nkr_num_slots - 1;
|
|
struct mbq q;
|
|
int error;
|
|
|
|
error = nm_kr_tryget(kring);
|
|
if (error) {
|
|
if (error == NM_KR_BUSY)
|
|
D("ring %p busy (user error)", kring);
|
|
return;
|
|
}
|
|
k = ring->cur;
|
|
if (k > lim) {
|
|
D("invalid ring index in stack TX kring %p", kring);
|
|
netmap_ring_reinit(kring);
|
|
nm_kr_put(kring);
|
|
return;
|
|
}
|
|
|
|
/* Take packets from hwcur to cur and pass them up.
|
|
* In case of no buffers we give up. At the end of the loop,
|
|
* the queue is drained in all cases.
|
|
*/
|
|
mbq_init(&q);
|
|
netmap_grab_packets(kring, &q, 1);
|
|
kring->nr_hwcur = k;
|
|
kring->nr_hwavail = ring->avail = lim;
|
|
|
|
nm_kr_put(kring);
|
|
netmap_send_up(na->ifp, &q);
|
|
}
|
|
|
|
|
|
/*
|
|
* rxsync backend for packets coming from the host stack.
|
|
* They have been put in the queue by netmap_transmit() so we
|
|
* need to protect access to the kring using a lock.
|
|
*
|
|
* This routine also does the selrecord if called from the poll handler
|
|
* (we know because td != NULL).
|
|
*
|
|
* NOTE: on linux, selrecord() is defined as a macro and uses pwait
|
|
* as an additional hidden argument.
|
|
*/
|
|
static void
|
|
netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait)
|
|
{
|
|
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int j, n, lim = kring->nkr_num_slots;
|
|
u_int k = ring->cur, resvd = ring->reserved;
|
|
|
|
(void)pwait; /* disable unused warnings */
|
|
|
|
if (kring->nkr_stopped) /* check a first time without lock */
|
|
return;
|
|
|
|
mtx_lock(&kring->q_lock);
|
|
|
|
if (kring->nkr_stopped) /* check again with lock held */
|
|
goto unlock_out;
|
|
|
|
if (k >= lim) {
|
|
netmap_ring_reinit(kring);
|
|
goto unlock_out;
|
|
}
|
|
/* new packets are already set in nr_hwavail */
|
|
/* skip past packets that userspace has released */
|
|
j = kring->nr_hwcur;
|
|
if (resvd > 0) {
|
|
if (resvd + ring->avail >= lim + 1) {
|
|
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
|
|
ring->reserved = resvd = 0; // XXX panic...
|
|
}
|
|
k = (k >= resvd) ? k - resvd : k + lim - resvd;
|
|
}
|
|
if (j != k) {
|
|
n = k >= j ? k - j : k + lim - j;
|
|
kring->nr_hwavail -= n;
|
|
kring->nr_hwcur = k;
|
|
}
|
|
k = ring->avail = kring->nr_hwavail - resvd;
|
|
if (k == 0 && td)
|
|
selrecord(td, &kring->si);
|
|
if (k && (netmap_verbose & NM_VERB_HOST))
|
|
D("%d pkts from stack", k);
|
|
unlock_out:
|
|
|
|
mtx_unlock(&kring->q_lock);
|
|
}
|
|
|
|
|
|
/* Get a netmap adapter for the port.
|
|
*
|
|
* If it is possible to satisfy the request, return 0
|
|
* with *na containing the netmap adapter found.
|
|
* Otherwise return an error code, with *na containing NULL.
|
|
*
|
|
* When the port is attached to a bridge, we always return
|
|
* EBUSY.
|
|
* Otherwise, if the port is already bound to a file descriptor,
|
|
* then we unconditionally return the existing adapter into *na.
|
|
* In all the other cases, we return (into *na) either native,
|
|
* generic or NULL, according to the following table:
|
|
*
|
|
* native_support
|
|
* active_fds dev.netmap.admode YES NO
|
|
* -------------------------------------------------------
|
|
* >0 * NA(ifp) NA(ifp)
|
|
*
|
|
* 0 NETMAP_ADMODE_BEST NATIVE GENERIC
|
|
* 0 NETMAP_ADMODE_NATIVE NATIVE NULL
|
|
* 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC
|
|
*
|
|
*/
|
|
|
|
int
|
|
netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na)
|
|
{
|
|
/* generic support */
|
|
int i = netmap_admode; /* Take a snapshot. */
|
|
int error = 0;
|
|
struct netmap_adapter *prev_na;
|
|
struct netmap_generic_adapter *gna;
|
|
|
|
*na = NULL; /* default */
|
|
|
|
/* reset in case of invalid value */
|
|
if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
|
|
i = netmap_admode = NETMAP_ADMODE_BEST;
|
|
|
|
if (NETMAP_CAPABLE(ifp)) {
|
|
/* If an adapter already exists, but is
|
|
* attached to a vale port, we report that the
|
|
* port is busy.
|
|
*/
|
|
if (NETMAP_OWNED_BY_KERN(NA(ifp)))
|
|
return EBUSY;
|
|
|
|
/* If an adapter already exists, return it if
|
|
* there are active file descriptors or if
|
|
* netmap is not forced to use generic
|
|
* adapters.
|
|
*/
|
|
if (NA(ifp)->active_fds > 0 ||
|
|
i != NETMAP_ADMODE_GENERIC) {
|
|
*na = NA(ifp);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* If there isn't native support and netmap is not allowed
|
|
* to use generic adapters, we cannot satisfy the request.
|
|
*/
|
|
if (!NETMAP_CAPABLE(ifp) && i == NETMAP_ADMODE_NATIVE)
|
|
return EINVAL;
|
|
|
|
/* Otherwise, create a generic adapter and return it,
|
|
* saving the previously used netmap adapter, if any.
|
|
*
|
|
* Note that here 'prev_na', if not NULL, MUST be a
|
|
* native adapter, and CANNOT be a generic one. This is
|
|
* true because generic adapters are created on demand, and
|
|
* destroyed when not used anymore. Therefore, if the adapter
|
|
* currently attached to an interface 'ifp' is generic, it
|
|
* must be that
|
|
* (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
|
|
* Consequently, if NA(ifp) is generic, we will enter one of
|
|
* the branches above. This ensures that we never override
|
|
* a generic adapter with another generic adapter.
|
|
*/
|
|
prev_na = NA(ifp);
|
|
error = generic_netmap_attach(ifp);
|
|
if (error)
|
|
return error;
|
|
|
|
*na = NA(ifp);
|
|
gna = (struct netmap_generic_adapter*)NA(ifp);
|
|
gna->prev = prev_na; /* save old na */
|
|
if (prev_na != NULL) {
|
|
ifunit_ref(ifp->if_xname);
|
|
// XXX add a refcount ?
|
|
netmap_adapter_get(prev_na);
|
|
}
|
|
D("Created generic NA %p (prev %p)", gna, gna->prev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* MUST BE CALLED UNDER NMG_LOCK()
|
|
*
|
|
* get a refcounted reference to an interface.
|
|
* This is always called in the execution of an ioctl().
|
|
*
|
|
* Return ENXIO if the interface does not exist, EINVAL if netmap
|
|
* is not supported by the interface.
