c782ea8bb5
Move the type and function pointers for operations on existing send tags (modify, query, next, free) out of 'struct ifnet' and into a new 'struct if_snd_tag_sw'. A pointer to this structure is added to the generic part of send tags and is initialized by m_snd_tag_init() (which now accepts a switch structure as a new argument in place of the type). Previously, device driver ifnet methods switched on the type to call type-specific functions. Now, those type-specific functions are saved in the switch structure and invoked directly. In addition, this more gracefully permits multiple implementations of the same tag within a driver. In particular, NIC TLS for future Chelsio adapters will use a different implementation than the existing NIC TLS support for T6 adapters. Reviewed by: gallatin, hselasky, kib (older version) Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D31572
2279 lines
56 KiB
C
2279 lines
56 KiB
C
/*-
|
|
* Copyright 1998 Massachusetts Institute of Technology
|
|
* Copyright 2012 ADARA Networks, Inc.
|
|
* Copyright 2017 Dell EMC Isilon
|
|
*
|
|
* Portions of this software were developed by Robert N. M. Watson under
|
|
* contract to ADARA Networks, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and
|
|
* its documentation for any purpose and without fee is hereby
|
|
* granted, provided that both the above copyright notice and this
|
|
* permission notice appear in all copies, that both the above
|
|
* copyright notice and this permission notice appear in all
|
|
* supporting documentation, and that the name of M.I.T. not be used
|
|
* in advertising or publicity pertaining to distribution of the
|
|
* software without specific, written prior permission. M.I.T. makes
|
|
* no representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied
|
|
* warranty.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
|
|
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
|
|
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
|
|
* This is sort of sneaky in the implementation, since
|
|
* we need to pretend to be enough of an Ethernet implementation
|
|
* to make arp work. The way we do this is by telling everyone
|
|
* that we are an Ethernet, and then catch the packets that
|
|
* ether_output() sends to us via if_transmit(), rewrite them for
|
|
* use by the real outgoing interface, and ask it to send them.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_kern_tls.h"
|
|
#include "opt_vlan.h"
|
|
#include "opt_ratelimit.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rmlock.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_clone.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
#include <net/route.h>
|
|
#include <net/vnet.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
/*
|
|
* XXX: declare here to avoid to include many inet6 related files..
|
|
* should be more generalized?
|
|
*/
|
|
extern void nd6_setmtu(struct ifnet *);
|
|
#endif
|
|
|
|
#define VLAN_DEF_HWIDTH 4
|
|
#define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST)
|
|
|
|
#define UP_AND_RUNNING(ifp) \
|
|
((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
|
|
|
|
CK_SLIST_HEAD(ifvlanhead, ifvlan);
|
|
|
|
struct ifvlantrunk {
|
|
struct ifnet *parent; /* parent interface of this trunk */
|
|
struct mtx lock;
|
|
#ifdef VLAN_ARRAY
|
|
#define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1)
|
|
struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */
|
|
#else
|
|
struct ifvlanhead *hash; /* dynamic hash-list table */
|
|
uint16_t hmask;
|
|
uint16_t hwidth;
|
|
#endif
|
|
int refcnt;
|
|
};
|
|
|
|
#if defined(KERN_TLS) || defined(RATELIMIT)
|
|
struct vlan_snd_tag {
|
|
struct m_snd_tag com;
|
|
struct m_snd_tag *tag;
|
|
};
|
|
|
|
static inline struct vlan_snd_tag *
|
|
mst_to_vst(struct m_snd_tag *mst)
|
|
{
|
|
|
|
return (__containerof(mst, struct vlan_snd_tag, com));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This macro provides a facility to iterate over every vlan on a trunk with
|
|
* the assumption that none will be added/removed during iteration.
|
|
*/
|
|
#ifdef VLAN_ARRAY
|
|
#define VLAN_FOREACH(_ifv, _trunk) \
|
|
size_t _i; \
|
|
for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
|
|
if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
|
|
#else /* VLAN_ARRAY */
|
|
#define VLAN_FOREACH(_ifv, _trunk) \
|
|
struct ifvlan *_next; \
|
|
size_t _i; \
|
|
for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
|
|
CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
|
|
#endif /* VLAN_ARRAY */
|
|
|
|
/*
|
|
* This macro provides a facility to iterate over every vlan on a trunk while
|
|
* also modifying the number of vlans on the trunk. The iteration continues
|
|
* until some condition is met or there are no more vlans on the trunk.
|
|
*/
|
|
#ifdef VLAN_ARRAY
|
|
/* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
|
|
#define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
|
|
size_t _i; \
|
|
for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
|
|
if (((_ifv) = (_trunk)->vlans[_i]))
|
|
#else /* VLAN_ARRAY */
|
|
/*
|
|
* The hash table case is more complicated. We allow for the hash table to be
|
|
* modified (i.e. vlans removed) while we are iterating over it. To allow for
|
|
* this we must restart the iteration every time we "touch" something during
|
|
* the iteration, since removal will resize the hash table and invalidate our
|
|
* current position. If acting on the touched element causes the trunk to be
|
|
* emptied, then iteration also stops.
|
|
*/
|
|
#define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
|
|
size_t _i; \
|
|
bool _touch = false; \
|
|
for (_i = 0; \
|
|
!(_cond) && _i < (1 << (_trunk)->hwidth); \
|
|
_i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
|
|
if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
|
|
(_touch = true))
|
|
#endif /* VLAN_ARRAY */
|
|
|
|
struct vlan_mc_entry {
|
|
struct sockaddr_dl mc_addr;
|
|
CK_SLIST_ENTRY(vlan_mc_entry) mc_entries;
|
|
struct epoch_context mc_epoch_ctx;
|
|
};
|
|
|
|
struct ifvlan {
|
|
struct ifvlantrunk *ifv_trunk;
|
|
struct ifnet *ifv_ifp;
|
|
#define TRUNK(ifv) ((ifv)->ifv_trunk)
|
|
#define PARENT(ifv) (TRUNK(ifv)->parent)
|
|
void *ifv_cookie;
|
|
int ifv_pflags; /* special flags we have set on parent */
|
|
int ifv_capenable;
|
|
int ifv_encaplen; /* encapsulation length */
|
|
int ifv_mtufudge; /* MTU fudged by this much */
|
|
int ifv_mintu; /* min transmission unit */
|
|
struct ether_8021q_tag ifv_qtag;
|
|
#define ifv_proto ifv_qtag.proto
|
|
#define ifv_vid ifv_qtag.vid
|
|
#define ifv_pcp ifv_qtag.pcp
|
|
struct task lladdr_task;
|
|
CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
|
|
#ifndef VLAN_ARRAY
|
|
CK_SLIST_ENTRY(ifvlan) ifv_list;
|
|
#endif
|
|
};
|
|
|
|
/* Special flags we should propagate to parent. */
|
|
static struct {
|
|
int flag;
|
|
int (*func)(struct ifnet *, int);
|
|
} vlan_pflags[] = {
|
|
{IFF_PROMISC, ifpromisc},
|
|
{IFF_ALLMULTI, if_allmulti},
|
|
{0, NULL}
|
|
};
|
|
|
|
extern int vlan_mtag_pcp;
|
|
|
|
static const char vlanname[] = "vlan";
|
|
static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
|
|
|
|
static eventhandler_tag ifdetach_tag;
|
|
static eventhandler_tag iflladdr_tag;
|
|
|
|
/*
|
|
* if_vlan uses two module-level synchronizations primitives to allow concurrent
|
|
* modification of vlan interfaces and (mostly) allow for vlans to be destroyed
|
|
* while they are being used for tx/rx. To accomplish this in a way that has
|
|
* acceptable performance and cooperation with other parts of the network stack
|
|
* there is a non-sleepable epoch(9) and an sx(9).
|
|
*
|
|
* The performance-sensitive paths that warrant using the epoch(9) are
|
|
* vlan_transmit and vlan_input. Both have to check for the vlan interface's
|
|
* existence using if_vlantrunk, and being in the network tx/rx paths the use
|
|
* of an epoch(9) gives a measureable improvement in performance.
|
|
*
|
|
* The reason for having an sx(9) is mostly because there are still areas that
|
|
* must be sleepable and also have safe concurrent access to a vlan interface.
|
|
* Since the sx(9) exists, it is used by default in most paths unless sleeping
|
|
* is not permitted, or if it is not clear whether sleeping is permitted.
|
|
*
|
|
*/
|
|
#define _VLAN_SX_ID ifv_sx
|
|
|
|
static struct sx _VLAN_SX_ID;
|
|
|
|
#define VLAN_LOCKING_INIT() \
|
|
sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
|
|
|
|
#define VLAN_LOCKING_DESTROY() \
|
|
sx_destroy(&_VLAN_SX_ID)
|
|
|
|
#define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID)
|
|
#define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID)
|
|
#define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID)
|
|
#define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID)
|
|
#define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
|
|
#define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
|
|
#define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED)
|
|
|
|
/*
|
|
* We also have a per-trunk mutex that should be acquired when changing
|
|
* its state.
