1998-06-30 19:53:09 +00:00

3259 lines
85 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Subroutines for insn-output.c for Intel X86.
Copyright (C) 1988, 1992, 1994, 1995 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include <setjmp.h>
#include <ctype.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "tree.h"
#include "flags.h"
#include "function.h"
#ifdef EXTRA_CONSTRAINT
/* If EXTRA_CONSTRAINT is defined, then the 'S'
constraint in REG_CLASS_FROM_LETTER will no longer work, and various
asm statements that need 'S' for class SIREG will break. */
error EXTRA_CONSTRAINT conflicts with S constraint letter
/* The previous line used to be #error, but some compilers barf
even if the conditional was untrue. */
#endif
#define AT_BP(mode) (gen_rtx (MEM, (mode), frame_pointer_rtx))
extern FILE *asm_out_file;
extern char *strcat ();
char *singlemove_string ();
char *output_move_const_single ();
char *output_fp_cc0_set ();
char *hi_reg_name[] = HI_REGISTER_NAMES;
char *qi_reg_name[] = QI_REGISTER_NAMES;
char *qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES;
/* Array of the smallest class containing reg number REGNO, indexed by
REGNO. Used by REGNO_REG_CLASS in i386.h. */
enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] =
{
/* ax, dx, cx, bx */
AREG, DREG, CREG, BREG,
/* si, di, bp, sp */
SIREG, DIREG, INDEX_REGS, GENERAL_REGS,
/* FP registers */
FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS,
FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS,
/* arg pointer */
INDEX_REGS
};
/* Test and compare insns in i386.md store the information needed to
generate branch and scc insns here. */
struct rtx_def *i386_compare_op0 = NULL_RTX;
struct rtx_def *i386_compare_op1 = NULL_RTX;
struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
/* Register allocation order */
char *i386_reg_alloc_order;
static char regs_allocated[FIRST_PSEUDO_REGISTER];
/* # of registers to use to pass arguments. */
char *i386_regparm_string; /* # registers to use to pass args */
int i386_regparm; /* i386_regparm_string as a number */
/* Alignment to use for loops and jumps */
char *i386_align_loops_string; /* power of two alignment for loops */
char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
char *i386_align_funcs_string; /* power of two alignment for functions */
int i386_align_loops; /* power of two alignment for loops */
int i386_align_jumps; /* power of two alignment for non-loop jumps */
int i386_align_funcs; /* power of two alignment for functions */
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
void
override_options ()
{
int ch, i, regno;
char *p;
int def_align;
#ifdef SUBTARGET_OVERRIDE_OPTIONS
SUBTARGET_OVERRIDE_OPTIONS;
#endif
/* Validate registers in register allocation order */
if (i386_reg_alloc_order)
{
for (i = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
{
switch (ch)
{
case 'a': regno = 0; break;
case 'd': regno = 1; break;
case 'c': regno = 2; break;
case 'b': regno = 3; break;
case 'S': regno = 4; break;
case 'D': regno = 5; break;
case 'B': regno = 6; break;
default: fatal ("Register '%c' is unknown", ch);
}
if (regs_allocated[regno])
fatal ("Register '%c' was already specified in the allocation order", ch);
regs_allocated[regno] = 1;
}
}
/* Validate -mregparm= value */
if (i386_regparm_string)
{
i386_regparm = atoi (i386_regparm_string);
if (i386_regparm < 0 || i386_regparm > REGPARM_MAX)
fatal ("-mregparm=%d is not between 0 and %d", i386_regparm, REGPARM_MAX);
}
def_align = (TARGET_386) ? 2 : 4;
/* Validate -malign-loops= value, or provide default */
if (i386_align_loops_string)
{
i386_align_loops = atoi (i386_align_loops_string);
if (i386_align_loops < 0 || i386_align_loops > MAX_CODE_ALIGN)
fatal ("-malign-loops=%d is not between 0 and %d",
i386_align_loops, MAX_CODE_ALIGN);
}
else
i386_align_loops = 2;
/* Validate -malign-jumps= value, or provide default */
if (i386_align_jumps_string)
{
i386_align_jumps = atoi (i386_align_jumps_string);
if (i386_align_jumps < 0 || i386_align_jumps > MAX_CODE_ALIGN)
fatal ("-malign-jumps=%d is not between 0 and %d",
i386_align_jumps, MAX_CODE_ALIGN);
}
else
i386_align_jumps = def_align;
/* Validate -malign-functions= value, or provide default */
if (i386_align_funcs_string)
{
i386_align_funcs = atoi (i386_align_funcs_string);
if (i386_align_funcs < 0 || i386_align_funcs > MAX_CODE_ALIGN)
fatal ("-malign-functions=%d is not between 0 and %d",
i386_align_funcs, MAX_CODE_ALIGN);
}
else
i386_align_funcs = def_align;
}
/* A C statement (sans semicolon) to choose the order in which to
allocate hard registers for pseudo-registers local to a basic
block.
Store the desired register order in the array `reg_alloc_order'.
Element 0 should be the register to allocate first; element 1, the
next register; and so on.
The macro body should not assume anything about the contents of
`reg_alloc_order' before execution of the macro.
On most machines, it is not necessary to define this macro. */
void
order_regs_for_local_alloc ()
{
int i, ch, order, regno;
/* User specified the register allocation order */
if (i386_reg_alloc_order)
{
for (i = order = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
{
switch (ch)
{
case 'a': regno = 0; break;
case 'd': regno = 1; break;
case 'c': regno = 2; break;
case 'b': regno = 3; break;
case 'S': regno = 4; break;
case 'D': regno = 5; break;
case 'B': regno = 6; break;
}
reg_alloc_order[order++] = regno;
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (!regs_allocated[i])
reg_alloc_order[order++] = i;
}
}
/* If users did not specify a register allocation order, favor eax
normally except if DImode variables are used, in which case
favor edx before eax, which seems to cause less spill register
not found messages. */
else
{
rtx insn;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
reg_alloc_order[i] = i;
if (optimize)
{
int use_dca = FALSE;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == INSN)
{
rtx set = NULL_RTX;
rtx pattern = PATTERN (insn);
if (GET_CODE (pattern) == SET)
set = pattern;
else if ((GET_CODE (pattern) == PARALLEL
|| GET_CODE (pattern) == SEQUENCE)
&& GET_CODE (XVECEXP (pattern, 0, 0)) == SET)
set = XVECEXP (pattern, 0, 0);
if (set && GET_MODE (SET_SRC (set)) == DImode)
{
use_dca = TRUE;
break;
}
}
}
if (use_dca)
{
reg_alloc_order[0] = 1; /* edx */
reg_alloc_order[1] = 2; /* ecx */
reg_alloc_order[2] = 0; /* eax */
}
}
}
}
/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific
attribute for DECL. The attributes in ATTRIBUTES have previously been
assigned to DECL. */
int
i386_valid_decl_attribute_p (decl, attributes, identifier, args)
tree decl;
tree attributes;
tree identifier;
tree args;
{
return 0;
}
/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific
attribute for TYPE. The attributes in ATTRIBUTES have previously been
assigned to TYPE. */
int
i386_valid_type_attribute_p (type, attributes, identifier, args)
tree type;
tree attributes;
tree identifier;
tree args;
{
if (TREE_CODE (type) != FUNCTION_TYPE
&& TREE_CODE (type) != FIELD_DECL
&& TREE_CODE (type) != TYPE_DECL)
return 0;
/* Stdcall attribute says callee is responsible for popping arguments
if they are not variable. */
if (is_attribute_p ("stdcall", identifier))
return (args == NULL_TREE);
/* Cdecl attribute says the callee is a normal C declaration */
if (is_attribute_p ("cdecl", identifier))
return (args == NULL_TREE);
/* Regparm attribute specifies how many integer arguments are to be
passed in registers */
if (is_attribute_p ("regparm", identifier))
{
tree cst;
if (!args || TREE_CODE (args) != TREE_LIST
|| TREE_CHAIN (args) != NULL_TREE
|| TREE_VALUE (args) == NULL_TREE)
return 0;
cst = TREE_VALUE (args);
if (TREE_CODE (cst) != INTEGER_CST)
return 0;
if (TREE_INT_CST_HIGH (cst) != 0
|| TREE_INT_CST_LOW (cst) < 0
|| TREE_INT_CST_LOW (cst) > REGPARM_MAX)
return 0;
return 1;
}
return 0;
}
/* Return 0 if the attributes for two types are incompatible, 1 if they
are compatible, and 2 if they are nearly compatible (which causes a
warning to be generated). */
int
i386_comp_type_attributes (type1, type2)
tree type1;
tree type2;
{
return 1;
}
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the 80386, the RTD insn may be used to pop them if the number
of args is fixed, but if the number is variable then the caller
must pop them all. RTD can't be used for library calls now
because the library is compiled with the Unix compiler.
Use of RTD is a selectable option, since it is incompatible with
standard Unix calling sequences. If the option is not selected,
the caller must always pop the args.