|
|
* If successful, hold a reference.
|
|
*
|
|
* When the NIC is attached to a bridge, reference is managed
|
|
* at na->na_bdg_refcount using ADD/DROP_BDG_REF() as well as
|
|
* virtual ports. Hence, on the final DROP_BDG_REF(), the NIC
|
|
* is detached from the bridge, then ifp's refcount is dropped (this
|
|
* is equivalent to that ifp is destroyed in case of virtual ports.
|
|
*
|
|
* This function uses if_rele() when we want to prevent the NIC from
|
|
* being detached from the bridge in error handling. But once refcount
|
|
* is acquired by this function, it must be released using nm_if_rele().
|
|
*/
|
|
int
|
|
netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create)
|
|
{
|
|
struct ifnet *ifp;
|
|
int error = 0;
|
|
struct netmap_adapter *ret;
|
|
|
|
*na = NULL; /* default return value */
|
|
|
|
/* first try to see if this is a bridge port. */
|
|
NMG_LOCK_ASSERT();
|
|
|
|
error = netmap_get_bdg_na(nmr, na, create);
|
|
if (error || *na != NULL) /* valid match in netmap_get_bdg_na() */
|
|
return error;
|
|
|
|
ifp = ifunit_ref(nmr->nr_name);
|
|
if (ifp == NULL) {
|
|
return ENXIO;
|
|
}
|
|
|
|
error = netmap_get_hw_na(ifp, &ret);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (ret != NULL) {
|
|
/* Users cannot use the NIC attached to a bridge directly */
|
|
if (NETMAP_OWNED_BY_KERN(ret)) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
error = 0;
|
|
*na = ret;
|
|
netmap_adapter_get(ret);
|
|
}
|
|
out:
|
|
if_rele(ifp);
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* validate parameters on entry for *_txsync()
|
|
* Returns ring->cur if ok, or something >= kring->nkr_num_slots
|
|
* in case of error. The extra argument is a pointer to
|
|
* 'new_bufs'. XXX this may be deprecated at some point.
|
|
*
|
|
* Below is a correct configuration on input. ring->cur
|
|
* must be in the region covered by kring->hwavail,
|
|
* and ring->avail and kring->avail should end at the same slot.
|
|
*
|
|
* +-hwcur
|
|
* |
|
|
* v<--hwres-->|<-----hwavail---->
|
|
* ------+------------------------------+-------- ring
|
|
* |
|
|
* |<---avail--->
|
|
* +--cur
|
|
*
|
|
*/
|
|
u_int
|
|
nm_txsync_prologue(struct netmap_kring *kring, u_int *new_slots)
|
|
{
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int cur = ring->cur; /* read only once */
|
|
u_int avail = ring->avail; /* read only once */
|
|
u_int n = kring->nkr_num_slots;
|
|
u_int kstart, kend, a;
|
|
|
|
#if 1 /* kernel sanity checks */
|
|
if (kring->nr_hwcur >= n ||
|
|
kring->nr_hwreserved >= n || kring->nr_hwavail >= n ||
|
|
kring->nr_hwreserved + kring->nr_hwavail >= n)
|
|
goto error;
|
|
#endif /* kernel sanity checks */
|
|
kstart = kring->nr_hwcur + kring->nr_hwreserved;
|
|
if (kstart >= n)
|
|
kstart -= n;
|
|
kend = kstart + kring->nr_hwavail;
|
|
/* user sanity checks. a is the expected avail */
|
|
if (cur < kstart) {
|
|
/* too low, but maybe wraparound */
|
|
if (cur + n > kend)
|
|
goto error;
|
|
*new_slots = cur + n - kstart;
|
|
a = kend - cur - n;
|
|
} else {
|
|
if (cur > kend)
|
|
goto error;
|
|
*new_slots = cur - kstart;
|
|
a = kend - cur;
|
|
}
|
|
if (a != avail) {
|
|
RD(5, "wrong but fixable avail have %d need %d",
|
|
avail, a);
|
|
ring->avail = avail = a;
|
|
}
|
|
return cur;
|
|
|
|
error:
|
|
RD(5, "kring error: hwcur %d hwres %d hwavail %d cur %d av %d",
|
|
kring->nr_hwcur,
|
|
kring->nr_hwreserved, kring->nr_hwavail,
|
|
cur, avail);
|
|
return n;
|
|
}
|
|
|
|
|
|
/*
|
|
* validate parameters on entry for *_rxsync()
|
|
* Returns ring->cur - ring->reserved if ok,
|
|
* or something >= kring->nkr_num_slots
|
|
* in case of error. The extra argument is a pointer to
|
|
* 'resvd'. XXX this may be deprecated at some point.
|
|
*
|
|
* Below is a correct configuration on input. ring->cur and
|
|
* ring->reserved must be in the region covered by kring->hwavail,
|
|
* and ring->avail and kring->avail should end at the same slot.
|
|
*
|
|
* +-hwcur
|
|
* |
|
|
* v<-------hwavail---------->
|
|
* ---------+--------------------------+-------- ring
|
|
* |<--res-->|
|
|
* |<---avail--->
|
|
* +--cur
|
|
*
|
|
*/
|
|
u_int
|
|
nm_rxsync_prologue(struct netmap_kring *kring, u_int *resvd)
|
|
{
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int cur = ring->cur; /* read only once */
|
|
u_int avail = ring->avail; /* read only once */
|
|
u_int res = ring->reserved; /* read only once */
|
|
u_int n = kring->nkr_num_slots;
|
|
u_int kend = kring->nr_hwcur + kring->nr_hwavail;
|
|
u_int a;
|
|
|
|
#if 1 /* kernel sanity checks */
|
|
if (kring->nr_hwcur >= n || kring->nr_hwavail >= n)
|
|
goto error;
|
|
#endif /* kernel sanity checks */
|
|
/* user sanity checks */
|
|
if (res >= n)
|
|
goto error;
|
|
/* check that cur is valid, a is the expected value of avail */
|
|
if (cur < kring->nr_hwcur) {
|
|
/* too low, but maybe wraparound */
|
|
if (cur + n > kend)
|
|
goto error;
|
|
a = kend - (cur + n);
|
|
} else {
|
|
if (cur > kend)
|
|
goto error;
|
|
a = kend - cur;
|
|
}
|
|
if (a != avail) {
|
|
RD(5, "wrong but fixable avail have %d need %d",
|
|
avail, a);
|
|
ring->avail = avail = a;
|
|
}
|
|
if (res != 0) {
|
|
/* then repeat the check for cur + res */
|
|
cur = (cur >= res) ? cur - res : n + cur - res;
|
|
if (cur < kring->nr_hwcur) {
|
|
/* too low, but maybe wraparound */
|
|
if (cur + n > kend)
|
|
goto error;
|
|
} else if (cur > kend) {
|
|
goto error;
|
|
}
|
|
}
|
|
*resvd = res;
|
|
return cur;
|
|
|
|
error:
|
|
RD(5, "kring error: hwcur %d hwres %d hwavail %d cur %d av %d res %d",
|
|
kring->nr_hwcur,
|
|
kring->nr_hwreserved, kring->nr_hwavail,
|
|
ring->cur, avail, res);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Error routine called when txsync/rxsync detects an error.