|
|
*/
|
|
#define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
|
|
#define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock)
|
|
#define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock)
|
|
#define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock)
|
|
#define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED);
|
|
|
|
/*
|
|
* The VLAN_ARRAY substitutes the dynamic hash with a static array
|
|
* with 4096 entries. In theory this can give a boost in processing,
|
|
* however in practice it does not. Probably this is because the array
|
|
* is too big to fit into CPU cache.
|
|
*/
|
|
#ifndef VLAN_ARRAY
|
|
static void vlan_inithash(struct ifvlantrunk *trunk);
|
|
static void vlan_freehash(struct ifvlantrunk *trunk);
|
|
static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
|
|
static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
|
|
static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
|
|
static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
|
|
uint16_t vid);
|
|
#endif
|
|
static void trunk_destroy(struct ifvlantrunk *trunk);
|
|
|
|
static void vlan_init(void *foo);
|
|
static void vlan_input(struct ifnet *ifp, struct mbuf *m);
|
|
static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
|
|
#if defined(KERN_TLS) || defined(RATELIMIT)
|
|
static int vlan_snd_tag_alloc(struct ifnet *,
|
|
union if_snd_tag_alloc_params *, struct m_snd_tag **);
|
|
static int vlan_snd_tag_modify(struct m_snd_tag *,
|
|
union if_snd_tag_modify_params *);
|
|
static int vlan_snd_tag_query(struct m_snd_tag *,
|
|
union if_snd_tag_query_params *);
|
|
static void vlan_snd_tag_free(struct m_snd_tag *);
|
|
static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
|
|
static void vlan_ratelimit_query(struct ifnet *,
|
|
struct if_ratelimit_query_results *);
|
|
#endif
|
|
static void vlan_qflush(struct ifnet *ifp);
|
|
static int vlan_setflag(struct ifnet *ifp, int flag, int status,
|
|
int (*func)(struct ifnet *, int));
|
|
static int vlan_setflags(struct ifnet *ifp, int status);
|
|
static int vlan_setmulti(struct ifnet *ifp);
|
|
static int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
|
|
#ifdef ALTQ
|
|
static void vlan_altq_start(struct ifnet *ifp);
|
|
static int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m);
|
|
#endif
|
|
static int vlan_output(struct ifnet *ifp, struct mbuf *m,
|
|
const struct sockaddr *dst, struct route *ro);
|
|
static void vlan_unconfig(struct ifnet *ifp);
|
|
static void vlan_unconfig_locked(struct ifnet *ifp, int departing);
|
|
static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
|
|
uint16_t proto);
|
|
static void vlan_link_state(struct ifnet *ifp);
|
|
static void vlan_capabilities(struct ifvlan *ifv);
|
|
static void vlan_trunk_capabilities(struct ifnet *ifp);
|
|
|
|
static struct ifnet *vlan_clone_match_ethervid(const char *, int *);
|
|
static int vlan_clone_match(struct if_clone *, const char *);
|
|
static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
|
|
static int vlan_clone_destroy(struct if_clone *, struct ifnet *);
|
|
|
|
static void vlan_ifdetach(void *arg, struct ifnet *ifp);
|
|
static void vlan_iflladdr(void *arg, struct ifnet *ifp);
|
|
|
|
static void vlan_lladdr_fn(void *arg, int pending);
|
|
|
|
static struct if_clone *vlan_cloner;
|
|
|
|
#ifdef VIMAGE
|
|
VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
|
|
#define V_vlan_cloner VNET(vlan_cloner)
|
|
#endif
|
|
|
|
#ifdef RATELIMIT
|
|
static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = {
|
|
.snd_tag_modify = vlan_snd_tag_modify,
|
|
.snd_tag_query = vlan_snd_tag_query,
|
|
.snd_tag_free = vlan_snd_tag_free,
|
|
.next_snd_tag = vlan_next_snd_tag,
|
|
.type = IF_SND_TAG_TYPE_UNLIMITED
|
|
};
|
|
|
|
static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = {
|
|
.snd_tag_modify = vlan_snd_tag_modify,
|
|
.snd_tag_query = vlan_snd_tag_query,
|
|
.snd_tag_free = vlan_snd_tag_free,
|
|
.next_snd_tag = vlan_next_snd_tag,
|
|
.type = IF_SND_TAG_TYPE_RATE_LIMIT
|
|
};
|
|
#endif
|
|
|
|
#ifdef KERN_TLS
|
|
static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = {
|
|
.snd_tag_modify = vlan_snd_tag_modify,
|
|
.snd_tag_query = vlan_snd_tag_query,
|
|
.snd_tag_free = vlan_snd_tag_free,
|
|
.next_snd_tag = vlan_next_snd_tag,
|
|
.type = IF_SND_TAG_TYPE_TLS
|
|
};
|
|
|
|
#ifdef RATELIMIT
|
|
static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = {
|
|
.snd_tag_modify = vlan_snd_tag_modify,
|
|
.snd_tag_query = vlan_snd_tag_query,
|
|
.snd_tag_free = vlan_snd_tag_free,
|
|
.next_snd_tag = vlan_next_snd_tag,
|
|
.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT
|
|
};
|
|
#endif
|
|
#endif
|
|
|
|
static void
|
|
vlan_mc_free(struct epoch_context *ctx)
|
|
{
|
|
struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
|
|
free(mc, M_VLAN);
|
|
}
|
|
|
|
#ifndef VLAN_ARRAY
|
|
#define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
|
|
|
|
static void
|
|
vlan_inithash(struct ifvlantrunk *trunk)
|
|
{
|
|
int i, n;
|
|
|
|
/*
|
|
* The trunk must not be locked here since we call malloc(M_WAITOK).
|
|
* It is OK in case this function is called before the trunk struct
|
|
* gets hooked up and becomes visible from other threads.
|
|
*/
|
|
|
|
KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
|
|
("%s: hash already initialized", __func__));
|
|
|
|
trunk->hwidth = VLAN_DEF_HWIDTH;
|
|
n = 1 << trunk->hwidth;
|
|
trunk->hmask = n - 1;
|
|
trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
|
|
for (i = 0; i < n; i++)
|
|
CK_SLIST_INIT(&trunk->hash[i]);
|
|
}
|
|
|
|
static void
|
|
vlan_freehash(struct ifvlantrunk *trunk)
|
|
{
|
|
#ifdef INVARIANTS
|
|
int i;
|
|
|
|
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
|
|
for (i = 0; i < (1 << trunk->hwidth); i++)
|
|
KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
|
|
("%s: hash table not empty", __func__));
|
|
#endif
|
|
free(trunk->hash, M_VLAN);
|
|
trunk->hash = NULL;
|
|
trunk->hwidth = trunk->hmask = 0;
|
|
}
|
|
|
|
static int
|
|
vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
|
|
{
|
|
int i, b;
|
|
struct ifvlan *ifv2;
|
|
|
|
VLAN_XLOCK_ASSERT();
|
|
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
|
|
|
|
b = 1 << trunk->hwidth;
|
|
i = HASH(ifv->ifv_vid, trunk->hmask);
|
|
CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
|
|
if (ifv->ifv_vid == ifv2->ifv_vid)
|
|
return (EEXIST);
|
|
|
|
/*
|
|
* Grow the hash when the number of vlans exceeds half of the number of
|
|
* hash buckets squared. This will make the average linked-list length
|
|
* buckets/2.
|
|
*/
|
|
if (trunk->refcnt > (b * b) / 2) {
|
|
vlan_growhash(trunk, 1);
|
|
i = HASH(ifv->ifv_vid, trunk->hmask);
|
|
}
|
|
CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
|
|
trunk->refcnt++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
|
|
{
|
|
int i, b;
|
|
struct ifvlan *ifv2;
|
|
|
|
VLAN_XLOCK_ASSERT();
|
|
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
|
|
|
|
b = 1 << trunk->hwidth;
|
|
i = HASH(ifv->ifv_vid, trunk->hmask);
|
|
CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
|
|
if (ifv2 == ifv) {
|
|
trunk->refcnt--;
|
|
CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
|
|
if (trunk->refcnt < (b * b) / 2)
|
|
vlan_growhash(trunk, -1);
|
|
return (0);
|
|
}
|
|
|
|
panic("%s: vlan not found\n", __func__);
|
|
return (ENOENT); /*NOTREACHED*/
|
|
}
|
|
|
|
/*
|
|
* Grow the hash larger or smaller if memory permits.