The attribute stdcall is equivalent to RTD on a per module basis. */
int
i386_return_pops_args (fundecl, funtype, size)
tree fundecl;
tree funtype;
int size;
{
int rtd = TARGET_RTD;
if (TREE_CODE (funtype) == IDENTIFIER_NODE)
return 0;
/* Cdecl functions override -mrtd, and never pop the stack */
if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype)))
return 0;
/* Stdcall functions will pop the stack if not variable args */
if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype)))
rtd = 1;
if (rtd)
{
if (TYPE_ARG_TYPES (funtype) == NULL_TREE
|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (funtype))) == void_type_node))
return size;
if (aggregate_value_p (TREE_TYPE (funtype)))
return GET_MODE_SIZE (Pmode);
}
return 0;
}
/* Argument support functions. */
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
void
init_cumulative_args (cum, fntype, libname)
CUMULATIVE_ARGS *cum; /* argument info to initialize */
tree fntype; /* tree ptr for function decl */
rtx libname; /* SYMBOL_REF of library name or 0 */
{
static CUMULATIVE_ARGS zero_cum;
tree param, next_param;
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "\ninit_cumulative_args (");
if (fntype)
{
tree ret_type = TREE_TYPE (fntype);
fprintf (stderr, "fntype code = %s, ret code = %s",
tree_code_name[ (int)TREE_CODE (fntype) ],
tree_code_name[ (int)TREE_CODE (ret_type) ]);
}
else
fprintf (stderr, "no fntype");
if (libname)
fprintf (stderr, ", libname = %s", XSTR (libname, 0));
}
*cum = zero_cum;
/* Set up the number of registers to use for passing arguments. */
cum->nregs = i386_regparm;
if (fntype)
{
tree attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (fntype));
if (attr)
cum->nregs = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr)));
}
/* Determine if this function has variable arguments. This is
indicated by the last argument being 'void_type_mode' if there
are no variable arguments. If there are variable arguments, then
we won't pass anything in registers */
if (cum->nregs)
{
for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
param != (tree)0;
param = next_param)
{
next_param = TREE_CHAIN (param);
if (next_param == (tree)0 && TREE_VALUE (param) != void_type_node)
cum->nregs = 0;
}
}
if (TARGET_DEBUG_ARG)
fprintf (stderr, ", nregs=%d )\n", cum->nregs);
return;
}
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
void
function_arg_advance (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* whether or not the argument was named */
{
int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"function_adv( size=%d, words=%2d, nregs=%d, mode=%4s, named=%d )\n\n",
words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
cum->words += words;
cum->nregs -= words;
cum->regno += words;
if (cum->nregs <= 0)
{
cum->nregs = 0;
cum->regno = 0;
}
return;
}
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
struct rtx_def *
function_arg (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* != 0 for normal args, == 0 for ... args */
{
rtx ret = NULL_RTX;
int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
switch (mode)
{
default: /* for now, pass fp/complex values on the stack */
break;
case BLKmode:
case DImode:
case SImode:
case HImode:
case QImode:
if (words <= cum->nregs)
ret = gen_rtx (REG, mode, cum->regno);
break;
}
if (TARGET_DEBUG_ARG)
{
fprintf (stderr,
"function_arg( size=%d, words=%2d, nregs=%d, mode=%4s, named=%d",
words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
if (ret)
fprintf (stderr, ", reg=%%e%s", reg_names[ REGNO(ret) ]);
else
fprintf (stderr, ", stack");
fprintf (stderr, " )\n");
}
return ret;
}
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
int
function_arg_partial_nregs (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* != 0 for normal args, == 0 for ... args */
{
return 0;
}
/* Output an insn whose source is a 386 integer register. SRC is the
rtx for the register, and TEMPLATE is the op-code template. SRC may
be either SImode or DImode.
The template will be output with operands[0] as SRC, and operands[1]
as a pointer to the top of the 386 stack. So a call from floatsidf2
would look like this:
output_op_from_reg (operands[1], AS1 (fild%z0,%1));
where %z0 corresponds to the caller's operands[1], and is used to
emit the proper size suffix.
??? Extend this to handle HImode - a 387 can load and store HImode
values directly. */
void
output_op_from_reg (src, template)
rtx src;
char *template;
{
rtx xops[4];
int size = GET_MODE_SIZE (GET_MODE (src));
xops[0] = src;
xops[1] = AT_SP (Pmode);
xops[2] = GEN_INT (size);
xops[3] = stack_pointer_rtx;
if (size > UNITS_PER_WORD)
{
rtx high;
if (size > 2 * UNITS_PER_WORD)
{
high = gen_rtx (REG, SImode, REGNO (src) + 2);
output_asm_insn (AS1 (push%L0,%0), &high);
}
high = gen_rtx (REG, SImode, REGNO (src) + 1);
output_asm_insn (AS1 (push%L0,%0), &high);
}
output_asm_insn (AS1 (push%L0,%0), &src);
output_asm_insn (template, xops);
output_asm_insn (AS2 (add%L3,%2,%3), xops);
}
/* Output an insn to pop an value from the 387 top-of-stack to 386
register DEST. The 387 register stack is popped if DIES is true. If
the mode of DEST is an integer mode, a `fist' integer store is done,
otherwise a `fst' float store is done. */
void
output_to_reg (dest, dies)
rtx dest;
int dies;
{
rtx xops[4];
int size = GET_MODE_SIZE (GET_MODE (dest));
xops[0] = AT_SP (Pmode);
xops[1] = stack_pointer_rtx;
xops[2] = GEN_INT (size);
xops[3] = dest;
output_asm_insn (AS2 (sub%L1,%2,%1), xops);
if (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
{
if (dies)
output_asm_insn (AS1 (fistp%z3,%y0), xops);
else
output_asm_insn (AS1 (fist%z3,%y0), xops);
}
else if (GET_MODE_CLASS (GET_MODE (dest)) == MODE_FLOAT)
{
if (dies)
output_asm_insn (AS1 (fstp%z3,%y0), xops);
else
{
if (GET_MODE (dest) == XFmode)
{
output_asm_insn (AS1 (fstp%z3,%y0), xops);
output_asm_insn (AS1 (fld%z3,%y0), xops);
}
else
output_asm_insn (AS1 (fst%z3,%y0), xops);
}
}
else
abort ();
output_asm_insn (AS1 (pop%L0,%0), &dest);
if (size > UNITS_PER_WORD)
{
dest = gen_rtx (REG, SImode, REGNO (dest) + 1);
output_asm_insn (AS1 (pop%L0,%0), &dest);
if (size > 2 * UNITS_PER_WORD)
{
dest = gen_rtx (REG, SImode, REGNO (dest) + 1);
output_asm_insn (AS1 (pop%L0,%0), &dest);
}
}
}
char *
singlemove_string (operands)
rtx *operands;
{
rtx x;
if (GET_CODE (operands[0]) == MEM
&& GET_CODE (x = XEXP (operands[0], 0)) == PRE_DEC)
{
if (XEXP (x, 0) != stack_pointer_rtx)
abort ();
return "push%L1 %1";
}
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
return output_move_const_single (operands);
}
else if (GET_CODE (operands[0]) == REG || GET_CODE (operands[1]) == REG)
return AS2 (mov%L0,%1,%0);
else if (CONSTANT_P (operands[1]))
return AS2 (mov%L0,%1,%0);
else
{
output_asm_insn ("push%L1 %1", operands);
return "pop%L0 %0";
}
}
/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */
static rtx
find_addr_reg (addr)
rtx addr;
{
while (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == REG)
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 0)))
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 1)))
addr = XEXP (addr, 0);
else
abort ();
}
if (GET_CODE (addr) == REG)
return addr;
abort ();
}
/* Output an insn to add the constant N to the register X. */
static void
asm_add (n, x)
int n;
rtx x;
{
rtx xops[2];
xops[0] = x;
if (n == -1)
output_asm_insn (AS1 (dec%L0,%0), xops);
else if (n == 1)
output_asm_insn (AS1 (inc%L0,%0), xops);
else if (n < 0)
{
xops[1] = GEN_INT (-n);
output_asm_insn (AS2 (sub%L0,%1,%0), xops);
}
else if (n > 0)
{
xops[1] = GEN_INT (n);
output_asm_insn (AS2 (add%L0,%1,%0), xops);
}
}
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
char *
output_move_double (operands)
rtx *operands;
{
enum {REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
rtx latehalf[2];
rtx middlehalf[2];
rtx xops[2];
rtx addreg0 = 0, addreg1 = 0;
int dest_overlapped_low = 0;
int size = GET_MODE_SIZE (GET_MODE (operands[0]));
middlehalf[0] = 0;
middlehalf[1] = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
optype0 = POPOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
optype1 = POPOP;
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
optype1 = PUSHOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP)
abort ();
/* If one operand is decrementing and one is incrementing
decrement the former register explicitly
and change that operand into ordinary indexing. */
if (optype0 == PUSHOP && optype1 == POPOP)
{
/* ??? Can this ever happen on i386? */
operands[0] = XEXP (XEXP (operands[0], 0), 0);
asm_add (-size, operands[0]);
if (GET_MODE (operands[1]) == XFmode)
operands[0] = gen_rtx (MEM, XFmode, operands[0]);
else if (GET_MODE (operands[0]) == DFmode)
operands[0] = gen_rtx (MEM, DFmode, operands[0]);
else
operands[0] = gen_rtx (MEM, DImode, operands[0]);
optype0 = OFFSOP;
}
if (optype0 == POPOP && optype1 == PUSHOP)
{
/* ??? Can this ever happen on i386? */
operands[1] = XEXP (XEXP (operands[1], 0), 0);
asm_add (-size, operands[1]);
if (GET_MODE (operands[1]) == XFmode)
operands[1] = gen_rtx (MEM, XFmode, operands[1]);
else if (GET_MODE (operands[1]) == DFmode)
operands[1] = gen_rtx (MEM, DFmode, operands[1]);
else
operands[1] = gen_rtx (MEM, DImode, operands[1]);
optype1 = OFFSOP;
}
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (operands[0], 0));
if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (operands[1], 0));
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.