|
|
* Can't do much more than resetting cur = hwcur, avail = hwavail.
|
|
* Return 1 on reinit.
|
|
*
|
|
* This routine is only called by the upper half of the kernel.
|
|
* It only reads hwcur (which is changed only by the upper half, too)
|
|
* and hwavail (which may be changed by the lower half, but only on
|
|
* a tx ring and only to increase it, so any error will be recovered
|
|
* on the next call). For the above, we don't strictly need to call
|
|
* it under lock.
|
|
*/
|
|
int
|
|
netmap_ring_reinit(struct netmap_kring *kring)
|
|
{
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int i, lim = kring->nkr_num_slots - 1;
|
|
int errors = 0;
|
|
|
|
// XXX KASSERT nm_kr_tryget
|
|
RD(10, "called for %s", NM_IFPNAME(kring->na->ifp));
|
|
if (ring->cur > lim)
|
|
errors++;
|
|
for (i = 0; i <= lim; i++) {
|
|
u_int idx = ring->slot[i].buf_idx;
|
|
u_int len = ring->slot[i].len;
|
|
if (idx < 2 || idx >= netmap_total_buffers) {
|
|
if (!errors++)
|
|
D("bad buffer at slot %d idx %d len %d ", i, idx, len);
|
|
ring->slot[i].buf_idx = 0;
|
|
ring->slot[i].len = 0;
|
|
} else if (len > NETMAP_BDG_BUF_SIZE(kring->na->nm_mem)) {
|
|
ring->slot[i].len = 0;
|
|
if (!errors++)
|
|
D("bad len %d at slot %d idx %d",
|
|
len, i, idx);
|
|
}
|
|
}
|
|
if (errors) {
|
|
int pos = kring - kring->na->tx_rings;
|
|
int n = kring->na->num_tx_rings + 1;
|
|
|
|
RD(10, "total %d errors", errors);
|
|
errors++;
|
|
RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d",
|
|
NM_IFPNAME(kring->na->ifp),
|
|
pos < n ? "TX" : "RX", pos < n ? pos : pos - n,
|
|
ring->cur, kring->nr_hwcur,
|
|
ring->avail, kring->nr_hwavail);
|
|
ring->cur = kring->nr_hwcur;
|
|
ring->avail = kring->nr_hwavail;
|
|
}
|
|
return (errors ? 1 : 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the ring ID. For devices with a single queue, a request
|
|
* for all rings is the same as a single ring.
|
|
*/
|
|
static int
|
|
netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)
|
|
{
|
|
struct netmap_adapter *na = priv->np_na;
|
|
struct ifnet *ifp = na->ifp;
|
|
u_int i = ringid & NETMAP_RING_MASK;
|
|
/* initially (np_qfirst == np_qlast) we don't want to lock */
|
|
u_int lim = na->num_rx_rings;
|
|
|
|
if (na->num_tx_rings > lim)
|
|
lim = na->num_tx_rings;
|
|
if ( (ringid & NETMAP_HW_RING) && i >= lim) {
|
|
D("invalid ring id %d", i);
|
|
return (EINVAL);
|
|
}
|
|
priv->np_ringid = ringid;
|
|
if (ringid & NETMAP_SW_RING) {
|
|
priv->np_qfirst = NETMAP_SW_RING;
|
|
priv->np_qlast = 0;
|
|
} else if (ringid & NETMAP_HW_RING) {
|
|
priv->np_qfirst = i;
|
|
priv->np_qlast = i + 1;
|
|
} else {
|
|
priv->np_qfirst = 0;
|
|
priv->np_qlast = NETMAP_HW_RING ;
|
|
}
|
|
priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
|
|
if (netmap_verbose) {
|
|
if (ringid & NETMAP_SW_RING)
|
|
D("ringid %s set to SW RING", NM_IFPNAME(ifp));
|
|
else if (ringid & NETMAP_HW_RING)
|
|
D("ringid %s set to HW RING %d", NM_IFPNAME(ifp),
|
|
priv->np_qfirst);
|
|
else
|
|
D("ringid %s set to all %d HW RINGS", NM_IFPNAME(ifp), lim);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* possibly move the interface to netmap-mode.
|
|
* If success it returns a pointer to netmap_if, otherwise NULL.
|
|
* This must be called with NMG_LOCK held.
|
|
*/
|
|
struct netmap_if *
|
|
netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
|
|
uint16_t ringid, int *err)
|
|
{
|
|
struct ifnet *ifp = na->ifp;
|
|
struct netmap_if *nifp = NULL;
|
|
int error, need_mem = 0;
|
|
|
|
NMG_LOCK_ASSERT();
|
|
/* ring configuration may have changed, fetch from the card */
|
|
netmap_update_config(na);
|
|
priv->np_na = na; /* store the reference */
|
|
error = netmap_set_ringid(priv, ringid);
|
|
if (error)
|
|
goto out;
|
|
/* ensure allocators are ready */
|
|
need_mem = !netmap_have_memory_locked(priv);
|
|
if (need_mem) {
|
|
error = netmap_get_memory_locked(priv);
|
|
ND("get_memory returned %d", error);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
nifp = netmap_if_new(NM_IFPNAME(ifp), na);
|
|
if (nifp == NULL) { /* allocation failed */
|
|
/* we should drop the allocator, but only
|
|
* if we were the ones who grabbed it
|
|
*/
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
na->active_fds++;
|
|
if (ifp->if_capenable & IFCAP_NETMAP) {
|
|
/* was already set */
|
|
} else {
|
|
/* Otherwise set the card in netmap mode
|
|
* and make it use the shared buffers.
|
|
*
|
|
* do not core lock because the race is harmless here,
|
|
* there cannot be any traffic to netmap_transmit()
|
|
*/
|
|
na->na_lut = na->nm_mem->pools[NETMAP_BUF_POOL].lut;
|
|
ND("%p->na_lut == %p", na, na->na_lut);
|
|
na->na_lut_objtotal = na->nm_mem->pools[NETMAP_BUF_POOL].objtotal;
|
|
error = na->nm_register(na, 1); /* mode on */
|
|
if (error) {
|
|
netmap_do_unregif(priv, nifp);
|
|
nifp = NULL;
|
|
}
|
|
}
|
|
out:
|
|
*err = error;
|
|
if (error) {
|
|
priv->np_na = NULL;
|
|
if (need_mem)
|
|
netmap_drop_memory_locked(priv);
|
|
}
|
|
if (nifp != NULL) {
|
|
/*
|
|
* advertise that the interface is ready bt setting ni_nifp.
|
|
* The barrier is needed because readers (poll and *SYNC)
|
|
* check for priv->np_nifp != NULL without locking
|
|
*/
|
|
wmb(); /* make sure previous writes are visible to all CPUs */
|
|
priv->np_nifp = nifp;
|
|
}
|
|
return nifp;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* ioctl(2) support for the "netmap" device.
|
|
*
|
|
* Following a list of accepted commands:
|
|
* - NIOCGINFO
|
|
* - SIOCGIFADDR just for convenience
|
|
* - NIOCREGIF
|
|
* - NIOCUNREGIF
|
|
* - NIOCTXSYNC
|
|
* - NIOCRXSYNC
|
|
*
|
|
* Return 0 on success, errno otherwise.