|
|
*/
|
|
static void
|
|
vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
|
|
{
|
|
struct ifvlan *ifv;
|
|
struct ifvlanhead *hash2;
|
|
int hwidth2, i, j, n, n2;
|
|
|
|
VLAN_XLOCK_ASSERT();
|
|
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
|
|
|
|
if (howmuch == 0) {
|
|
/* Harmless yet obvious coding error */
|
|
printf("%s: howmuch is 0\n", __func__);
|
|
return;
|
|
}
|
|
|
|
hwidth2 = trunk->hwidth + howmuch;
|
|
n = 1 << trunk->hwidth;
|
|
n2 = 1 << hwidth2;
|
|
/* Do not shrink the table below the default */
|
|
if (hwidth2 < VLAN_DEF_HWIDTH)
|
|
return;
|
|
|
|
hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
|
|
if (hash2 == NULL) {
|
|
printf("%s: out of memory -- hash size not changed\n",
|
|
__func__);
|
|
return; /* We can live with the old hash table */
|
|
}
|
|
for (j = 0; j < n2; j++)
|
|
CK_SLIST_INIT(&hash2[j]);
|
|
for (i = 0; i < n; i++)
|
|
while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
|
|
CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
|
|
j = HASH(ifv->ifv_vid, n2 - 1);
|
|
CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
|
|
}
|
|
NET_EPOCH_WAIT();
|
|
free(trunk->hash, M_VLAN);
|
|
trunk->hash = hash2;
|
|
trunk->hwidth = hwidth2;
|
|
trunk->hmask = n2 - 1;
|
|
|
|
if (bootverbose)
|
|
if_printf(trunk->parent,
|
|
"VLAN hash table resized from %d to %d buckets\n", n, n2);
|
|
}
|
|
|
|
static __inline struct ifvlan *
|
|
vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
|
|
{
|
|
struct ifvlan *ifv;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
|
|
if (ifv->ifv_vid == vid)
|
|
return (ifv);
|
|
return (NULL);
|
|
}
|
|
|
|
#if 0
|
|
/* Debugging code to view the hashtables. */
|
|
static void
|
|
vlan_dumphash(struct ifvlantrunk *trunk)
|
|
{
|
|
int i;
|
|
struct ifvlan *ifv;
|
|
|
|
for (i = 0; i < (1 << trunk->hwidth); i++) {
|
|
printf("%d: ", i);
|
|
CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
|
|
printf("%s ", ifv->ifv_ifp->if_xname);
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif /* 0 */
|
|
#else
|
|
|
|
static __inline struct ifvlan *
|
|
vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
|
|
{
|
|
|
|
return trunk->vlans[vid];
|
|
}
|
|
|
|
static __inline int
|
|
vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
|
|
{
|
|
|
|
if (trunk->vlans[ifv->ifv_vid] != NULL)
|
|
return EEXIST;
|
|
trunk->vlans[ifv->ifv_vid] = ifv;
|
|
trunk->refcnt++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline int
|
|
vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
|
|
{
|
|
|
|
trunk->vlans[ifv->ifv_vid] = NULL;
|
|
trunk->refcnt--;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline void
|
|
vlan_freehash(struct ifvlantrunk *trunk)
|
|
{
|
|
}
|
|
|
|
static __inline void
|
|
vlan_inithash(struct ifvlantrunk *trunk)
|
|
{
|
|
}
|
|
|
|
#endif /* !VLAN_ARRAY */
|
|
|
|
static void
|
|
trunk_destroy(struct ifvlantrunk *trunk)
|
|
{
|
|
VLAN_XLOCK_ASSERT();
|
|
|
|
vlan_freehash(trunk);
|
|
trunk->parent->if_vlantrunk = NULL;
|
|
TRUNK_LOCK_DESTROY(trunk);
|
|
if_rele(trunk->parent);
|
|
free(trunk, M_VLAN);
|
|
}
|
|
|
|
/*
|
|
* Program our multicast filter. What we're actually doing is
|
|
* programming the multicast filter of the parent. This has the
|
|
* side effect of causing the parent interface to receive multicast
|
|
* traffic that it doesn't really want, which ends up being discarded
|
|
* later by the upper protocol layers. Unfortunately, there's no way
|
|
* to avoid this: there really is only one physical interface.
|
|
*/
|
|
static int
|
|
vlan_setmulti(struct ifnet *ifp)
|
|
{
|
|
struct ifnet *ifp_p;
|
|
struct ifmultiaddr *ifma;
|
|
struct ifvlan *sc;
|
|
struct vlan_mc_entry *mc;
|
|
int error;
|
|
|
|
VLAN_XLOCK_ASSERT();
|
|
|
|
/* Find the parent. */
|
|
sc = ifp->if_softc;
|
|
ifp_p = PARENT(sc);
|
|
|
|
CURVNET_SET_QUIET(ifp_p->if_vnet);
|
|
|
|
/* First, remove any existing filter entries. */
|
|
while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
|
|
CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
|
|
(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
|
|
NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
|
|
}
|
|
|
|
/* Now program new ones. */
|
|
IF_ADDR_WLOCK(ifp);
|
|
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
|
|
if (mc == NULL) {
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
CURVNET_RESTORE();
|
|
return (ENOMEM);
|
|
}
|
|
bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
|
|
mc->mc_addr.sdl_index = ifp_p->if_index;
|
|
CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
|
|
}
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
|
|
error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
|
|
NULL);
|
|
if (error) {
|
|
CURVNET_RESTORE();
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
CURVNET_RESTORE();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* A handler for parent interface link layer address changes.
|
|
* If the parent interface link layer address is changed we
|
|
* should also change it on all children vlans.
|
|
*/
|
|
static void
|
|
vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifvlan *ifv;
|
|
struct ifnet *ifv_ifp;
|
|
struct ifvlantrunk *trunk;
|
|
struct sockaddr_dl *sdl;
|
|
|
|
/* Need the epoch since this is run on taskqueue_swi. */
|
|
NET_EPOCH_ENTER(et);
|
|
trunk = ifp->if_vlantrunk;
|
|
if (trunk == NULL) {
|
|
NET_EPOCH_EXIT(et);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* OK, it's a trunk. Loop over and change all vlan's lladdrs on it.
|
|
* We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
|
|
* ioctl calls on the parent garbling the lladdr of the child vlan.
|
|
*/
|
|
TRUNK_WLOCK(trunk);
|
|
VLAN_FOREACH(ifv, trunk) {
|
|
/*
|
|
* Copy new new lladdr into the ifv_ifp, enqueue a task
|
|
* to actually call if_setlladdr. if_setlladdr needs to
|
|
* be deferred to a taskqueue because it will call into
|
|
* the if_vlan ioctl path and try to acquire the global
|
|
* lock.
|
|
*/
|
|
ifv_ifp = ifv->ifv_ifp;
|
|
bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
|
|
ifp->if_addrlen);
|
|
sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
|
|
sdl->sdl_alen = ifp->if_addrlen;
|
|
taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
|
|
}
|
|
TRUNK_WUNLOCK(trunk);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
/*
|
|
* A handler for network interface departure events.
|
|
* Track departure of trunks here so that we don't access invalid
|
|
* pointers or whatever if a trunk is ripped from under us, e.g.,
|
|
* by ejecting its hot-plug card. However, if an ifnet is simply
|
|
* being renamed, then there's no need to tear down the state.
|
|
*/
|
|
static void
|
|
vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv;
|
|
struct ifvlantrunk *trunk;
|
|
|
|
/* If the ifnet is just being renamed, don't do anything. */
|
|
if (ifp->if_flags & IFF_RENAMING)
|
|
return;
|
|
VLAN_XLOCK();
|
|
trunk = ifp->if_vlantrunk;
|
|
if (trunk == NULL) {
|
|
VLAN_XUNLOCK();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* OK, it's a trunk. Loop over and detach all vlan's on it.
|
|
* Check trunk pointer after each vlan_unconfig() as it will
|
|
* free it and set to NULL after the last vlan was detached.
|
|
*/
|
|
VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
|
|
ifp->if_vlantrunk == NULL)
|
|
vlan_unconfig_locked(ifv->ifv_ifp, 1);
|
|
|
|
/* Trunk should have been destroyed in vlan_unconfig(). */
|
|
KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
|
|
VLAN_XUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Return the trunk device for a virtual interface.
|
|
*/
|
|
static struct ifnet *
|
|
vlan_trunkdev(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
if (ifp->if_type != IFT_L2VLAN)
|
|
return (NULL);
|
|
|
|
ifv = ifp->if_softc;
|
|
ifp = NULL;
|
|
if (ifv->ifv_trunk)
|
|
ifp = PARENT(ifv);
|
|
return (ifp);
|
|
}
|
|
|
|
/*
|
|
* Return the 12-bit VLAN VID for this interface, for use by external
|
|
* components such as Infiniband.
|
|
*
|
|
* XXXRW: Note that the function name here is historical; it should be named
|
|
* vlan_vid().
|
|
*/
|
|
static int
|
|
vlan_tag(struct ifnet *ifp, uint16_t *vidp)
|
|
{
|
|
struct ifvlan *ifv;
|
|
|
|
if (ifp->if_type != IFT_L2VLAN)
|
|
return (EINVAL);
|
|
ifv = ifp->if_softc;
|
|
*vidp = ifv->ifv_vid;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
|
|
{
|
|
struct ifvlan *ifv;
|
|
|
|
if (ifp->if_type != IFT_L2VLAN)
|
|
return (EINVAL);
|
|
ifv = ifp->if_softc;
|
|
*pcpp = ifv->ifv_pcp;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return a driver specific cookie for this interface. Synchronization
|
|
* with setcookie must be provided by the driver.
|
|
*/
|
|
static void *
|
|
vlan_cookie(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv;
|
|
|
|
if (ifp->if_type != IFT_L2VLAN)
|
|
return (NULL);
|
|
ifv = ifp->if_softc;
|
|
return (ifv->ifv_cookie);
|
|
}
|
|
|
|
/*
|
|
* Store a cookie in our softc that drivers can use to store driver
|
|
* private per-instance data in.