In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (size == 12)
{
if (optype0 == REGOP)
{
middlehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
}
else if (optype0 == OFFSOP)
{
middlehalf[0] = adj_offsettable_operand (operands[0], 4);
latehalf[0] = adj_offsettable_operand (operands[0], 8);
}
else
{
middlehalf[0] = operands[0];
latehalf[0] = operands[0];
}
if (optype1 == REGOP)
{
middlehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
}
else if (optype1 == OFFSOP)
{
middlehalf[1] = adj_offsettable_operand (operands[1], 4);
latehalf[1] = adj_offsettable_operand (operands[1], 8);
}
else if (optype1 == CNSTOP)
{
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r; long l[3];
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
operands[1] = GEN_INT (l[0]);
middlehalf[1] = GEN_INT (l[1]);
latehalf[1] = GEN_INT (l[2]);
}
else if (CONSTANT_P (operands[1]))
/* No non-CONST_DOUBLE constant should ever appear here. */
abort ();
}
else
{
middlehalf[1] = operands[1];
latehalf[1] = operands[1];
}
}
else /* size is not 12: */
{
if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], 4);
else if (optype1 == CNSTOP)
split_double (operands[1], &operands[1], &latehalf[1]);
else
latehalf[1] = operands[1];
}
/* If insn is effectively movd N (sp),-(sp) then we will do the
high word first. We should use the adjusted operand 1
(which is N+4 (sp) or N+8 (sp))
for the low word and middle word as well,
to compensate for the first decrement of sp. */
if (optype0 == PUSHOP
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
middlehalf[1] = operands[1] = latehalf[1];
/* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
if the upper part of reg N does not appear in the MEM, arrange to
emit the move late-half first. Otherwise, compute the MEM address
into the upper part of N and use that as a pointer to the memory
operand. */
if (optype0 == REGOP
&& (optype1 == OFFSOP || optype1 == MEMOP))
{
if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
&& reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
{
/* If both halves of dest are used in the src memory address,
compute the address into latehalf of dest. */
compadr:
xops[0] = latehalf[0];
xops[1] = XEXP (operands[1], 0);
output_asm_insn (AS2 (lea%L0,%a1,%0), xops);
if( GET_MODE (operands[1]) == XFmode )
{
/* abort (); */
operands[1] = gen_rtx (MEM, XFmode, latehalf[0]);
middlehalf[1] = adj_offsettable_operand (operands[1], size-8);
latehalf[1] = adj_offsettable_operand (operands[1], size-4);
}
else
{
operands[1] = gen_rtx (MEM, DImode, latehalf[0]);
latehalf[1] = adj_offsettable_operand (operands[1], size-4);
}
}
else if (size == 12
&& reg_mentioned_p (middlehalf[0], XEXP (operands[1], 0)))
{
/* Check for two regs used by both source and dest. */
if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
|| reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
goto compadr;
/* JRV says this can't happen: */
if (addreg0 || addreg1)
abort();
/* Only the middle reg conflicts; simply put it last. */
output_asm_insn (singlemove_string (operands), operands);
output_asm_insn (singlemove_string (latehalf), latehalf);
output_asm_insn (singlemove_string (middlehalf), middlehalf);
return "";
}
else if (reg_mentioned_p (operands[0], XEXP (operands[1], 0)))
/* If the low half of dest is mentioned in the source memory
address, the arrange to emit the move late half first. */
dest_overlapped_low = 1;
}
/* If one or both operands autodecrementing,
do the two words, high-numbered first. */
/* Likewise, the first move would clobber the source of the second one,
do them in the other order. This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */
/*
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1]))
|| dest_overlapped_low)
*/
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
|| REGNO (operands[0]) == REGNO (latehalf[1])))
|| dest_overlapped_low)
{
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
asm_add (size-4, addreg0);
if (addreg1)
asm_add (size-4, addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
asm_add (-4, addreg0);
if (addreg1)
asm_add (-4, addreg1);
if (size == 12)
{
output_asm_insn (singlemove_string (middlehalf), middlehalf);
if (addreg0)
asm_add (-4, addreg0);
if (addreg1)
asm_add (-4, addreg1);
}
/* Do low-numbered word. */
return singlemove_string (operands);
}
/* Normal case: do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
/* Do the middle one of the three words for long double */
if (size == 12)
{
if (addreg0)
asm_add (4, addreg0);
if (addreg1)
asm_add (4, addreg1);
output_asm_insn (singlemove_string (middlehalf), middlehalf);
}
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
asm_add (4, addreg0);
if (addreg1)
asm_add (4, addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
asm_add (4-size, addreg0);
if (addreg1)
asm_add (4-size, addreg1);
return "";
}
#define MAX_TMPS 2 /* max temporary registers used */
/* Output the appropriate code to move push memory on the stack */
char *
output_move_pushmem (operands, insn, length, tmp_start, n_operands)
rtx operands[];
rtx insn;
int length;
int tmp_start;
int n_operands;
{
struct {
char *load;
char *push;
rtx xops[2];
} tmp_info[MAX_TMPS];
rtx src = operands[1];
int max_tmps = 0;
int offset = 0;
int stack_p = reg_overlap_mentioned_p (stack_pointer_rtx, src);
int stack_offset = 0;
int i, num_tmps;
rtx xops[1];
if (!offsettable_memref_p (src))
fatal_insn ("Source is not offsettable", insn);
if ((length & 3) != 0)
fatal_insn ("Pushing non-word aligned size", insn);
/* Figure out which temporary registers we have available */
for (i = tmp_start; i < n_operands; i++)
{
if (GET_CODE (operands[i]) == REG)
{
if (reg_overlap_mentioned_p (operands[i], src))
continue;
tmp_info[ max_tmps++ ].xops[1] = operands[i];
if (max_tmps == MAX_TMPS)
break;
}
}
if (max_tmps == 0)
for (offset = length - 4; offset >= 0; offset -= 4)
{
xops[0] = adj_offsettable_operand (src, offset + stack_offset);
output_asm_insn (AS1(push%L0,%0), xops);
if (stack_p)
stack_offset += 4;
}
else
for (offset = length - 4; offset >= 0; )
{
for (num_tmps = 0; num_tmps < max_tmps && offset >= 0; num_tmps++)
{
tmp_info[num_tmps].load = AS2(mov%L0,%0,%1);
tmp_info[num_tmps].push = AS1(push%L0,%1);
tmp_info[num_tmps].xops[0] = adj_offsettable_operand (src, offset + stack_offset);
offset -= 4;
}
for (i = 0; i < num_tmps; i++)
output_asm_insn (tmp_info[i].load, tmp_info[i].xops);
for (i = 0; i < num_tmps; i++)
output_asm_insn (tmp_info[i].push, tmp_info[i].xops);
if (stack_p)
stack_offset += 4*num_tmps;
}
return "";
}
/* Output the appropriate code to move data between two memory locations */
char *
output_move_memory (operands, insn, length, tmp_start, n_operands)
rtx operands[];
rtx insn;
int length;
int tmp_start;
int n_operands;
{
struct {
char *load;
char *store;
rtx xops[3];
} tmp_info[MAX_TMPS];
rtx dest = operands[0];
rtx src = operands[1];
rtx qi_tmp = NULL_RTX;
int max_tmps = 0;
int offset = 0;
int i, num_tmps;
rtx xops[3];
if (GET_CODE (dest) == MEM
&& GET_CODE (XEXP (dest, 0)) == PRE_INC
&& XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx)
return output_move_pushmem (operands, insn, length, tmp_start, n_operands);
if (!offsettable_memref_p (src))
fatal_insn ("Source is not offsettable", insn);
if (!offsettable_memref_p (dest))
fatal_insn ("Destination is not offsettable", insn);
/* Figure out which temporary registers we have available */
for (i = tmp_start; i < n_operands; i++)
{
if (GET_CODE (operands[i]) == REG)
{
if ((length & 1) != 0 && !qi_tmp && QI_REG_P (operands[i]))
qi_tmp = operands[i];
if (reg_overlap_mentioned_p (operands[i], dest))
fatal_insn ("Temporary register overlaps the destination", insn);
if (reg_overlap_mentioned_p (operands[i], src))
fatal_insn ("Temporary register overlaps the source", insn);
tmp_info[ max_tmps++ ].xops[2] = operands[i];
if (max_tmps == MAX_TMPS)
break;
}
}
if (max_tmps == 0)
fatal_insn ("No scratch registers were found to do memory->memory moves", insn);
if ((length & 1) != 0)
{
if (!qi_tmp)
fatal_insn ("No byte register found when moving odd # of bytes.", insn);
}
while (length > 1)
{
for (num_tmps = 0; num_tmps < max_tmps; num_tmps++)
{
if (length >= 4)
{
tmp_info[num_tmps].load = AS2(mov%L0,%1,%2);
tmp_info[num_tmps].store = AS2(mov%L0,%2,%0);
tmp_info[num_tmps].xops[0] = adj_offsettable_operand (dest, offset);
tmp_info[num_tmps].xops[1] = adj_offsettable_operand (src, offset);
offset += 4;
length -= 4;
}
else if (length >= 2)
{
tmp_info[num_tmps].load = AS2(mov%W0,%1,%2);
tmp_info[num_tmps].store = AS2(mov%W0,%2,%0);
tmp_info[num_tmps].xops[0] = adj_offsettable_operand (dest, offset);
tmp_info[num_tmps].xops[1] = adj_offsettable_operand (src, offset);
offset += 2;
length -= 2;
}
else
break;
}
for (i = 0; i < num_tmps; i++)
output_asm_insn (tmp_info[i].load, tmp_info[i].xops);
for (i = 0; i < num_tmps; i++)
output_asm_insn (tmp_info[i].store, tmp_info[i].xops);
}
if (length == 1)
{
xops[0] = adj_offsettable_operand (dest, offset);
xops[1] = adj_offsettable_operand (src, offset);
xops[2] = qi_tmp;
output_asm_insn (AS2(mov%B0,%1,%2), xops);
output_asm_insn (AS2(mov%B0,%2,%0), xops);
}
return "";
}
int
standard_80387_constant_p (x)
rtx x;
{
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
REAL_VALUE_TYPE d;
jmp_buf handler;
int is0, is1;
if (setjmp (handler))
return 0;
set_float_handler (handler);
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
is0 = REAL_VALUES_EQUAL (d, dconst0);
is1 = REAL_VALUES_EQUAL (d, dconst1);
set_float_handler (NULL_PTR);
if (is0)
return 1;
if (is1)
return 2;
/* Note that on the 80387, other constants, such as pi,
are much slower to load as standard constants
than to load from doubles in memory! */
#endif
return 0;
}
char *
output_move_const_single (operands)
rtx *operands;
{
if (FP_REG_P (operands[0]))
{
int conval = standard_80387_constant_p (operands[1]);
if (conval == 1)
return "fldz";
if (conval == 2)
return "fld1";
}
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r; long l;
if (GET_MODE (operands[1]) == XFmode)
abort ();
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
operands[1] = GEN_INT (l);
}
return singlemove_string (operands);
}
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
reference and a constant. */
int
symbolic_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case CONST:
op = XEXP (op, 0);
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
default:
return 0;
}
}
/* Test for a valid operand for a call instruction.