|
|
*/
|
|
int
|
|
netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data,
|
|
int fflag, struct thread *td)
|
|
{
|
|
struct netmap_priv_d *priv = NULL;
|
|
struct ifnet *ifp = NULL;
|
|
struct nmreq *nmr = (struct nmreq *) data;
|
|
struct netmap_adapter *na = NULL;
|
|
int error;
|
|
u_int i, lim;
|
|
struct netmap_if *nifp;
|
|
struct netmap_kring *krings;
|
|
|
|
(void)dev; /* UNUSED */
|
|
(void)fflag; /* UNUSED */
|
|
#ifdef linux
|
|
#define devfs_get_cdevpriv(pp) \
|
|
({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \
|
|
(*pp ? 0 : ENOENT); })
|
|
|
|
/* devfs_set_cdevpriv cannot fail on linux */
|
|
#define devfs_set_cdevpriv(p, fn) \
|
|
({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); })
|
|
|
|
|
|
#define devfs_clear_cdevpriv() do { \
|
|
netmap_dtor(priv); ((struct file *)td)->private_data = 0; \
|
|
} while (0)
|
|
#endif /* linux */
|
|
|
|
CURVNET_SET(TD_TO_VNET(td));
|
|
|
|
error = devfs_get_cdevpriv((void **)&priv);
|
|
if (error) {
|
|
CURVNET_RESTORE();
|
|
/* XXX ENOENT should be impossible, since the priv
|
|
* is now created in the open */
|
|
return (error == ENOENT ? ENXIO : error);
|
|
}
|
|
|
|
nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */
|
|
switch (cmd) {
|
|
case NIOCGINFO: /* return capabilities etc */
|
|
if (nmr->nr_version != NETMAP_API) {
|
|
D("API mismatch got %d have %d",
|
|
nmr->nr_version, NETMAP_API);
|
|
nmr->nr_version = NETMAP_API;
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (nmr->nr_cmd == NETMAP_BDG_LIST) {
|
|
error = netmap_bdg_ctl(nmr, NULL);
|
|
break;
|
|
}
|
|
|
|
NMG_LOCK();
|
|
do {
|
|
/* memsize is always valid */
|
|
struct netmap_mem_d *nmd = &nm_mem;
|
|
u_int memflags;
|
|
|
|
if (nmr->nr_name[0] != '\0') {
|
|
/* get a refcount */
|
|
error = netmap_get_na(nmr, &na, 1 /* create */);
|
|
if (error)
|
|
break;
|
|
nmd = na->nm_mem; /* get memory allocator */
|
|
}
|
|
|
|
error = netmap_mem_get_info(nmd, &nmr->nr_memsize, &memflags);
|
|
if (error)
|
|
break;
|
|
if (na == NULL) /* only memory info */
|
|
break;
|
|
nmr->nr_offset = 0;
|
|
nmr->nr_rx_slots = nmr->nr_tx_slots = 0;
|
|
netmap_update_config(na);
|
|
nmr->nr_rx_rings = na->num_rx_rings;
|
|
nmr->nr_tx_rings = na->num_tx_rings;
|
|
nmr->nr_rx_slots = na->num_rx_desc;
|
|
nmr->nr_tx_slots = na->num_tx_desc;
|
|
if (memflags & NETMAP_MEM_PRIVATE)
|
|
nmr->nr_ringid |= NETMAP_PRIV_MEM;
|
|
netmap_adapter_put(na);
|
|
} while (0);
|
|
NMG_UNLOCK();
|
|
break;
|
|
|
|
case NIOCREGIF:
|
|
if (nmr->nr_version != NETMAP_API) {
|
|
nmr->nr_version = NETMAP_API;
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/* possibly attach/detach NIC and VALE switch */
|
|
i = nmr->nr_cmd;
|
|
if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH
|
|
|| i == NETMAP_BDG_OFFSET) {
|
|
error = netmap_bdg_ctl(nmr, NULL);
|
|
break;
|
|
} else if (i != 0) {
|
|
D("nr_cmd must be 0 not %d", i);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* protect access to priv from concurrent NIOCREGIF */
|
|
NMG_LOCK();
|
|
do {
|
|
u_int memflags;
|
|
|
|
if (priv->np_na != NULL) { /* thread already registered */
|
|
error = netmap_set_ringid(priv, nmr->nr_ringid);
|
|
break;
|
|
}
|
|
/* find the interface and a reference */
|
|
error = netmap_get_na(nmr, &na, 1 /* create */); /* keep reference */
|
|
if (error)
|
|
break;
|
|
ifp = na->ifp;
|
|
if (NETMAP_OWNED_BY_KERN(na)) {
|
|
netmap_adapter_put(na);
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
nifp = netmap_do_regif(priv, na, nmr->nr_ringid, &error);
|
|
if (!nifp) { /* reg. failed, release priv and ref */
|
|
netmap_adapter_put(na);
|
|
priv->np_nifp = NULL;
|
|
break;
|
|
}
|
|
|
|
/* return the offset of the netmap_if object */
|
|
nmr->nr_rx_rings = na->num_rx_rings;
|
|
nmr->nr_tx_rings = na->num_tx_rings;
|
|
nmr->nr_rx_slots = na->num_rx_desc;
|
|
nmr->nr_tx_slots = na->num_tx_desc;
|
|
error = netmap_mem_get_info(na->nm_mem, &nmr->nr_memsize, &memflags);
|
|
if (error) {
|
|
netmap_adapter_put(na);
|
|
break;
|
|
}
|
|
if (memflags & NETMAP_MEM_PRIVATE) {
|
|
nmr->nr_ringid |= NETMAP_PRIV_MEM;
|
|
*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
|
|
}
|
|
nmr->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
|
|
} while (0);
|
|
NMG_UNLOCK();
|
|
break;
|
|
|
|
case NIOCUNREGIF:
|
|
// XXX we have no data here ?
|
|
D("deprecated, data is %p", nmr);
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case NIOCTXSYNC:
|
|
case NIOCRXSYNC:
|
|
nifp = priv->np_nifp;
|
|
|
|
if (nifp == NULL) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
rmb(); /* make sure following reads are not from cache */
|
|
|
|
na = priv->np_na; /* we have a reference */
|
|
|
|
if (na == NULL) {
|
|
D("Internal error: nifp != NULL && na == NULL");
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
|
|
ifp = na->ifp;
|
|
if (ifp == NULL) {
|
|
RD(1, "the ifp is gone");
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
|
|
if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */
|
|
if (cmd == NIOCTXSYNC)
|
|
netmap_txsync_to_host(na);
|
|
else
|
|
netmap_rxsync_from_host(na, NULL, NULL);
|
|
break;
|
|
}
|
|
/* find the last ring to scan */
|
|
lim = priv->np_qlast;
|
|
if (lim == NETMAP_HW_RING)
|
|
lim = (cmd == NIOCTXSYNC) ?