|
|
*/
|
|
static int
|
|
vlan_setcookie(struct ifnet *ifp, void *cookie)
|
|
{
|
|
struct ifvlan *ifv;
|
|
|
|
if (ifp->if_type != IFT_L2VLAN)
|
|
return (EINVAL);
|
|
ifv = ifp->if_softc;
|
|
ifv->ifv_cookie = cookie;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return the vlan device present at the specific VID.
|
|
*/
|
|
static struct ifnet *
|
|
vlan_devat(struct ifnet *ifp, uint16_t vid)
|
|
{
|
|
struct ifvlantrunk *trunk;
|
|
struct ifvlan *ifv;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
trunk = ifp->if_vlantrunk;
|
|
if (trunk == NULL)
|
|
return (NULL);
|
|
ifp = NULL;
|
|
ifv = vlan_gethash(trunk, vid);
|
|
if (ifv)
|
|
ifp = ifv->ifv_ifp;
|
|
return (ifp);
|
|
}
|
|
|
|
/*
|
|
* VLAN support can be loaded as a module. The only place in the
|
|
* system that's intimately aware of this is ether_input. We hook
|
|
* into this code through vlan_input_p which is defined there and
|
|
* set here. No one else in the system should be aware of this so
|
|
* we use an explicit reference here.
|
|
*/
|
|
extern void (*vlan_input_p)(struct ifnet *, struct mbuf *);
|
|
|
|
/* For if_link_state_change() eyes only... */
|
|
extern void (*vlan_link_state_p)(struct ifnet *);
|
|
|
|
static int
|
|
vlan_modevent(module_t mod, int type, void *data)
|
|
{
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
|
|
vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
|
|
if (ifdetach_tag == NULL)
|
|
return (ENOMEM);
|
|
iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
|
|
vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
|
|
if (iflladdr_tag == NULL)
|
|
return (ENOMEM);
|
|
VLAN_LOCKING_INIT();
|
|
vlan_input_p = vlan_input;
|
|
vlan_link_state_p = vlan_link_state;
|
|
vlan_trunk_cap_p = vlan_trunk_capabilities;
|
|
vlan_trunkdev_p = vlan_trunkdev;
|
|
vlan_cookie_p = vlan_cookie;
|
|
vlan_setcookie_p = vlan_setcookie;
|
|
vlan_tag_p = vlan_tag;
|
|
vlan_pcp_p = vlan_pcp;
|
|
vlan_devat_p = vlan_devat;
|
|
#ifndef VIMAGE
|
|
vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
|
|
vlan_clone_create, vlan_clone_destroy);
|
|
#endif
|
|
if (bootverbose)
|
|
printf("vlan: initialized, using "
|
|
#ifdef VLAN_ARRAY
|
|
"full-size arrays"
|
|
#else
|
|
"hash tables with chaining"
|
|
#endif
|
|
|
|
"\n");
|
|
break;
|
|
case MOD_UNLOAD:
|
|
#ifndef VIMAGE
|
|
if_clone_detach(vlan_cloner);
|
|
#endif
|
|
EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
|
|
EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
|
|
vlan_input_p = NULL;
|
|
vlan_link_state_p = NULL;
|
|
vlan_trunk_cap_p = NULL;
|
|
vlan_trunkdev_p = NULL;
|
|
vlan_tag_p = NULL;
|
|
vlan_cookie_p = NULL;
|
|
vlan_setcookie_p = NULL;
|
|
vlan_devat_p = NULL;
|
|
VLAN_LOCKING_DESTROY();
|
|
if (bootverbose)
|
|
printf("vlan: unloaded\n");
|
|
break;
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static moduledata_t vlan_mod = {
|
|
"if_vlan",
|
|
vlan_modevent,
|
|
0
|
|
};
|
|
|
|
DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
|
|
MODULE_VERSION(if_vlan, 3);
|
|
|
|
#ifdef VIMAGE
|
|
static void
|
|
vnet_vlan_init(const void *unused __unused)
|
|
{
|
|
|
|
vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
|
|
vlan_clone_create, vlan_clone_destroy);
|
|
V_vlan_cloner = vlan_cloner;
|
|
}
|
|
VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
|
|
vnet_vlan_init, NULL);
|
|
|
|
static void
|
|
vnet_vlan_uninit(const void *unused __unused)
|
|
{
|
|
|
|
if_clone_detach(V_vlan_cloner);
|
|
}
|
|
VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
|
|
vnet_vlan_uninit, NULL);
|
|
#endif
|
|
|
|
/*
|
|
* Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
|
|
*/
|
|
static struct ifnet *
|
|
vlan_clone_match_ethervid(const char *name, int *vidp)
|
|
{
|
|
char ifname[IFNAMSIZ];
|
|
char *cp;
|
|
struct ifnet *ifp;
|
|
int vid;
|
|
|
|
strlcpy(ifname, name, IFNAMSIZ);
|
|
if ((cp = strrchr(ifname, '.')) == NULL)
|
|
return (NULL);
|
|
*cp = '\0';
|
|
if ((ifp = ifunit_ref(ifname)) == NULL)
|
|
return (NULL);
|
|
/* Parse VID. */
|
|
if (*++cp == '\0') {
|
|
if_rele(ifp);
|
|
return (NULL);
|
|
}
|
|
vid = 0;
|
|
for(; *cp >= '0' && *cp <= '9'; cp++)
|
|
vid = (vid * 10) + (*cp - '0');
|
|
if (*cp != '\0') {
|
|
if_rele(ifp);
|
|
return (NULL);
|
|
}
|
|
if (vidp != NULL)
|
|
*vidp = vid;
|
|
|
|
return (ifp);
|
|
}
|
|
|
|
static int
|
|
vlan_clone_match(struct if_clone *ifc, const char *name)
|
|
{
|
|
struct ifnet *ifp;
|
|
const char *cp;
|
|
|
|
ifp = vlan_clone_match_ethervid(name, NULL);
|
|
if (ifp != NULL) {
|
|
if_rele(ifp);
|
|
return (1);
|
|
}
|
|
|
|
if (strncmp(vlanname, name, strlen(vlanname)) != 0)
|
|
return (0);
|
|
for (cp = name + 4; *cp != '\0'; cp++) {
|
|
if (*cp < '0' || *cp > '9')
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
|
|
{
|
|
char *dp;
|
|
bool wildcard = false;
|
|
bool subinterface = false;
|
|
int unit;
|
|
int error;
|
|
int vid = 0;
|
|
uint16_t proto = ETHERTYPE_VLAN;
|
|
struct ifvlan *ifv;
|
|
struct ifnet *ifp;
|
|
struct ifnet *p = NULL;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr_dl *sdl;
|
|
struct vlanreq vlr;
|
|
static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */
|
|
|
|
|
|
/*
|
|
* There are three ways to specify the cloned device:
|
|
* o pass a parameter block with the clone request.
|
|
* o specify parameters in the text of the clone device name
|
|
* o specify no parameters and get an unattached device that
|
|
* must be configured separately.
|
|
* The first technique is preferred; the latter two are supported
|
|
* for backwards compatibility.
|
|
*
|
|
* XXXRW: Note historic use of the word "tag" here. New ioctls may be
|
|
* called for.
|
|
*/
|
|
|
|
if (params) {
|
|
error = copyin(params, &vlr, sizeof(vlr));
|
|
if (error)
|
|
return error;
|
|
vid = vlr.vlr_tag;
|
|
proto = vlr.vlr_proto;
|
|
|
|
#ifdef COMPAT_FREEBSD12
|
|
if (proto == 0)
|
|
proto = ETHERTYPE_VLAN;
|
|
#endif
|
|
p = ifunit_ref(vlr.vlr_parent);
|
|
if (p == NULL)
|
|
return (ENXIO);
|
|
}
|
|
|
|
if ((error = ifc_name2unit(name, &unit)) == 0) {
|
|
|
|
/*
|
|
* vlanX interface. Set wildcard to true if the unit number
|
|
* is not fixed (-1)
|
|
*/
|
|
wildcard = (unit < 0);
|
|
} else {
|
|
struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
|
|
if (p_tmp != NULL) {
|
|
error = 0;
|
|
subinterface = true;
|
|
unit = IF_DUNIT_NONE;
|
|
wildcard = false;
|
|
if (p != NULL) {
|
|
if_rele(p_tmp);
|
|
if (p != p_tmp)
|
|
error = EINVAL;
|
|
} else
|
|
p = p_tmp;
|
|
} else
|
|
error = ENXIO;
|
|
}
|
|
|
|
if (error != 0) {
|
|
if (p != NULL)
|
|
if_rele(p);
|
|
return (error);
|
|
}
|
|
|
|
if (!subinterface) {
|
|
/* vlanX interface, mark X as busy or allocate new unit # */
|
|
error = ifc_alloc_unit(ifc, &unit);
|
|
if (error != 0) {
|
|
if (p != NULL)
|
|
if_rele(p);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/* In the wildcard case, we need to update the name. */
|
|
if (wildcard) {
|
|
for (dp = name; *dp != '\0'; dp++);
|
|
if (snprintf(dp, len - (dp-name), "%d", unit) >
|
|
len - (dp-name) - 1) {
|
|
panic("%s: interface name too long", __func__);
|
|
}
|
|
}
|
|
|
|
ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
|
|
ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
if (!subinterface)
|
|
ifc_free_unit(ifc, unit);
|
|
free(ifv, M_VLAN);
|
|
if (p != NULL)
|
|
if_rele(p);
|
|
return (ENOSPC);
|
|
}
|
|
CK_SLIST_INIT(&ifv->vlan_mc_listhead);
|
|
ifp->if_softc = ifv;
|
|
/*
|
|
* Set the name manually rather than using if_initname because
|
|
* we don't conform to the default naming convention for interfaces.