Don't allow the arg pointer register or virtual regs
since they may change into reg + const, which the patterns
can't handle yet. */
int
call_insn_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == MEM
&& ((CONSTANT_ADDRESS_P (XEXP (op, 0))
/* This makes a difference for PIC. */
&& general_operand (XEXP (op, 0), Pmode))
|| (GET_CODE (XEXP (op, 0)) == REG
&& XEXP (op, 0) != arg_pointer_rtx
&& !(REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
&& REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
return 1;
return 0;
}
/* Like call_insn_operand but allow (mem (symbol_ref ...))
even if pic. */
int
expander_call_insn_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == MEM
&& (CONSTANT_ADDRESS_P (XEXP (op, 0))
|| (GET_CODE (XEXP (op, 0)) == REG
&& XEXP (op, 0) != arg_pointer_rtx
&& !(REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
&& REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
return 1;
return 0;
}
/* Return 1 if OP is a comparison operator that can use the condition code
generated by an arithmetic operation. */
int
arithmetic_comparison_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
enum rtx_code code;
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
return (code != GT && code != LE);
}
/* Returns 1 if OP contains a symbol reference */
int
symbolic_reference_mentioned_p (op)
rtx op;
{
register char *fmt;
register int i;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return 1;
}
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return 1;
}
return 0;
}
/* This function generates the assembly code for function entry.
FILE is an stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate. */
void
function_prologue (file, size)
FILE *file;
int size;
{
register int regno;
int limit;
rtx xops[4];
int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
|| current_function_uses_const_pool
|| profile_flag || profile_block_flag);
xops[0] = stack_pointer_rtx;
xops[1] = frame_pointer_rtx;
xops[2] = GEN_INT (size);
if (frame_pointer_needed)
{
output_asm_insn ("push%L1 %1", xops);
output_asm_insn (AS2 (mov%L0,%0,%1), xops);
}
if (size)
output_asm_insn (AS2 (sub%L0,%2,%0), xops);
/* Note If use enter it is NOT reversed args.
This one is not reversed from intel!!
I think enter is slower. Also sdb doesn't like it.
But if you want it the code is:
{
xops[3] = const0_rtx;
output_asm_insn ("enter %2,%3", xops);
}
*/
limit = (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
for (regno = limit - 1; regno >= 0; regno--)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
{
xops[0] = gen_rtx (REG, SImode, regno);
output_asm_insn ("push%L0 %0", xops);
}
if (pic_reg_used)
{
xops[0] = pic_offset_table_rtx;
xops[1] = (rtx) gen_label_rtx ();
output_asm_insn (AS1 (call,%P1), xops);
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (xops[1]));
output_asm_insn (AS1 (pop%L0,%0), xops);
output_asm_insn ("addl $_GLOBAL_OFFSET_TABLE_+[.-%P1],%0", xops);
}
}
/* Return 1 if it is appropriate to emit `ret' instructions in the
body of a function. Do this only if the epilogue is simple, needing a
couple of insns. Prior to reloading, we can't tell how many registers
must be saved, so return 0 then.
If NON_SAVING_SETJMP is defined and true, then it is not possible
for the epilogue to be simple, so return 0. This is a special case
since NON_SAVING_SETJMP will not cause regs_ever_live to change until
final, but jump_optimize may need to know sooner if a `return' is OK. */
int
simple_386_epilogue ()
{
int regno;
int nregs = 0;
int reglimit = (frame_pointer_needed
? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
#ifdef FUNCTION_PROFILER_EPILOGUE
if (profile_flag)
return 0;
#endif
if (flag_pic && (current_function_uses_pic_offset_table
|| current_function_uses_const_pool
|| profile_flag || profile_block_flag))
return 0;
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP && current_function_calls_setjmp)
return 0;
#endif
if (! reload_completed)
return 0;
for (regno = reglimit - 1; regno >= 0; regno--)
if (regs_ever_live[regno] && ! call_used_regs[regno])
nregs++;
return nregs == 0 || ! frame_pointer_needed;
}
/* This function generates the assembly code for function exit.
FILE is an stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to deallocate. */
void
function_epilogue (file, size)
FILE *file;
int size;
{
register int regno;
register int nregs, limit;
int offset;
rtx xops[3];
int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
|| current_function_uses_const_pool);
#ifdef FUNCTION_PROFILER_EPILOGUE
if (profile_flag)
FUNCTION_PROFILER_EPILOGUE (file);
#endif
/* Compute the number of registers to pop */
limit = (frame_pointer_needed
? FRAME_POINTER_REGNUM
: STACK_POINTER_REGNUM);
nregs = 0;
for (regno = limit - 1; regno >= 0; regno--)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
nregs++;
/* sp is often unreliable so we must go off the frame pointer,
*/
/* In reality, we may not care if sp is unreliable, because we can
restore the register relative to the frame pointer. In theory,
since each move is the same speed as a pop, and we don't need the
leal, this is faster. For now restore multiple registers the old
way. */
offset = -size - (nregs * UNITS_PER_WORD);
xops[2] = stack_pointer_rtx;
if (nregs > 1 || ! frame_pointer_needed)
{
if (frame_pointer_needed)
{
xops[0] = adj_offsettable_operand (AT_BP (Pmode), offset);
output_asm_insn (AS2 (lea%L2,%0,%2), xops);
}
for (regno = 0; regno < limit; regno++)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
{
xops[0] = gen_rtx (REG, SImode, regno);
output_asm_insn ("pop%L0 %0", xops);
}
}
else
for (regno = 0; regno < limit; regno++)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
{
xops[0] = gen_rtx (REG, SImode, regno);
xops[1] = adj_offsettable_operand (AT_BP (Pmode), offset);
output_asm_insn (AS2 (mov%L0,%1,%0), xops);
offset += 4;
}
if (frame_pointer_needed)
{
/* On i486, mov & pop is faster than "leave". */
if (!TARGET_386)
{
xops[0] = frame_pointer_rtx;
output_asm_insn (AS2 (mov%L2,%0,%2), xops);
output_asm_insn ("pop%L0 %0", xops);
}
else
output_asm_insn ("leave", xops);
}
else if (size)
{
/* If there is no frame pointer, we must still release the frame. */
xops[0] = GEN_INT (size);
output_asm_insn (AS2 (add%L2,%0,%2), xops);
}
if (current_function_pops_args && current_function_args_size)
{
xops[1] = GEN_INT (current_function_pops_args);
/* i386 can only pop 32K bytes (maybe 64K? Is it signed?). If
asked to pop more, pop return address, do explicit add, and jump
indirectly to the caller. */
if (current_function_pops_args >= 32768)
{
/* ??? Which register to use here? */
xops[0] = gen_rtx (REG, SImode, 2);
output_asm_insn ("pop%L0 %0", xops);
output_asm_insn (AS2 (add%L2,%1,%2), xops);
output_asm_insn ("jmp %*%0", xops);
}
else
output_asm_insn ("ret %1", xops);
}
else
output_asm_insn ("ret", xops);
}
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
On x86, legitimate addresses are:
base movl (base),reg
displacement movl disp,reg
base + displacement movl disp(base),reg
index + base movl (base,index),reg
(index + base) + displacement movl disp(base,index),reg
index*scale movl (,index,scale),reg
index*scale + disp movl disp(,index,scale),reg
index*scale + base movl (base,index,scale),reg
(index*scale + base) + disp movl disp(base,index,scale),reg
In each case, scale can be 1, 2, 4, 8. */
/* This is exactly the same as print_operand_addr, except that
it recognizes addresses instead of printing them.