|
|
na->num_tx_rings : na->num_rx_rings;
|
|
|
|
krings = (cmd == NIOCTXSYNC) ? na->tx_rings : na->rx_rings;
|
|
for (i = priv->np_qfirst; i < lim; i++) {
|
|
struct netmap_kring *kring = krings + i;
|
|
if (nm_kr_tryget(kring)) {
|
|
error = EBUSY;
|
|
goto out;
|
|
}
|
|
if (cmd == NIOCTXSYNC) {
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("pre txsync ring %d cur %d hwcur %d",
|
|
i, kring->ring->cur,
|
|
kring->nr_hwcur);
|
|
na->nm_txsync(na, i, NAF_FORCE_RECLAIM);
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("post txsync ring %d cur %d hwcur %d",
|
|
i, kring->ring->cur,
|
|
kring->nr_hwcur);
|
|
} else {
|
|
na->nm_rxsync(na, i, NAF_FORCE_READ);
|
|
microtime(&na->rx_rings[i].ring->ts);
|
|
}
|
|
nm_kr_put(kring);
|
|
}
|
|
|
|
break;
|
|
|
|
#ifdef __FreeBSD__
|
|
case BIOCIMMEDIATE:
|
|
case BIOCGHDRCMPLT:
|
|
case BIOCSHDRCMPLT:
|
|
case BIOCSSEESENT:
|
|
D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT");
|
|
break;
|
|
|
|
default: /* allow device-specific ioctls */
|
|
{
|
|
struct socket so;
|
|
|
|
bzero(&so, sizeof(so));
|
|
NMG_LOCK();
|
|
error = netmap_get_na(nmr, &na, 0 /* don't create */); /* keep reference */
|
|
if (error) {
|
|
netmap_adapter_put(na);
|
|
NMG_UNLOCK();
|
|
break;
|
|
}
|
|
ifp = na->ifp;
|
|
so.so_vnet = ifp->if_vnet;
|
|
// so->so_proto not null.
|
|
error = ifioctl(&so, cmd, data, td);
|
|
netmap_adapter_put(na);
|
|
NMG_UNLOCK();
|
|
break;
|
|
}
|
|
|
|
#else /* linux */
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
#endif /* linux */
|
|
}
|
|
out:
|
|
|
|
CURVNET_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* select(2) and poll(2) handlers for the "netmap" device.
|
|
*
|
|
* Can be called for one or more queues.
|
|
* Return true the event mask corresponding to ready events.
|
|
* If there are no ready events, do a selrecord on either individual
|
|
* selinfo or on the global one.
|
|
* Device-dependent parts (locking and sync of tx/rx rings)
|
|
* are done through callbacks.
|
|
*
|
|
* On linux, arguments are really pwait, the poll table, and 'td' is struct file *
|
|
* The first one is remapped to pwait as selrecord() uses the name as an
|
|
* hidden argument.
|
|
*/
|
|
int
|
|
netmap_poll(struct cdev *dev, int events, struct thread *td)
|
|
{
|
|
struct netmap_priv_d *priv = NULL;
|
|
struct netmap_adapter *na;
|
|
struct ifnet *ifp;
|
|
struct netmap_kring *kring;
|
|
u_int i, check_all_tx, check_all_rx, want_tx, want_rx, revents = 0;
|
|
u_int lim_tx, lim_rx, host_forwarded = 0;
|
|
struct mbq q;
|
|
void *pwait = dev; /* linux compatibility */
|
|
|
|
/*
|
|
* In order to avoid nested locks, we need to "double check"
|
|
* txsync and rxsync if we decide to do a selrecord().
|
|
* retry_tx (and retry_rx, later) prevent looping forever.
|
|
*/
|
|
int retry_tx = 1;
|
|
|
|
(void)pwait;
|
|
mbq_init(&q);
|
|
|
|
if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL)
|
|
return POLLERR;
|
|
|
|
if (priv->np_nifp == NULL) {
|
|
D("No if registered");
|
|
return POLLERR;
|
|
}
|
|
rmb(); /* make sure following reads are not from cache */
|
|
|
|
na = priv->np_na;
|
|
ifp = na->ifp;
|
|
// check for deleted
|
|
if (ifp == NULL) {
|
|
RD(1, "the ifp is gone");
|
|
return POLLERR;
|
|
}
|
|
|
|
if ( (ifp->if_capenable & IFCAP_NETMAP) == 0)
|
|
return POLLERR;
|
|
|
|
if (netmap_verbose & 0x8000)
|
|
D("device %s events 0x%x", NM_IFPNAME(ifp), events);
|
|
want_tx = events & (POLLOUT | POLLWRNORM);
|
|
want_rx = events & (POLLIN | POLLRDNORM);
|
|
|
|
lim_tx = na->num_tx_rings;
|
|
lim_rx = na->num_rx_rings;
|
|
|
|
if (priv->np_qfirst == NETMAP_SW_RING) {
|
|
/* handle the host stack ring */
|
|
if (priv->np_txpoll || want_tx) {
|
|
/* push any packets up, then we are always ready */
|
|
netmap_txsync_to_host(na);
|
|
revents |= want_tx;
|
|
}
|
|
if (want_rx) {
|
|
kring = &na->rx_rings[lim_rx];
|
|
if (kring->ring->avail == 0)
|
|
netmap_rxsync_from_host(na, td, dev);
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_rx;
|
|
}
|
|
}
|
|
return (revents);
|
|
}
|
|
|
|
/*
|
|
* If we are in transparent mode, check also the host rx ring
|
|
* XXX Transparent mode at the moment requires to bind all
|
|
* rings to a single file descriptor.
|
|
*/
|
|
kring = &na->rx_rings[lim_rx];
|
|
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
|
|
&& want_rx
|
|
&& (netmap_fwd || kring->ring->flags & NR_FORWARD) ) {
|
|
if (kring->ring->avail == 0)
|
|
netmap_rxsync_from_host(na, td, dev);
|
|
if (kring->ring->avail > 0)
|
|
revents |= want_rx;
|
|
}
|
|
|
|
/*
|
|
* check_all_{tx|rx} are set if the card has more than one queue AND
|
|
* the file descriptor is bound to all of them. If so, we sleep on
|
|
* the "global" selinfo, otherwise we sleep on individual selinfo
|
|
* (FreeBSD only allows two selinfo's per file descriptor).
|
|
* The interrupt routine in the driver wake one or the other
|
|
* (or both) depending on which clients are active.
|
|
*
|
|
* rxsync() is only called if we run out of buffers on a POLLIN.
|
|
* txsync() is called if we run out of buffers on POLLOUT, or
|
|
* there are pending packets to send. The latter can be disabled
|
|
* passing NETMAP_NO_TX_POLL in the NIOCREG call.
|
|
*/
|
|
check_all_tx = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1);
|
|
check_all_rx = (priv->np_qlast == NETMAP_HW_RING) && (lim_rx > 1);
|
|
|
|
if (priv->np_qlast != NETMAP_HW_RING) {
|
|
lim_tx = lim_rx = priv->np_qlast;
|
|
}
|
|
|
|
/*
|
|
* We start with a lock free round which is cheap if we have
|
|
* slots available. If this fails, then lock and call the sync
|
|
* routines.