|
|
*/
|
|
strlcpy(ifp->if_xname, name, IFNAMSIZ);
|
|
ifp->if_dname = vlanname;
|
|
ifp->if_dunit = unit;
|
|
|
|
ifp->if_init = vlan_init;
|
|
#ifdef ALTQ
|
|
ifp->if_start = vlan_altq_start;
|
|
ifp->if_transmit = vlan_altq_transmit;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
|
|
ifp->if_snd.ifq_drv_maxlen = 0;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
#else
|
|
ifp->if_transmit = vlan_transmit;
|
|
#endif
|
|
ifp->if_qflush = vlan_qflush;
|
|
ifp->if_ioctl = vlan_ioctl;
|
|
#if defined(KERN_TLS) || defined(RATELIMIT)
|
|
ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
|
|
ifp->if_ratelimit_query = vlan_ratelimit_query;
|
|
#endif
|
|
ifp->if_flags = VLAN_IFFLAGS;
|
|
ether_ifattach(ifp, eaddr);
|
|
/* Now undo some of the damage... */
|
|
ifp->if_baudrate = 0;
|
|
ifp->if_type = IFT_L2VLAN;
|
|
ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
|
|
ifa = ifp->if_addr;
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
sdl->sdl_type = IFT_L2VLAN;
|
|
|
|
if (p != NULL) {
|
|
error = vlan_config(ifv, p, vid, proto);
|
|
if_rele(p);
|
|
if (error != 0) {
|
|
/*
|
|
* Since we've partially failed, we need to back
|
|
* out all the way, otherwise userland could get
|
|
* confused. Thus, we destroy the interface.
|
|
*/
|
|
ether_ifdetach(ifp);
|
|
vlan_unconfig(ifp);
|
|
if_free(ifp);
|
|
if (!subinterface)
|
|
ifc_free_unit(ifc, unit);
|
|
free(ifv, M_VLAN);
|
|
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
int unit = ifp->if_dunit;
|
|
|
|
if (ifp->if_vlantrunk)
|
|
return (EBUSY);
|
|
|
|
#ifdef ALTQ
|
|
IFQ_PURGE(&ifp->if_snd);
|
|
#endif
|
|
ether_ifdetach(ifp); /* first, remove it from system-wide lists */
|
|
vlan_unconfig(ifp); /* now it can be unconfigured and freed */
|
|
/*
|
|
* We should have the only reference to the ifv now, so we can now
|
|
* drain any remaining lladdr task before freeing the ifnet and the
|
|
* ifvlan.
|
|
*/
|
|
taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
|
|
NET_EPOCH_WAIT();
|
|
if_free(ifp);
|
|
free(ifv, M_VLAN);
|
|
if (unit != IF_DUNIT_NONE)
|
|
ifc_free_unit(ifc, unit);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The ifp->if_init entry point for vlan(4) is a no-op.
|
|
*/
|
|
static void
|
|
vlan_init(void *foo __unused)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* The if_transmit method for vlan(4) interface.
|
|
*/
|
|
static int
|
|
vlan_transmit(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ifvlan *ifv;
|
|
struct ifnet *p;
|
|
int error, len, mcast;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
ifv = ifp->if_softc;
|
|
if (TRUNK(ifv) == NULL) {
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
m_freem(m);
|
|
return (ENETDOWN);
|
|
}
|
|
p = PARENT(ifv);
|
|
len = m->m_pkthdr.len;
|
|
mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
|
|
|
|
BPF_MTAP(ifp, m);
|
|
|
|
#if defined(KERN_TLS) || defined(RATELIMIT)
|
|
if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
|
|
struct vlan_snd_tag *vst;
|
|
struct m_snd_tag *mst;
|
|
|
|
MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
|
|
mst = m->m_pkthdr.snd_tag;
|
|
vst = mst_to_vst(mst);
|
|
if (vst->tag->ifp != p) {
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
m_freem(m);
|
|
return (EAGAIN);
|
|
}
|
|
|
|
m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
|
|
m_snd_tag_rele(mst);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Do not run parent's if_transmit() if the parent is not up,
|
|
* or parent's driver will cause a system crash.
|
|
*/
|
|
if (!UP_AND_RUNNING(p)) {
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
m_freem(m);
|
|
return (ENETDOWN);
|
|
}
|
|
|
|
if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Send it, precisely as ether_output() would have.
|
|
*/
|
|
error = (p->if_transmit)(p, m);
|
|
if (error == 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
|
|
if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
|
|
} else
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
|
|
struct route *ro)
|
|
{
|
|
struct ifvlan *ifv;
|
|
struct ifnet *p;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
/*
|
|
* Find the first non-VLAN parent interface.
|
|
*/
|
|
ifv = ifp->if_softc;
|
|
do {
|
|
if (TRUNK(ifv) == NULL) {
|
|
m_freem(m);
|
|
return (ENETDOWN);
|
|
}
|
|
p = PARENT(ifv);
|
|
ifv = p->if_softc;
|
|
} while (p->if_type == IFT_L2VLAN);
|
|
|
|
return p->if_output(ifp, m, dst, ro);
|
|
}
|
|
|
|
#ifdef ALTQ
|
|
static void
|
|
vlan_altq_start(if_t ifp)
|
|
{
|
|
struct ifaltq *ifq = &ifp->if_snd;
|
|
struct mbuf *m;
|
|
|
|
IFQ_LOCK(ifq);
|
|
IFQ_DEQUEUE_NOLOCK(ifq, m);
|
|
while (m != NULL) {
|
|
vlan_transmit(ifp, m);
|
|
IFQ_DEQUEUE_NOLOCK(ifq, m);
|
|
}
|
|
IFQ_UNLOCK(ifq);
|
|
}
|
|
|
|
static int
|
|
vlan_altq_transmit(if_t ifp, struct mbuf *m)
|
|
{
|
|
int err;
|
|
|
|
if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
|
|
IFQ_ENQUEUE(&ifp->if_snd, m, err);
|
|
if (err == 0)
|
|
vlan_altq_start(ifp);
|
|
} else
|
|
err = vlan_transmit(ifp, m);
|
|
|
|
return (err);
|
|
}
|
|
#endif /* ALTQ */
|
|
|
|
/*
|
|
* The ifp->if_qflush entry point for vlan(4) is a no-op.
|
|
*/
|
|
static void
|
|
vlan_qflush(struct ifnet *ifp __unused)
|
|
{
|
|
}
|
|
|
|
static void
|
|
vlan_input(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ifvlantrunk *trunk;
|
|
struct ifvlan *ifv;
|
|
struct m_tag *mtag;
|
|
uint16_t vid, tag;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
trunk = ifp->if_vlantrunk;
|
|
if (trunk == NULL) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
if (m->m_flags & M_VLANTAG) {
|
|
/*
|
|
* Packet is tagged, but m contains a normal
|
|
* Ethernet frame; the tag is stored out-of-band.
|
|
*/
|
|
tag = m->m_pkthdr.ether_vtag;
|
|
m->m_flags &= ~M_VLANTAG;
|
|
} else {
|
|
struct ether_vlan_header *evl;
|
|
|
|
/*
|
|
* Packet is tagged in-band as specified by 802.1q.
|
|
*/
|
|
switch (ifp->if_type) {
|
|
case IFT_ETHER:
|
|
if (m->m_len < sizeof(*evl) &&
|
|
(m = m_pullup(m, sizeof(*evl))) == NULL) {
|
|
if_printf(ifp, "cannot pullup VLAN header\n");
|
|
return;
|
|
}
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
tag = ntohs(evl->evl_tag);
|
|
|
|
/*
|
|
* Remove the 802.1q header by copying the Ethernet
|
|
* addresses over it and adjusting the beginning of
|
|
* the data in the mbuf. The encapsulated Ethernet
|
|
* type field is already in place.
|
|
*/
|
|
bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
|
|
ETHER_HDR_LEN - ETHER_TYPE_LEN);
|
|
m_adj(m, ETHER_VLAN_ENCAP_LEN);
|
|
break;
|
|
|
|
default:
|
|
#ifdef INVARIANTS
|
|
panic("%s: %s has unsupported if_type %u",
|
|
__func__, ifp->if_xname, ifp->if_type);
|
|
#endif
|
|
if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
}
|
|
|
|
vid = EVL_VLANOFTAG(tag);
|
|
|
|
ifv = vlan_gethash(trunk, vid);
|
|
if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
|
|
if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
if (vlan_mtag_pcp) {
|
|
/*
|
|
* While uncommon, it is possible that we will find a 802.1q
|
|
* packet encapsulated inside another packet that also had an
|
|
* 802.1q header. For example, ethernet tunneled over IPSEC
|
|
* arriving over ethernet. In that case, we replace the
|
|
* existing 802.1q PCP m_tag value.