It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should
convert common non-canonical forms to canonical form so that they will
be recognized. */
#define ADDR_INVALID(msg,insn) \
do { \
if (TARGET_DEBUG_ADDR) \
{ \
fprintf (stderr, msg); \
debug_rtx (insn); \
} \
} while (0)
int
legitimate_address_p (mode, addr, strict)
enum machine_mode mode;
register rtx addr;
int strict;
{
rtx base = NULL_RTX;
rtx indx = NULL_RTX;
rtx scale = NULL_RTX;
rtx disp = NULL_RTX;
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr,
"\n==========\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
GET_MODE_NAME (mode), strict);
debug_rtx (addr);
}
if (GET_CODE (addr) == REG || GET_CODE (addr) == SUBREG)
base = addr; /* base reg */
else if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
enum rtx_code code0 = GET_CODE (op0);
enum rtx_code code1 = GET_CODE (op1);
if (code0 == REG || code0 == SUBREG)
{
if (code1 == REG || code1 == SUBREG)
{
indx = op0; /* index + base */
base = op1;
}
else
{
base = op0; /* base + displacement */
disp = op1;
}
}
else if (code0 == MULT)
{
indx = XEXP (op0, 0);
scale = XEXP (op0, 1);
if (code1 == REG || code1 == SUBREG)
base = op1; /* index*scale + base */
else
disp = op1; /* index*scale + disp */
}
else if (code0 == PLUS && GET_CODE (XEXP (op0, 0)) == MULT)
{
indx = XEXP (XEXP (op0, 0), 0); /* index*scale + base + disp */
scale = XEXP (XEXP (op0, 0), 1);
base = XEXP (op0, 1);
disp = op1;
}
else if (code0 == PLUS)
{
indx = XEXP (op0, 0); /* index + base + disp */
base = XEXP (op0, 1);
disp = op1;
}
else
{
ADDR_INVALID ("PLUS subcode is not valid.\n", op0);
return FALSE;
}
}
else if (GET_CODE (addr) == MULT)
{
indx = XEXP (addr, 0); /* index*scale */
scale = XEXP (addr, 1);
}
else
disp = addr; /* displacement */
/* Allow arg pointer and stack pointer as index if there is not scaling */
if (base && indx && !scale
&& (indx == arg_pointer_rtx || indx == stack_pointer_rtx))
{
rtx tmp = base;
base = indx;
indx = tmp;
}
/* Validate base register */
/* Don't allow SUBREG's here, it can lead to spill failures when the base
is one word out of a two word structure, which is represented internally
as a DImode int. */
if (base)
{
if (GET_CODE (base) != REG)
{
ADDR_INVALID ("Base is not a register.\n", base);
return FALSE;
}
if ((strict && !REG_OK_FOR_BASE_STRICT_P (base))
|| (!strict && !REG_OK_FOR_BASE_NONSTRICT_P (base)))
{
ADDR_INVALID ("Base is not valid.\n", base);
return FALSE;
}
}
/* Validate index register */
/* Don't allow SUBREG's here, it can lead to spill failures when the index
is one word out of a two word structure, which is represented internally
as a DImode int. */
if (indx)
{
if (GET_CODE (indx) != REG)
{
ADDR_INVALID ("Index is not a register.\n", indx);
return FALSE;
}
if ((strict && !REG_OK_FOR_INDEX_STRICT_P (indx))
|| (!strict && !REG_OK_FOR_INDEX_NONSTRICT_P (indx)))
{
ADDR_INVALID ("Index is not valid.\n", indx);
return FALSE;
}
}
else if (scale)
abort (); /* scale w/o index invalid */
/* Validate scale factor */
if (scale)
{
HOST_WIDE_INT value;
if (GET_CODE (scale) != CONST_INT)
{
ADDR_INVALID ("Scale is not valid.\n", scale);
return FALSE;
}
value = INTVAL (scale);
if (value != 1 && value != 2 && value != 4 && value != 8)
{
ADDR_INVALID ("Scale is not a good multiplier.\n", scale);
return FALSE;
}
}
/* Validate displacement */
if (disp)
{
if (!CONSTANT_ADDRESS_P (disp))
{
ADDR_INVALID ("Displacement is not valid.\n", disp);
return FALSE;
}
if (GET_CODE (disp) == CONST_DOUBLE)
{
ADDR_INVALID ("Displacement is a const_double.\n", disp);
return FALSE;
}
if (flag_pic && SYMBOLIC_CONST (disp) && base != pic_offset_table_rtx
&& (indx != pic_offset_table_rtx || scale != NULL_RTX))
{
ADDR_INVALID ("Displacement is an invalid pic reference.\n", disp);
return FALSE;
}
if (HALF_PIC_P () && HALF_PIC_ADDRESS_P (disp)
&& (base != NULL_RTX || indx != NULL_RTX))
{
ADDR_INVALID ("Displacement is an invalid half-pic reference.\n", disp);
return FALSE;
}
}
if (TARGET_DEBUG_ADDR)
fprintf (stderr, "Address is valid.\n");
/* Everything looks valid, return true */
return TRUE;
}
/* Return a legitimate reference for ORIG (an address) using the
register REG. If REG is 0, a new pseudo is generated.
There are three types of references that must be handled:
1. Global data references must load the address from the GOT, via
the PIC reg. An insn is emitted to do this load, and the reg is
returned.
2. Static data references must compute the address as an offset
from the GOT, whose base is in the PIC reg. An insn is emitted to
compute the address into a reg, and the reg is returned. Static
data objects have SYMBOL_REF_FLAG set to differentiate them from
global data objects.
3. Constant pool addresses must be handled special. They are
considered legitimate addresses, but only if not used with regs.
When printed, the output routines know to print the reference with the
PIC reg, even though the PIC reg doesn't appear in the RTL.
GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC
reg also appears in the address (except for constant pool references,
noted above).
"switch" statements also require special handling when generating
PIC code. See comments by the `casesi' insn in i386.md for details. */
rtx
legitimize_pic_address (orig, reg)
rtx orig;
rtx reg;
{
rtx addr = orig;
rtx new = orig;
if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
{
if (GET_CODE (addr) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (addr))
reg = new = orig;
else
{
if (reg == 0)
reg = gen_reg_rtx (Pmode);
if ((GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_FLAG (addr))
|| GET_CODE (addr) == LABEL_REF)
new = gen_rtx (PLUS, Pmode, pic_offset_table_rtx, orig);
else
new = gen_rtx (MEM, Pmode,
gen_rtx (PLUS, Pmode,
pic_offset_table_rtx, orig));
emit_move_insn (reg, new);
}
current_function_uses_pic_offset_table = 1;
return reg;
}
else if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
{
rtx base;
if (GET_CODE (addr) == CONST)
{
addr = XEXP (addr, 0);
if (GET_CODE (addr) != PLUS)
abort ();
}
if (XEXP (addr, 0) == pic_offset_table_rtx)
return orig;
if (reg == 0)
reg = gen_reg_rtx (Pmode);
base = legitimize_pic_address (XEXP (addr, 0), reg);
addr = legitimize_pic_address (XEXP (addr, 1),
base == reg ? NULL_RTX : reg);
if (GET_CODE (addr) == CONST_INT)
return plus_constant (base, INTVAL (addr));
if (GET_CODE (addr) == PLUS && CONSTANT_P (XEXP (addr, 1)))
{
base = gen_rtx (PLUS, Pmode, base, XEXP (addr, 0));
addr = XEXP (addr, 1);
}
return gen_rtx (PLUS, Pmode, base, addr);
}
return new;
}
/* Emit insns to move operands[1] into operands[0]. */
void
emit_pic_move (operands, mode)
rtx *operands;
enum machine_mode mode;
{
rtx temp = reload_in_progress ? operands[0] : gen_reg_rtx (Pmode);
if (GET_CODE (operands[0]) == MEM && SYMBOLIC_CONST (operands[1]))
operands[1] = (rtx) force_reg (SImode, operands[1]);
else
operands[1] = legitimize_pic_address (operands[1], temp);
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the 80386, we handle X+REG by loading X into a register R and
using R+REG. R will go in a general reg and indexing will be used.
However, if REG is a broken-out memory address or multiplication,
nothing needs to be done because REG can certainly go in a general reg.
When -fpic is used, special handling is needed for symbolic references.