|
|
* XXX rather than ring->avail >0 should check that
|
|
* ring->cur has not reached hwcur+hwavail
|
|
*/
|
|
for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) {
|
|
kring = &na->rx_rings[i];
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_rx;
|
|
want_rx = 0; /* also breaks the loop */
|
|
}
|
|
}
|
|
for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) {
|
|
kring = &na->tx_rings[i];
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_tx;
|
|
want_tx = 0; /* also breaks the loop */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we to push packets out (priv->np_txpoll) or want_tx is
|
|
* still set, we do need to run the txsync calls (on all rings,
|
|
* to avoid that the tx rings stall).
|
|
* XXX should also check cur != hwcur on the tx rings.
|
|
* Fortunately, normal tx mode has np_txpoll set.
|
|
*/
|
|
if (priv->np_txpoll || want_tx) {
|
|
/* If we really want to be woken up (want_tx),
|
|
* do a selrecord, either on the global or on
|
|
* the private structure. Then issue the txsync
|
|
* so there is no race in the selrecord/selwait
|
|
*/
|
|
flush_tx:
|
|
for (i = priv->np_qfirst; i < lim_tx; i++) {
|
|
kring = &na->tx_rings[i];
|
|
/*
|
|
* Skip this ring if want_tx == 0
|
|
* (we have already done a successful sync on
|
|
* a previous ring) AND kring->cur == kring->hwcur
|
|
* (there are no pending transmissions for this ring).
|
|
*/
|
|
if (!want_tx && kring->ring->cur == kring->nr_hwcur)
|
|
continue;
|
|
/* make sure only one user thread is doing this */
|
|
if (nm_kr_tryget(kring)) {
|
|
ND("ring %p busy is %d",
|
|
kring, (int)kring->nr_busy);
|
|
revents |= POLLERR;
|
|
goto out;
|
|
}
|
|
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("send %d on %s %d",
|
|
kring->ring->cur, NM_IFPNAME(ifp), i);
|
|
if (na->nm_txsync(na, i, 0))
|
|
revents |= POLLERR;
|
|
|
|
/* Check avail and call selrecord only if
|
|
* called with POLLOUT and run out of bufs.
|
|
* XXX Note, we cannot trust much ring->avail
|
|
* as it is exposed to userspace (even though
|
|
* just updated by txsync). We should really
|
|
* check kring->nr_hwavail or better have
|
|
* txsync set a flag telling if we need
|
|
* to do a selrecord().
|
|
*/
|
|
if (want_tx) {
|
|
if (kring->ring->avail > 0) {
|
|
/* stop at the first ring. We don't risk
|
|
* starvation.
|
|
*/
|
|
revents |= want_tx;
|
|
want_tx = 0;
|
|
}
|
|
}
|
|
nm_kr_put(kring);
|
|
}
|
|
if (want_tx && retry_tx) {
|
|
selrecord(td, check_all_tx ?
|
|
&na->tx_si : &na->tx_rings[priv->np_qfirst].si);
|
|
retry_tx = 0;
|
|
goto flush_tx;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* now if want_rx is still set we need to lock and rxsync.
|
|
* Do it on all rings because otherwise we starve.
|
|
*/
|
|
if (want_rx) {
|
|
int retry_rx = 1;
|
|
do_retry_rx:
|
|
for (i = priv->np_qfirst; i < lim_rx; i++) {
|
|
kring = &na->rx_rings[i];
|
|
|
|
if (nm_kr_tryget(kring)) {
|
|
revents |= POLLERR;
|
|
goto out;
|
|
}
|
|
|
|
/* XXX NR_FORWARD should only be read on
|
|
* physical or NIC ports
|
|
*/
|
|
if (netmap_fwd ||kring->ring->flags & NR_FORWARD) {
|
|
ND(10, "forwarding some buffers up %d to %d",
|
|
kring->nr_hwcur, kring->ring->cur);
|
|
netmap_grab_packets(kring, &q, netmap_fwd);
|
|
}
|
|
|
|
if (na->nm_rxsync(na, i, 0))
|
|
revents |= POLLERR;
|
|
if (netmap_no_timestamp == 0 ||
|
|
kring->ring->flags & NR_TIMESTAMP) {
|
|
microtime(&kring->ring->ts);
|
|
}
|
|
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_rx;
|
|
retry_rx = 0;
|
|
}
|
|
nm_kr_put(kring);
|
|
}
|
|
if (retry_rx) {
|
|
retry_rx = 0;
|
|
selrecord(td, check_all_rx ?
|
|
&na->rx_si : &na->rx_rings[priv->np_qfirst].si);
|
|
goto do_retry_rx;
|
|
}
|
|
}
|
|
|
|
/* forward host to the netmap ring.
|
|
* I am accessing nr_hwavail without lock, but netmap_transmit
|
|
* can only increment it, so the operation is safe.
|
|
*/
|
|
kring = &na->rx_rings[lim_rx];
|
|
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
|
|
&& (netmap_fwd || kring->ring->flags & NR_FORWARD)
|
|
&& kring->nr_hwavail > 0 && !host_forwarded) {
|
|
netmap_sw_to_nic(na);
|
|
host_forwarded = 1; /* prevent another pass */
|
|
want_rx = 0;
|
|
goto flush_tx;
|
|
}
|
|
|
|
if (q.head)
|
|
netmap_send_up(na->ifp, &q);
|
|
|
|
out:
|
|
|
|
return (revents);
|
|
}
|
|
|
|
/*------- driver support routines ------*/
|
|
|
|
static int netmap_hw_krings_create(struct netmap_adapter *);
|
|
|
|
static int
|
|
netmap_notify(struct netmap_adapter *na, u_int n_ring, enum txrx tx, int flags)
|
|
{
|
|
struct netmap_kring *kring;
|
|
|
|
if (tx == NR_TX) {
|
|
kring = na->tx_rings + n_ring;
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
if (flags & NAF_GLOBAL_NOTIFY)
|
|
selwakeuppri(&na->tx_si, PI_NET);
|
|
} else {
|
|
kring = na->rx_rings + n_ring;
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
if (flags & NAF_GLOBAL_NOTIFY)
|
|
selwakeuppri(&na->rx_si, PI_NET);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// XXX check handling of failures
|
|
int
|
|
netmap_attach_common(struct netmap_adapter *na)
|
|
{
|
|
struct ifnet *ifp = na->ifp;
|
|
|
|
if (na->num_tx_rings == 0 || na->num_rx_rings == 0) {
|
|
D("%s: invalid rings tx %d rx %d",
|
|
ifp->if_xname, na->num_tx_rings, na->num_rx_rings);
|
|
return EINVAL;
|
|
}
|
|
WNA(ifp) = na;
|
|
NETMAP_SET_CAPABLE(ifp);
|
|
if (na->nm_krings_create == NULL) {
|
|
na->nm_krings_create = netmap_hw_krings_create;
|
|
na->nm_krings_delete = netmap_krings_delete;
|
|
}
|
|
if (na->nm_notify == NULL)
|
|
na->nm_notify = netmap_notify;
|
|
na->active_fds = 0;
|
|
|
|
if (na->nm_mem == NULL)
|
|
na->nm_mem = &nm_mem;
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
netmap_detach_common(struct netmap_adapter *na)
|
|
{
|
|
if (na->ifp)
|
|
WNA(na->ifp) = NULL; /* XXX do we need this? */
|
|
|
|
if (na->tx_rings) { /* XXX should not happen */
|
|
D("freeing leftover tx_rings");
|
|
na->nm_krings_delete(na);
|
|
}
|
|
if (na->na_flags & NAF_MEM_OWNER)
|
|
netmap_mem_private_delete(na->nm_mem);
|
|
bzero(na, sizeof(*na));
|
|
free(na, M_DEVBUF);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize a ``netmap_adapter`` object created by driver on attach.