|
|
*/
|
|
mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
|
|
if (mtag == NULL) {
|
|
mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
|
|
sizeof(uint8_t), M_NOWAIT);
|
|
if (mtag == NULL) {
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
m_tag_prepend(m, mtag);
|
|
}
|
|
*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = ifv->ifv_ifp;
|
|
if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
|
|
|
|
/* Pass it back through the parent's input routine. */
|
|
(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
|
|
}
|
|
|
|
static void
|
|
vlan_lladdr_fn(void *arg, int pending __unused)
|
|
{
|
|
struct ifvlan *ifv;
|
|
struct ifnet *ifp;
|
|
|
|
ifv = (struct ifvlan *)arg;
|
|
ifp = ifv->ifv_ifp;
|
|
|
|
CURVNET_SET(ifp->if_vnet);
|
|
|
|
/* The ifv_ifp already has the lladdr copied in. */
|
|
if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
|
|
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
static int
|
|
vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
|
|
uint16_t proto)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifvlantrunk *trunk;
|
|
struct ifnet *ifp;
|
|
int error = 0;
|
|
|
|
/*
|
|
* We can handle non-ethernet hardware types as long as
|
|
* they handle the tagging and headers themselves.
|
|
*/
|
|
if (p->if_type != IFT_ETHER &&
|
|
p->if_type != IFT_L2VLAN &&
|
|
(p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
|
|
return (EPROTONOSUPPORT);
|
|
if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
|
|
return (EPROTONOSUPPORT);
|
|
/*
|
|
* Don't let the caller set up a VLAN VID with
|
|
* anything except VLID bits.
|
|
* VID numbers 0x0 and 0xFFF are reserved.
|
|
*/
|
|
if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
|
|
return (EINVAL);
|
|
if (ifv->ifv_trunk)
|
|
return (EBUSY);
|
|
|
|
VLAN_XLOCK();
|
|
if (p->if_vlantrunk == NULL) {
|
|
trunk = malloc(sizeof(struct ifvlantrunk),
|
|
M_VLAN, M_WAITOK | M_ZERO);
|
|
vlan_inithash(trunk);
|
|
TRUNK_LOCK_INIT(trunk);
|
|
TRUNK_WLOCK(trunk);
|
|
p->if_vlantrunk = trunk;
|
|
trunk->parent = p;
|
|
if_ref(trunk->parent);
|
|
TRUNK_WUNLOCK(trunk);
|
|
} else {
|
|
trunk = p->if_vlantrunk;
|
|
}
|
|
|
|
ifv->ifv_vid = vid; /* must set this before vlan_inshash() */
|
|
ifv->ifv_pcp = 0; /* Default: best effort delivery. */
|
|
error = vlan_inshash(trunk, ifv);
|
|
if (error)
|
|
goto done;
|
|
ifv->ifv_proto = proto;
|
|
ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
|
|
ifv->ifv_mintu = ETHERMIN;
|
|
ifv->ifv_pflags = 0;
|
|
ifv->ifv_capenable = -1;
|
|
|
|
/*
|
|
* If the parent supports the VLAN_MTU capability,
|
|
* i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
|
|
* use it.
|
|
*/
|
|
if (p->if_capenable & IFCAP_VLAN_MTU) {
|
|
/*
|
|
* No need to fudge the MTU since the parent can
|
|
* handle extended frames.
|
|
*/
|
|
ifv->ifv_mtufudge = 0;
|
|
} else {
|
|
/*
|
|
* Fudge the MTU by the encapsulation size. This
|
|
* makes us incompatible with strictly compliant
|
|
* 802.1Q implementations, but allows us to use
|
|
* the feature with other NetBSD implementations,
|
|
* which might still be useful.
|
|
*/
|
|
ifv->ifv_mtufudge = ifv->ifv_encaplen;
|
|
}
|
|
|
|
ifv->ifv_trunk = trunk;
|
|
ifp = ifv->ifv_ifp;
|
|
/*
|
|
* Initialize fields from our parent. This duplicates some
|
|
* work with ether_ifattach() but allows for non-ethernet
|
|
* interfaces to also work.
|
|
*/
|
|
ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
|
|
ifp->if_baudrate = p->if_baudrate;
|
|
ifp->if_input = p->if_input;
|
|
ifp->if_resolvemulti = p->if_resolvemulti;
|
|
ifp->if_addrlen = p->if_addrlen;
|
|
ifp->if_broadcastaddr = p->if_broadcastaddr;
|
|
ifp->if_pcp = ifv->ifv_pcp;
|
|
|
|
/*
|
|
* We wrap the parent's if_output using vlan_output to ensure that it
|
|
* can't become stale.
|
|
*/
|
|
ifp->if_output = vlan_output;
|
|
|
|
/*
|
|
* Copy only a selected subset of flags from the parent.
|
|
* Other flags are none of our business.
|
|
*/
|
|
#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
|
|
ifp->if_flags &= ~VLAN_COPY_FLAGS;
|
|
ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
|
|
#undef VLAN_COPY_FLAGS
|
|
|
|
ifp->if_link_state = p->if_link_state;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
vlan_capabilities(ifv);
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
/*
|
|
* Set up our interface address to reflect the underlying
|
|
* physical interface's.
|
|
*/
|
|
TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
|
|
((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
|
|
p->if_addrlen;
|
|
|
|
/*
|
|
* Do not schedule link address update if it was the same
|
|
* as previous parent's. This helps avoid updating for each
|
|
* associated llentry.
|
|
*/
|
|
if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
|
|
bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
|
|
taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
|
|
}
|
|
|
|
/* We are ready for operation now. */
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
|
|
/* Update flags on the parent, if necessary. */
|
|
vlan_setflags(ifp, 1);
|
|
|
|
/*
|
|
* Configure multicast addresses that may already be
|
|
* joined on the vlan device.
|
|
*/
|
|
(void)vlan_setmulti(ifp);
|
|
|
|
done:
|
|
if (error == 0)
|
|
EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
|
|
VLAN_XUNLOCK();
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vlan_unconfig(struct ifnet *ifp)
|
|
{
|
|
|
|
VLAN_XLOCK();
|
|
vlan_unconfig_locked(ifp, 0);
|
|
VLAN_XUNLOCK();
|
|
}
|
|
|
|
static void
|
|
vlan_unconfig_locked(struct ifnet *ifp, int departing)
|
|
{
|
|
struct ifvlantrunk *trunk;
|
|
struct vlan_mc_entry *mc;
|
|
struct ifvlan *ifv;
|
|
struct ifnet *parent;
|
|
int error;
|
|
|
|
VLAN_XLOCK_ASSERT();
|
|
|
|
ifv = ifp->if_softc;
|
|
trunk = ifv->ifv_trunk;
|
|
parent = NULL;
|
|
|
|
if (trunk != NULL) {
|
|
parent = trunk->parent;
|
|
|
|
/*
|
|
* Since the interface is being unconfigured, we need to
|
|
* empty the list of multicast groups that we may have joined
|
|
* while we were alive from the parent's list.
|
|
*/
|
|
while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
|
|
/*
|
|
* If the parent interface is being detached,
|
|
* all its multicast addresses have already
|
|
* been removed. Warn about errors if
|
|
* if_delmulti() does fail, but don't abort as
|
|
* all callers expect vlan destruction to
|
|
* succeed.
|
|
*/
|
|
if (!departing) {
|
|
error = if_delmulti(parent,
|
|
(struct sockaddr *)&mc->mc_addr);
|
|
if (error)
|
|
if_printf(ifp,
|
|
"Failed to delete multicast address from parent: %d\n",
|
|
error);
|
|
}
|
|
CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
|
|
NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
|
|
}
|
|
|
|
vlan_setflags(ifp, 0); /* clear special flags on parent */
|
|
|
|
vlan_remhash(trunk, ifv);
|
|
ifv->ifv_trunk = NULL;
|
|
|
|
/*
|
|
* Check if we were the last.
|
|
*/
|
|
if (trunk->refcnt == 0) {
|
|
parent->if_vlantrunk = NULL;
|
|
NET_EPOCH_WAIT();
|
|
trunk_destroy(trunk);
|
|
}
|
|
}
|
|
|
|
/* Disconnect from parent. */
|
|
if (ifv->ifv_pflags)
|
|
if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_link_state = LINK_STATE_UNKNOWN;
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
|
|
/*
|
|
* Only dispatch an event if vlan was
|
|
* attached, otherwise there is nothing
|
|
* to cleanup anyway.