See comments by legitimize_pic_address in i386.c for details. */
rtx
legitimize_address (x, oldx, mode)
register rtx x;
register rtx oldx;
enum machine_mode mode;
{
int changed = 0;
unsigned log;
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr, "\n==========\nLEGITIMIZE_ADDRESS, mode = %s\n", GET_MODE_NAME (mode));
debug_rtx (x);
}
if (flag_pic && SYMBOLIC_CONST (x))
return legitimize_pic_address (x, 0);
/* Canonicalize shifts by 0, 1, 2, 3 into multiply */
if (GET_CODE (x) == ASHIFT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (x, 1)))) < 4)
{
changed = 1;
x = gen_rtx (MULT, Pmode,
force_reg (Pmode, XEXP (x, 0)),
GEN_INT (1 << log));
}
if (GET_CODE (x) == PLUS)
{
/* Canonicalize shifts by 0, 1, 2, 3 into multiply */
if (GET_CODE (XEXP (x, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) < 4)
{
changed = 1;
XEXP (x, 0) = gen_rtx (MULT, Pmode,
force_reg (Pmode, XEXP (XEXP (x, 0), 0)),
GEN_INT (1 << log));
}
if (GET_CODE (XEXP (x, 1)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1)))) < 4)
{
changed = 1;
XEXP (x, 1) = gen_rtx (MULT, Pmode,
force_reg (Pmode, XEXP (XEXP (x, 1), 0)),
GEN_INT (1 << log));
}
/* Put multiply first if it isn't already */
if (GET_CODE (XEXP (x, 1)) == MULT)
{
rtx tmp = XEXP (x, 0);
XEXP (x, 0) = XEXP (x, 1);
XEXP (x, 1) = tmp;
changed = 1;
}
/* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const)))
into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be
created by virtual register instantiation, register elimination, and
similar optimizations. */
if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS)
{
changed = 1;
x = gen_rtx (PLUS, Pmode,
gen_rtx (PLUS, Pmode, XEXP (x, 0), XEXP (XEXP (x, 1), 0)),
XEXP (XEXP (x, 1), 1));
}
/* Canonicalize (plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
into (plus (plus (mult (reg) (const)) (reg)) (const)). */
else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS
&& CONSTANT_P (XEXP (x, 1)))
{
rtx constant, other;
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
constant = XEXP (x, 1);
other = XEXP (XEXP (XEXP (x, 0), 1), 1);
}
else if (GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 1)) == CONST_INT)
{
constant = XEXP (XEXP (XEXP (x, 0), 1), 1);
other = XEXP (x, 1);
}
else
constant = 0;
if (constant)
{
changed = 1;
x = gen_rtx (PLUS, Pmode,
gen_rtx (PLUS, Pmode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (XEXP (x, 0), 1), 0)),
plus_constant (other, INTVAL (constant)));
}
}
if (changed && legitimate_address_p (mode, x, FALSE))
return x;
if (GET_CODE (XEXP (x, 0)) == MULT)
{
changed = 1;
XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
}
if (GET_CODE (XEXP (x, 1)) == MULT)
{
changed = 1;
XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
}
if (changed
&& GET_CODE (XEXP (x, 1)) == REG
&& GET_CODE (XEXP (x, 0)) == REG)
return x;
if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1)))
{
changed = 1;
x = legitimize_pic_address (x, 0);
}
if (changed && legitimate_address_p (mode, x, FALSE))
return x;
if (GET_CODE (XEXP (x, 0)) == REG)
{
register rtx temp = gen_reg_rtx (Pmode);
register rtx val = force_operand (XEXP (x, 1), temp);
if (val != temp)
emit_move_insn (temp, val);
XEXP (x, 1) = temp;
return x;
}
else if (GET_CODE (XEXP (x, 1)) == REG)
{
register rtx temp = gen_reg_rtx (Pmode);
register rtx val = force_operand (XEXP (x, 0), temp);
if (val != temp)
emit_move_insn (temp, val);
XEXP (x, 0) = temp;
return x;
}
}
return x;
}
/* Print an integer constant expression in assembler syntax. Addition
and subtraction are the only arithmetic that may appear in these
expressions. FILE is the stdio stream to write to, X is the rtx, and
CODE is the operand print code from the output string. */
static void
output_pic_addr_const (file, x, code)
FILE *file;
rtx x;
int code;
{
char buf[256];
switch (GET_CODE (x))
{
case PC:
if (flag_pic)
putc ('.', file);
else
abort ();
break;
case SYMBOL_REF:
case LABEL_REF:
if (GET_CODE (x) == SYMBOL_REF)
assemble_name (file, XSTR (x, 0));
else
{
ASM_GENERATE_INTERNAL_LABEL (buf, "L",
CODE_LABEL_NUMBER (XEXP (x, 0)));
assemble_name (asm_out_file, buf);
}
if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
fprintf (file, "@GOTOFF(%%ebx)");
else if (code == 'P')
fprintf (file, "@PLT");
else if (GET_CODE (x) == LABEL_REF)
fprintf (file, "@GOTOFF");
else if (! SYMBOL_REF_FLAG (x))
fprintf (file, "@GOT");
else
fprintf (file, "@GOTOFF");
break;
case CODE_LABEL:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
assemble_name (asm_out_file, buf);
break;
case CONST_INT:
fprintf (file, "%d", INTVAL (x));
break;
case CONST:
/* This used to output parentheses around the expression,
but that does not work on the 386 (either ATT or BSD assembler). */
output_pic_addr_const (file, XEXP (x, 0), code);
break;
case CONST_DOUBLE:
if (GET_MODE (x) == VOIDmode)
{
/* We can use %d if the number is <32 bits and positive. */
if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0)
fprintf (file, "0x%x%08x",
CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
else
fprintf (file, "%d", CONST_DOUBLE_LOW (x));
}
else
/* We can't handle floating point constants;
PRINT_OPERAND must handle them. */
output_operand_lossage ("floating constant misused");
break;
case PLUS:
/* Some assemblers need integer constants to appear last (eg masm). */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
{
output_pic_addr_const (file, XEXP (x, 1), code);
if (INTVAL (XEXP (x, 0)) >= 0)
fprintf (file, "+");
output_pic_addr_const (file, XEXP (x, 0), code);
}
else
{
output_pic_addr_const (file, XEXP (x, 0), code);
if (INTVAL (XEXP (x, 1)) >= 0)
fprintf (file, "+");
output_pic_addr_const (file, XEXP (x, 1), code);
}
break;
case MINUS:
output_pic_addr_const (file, XEXP (x, 0), code);
fprintf (file, "-");
output_pic_addr_const (file, XEXP (x, 1), code);
break;
default:
output_operand_lossage ("invalid expression as operand");
}
}
/* Meaning of CODE:
f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
D,L,W,B,Q,S -- print the opcode suffix for specified size of operand.
R -- print the prefix for register names.
z -- print the opcode suffix for the size of the current operand.
* -- print a star (in certain assembler syntax)
w -- print the operand as if it's a "word" (HImode) even if it isn't.
c -- don't print special prefixes before constant operands.
J -- print the appropriate jump operand.
*/
void
print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
if (code)
{
switch (code)
{
case '*':
if (USE_STAR)
putc ('*', file);
return;
case 'L':
PUT_OP_SIZE (code, 'l', file);
return;
case 'W':
PUT_OP_SIZE (code, 'w', file);
return;
case 'B':
PUT_OP_SIZE (code, 'b', file);
return;
case 'Q':
PUT_OP_SIZE (code, 'l', file);
return;
case 'S':
PUT_OP_SIZE (code, 's', file);
return;
case 'T':
PUT_OP_SIZE (code, 't', file);
return;
case 'z':
/* 387 opcodes don't get size suffixes if the operands are
registers. */
if (STACK_REG_P (x))
return;
/* this is the size of op from size of operand */
switch (GET_MODE_SIZE (GET_MODE (x)))
{
case 1:
PUT_OP_SIZE ('B', 'b', file);
return;
case 2:
PUT_OP_SIZE ('W', 'w', file);
return;
case 4:
if (GET_MODE (x) == SFmode)
{
PUT_OP_SIZE ('S', 's', file);
return;
}
else
PUT_OP_SIZE ('L', 'l', file);
return;
case 12:
PUT_OP_SIZE ('T', 't', file);
return;
case 8:
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
{
#ifdef GAS_MNEMONICS
PUT_OP_SIZE ('Q', 'q', file);
return;
#else
PUT_OP_SIZE ('Q', 'l', file); /* Fall through */
#endif
}
PUT_OP_SIZE ('Q', 'l', file);
return;
}
case 'b':
case 'w':
case 'k':
case 'h':
case 'y':
case 'P':
break;
case 'J':
switch (GET_CODE (x))
{
/* These conditions are appropriate for testing the result
of an arithmetic operation, not for a compare operation.