|
|
* We allocate a block of memory with room for a struct netmap_adapter
|
|
* plus two sets of N+2 struct netmap_kring (where N is the number
|
|
* of hardware rings):
|
|
* krings 0..N-1 are for the hardware queues.
|
|
* kring N is for the host stack queue
|
|
* kring N+1 is only used for the selinfo for all queues.
|
|
* Return 0 on success, ENOMEM otherwise.
|
|
*
|
|
* By default the receive and transmit adapter ring counts are both initialized
|
|
* to num_queues. na->num_tx_rings can be set for cards with different tx/rx
|
|
* setups.
|
|
*/
|
|
int
|
|
netmap_attach(struct netmap_adapter *arg)
|
|
{
|
|
struct netmap_hw_adapter *hwna = NULL;
|
|
// XXX when is arg == NULL ?
|
|
struct ifnet *ifp = arg ? arg->ifp : NULL;
|
|
|
|
if (arg == NULL || ifp == NULL)
|
|
goto fail;
|
|
hwna = malloc(sizeof(*hwna), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (hwna == NULL)
|
|
goto fail;
|
|
hwna->up = *arg;
|
|
if (netmap_attach_common(&hwna->up)) {
|
|
free(hwna, M_DEVBUF);
|
|
goto fail;
|
|
}
|
|
netmap_adapter_get(&hwna->up);
|
|
|
|
#ifdef linux
|
|
if (ifp->netdev_ops) {
|
|
/* prepare a clone of the netdev ops */
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28)
|
|
hwna->nm_ndo.ndo_start_xmit = ifp->netdev_ops;
|
|
#else
|
|
hwna->nm_ndo = *ifp->netdev_ops;
|
|
#endif
|
|
}
|
|
hwna->nm_ndo.ndo_start_xmit = linux_netmap_start_xmit;
|
|
#endif /* linux */
|
|
|
|
D("success for %s", NM_IFPNAME(ifp));
|
|
return 0;
|
|
|
|
fail:
|
|
D("fail, arg %p ifp %p na %p", arg, ifp, hwna);
|
|
netmap_detach(ifp);
|
|
return (hwna ? EINVAL : ENOMEM);
|
|
}
|
|
|
|
|
|
void
|
|
NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
|
|
{
|
|
if (!na) {
|
|
return;
|
|
}
|
|
|
|
refcount_acquire(&na->na_refcount);
|
|
}
|
|
|
|
|
|
/* returns 1 iff the netmap_adapter is destroyed */
|
|
int
|
|
NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
|
|
{
|
|
if (!na)
|
|
return 1;
|
|
|
|
if (!refcount_release(&na->na_refcount))
|
|
return 0;
|
|
|
|
if (na->nm_dtor)
|
|
na->nm_dtor(na);
|
|
|
|
netmap_detach_common(na);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
int
|
|
netmap_hw_krings_create(struct netmap_adapter *na)
|
|
{
|
|
return netmap_krings_create(na,
|
|
na->num_tx_rings + 1, na->num_rx_rings + 1, 0);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Free the allocated memory linked to the given ``netmap_adapter``
|
|
* object.
|
|
*/
|
|
void
|
|
netmap_detach(struct ifnet *ifp)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
|
|
if (!na)
|
|
return;
|
|
|
|
NMG_LOCK();
|
|
netmap_disable_all_rings(ifp);
|
|
netmap_adapter_put(na);
|
|
na->ifp = NULL;
|
|
netmap_enable_all_rings(ifp);
|
|
NMG_UNLOCK();
|
|
}
|
|
|
|
|
|
/*
|
|
* Intercept packets from the network stack and pass them
|
|
* to netmap as incoming packets on the 'software' ring.
|
|
* We rely on the OS to make sure that the ifp and na do not go
|
|
* away (typically the caller checks for IFF_DRV_RUNNING or the like).
|
|
* In nm_register() or whenever there is a reinitialization,
|
|
* we make sure to make the mode change visible here.
|
|
*/
|
|
int
|
|
netmap_transmit(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring;
|
|
u_int i, len = MBUF_LEN(m);
|
|
u_int error = EBUSY, lim;
|
|
struct netmap_slot *slot;
|
|
|
|
// XXX [Linux] we do not need this lock
|
|
// if we follow the down/configure/up protocol -gl
|
|
// mtx_lock(&na->core_lock);
|
|
if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) {
|
|
/* interface not in netmap mode anymore */
|
|
error = ENXIO;
|
|
goto done;
|
|
}
|
|
|
|
kring = &na->rx_rings[na->num_rx_rings];
|
|
lim = kring->nkr_num_slots - 1;
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("%s packet %d len %d from the stack", NM_IFPNAME(ifp),
|
|
kring->nr_hwcur + kring->nr_hwavail, len);
|
|
// XXX reconsider long packets if we handle fragments
|
|
if (len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) { /* too long for us */
|
|
D("%s from_host, drop packet size %d > %d", NM_IFPNAME(ifp),
|
|
len, NETMAP_BDG_BUF_SIZE(na->nm_mem));
|
|
goto done;
|
|
}
|
|
/* protect against other instances of netmap_transmit,
|
|
* and userspace invocations of rxsync().
|
|
*/
|
|
// XXX [Linux] there can be no other instances of netmap_transmit
|
|
// on this same ring, but we still need this lock to protect
|
|
// concurrent access from netmap_sw_to_nic() -gl
|
|
mtx_lock(&kring->q_lock);
|
|
if (kring->nr_hwavail >= lim) {
|
|
if (netmap_verbose)
|
|
D("stack ring %s full\n", NM_IFPNAME(ifp));
|
|
} else {
|
|
/* compute the insert position */
|
|
i = nm_kr_rxpos(kring);
|
|
slot = &kring->ring->slot[i];
|
|
m_copydata(m, 0, (int)len, BDG_NMB(na, slot));
|
|
slot->len = len;
|
|
slot->flags = kring->nkr_slot_flags;
|
|
kring->nr_hwavail++;
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("wake up host ring %s %d", NM_IFPNAME(na->ifp), na->num_rx_rings);
|
|
na->nm_notify(na, na->num_rx_rings, NR_RX, 0);
|
|
error = 0;
|
|
}
|
|
mtx_unlock(&kring->q_lock);
|
|
|
|
done:
|
|
// mtx_unlock(&na->core_lock);
|
|
|
|
/* release the mbuf in either cases of success or failure. As an
|
|
* alternative, put the mbuf in a free list and free the list
|
|
* only when really necessary.