|
|
*/
|
|
if (parent != NULL)
|
|
EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
|
|
}
|
|
|
|
/* Handle a reference counted flag that should be set on the parent as well */
|
|
static int
|
|
vlan_setflag(struct ifnet *ifp, int flag, int status,
|
|
int (*func)(struct ifnet *, int))
|
|
{
|
|
struct ifvlan *ifv;
|
|
int error;
|
|
|
|
VLAN_SXLOCK_ASSERT();
|
|
|
|
ifv = ifp->if_softc;
|
|
status = status ? (ifp->if_flags & flag) : 0;
|
|
/* Now "status" contains the flag value or 0 */
|
|
|
|
/*
|
|
* See if recorded parent's status is different from what
|
|
* we want it to be. If it is, flip it. We record parent's
|
|
* status in ifv_pflags so that we won't clear parent's flag
|
|
* we haven't set. In fact, we don't clear or set parent's
|
|
* flags directly, but get or release references to them.
|
|
* That's why we can be sure that recorded flags still are
|
|
* in accord with actual parent's flags.
|
|
*/
|
|
if (status != (ifv->ifv_pflags & flag)) {
|
|
error = (*func)(PARENT(ifv), status);
|
|
if (error)
|
|
return (error);
|
|
ifv->ifv_pflags &= ~flag;
|
|
ifv->ifv_pflags |= status;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle IFF_* flags that require certain changes on the parent:
|
|
* if "status" is true, update parent's flags respective to our if_flags;
|
|
* if "status" is false, forcedly clear the flags set on parent.
|
|
*/
|
|
static int
|
|
vlan_setflags(struct ifnet *ifp, int status)
|
|
{
|
|
int error, i;
|
|
|
|
for (i = 0; vlan_pflags[i].flag; i++) {
|
|
error = vlan_setflag(ifp, vlan_pflags[i].flag,
|
|
status, vlan_pflags[i].func);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* Inform all vlans that their parent has changed link state */
|
|
static void
|
|
vlan_link_state(struct ifnet *ifp)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifvlantrunk *trunk;
|
|
struct ifvlan *ifv;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
trunk = ifp->if_vlantrunk;
|
|
if (trunk == NULL) {
|
|
NET_EPOCH_EXIT(et);
|
|
return;
|
|
}
|
|
|
|
TRUNK_WLOCK(trunk);
|
|
VLAN_FOREACH(ifv, trunk) {
|
|
ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
|
|
if_link_state_change(ifv->ifv_ifp,
|
|
trunk->parent->if_link_state);
|
|
}
|
|
TRUNK_WUNLOCK(trunk);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
static void
|
|
vlan_capabilities(struct ifvlan *ifv)
|
|
{
|
|
struct ifnet *p;
|
|
struct ifnet *ifp;
|
|
struct ifnet_hw_tsomax hw_tsomax;
|
|
int cap = 0, ena = 0, mena;
|
|
u_long hwa = 0;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
VLAN_SXLOCK_ASSERT();
|
|
|
|
p = PARENT(ifv);
|
|
ifp = ifv->ifv_ifp;
|
|
|
|
/* Mask parent interface enabled capabilities disabled by user. */
|
|
mena = p->if_capenable & ifv->ifv_capenable;
|
|
|
|
/*
|
|
* If the parent interface can do checksum offloading
|
|
* on VLANs, then propagate its hardware-assisted
|
|
* checksumming flags. Also assert that checksum
|
|
* offloading requires hardware VLAN tagging.
|
|
*/
|
|
if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
|
|
cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
|
|
if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
|
|
p->if_capenable & IFCAP_VLAN_HWTAGGING) {
|
|
ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
|
|
if (ena & IFCAP_TXCSUM)
|
|
hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
|
|
CSUM_UDP | CSUM_SCTP);
|
|
if (ena & IFCAP_TXCSUM_IPV6)
|
|
hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
|
|
CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
|
|
}
|
|
|
|
/*
|
|
* If the parent interface can do TSO on VLANs then
|
|
* propagate the hardware-assisted flag. TSO on VLANs
|
|
* does not necessarily require hardware VLAN tagging.
|
|
*/
|
|
memset(&hw_tsomax, 0, sizeof(hw_tsomax));
|
|
if_hw_tsomax_common(p, &hw_tsomax);
|
|
if_hw_tsomax_update(ifp, &hw_tsomax);
|
|
if (p->if_capabilities & IFCAP_VLAN_HWTSO)
|
|
cap |= p->if_capabilities & IFCAP_TSO;
|
|
if (p->if_capenable & IFCAP_VLAN_HWTSO) {
|
|
ena |= mena & IFCAP_TSO;
|
|
if (ena & IFCAP_TSO)
|
|
hwa |= p->if_hwassist & CSUM_TSO;
|
|
}
|
|
|
|
/*
|
|
* If the parent interface can do LRO and checksum offloading on
|
|
* VLANs, then guess it may do LRO on VLANs. False positive here
|
|
* cost nothing, while false negative may lead to some confusions.
|
|
*/
|
|
if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
|
|
cap |= p->if_capabilities & IFCAP_LRO;
|
|
if (p->if_capenable & IFCAP_VLAN_HWCSUM)
|
|
ena |= p->if_capenable & IFCAP_LRO;
|
|
|
|
/*
|
|
* If the parent interface can offload TCP connections over VLANs then
|
|
* propagate its TOE capability to the VLAN interface.
|
|
*
|
|
* All TOE drivers in the tree today can deal with VLANs. If this
|
|
* changes then IFCAP_VLAN_TOE should be promoted to a full capability
|
|
* with its own bit.
|
|
*/
|
|
#define IFCAP_VLAN_TOE IFCAP_TOE
|
|
if (p->if_capabilities & IFCAP_VLAN_TOE)
|
|
cap |= p->if_capabilities & IFCAP_TOE;
|
|
if (p->if_capenable & IFCAP_VLAN_TOE) {
|
|
TOEDEV(ifp) = TOEDEV(p);
|
|
ena |= mena & IFCAP_TOE;
|
|
}
|
|
|
|
/*
|
|
* If the parent interface supports dynamic link state, so does the
|
|
* VLAN interface.
|
|
*/
|
|
cap |= (p->if_capabilities & IFCAP_LINKSTATE);
|
|
ena |= (mena & IFCAP_LINKSTATE);
|
|
|
|
#ifdef RATELIMIT
|
|
/*
|
|
* If the parent interface supports ratelimiting, so does the
|
|
* VLAN interface.
|
|
*/
|
|
cap |= (p->if_capabilities & IFCAP_TXRTLMT);
|
|
ena |= (mena & IFCAP_TXRTLMT);
|
|
#endif
|
|
|
|
/*
|
|
* If the parent interface supports unmapped mbufs, so does
|
|
* the VLAN interface. Note that this should be fine even for
|
|
* interfaces that don't support hardware tagging as headers
|
|
* are prepended in normal mbufs to unmapped mbufs holding
|
|
* payload data.
|
|
*/
|
|
cap |= (p->if_capabilities & IFCAP_MEXTPG);
|
|
ena |= (mena & IFCAP_MEXTPG);
|
|
|
|
/*
|
|
* If the parent interface can offload encryption and segmentation
|
|
* of TLS records over TCP, propagate it's capability to the VLAN
|
|
* interface.
|
|
*
|
|
* All TLS drivers in the tree today can deal with VLANs. If
|
|
* this ever changes, then a new IFCAP_VLAN_TXTLS can be
|
|
* defined.
|
|
*/
|
|
if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
|
|
cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
|
|
if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
|
|
ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
|
|
|
|
ifp->if_capabilities = cap;
|
|
ifp->if_capenable = ena;
|
|
ifp->if_hwassist = hwa;
|
|
}
|
|
|
|
static void
|
|
vlan_trunk_capabilities(struct ifnet *ifp)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifvlantrunk *trunk;
|
|
struct ifvlan *ifv;
|
|
|
|
VLAN_SLOCK();
|
|
trunk = ifp->if_vlantrunk;
|
|
if (trunk == NULL) {
|
|
VLAN_SUNLOCK();
|
|
return;
|
|
}
|
|
NET_EPOCH_ENTER(et);
|
|
VLAN_FOREACH(ifv, trunk)
|
|
vlan_capabilities(ifv);
|
|
NET_EPOCH_EXIT(et);
|
|
VLAN_SUNLOCK();
|
|
}
|
|
|
|
static int
|
|
vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct ifnet *p;
|
|
struct ifreq *ifr;
|
|
struct ifaddr *ifa;
|
|
struct ifvlan *ifv;
|
|
struct ifvlantrunk *trunk;
|
|
struct vlanreq vlr;
|
|
int error = 0, oldmtu;
|
|
|
|
ifr = (struct ifreq *)data;
|
|
ifa = (struct ifaddr *) data;
|
|
ifv = ifp->if_softc;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
#ifdef INET
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
arp_ifinit(ifp, ifa);
|
|
#endif
|
|
break;
|
|
case SIOCGIFADDR:
|
|
bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
|
|
ifp->if_addrlen);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
VLAN_SLOCK();
|
|
if (TRUNK(ifv) != NULL) {
|
|
p = PARENT(ifv);
|
|
if_ref(p);
|
|
error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
|
|
if_rele(p);
|
|
/* Limit the result to the parent's current config. */
|
|
if (error == 0) {
|
|
struct ifmediareq *ifmr;
|
|
|
|
ifmr = (struct ifmediareq *)data;
|
|
if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
|
|
ifmr->ifm_count = 1;
|
|
error = copyout(&ifmr->ifm_current,
|
|
ifmr->ifm_ulist,
|
|
sizeof(int));
|
|
}
|
|
}
|
|
} else {
|
|
error = EINVAL;
|
|
}
|
|
VLAN_SUNLOCK();
|
|
break;
|
|
|
|
case SIOCSIFMEDIA:
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
/*
|
|
* Set the interface MTU.