Cases GE, LT assume CC_NO_OVERFLOW true. All cases assume
CC_Z_IN_NOT_C false and not floating point. */
case NE: fputs ("jne", file); return;
case EQ: fputs ("je", file); return;
case GE: fputs ("jns", file); return;
case LT: fputs ("js", file); return;
case GEU: fputs ("jmp", file); return;
case GTU: fputs ("jne", file); return;
case LEU: fputs ("je", file); return;
case LTU: fputs ("#branch never", file); return;
/* no matching branches for GT nor LE */
}
abort ();
default:
{
char str[50];
sprintf (str, "invalid operand code `%c'", code);
output_operand_lossage (str);
}
}
}
if (GET_CODE (x) == REG)
{
PRINT_REG (x, code, file);
}
else if (GET_CODE (x) == MEM)
{
PRINT_PTR (x, file);
if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
{
if (flag_pic)
output_pic_addr_const (file, XEXP (x, 0), code);
else
output_addr_const (file, XEXP (x, 0));
}
else
output_address (XEXP (x, 0));
}
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode)
{
REAL_VALUE_TYPE r; long l;
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
PRINT_IMMED_PREFIX (file);
fprintf (file, "0x%lx", l);
}
/* These float cases don't actually occur as immediate operands. */
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode)
{
REAL_VALUE_TYPE r; char dstr[30];
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
fprintf (file, "%s", dstr);
}
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode)
{
REAL_VALUE_TYPE r; char dstr[30];
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
fprintf (file, "%s", dstr);
}
else
{
if (code != 'P')
{
if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
PRINT_IMMED_PREFIX (file);
else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF
|| GET_CODE (x) == LABEL_REF)
PRINT_OFFSET_PREFIX (file);
}
if (flag_pic)
output_pic_addr_const (file, x, code);
else
output_addr_const (file, x);
}
}
/* Print a memory operand whose address is ADDR. */
void
print_operand_address (file, addr)
FILE *file;
register rtx addr;
{
register rtx reg1, reg2, breg, ireg;
rtx offset;
switch (GET_CODE (addr))
{
case REG:
ADDR_BEG (file);
fprintf (file, "%se", RP);
fputs (hi_reg_name[REGNO (addr)], file);
ADDR_END (file);
break;
case PLUS:
reg1 = 0;
reg2 = 0;
ireg = 0;
breg = 0;
offset = 0;
if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
{
offset = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
{
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) != PLUS) ;
else if (GET_CODE (XEXP (addr, 0)) == MULT)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == MULT)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == REG)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == REG)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)
{
if (reg1 == 0) reg1 = addr;
else reg2 = addr;
addr = 0;
}
if (offset != 0)
{
if (addr != 0) abort ();
addr = offset;
}
if ((reg1 && GET_CODE (reg1) == MULT)
|| (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
{
breg = reg2;
ireg = reg1;
}
else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
{
breg = reg1;
ireg = reg2;
}
if (ireg != 0 || breg != 0)
{
int scale = 1;
if (addr != 0)
{
if (flag_pic)
output_pic_addr_const (file, addr, 0);
else if (GET_CODE (addr) == LABEL_REF)
output_asm_label (addr);
else
output_addr_const (file, addr);
}
if (ireg != 0 && GET_CODE (ireg) == MULT)
{
scale = INTVAL (XEXP (ireg, 1));
ireg = XEXP (ireg, 0);
}
/* The stack pointer can only appear as a base register,
never an index register, so exchange the regs if it is wrong. */
if (scale == 1 && ireg && REGNO (ireg) == STACK_POINTER_REGNUM)
{
rtx tmp;
tmp = breg;
breg = ireg;
ireg = tmp;
}
/* output breg+ireg*scale */
PRINT_B_I_S (breg, ireg, scale, file);
break;
}
case MULT:
{
int scale;
if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
{
scale = INTVAL (XEXP (addr, 0));
ireg = XEXP (addr, 1);
}
else
{
scale = INTVAL (XEXP (addr, 1));
ireg = XEXP (addr, 0);
}
output_addr_const (file, const0_rtx);
PRINT_B_I_S ((rtx) 0, ireg, scale, file);
}
break;
default:
if (GET_CODE (addr) == CONST_INT
&& INTVAL (addr) < 0x8000
&& INTVAL (addr) >= -0x8000)
fprintf (file, "%d", INTVAL (addr));
else
{
if (flag_pic)
output_pic_addr_const (file, addr, 0);
else
output_addr_const (file, addr);
}
}
}
/* Set the cc_status for the results of an insn whose pattern is EXP.
On the 80386, we assume that only test and compare insns, as well
as SI, HI, & DI mode ADD, SUB, NEG, AND, IOR, XOR, ASHIFT,
ASHIFTRT, and LSHIFTRT instructions set the condition codes usefully.
Also, we assume that jumps, moves and sCOND don't affect the condition
codes. All else clobbers the condition codes, by assumption.
We assume that ALL integer add, minus, etc. instructions effect the
condition codes. This MUST be consistent with i386.md.
We don't record any float test or compare - the redundant test &
compare check in final.c does not handle stack-like regs correctly. */
void
notice_update_cc (exp)
rtx exp;
{
if (GET_CODE (exp) == SET)
{
/* Jumps do not alter the cc's. */
if (SET_DEST (exp) == pc_rtx)
return;
/* Moving register or memory into a register:
it doesn't alter the cc's, but it might invalidate
the RTX's which we remember the cc's came from.
(Note that moving a constant 0 or 1 MAY set the cc's). */
if (REG_P (SET_DEST (exp))
&& (REG_P (SET_SRC (exp)) || GET_CODE (SET_SRC (exp)) == MEM
|| GET_RTX_CLASS (GET_CODE (SET_SRC (exp))) == '<'))
{
if (cc_status.value1
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
cc_status.value1 = 0;
if (cc_status.value2
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
cc_status.value2 = 0;
return;
}
/* Moving register into memory doesn't alter the cc's.
It may invalidate the RTX's which we remember the cc's came from. */
if (GET_CODE (SET_DEST (exp)) == MEM
&& (REG_P (SET_SRC (exp))
|| GET_RTX_CLASS (GET_CODE (SET_SRC (exp))) == '<'))
{
if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM)
cc_status.value1 = 0;
if (cc_status.value2 && GET_CODE (cc_status.value2) == MEM)
cc_status.value2 = 0;
return;
}
/* Function calls clobber the cc's. */
else if (GET_CODE (SET_SRC (exp)) == CALL)
{
CC_STATUS_INIT;
return;
}
/* Tests and compares set the cc's in predictable ways. */
else if (SET_DEST (exp) == cc0_rtx)
{
CC_STATUS_INIT;
cc_status.value1 = SET_SRC (exp);
return;
}
/* Certain instructions effect the condition codes. */
else if (GET_MODE (SET_SRC (exp)) == SImode
|| GET_MODE (SET_SRC (exp)) == HImode
|| GET_MODE (SET_SRC (exp)) == QImode)
switch (GET_CODE (SET_SRC (exp)))
{
case ASHIFTRT: case LSHIFTRT:
case ASHIFT:
/* Shifts on the 386 don't set the condition codes if the
shift count is zero. */
if (GET_CODE (XEXP (SET_SRC (exp), 1)) != CONST_INT)
{
CC_STATUS_INIT;
break;
}
/* We assume that the CONST_INT is non-zero (this rtx would
have been deleted if it were zero. */
case PLUS: case MINUS: case NEG:
case AND: case IOR: case XOR:
cc_status.flags = CC_NO_OVERFLOW;
cc_status.value1 = SET_SRC (exp);
cc_status.value2 = SET_DEST (exp);
break;
default:
CC_STATUS_INIT;
}
else
{
CC_STATUS_INIT;
}
}
else if (GET_CODE (exp) == PARALLEL
&& GET_CODE (XVECEXP (exp, 0, 0)) == SET)
{
if (SET_DEST (XVECEXP (exp, 0, 0)) == pc_rtx)
return;
if (SET_DEST (XVECEXP (exp, 0, 0)) == cc0_rtx)
{
CC_STATUS_INIT;
if (stack_regs_mentioned_p (SET_SRC (XVECEXP (exp, 0, 0))))
cc_status.flags |= CC_IN_80387;
else
cc_status.value1 = SET_SRC (XVECEXP (exp, 0, 0));
return;
}
CC_STATUS_INIT;
}
else
{
CC_STATUS_INIT;
}
}
/* Split one or more DImode RTL references into pairs of SImode
references. The RTL can be REG, offsettable MEM, integer constant, or
CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
split and "num" is its length. lo_half and hi_half are output arrays
that parallel "operands". */
void
split_di (operands, num, lo_half, hi_half)
rtx operands[];
int num;
rtx lo_half[], hi_half[];
{
while (num--)
{
if (GET_CODE (operands[num]) == REG)
{
lo_half[num] = gen_rtx (REG, SImode, REGNO (operands[num]));
hi_half[num] = gen_rtx (REG, SImode, REGNO (operands[num]) + 1);
}
else if (CONSTANT_P (operands[num]))
{
split_double (operands[num], &lo_half[num], &hi_half[num]);
}
else if (offsettable_memref_p (operands[num]))
{
lo_half[num] = operands[num];
hi_half[num] = adj_offsettable_operand (operands[num], 4);
}
else
abort();
}
}
/* Return 1 if this is a valid binary operation on a 387.
OP is the expression matched, and MODE is its mode. */
int
binary_387_op (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
switch (GET_CODE (op))
{
case PLUS:
case MINUS:
case MULT:
case DIV:
return GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT;
default:
return 0;
}
}
/* Return 1 if this is a valid shift or rotate operation on a 386.
OP is the expression matched, and MODE is its mode. */
int
shift_op (op, mode)
register rtx op;
enum machine_mode mode;
{
rtx operand = XEXP (op, 0);
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_MODE (operand) != GET_MODE (op)
|| GET_MODE_CLASS (GET_MODE (op)) != MODE_INT)
return 0;
return (GET_CODE (op) == ASHIFT
|| GET_CODE (op) == ASHIFTRT
|| GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ROTATE
|| GET_CODE (op) == ROTATERT);
}
/* Return 1 if OP is COMPARE rtx with mode VOIDmode.
MODE is not used. */
int
VOIDmode_compare_op (op, mode)
register rtx op;
enum machine_mode mode;
{
return GET_CODE (op) == COMPARE && GET_MODE (op) == VOIDmode;
}
/* Output code to perform a 387 binary operation in INSN, one of PLUS,
MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3]
is the expression of the binary operation. The output may either be
emitted here, or returned to the caller, like all output_* functions.