|
|
*/
|
|
m_freem(m);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* netmap_reset() is called by the driver routines when reinitializing
|
|
* a ring. The driver is in charge of locking to protect the kring.
|
|
* If native netmap mode is not set just return NULL.
|
|
*/
|
|
struct netmap_slot *
|
|
netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
|
|
u_int new_cur)
|
|
{
|
|
struct netmap_kring *kring;
|
|
int new_hwofs, lim;
|
|
|
|
if (na == NULL) {
|
|
D("NULL na, should not happen");
|
|
return NULL; /* no netmap support here */
|
|
}
|
|
if (!(na->ifp->if_capenable & IFCAP_NETMAP)) {
|
|
ND("interface not in netmap mode");
|
|
return NULL; /* nothing to reinitialize */
|
|
}
|
|
|
|
/* XXX note- in the new scheme, we are not guaranteed to be
|
|
* under lock (e.g. when called on a device reset).
|
|
* In this case, we should set a flag and do not trust too
|
|
* much the values. In practice: TODO
|
|
* - set a RESET flag somewhere in the kring
|
|
* - do the processing in a conservative way
|
|
* - let the *sync() fixup at the end.
|
|
*/
|
|
if (tx == NR_TX) {
|
|
if (n >= na->num_tx_rings)
|
|
return NULL;
|
|
kring = na->tx_rings + n;
|
|
new_hwofs = kring->nr_hwcur - new_cur;
|
|
} else {
|
|
if (n >= na->num_rx_rings)
|
|
return NULL;
|
|
kring = na->rx_rings + n;
|
|
new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur;
|
|
}
|
|
lim = kring->nkr_num_slots - 1;
|
|
if (new_hwofs > lim)
|
|
new_hwofs -= lim + 1;
|
|
|
|
/* Always set the new offset value and realign the ring. */
|
|
D("%s hwofs %d -> %d, hwavail %d -> %d",
|
|
tx == NR_TX ? "TX" : "RX",
|
|
kring->nkr_hwofs, new_hwofs,
|
|
kring->nr_hwavail,
|
|
tx == NR_TX ? lim : kring->nr_hwavail);
|
|
kring->nkr_hwofs = new_hwofs;
|
|
if (tx == NR_TX)
|
|
kring->nr_hwavail = lim;
|
|
kring->nr_hwreserved = 0;
|
|
|
|
#if 0 // def linux
|
|
/* XXX check that the mappings are correct */
|
|
/* need ring_nr, adapter->pdev, direction */
|
|
buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
|
|
D("error mapping rx netmap buffer %d", i);
|
|
// XXX fix error handling
|
|
}
|
|
|
|
#endif /* linux */
|
|
/*
|
|
* Wakeup on the individual and global selwait
|
|
* We do the wakeup here, but the ring is not yet reconfigured.
|
|
* However, we are under lock so there are no races.
|
|
*/
|
|
na->nm_notify(na, n, tx, NAF_GLOBAL_NOTIFY);
|
|
return kring->ring->slot;
|
|
}
|
|
|
|
|
|
/*
|
|
* Dispatch rx/tx interrupts to the netmap rings.
|
|
*
|
|
* "work_done" is non-null on the RX path, NULL for the TX path.
|
|
* We rely on the OS to make sure that there is only one active
|
|
* instance per queue, and that there is appropriate locking.
|
|
*
|
|
* The 'notify' routine depends on what the ring is attached to.
|
|
* - for a netmap file descriptor, do a selwakeup on the individual
|
|
* waitqueue, plus one on the global one if needed
|
|
* - for a switch, call the proper forwarding routine
|
|
* - XXX more ?
|
|
*/
|
|
void
|
|
netmap_common_irq(struct ifnet *ifp, u_int q, u_int *work_done)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring;
|
|
|
|
q &= NETMAP_RING_MASK;
|
|
|
|
if (netmap_verbose) {
|
|
RD(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
|
|
}
|
|
|
|
if (work_done) { /* RX path */
|
|
if (q >= na->num_rx_rings)
|
|
return; // not a physical queue
|
|
kring = na->rx_rings + q;
|
|
kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ?
|
|
na->nm_notify(na, q, NR_RX,
|
|
(na->num_rx_rings > 1 ? NAF_GLOBAL_NOTIFY : 0));
|
|
*work_done = 1; /* do not fire napi again */
|
|
} else { /* TX path */
|
|
if (q >= na->num_tx_rings)
|
|
return; // not a physical queue
|
|
kring = na->tx_rings + q;
|
|
na->nm_notify(na, q, NR_TX,
|
|
(na->num_tx_rings > 1 ? NAF_GLOBAL_NOTIFY : 0));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Default functions to handle rx/tx interrupts from a physical device.
|
|
* "work_done" is non-null on the RX path, NULL for the TX path.
|
|
*
|
|
* If the card is not in netmap mode, simply return 0,
|
|
* so that the caller proceeds with regular processing.
|
|
* Otherwise call netmap_common_irq() and return 1.
|
|
*
|
|
* If the card is connected to a netmap file descriptor,
|
|
* do a selwakeup on the individual queue, plus one on the global one
|
|
* if needed (multiqueue card _and_ there are multiqueue listeners),
|
|
* and return 1.
|
|
*
|
|
* Finally, if called on rx from an interface connected to a switch,
|
|
* calls the proper forwarding routine, and return 1.
|
|
*/
|
|
int
|
|
netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
|
|
{
|
|
// XXX could we check NAF_NATIVE_ON ?
|
|
if (!(ifp->if_capenable & IFCAP_NETMAP))
|
|
return 0;
|
|
|
|
if (NA(ifp)->na_flags & NAF_SKIP_INTR) {
|
|
ND("use regular interrupt");
|
|
return 0;
|
|
}
|
|
|
|
netmap_common_irq(ifp, q, work_done);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Module loader and unloader
|
|
*
|
|
* netmap_init() creates the /dev/netmap device and initializes
|
|
* all global variables. Returns 0 on success, errno on failure
|
|
* (but there is no chance)
|
|
*
|
|
* netmap_fini() destroys everything.
|
|
*/
|
|
|
|
static struct cdev *netmap_dev; /* /dev/netmap character device. */
|
|
extern struct cdevsw netmap_cdevsw;
|
|
|
|
void
|
|
netmap_fini(void)
|
|
{
|
|
// XXX destroy_bridges() ?
|
|
if (netmap_dev)
|
|
destroy_dev(netmap_dev);
|
|
netmap_mem_fini();
|
|
NMG_LOCK_DESTROY();
|
|
printf("netmap: unloaded module.\n");
|
|
}
|
|
|
|
int
|
|
netmap_init(void)
|
|
{
|
|
int error;
|
|
|
|
NMG_LOCK_INIT();
|
|
|
|
error = netmap_mem_init();
|
|
if (error != 0)
|
|
goto fail;
|
|
/* XXX could use make_dev_credv() to get error number */
|
|
netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
|
|
"netmap");
|
|
if (!netmap_dev)
|
|
goto fail;
|
|
|
|
netmap_init_bridges();
|
|
printf("netmap: loaded module\n");
|
|
return (0);
|
|
fail:
|
|
netmap_fini();
|
|
return (EINVAL); /* may be incorrect */
|
|
}
|