|
|
*/
|
|
VLAN_SLOCK();
|
|
trunk = TRUNK(ifv);
|
|
if (trunk != NULL) {
|
|
TRUNK_WLOCK(trunk);
|
|
if (ifr->ifr_mtu >
|
|
(PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
|
|
ifr->ifr_mtu <
|
|
(ifv->ifv_mintu - ifv->ifv_mtufudge))
|
|
error = EINVAL;
|
|
else
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
TRUNK_WUNLOCK(trunk);
|
|
} else
|
|
error = EINVAL;
|
|
VLAN_SUNLOCK();
|
|
break;
|
|
|
|
case SIOCSETVLAN:
|
|
#ifdef VIMAGE
|
|
/*
|
|
* XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
|
|
* interface to be delegated to a jail without allowing the
|
|
* jail to change what underlying interface/VID it is
|
|
* associated with. We are not entirely convinced that this
|
|
* is the right way to accomplish that policy goal.
|
|
*/
|
|
if (ifp->if_vnet != ifp->if_home_vnet) {
|
|
error = EPERM;
|
|
break;
|
|
}
|
|
#endif
|
|
error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
|
|
if (error)
|
|
break;
|
|
if (vlr.vlr_parent[0] == '\0') {
|
|
vlan_unconfig(ifp);
|
|
break;
|
|
}
|
|
p = ifunit_ref(vlr.vlr_parent);
|
|
if (p == NULL) {
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
#ifdef COMPAT_FREEBSD12
|
|
if (vlr.vlr_proto == 0)
|
|
vlr.vlr_proto = ETHERTYPE_VLAN;
|
|
#endif
|
|
oldmtu = ifp->if_mtu;
|
|
error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
|
|
if_rele(p);
|
|
|
|
/*
|
|
* VLAN MTU may change during addition of the vlandev.
|
|
* If it did, do network layer specific procedure.
|
|
*/
|
|
if (ifp->if_mtu != oldmtu) {
|
|
#ifdef INET6
|
|
nd6_setmtu(ifp);
|
|
#endif
|
|
rt_updatemtu(ifp);
|
|
}
|
|
break;
|
|
|
|
case SIOCGETVLAN:
|
|
#ifdef VIMAGE
|
|
if (ifp->if_vnet != ifp->if_home_vnet) {
|
|
error = EPERM;
|
|
break;
|
|
}
|
|
#endif
|
|
bzero(&vlr, sizeof(vlr));
|
|
VLAN_SLOCK();
|
|
if (TRUNK(ifv) != NULL) {
|
|
strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
|
|
sizeof(vlr.vlr_parent));
|
|
vlr.vlr_tag = ifv->ifv_vid;
|
|
vlr.vlr_proto = ifv->ifv_proto;
|
|
}
|
|
VLAN_SUNLOCK();
|
|
error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
/*
|
|
* We should propagate selected flags to the parent,
|
|
* e.g., promiscuous mode.
|
|
*/
|
|
VLAN_XLOCK();
|
|
if (TRUNK(ifv) != NULL)
|
|
error = vlan_setflags(ifp, 1);
|
|
VLAN_XUNLOCK();
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/*
|
|
* If we don't have a parent, just remember the membership for
|
|
* when we do.
|
|
*
|
|
* XXX We need the rmlock here to avoid sleeping while
|
|
* holding in6_multi_mtx.
|
|
*/
|
|
VLAN_XLOCK();
|
|
trunk = TRUNK(ifv);
|
|
if (trunk != NULL)
|
|
error = vlan_setmulti(ifp);
|
|
VLAN_XUNLOCK();
|
|
|
|
break;
|
|
case SIOCGVLANPCP:
|
|
#ifdef VIMAGE
|
|
if (ifp->if_vnet != ifp->if_home_vnet) {
|
|
error = EPERM;
|
|
break;
|
|
}
|
|
#endif
|
|
ifr->ifr_vlan_pcp = ifv->ifv_pcp;
|
|
break;
|
|
|
|
case SIOCSVLANPCP:
|
|
#ifdef VIMAGE
|
|
if (ifp->if_vnet != ifp->if_home_vnet) {
|
|
error = EPERM;
|
|
break;
|
|
}
|
|
#endif
|
|
error = priv_check(curthread, PRIV_NET_SETVLANPCP);
|
|
if (error)
|
|
break;
|
|
if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
ifv->ifv_pcp = ifr->ifr_vlan_pcp;
|
|
ifp->if_pcp = ifv->ifv_pcp;
|
|
/* broadcast event about PCP change */
|
|
EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
|
|
break;
|
|
|
|
case SIOCSIFCAP:
|
|
VLAN_SLOCK();
|
|
ifv->ifv_capenable = ifr->ifr_reqcap;
|
|
trunk = TRUNK(ifv);
|
|
if (trunk != NULL) {
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
vlan_capabilities(ifv);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
VLAN_SUNLOCK();
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
#if defined(KERN_TLS) || defined(RATELIMIT)
|
|
static int
|
|
vlan_snd_tag_alloc(struct ifnet *ifp,
|
|
union if_snd_tag_alloc_params *params,
|
|
struct m_snd_tag **ppmt)
|
|
{
|
|
struct epoch_tracker et;
|
|
const struct if_snd_tag_sw *sw;
|
|
struct vlan_snd_tag *vst;
|
|
struct ifvlan *ifv;
|
|
struct ifnet *parent;
|
|
int error;
|
|
|
|
switch (params->hdr.type) {
|
|
#ifdef RATELIMIT
|
|
case IF_SND_TAG_TYPE_UNLIMITED:
|
|
sw = &vlan_snd_tag_ul_sw;
|
|
break;
|
|
case IF_SND_TAG_TYPE_RATE_LIMIT:
|
|
sw = &vlan_snd_tag_rl_sw;
|
|
break;
|
|
#endif
|
|
#ifdef KERN_TLS
|
|
case IF_SND_TAG_TYPE_TLS:
|
|
sw = &vlan_snd_tag_tls_sw;
|
|
break;
|
|
#ifdef RATELIMIT
|
|
case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
|
|
sw = &vlan_snd_tag_tls_rl_sw;
|
|
break;
|
|
#endif
|
|
#endif
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
ifv = ifp->if_softc;
|
|
if (ifv->ifv_trunk != NULL)
|
|
parent = PARENT(ifv);
|
|
else
|
|
parent = NULL;
|
|
if (parent == NULL) {
|
|
NET_EPOCH_EXIT(et);
|
|
return (EOPNOTSUPP);
|
|
}
|
|
if_ref(parent);
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
|
|
if (vst == NULL) {
|
|
if_rele(parent);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
error = m_snd_tag_alloc(parent, params, &vst->tag);
|
|
if_rele(parent);
|
|
if (error) {
|
|
free(vst, M_VLAN);
|
|
return (error);
|
|
}
|
|
|
|
m_snd_tag_init(&vst->com, ifp, sw);
|
|
|
|
*ppmt = &vst->com;
|
|
return (0);
|
|
}
|
|
|
|
static struct m_snd_tag *
|
|
vlan_next_snd_tag(struct m_snd_tag *mst)
|
|
{
|
|
struct vlan_snd_tag *vst;
|
|
|
|
vst = mst_to_vst(mst);
|
|
return (vst->tag);
|
|
}
|
|
|
|
static int
|
|
vlan_snd_tag_modify(struct m_snd_tag *mst,
|
|
union if_snd_tag_modify_params *params)
|
|
{
|
|
struct vlan_snd_tag *vst;
|
|
|
|
vst = mst_to_vst(mst);
|
|
return (vst->tag->sw->snd_tag_modify(vst->tag, params));
|
|
}
|
|
|
|
static int
|
|
vlan_snd_tag_query(struct m_snd_tag *mst,
|
|
union if_snd_tag_query_params *params)
|
|
{
|
|
struct vlan_snd_tag *vst;
|
|
|
|
vst = mst_to_vst(mst);
|
|
return (vst->tag->sw->snd_tag_query(vst->tag, params));
|
|
}
|
|
|
|
static void
|
|
vlan_snd_tag_free(struct m_snd_tag *mst)
|
|
{
|
|
struct vlan_snd_tag *vst;
|
|
|
|
vst = mst_to_vst(mst);
|
|
m_snd_tag_rele(vst->tag);
|
|
free(vst, M_VLAN);
|
|
}
|
|
|
|
static void
|
|
vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
|
|
{
|
|
/*
|
|
* For vlan, we have an indirect
|
|
* interface. The caller needs to
|
|
* get a ratelimit tag on the actual
|
|
* interface the flow will go on.
|
|
*/
|
|
q->rate_table = NULL;
|
|
q->flags = RT_IS_INDIRECT;
|
|
q->max_flows = 0;
|
|
q->number_of_rates = 0;
|
|
}
|
|
|
|
#endif
|