There is no guarantee that the operands are the same mode, as they
might be within FLOAT or FLOAT_EXTEND expressions. */
char *
output_387_binary_op (insn, operands)
rtx insn;
rtx *operands;
{
rtx temp;
char *base_op;
static char buf[100];
switch (GET_CODE (operands[3]))
{
case PLUS:
if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
base_op = "fiadd";
else
base_op = "fadd";
break;
case MINUS:
if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
base_op = "fisub";
else
base_op = "fsub";
break;
case MULT:
if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
base_op = "fimul";
else
base_op = "fmul";
break;
case DIV:
if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
base_op = "fidiv";
else
base_op = "fdiv";
break;
default:
abort ();
}
strcpy (buf, base_op);
switch (GET_CODE (operands[3]))
{
case MULT:
case PLUS:
if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]))
{
temp = operands[2];
operands[2] = operands[1];
operands[1] = temp;
}
if (GET_CODE (operands[2]) == MEM)
return strcat (buf, AS1 (%z2,%2));
if (NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], strcat (buf, AS1 (%z0,%1)));
RET;
}
else if (NON_STACK_REG_P (operands[2]))
{
output_op_from_reg (operands[2], strcat (buf, AS1 (%z0,%1)));
RET;
}
if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
return strcat (buf, AS2 (p,%2,%0));
if (STACK_TOP_P (operands[0]))
return strcat (buf, AS2C (%y2,%0));
else
return strcat (buf, AS2C (%2,%0));
case MINUS:
case DIV:
if (GET_CODE (operands[1]) == MEM)
return strcat (buf, AS1 (r%z1,%1));
if (GET_CODE (operands[2]) == MEM)
return strcat (buf, AS1 (%z2,%2));
if (NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], strcat (buf, AS1 (r%z0,%1)));
RET;
}
else if (NON_STACK_REG_P (operands[2]))
{
output_op_from_reg (operands[2], strcat (buf, AS1 (%z0,%1)));
RET;
}
if (! STACK_REG_P (operands[1]) || ! STACK_REG_P (operands[2]))
abort ();
if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
return strcat (buf, AS2 (rp,%2,%0));
if (find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
return strcat (buf, AS2 (p,%1,%0));
if (STACK_TOP_P (operands[0]))
{
if (STACK_TOP_P (operands[1]))
return strcat (buf, AS2C (%y2,%0));
else
return strcat (buf, AS2 (r,%y1,%0));
}
else if (STACK_TOP_P (operands[1]))
return strcat (buf, AS2C (%1,%0));
else
return strcat (buf, AS2 (r,%2,%0));
default:
abort ();
}
}
/* Output code for INSN to convert a float to a signed int. OPERANDS
are the insn operands. The output may be SFmode or DFmode and the
input operand may be SImode or DImode. As a special case, make sure
that the 387 stack top dies if the output mode is DImode, because the
hardware requires this. */
char *
output_fix_trunc (insn, operands)
rtx insn;
rtx *operands;
{
int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
rtx xops[2];
if (! STACK_TOP_P (operands[1]) ||
(GET_MODE (operands[0]) == DImode && ! stack_top_dies))
abort ();
xops[0] = GEN_INT (12);
xops[1] = operands[4];
output_asm_insn (AS1 (fnstc%W2,%2), operands);
output_asm_insn (AS2 (mov%L2,%2,%4), operands);
output_asm_insn (AS2 (mov%B1,%0,%h1), xops);
output_asm_insn (AS2 (mov%L4,%4,%3), operands);
output_asm_insn (AS1 (fldc%W3,%3), operands);
if (NON_STACK_REG_P (operands[0]))
output_to_reg (operands[0], stack_top_dies);
else if (GET_CODE (operands[0]) == MEM)
{
if (stack_top_dies)
output_asm_insn (AS1 (fistp%z0,%0), operands);
else
output_asm_insn (AS1 (fist%z0,%0), operands);
}
else
abort ();
return AS1 (fldc%W2,%2);
}
/* Output code for INSN to compare OPERANDS. The two operands might
not have the same mode: one might be within a FLOAT or FLOAT_EXTEND
expression. If the compare is in mode CCFPEQmode, use an opcode that
will not fault if a qNaN is present. */
char *
output_float_compare (insn, operands)
rtx insn;
rtx *operands;
{
int stack_top_dies;
rtx body = XVECEXP (PATTERN (insn), 0, 0);
int unordered_compare = GET_MODE (SET_SRC (body)) == CCFPEQmode;
if (! STACK_TOP_P (operands[0]))
abort ();
stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
if (STACK_REG_P (operands[1])
&& stack_top_dies
&& find_regno_note (insn, REG_DEAD, REGNO (operands[1]))
&& REGNO (operands[1]) != FIRST_STACK_REG)
{
/* If both the top of the 387 stack dies, and the other operand
is also a stack register that dies, then this must be a
`fcompp' float compare */
if (unordered_compare)
output_asm_insn ("fucompp", operands);
else
output_asm_insn ("fcompp", operands);
}
else
{
static char buf[100];
/* Decide if this is the integer or float compare opcode, or the
unordered float compare. */
if (unordered_compare)
strcpy (buf, "fucom");
else if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_FLOAT)
strcpy (buf, "fcom");
else
strcpy (buf, "ficom");
/* Modify the opcode if the 387 stack is to be popped. */
if (stack_top_dies)
strcat (buf, "p");
if (NON_STACK_REG_P (operands[1]))
output_op_from_reg (operands[1], strcat (buf, AS1 (%z0,%1)));
else
output_asm_insn (strcat (buf, AS1 (%z1,%y1)), operands);
}
/* Now retrieve the condition code. */
return output_fp_cc0_set (insn);
}
/* Output opcodes to transfer the results of FP compare or test INSN
from the FPU to the CPU flags. If TARGET_IEEE_FP, ensure that if the
result of the compare or test is unordered, no comparison operator
succeeds except NE. Return an output template, if any. */
char *
output_fp_cc0_set (insn)
rtx insn;
{
rtx xops[3];
rtx unordered_label;
rtx next;
enum rtx_code code;
xops[0] = gen_rtx (REG, HImode, 0);
output_asm_insn (AS1 (fnsts%W0,%0), xops);
if (! TARGET_IEEE_FP)
return "sahf";
next = next_cc0_user (insn);
if (next == NULL_RTX)
abort ();
if (GET_CODE (next) == JUMP_INSN
&& GET_CODE (PATTERN (next)) == SET
&& SET_DEST (PATTERN (next)) == pc_rtx
&& GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
{
code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
}
else if (GET_CODE (PATTERN (next)) == SET)
{
code = GET_CODE (SET_SRC (PATTERN (next)));
}
else
abort ();
xops[0] = gen_rtx (REG, QImode, 0);
switch (code)
{
case GT:
xops[1] = GEN_INT (0x45);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
/* je label */
break;
case LT:
xops[1] = GEN_INT (0x45);
xops[2] = GEN_INT (0x01);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
/* je label */
break;
case GE:
xops[1] = GEN_INT (0x05);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
/* je label */
break;
case LE:
xops[1] = GEN_INT (0x45);
xops[2] = GEN_INT (0x40);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
output_asm_insn (AS1 (dec%B0,%h0), xops);
output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
/* jb label */
break;
case EQ:
xops[1] = GEN_INT (0x45);
xops[2] = GEN_INT (0x40);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
/* je label */
break;
case NE:
xops[1] = GEN_INT (0x44);
xops[2] = GEN_INT (0x40);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
output_asm_insn (AS2 (xor%B0,%2,%h0), xops);
/* jne label */
break;
case GTU:
case LTU:
case GEU:
case LEU:
default:
abort ();
}
RET;
}
#define MAX_386_STACK_LOCALS 2
static rtx i386_stack_locals[(int) MAX_MACHINE_MODE][MAX_386_STACK_LOCALS];
/* Define the structure for the machine field in struct function. */
struct machine_function
{
rtx i386_stack_locals[(int) MAX_MACHINE_MODE][MAX_386_STACK_LOCALS];
};
/* Functions to save and restore i386_stack_locals.
These will be called, via pointer variables,
from push_function_context and pop_function_context. */
void
save_386_machine_status (p)
struct function *p;
{
p->machine = (struct machine_function *) xmalloc (sizeof i386_stack_locals);
bcopy ((char *) i386_stack_locals, (char *) p->machine->i386_stack_locals,
sizeof i386_stack_locals);
}
void
restore_386_machine_status (p)
struct function *p;
{
bcopy ((char *) p->machine->i386_stack_locals, (char *) i386_stack_locals,
sizeof i386_stack_locals);
free (p->machine);
}
/* Clear stack slot assignments remembered from previous functions.
This is called from INIT_EXPANDERS once before RTL is emitted for each
function. */
void
clear_386_stack_locals ()
{
enum machine_mode mode;
int n;
for (mode = VOIDmode; (int) mode < (int) MAX_MACHINE_MODE;
mode = (enum machine_mode) ((int) mode + 1))
for (n = 0; n < MAX_386_STACK_LOCALS; n++)
i386_stack_locals[(int) mode][n] = NULL_RTX;
/* Arrange to save and restore i386_stack_locals around nested functions. */
save_machine_status = save_386_machine_status;
restore_machine_status = restore_386_machine_status;
}
/* Return a MEM corresponding to a stack slot with mode MODE.
Allocate a new slot if necessary.
The RTL for a function can have several slots available: N is
which slot to use. */
rtx
assign_386_stack_local (mode, n)
enum machine_mode mode;
int n;
{
if (n < 0 || n >= MAX_386_STACK_LOCALS)
abort ();
if (i386_stack_locals[(int) mode][n] == NULL_RTX)
i386_stack_locals[(int) mode][n]
= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
return i386_stack_locals[(int) mode][n];
}