freebsd-nq/sys/dev/iommu/busdma_iommu.c
Mark Johnston 693c9516fa busdma: Add KMSAN integration
Sanitizer instrumentation of course cannot automatically update shadow
state when devices write to host memory.  KMSAN thus hooks into busdma,
both to update shadow state after a device write, and to verify that the
kernel does not publish uninitalized bytes to devices.

To implement this, when KMSAN is configured, each dmamap embeds a memory
descriptor describing the region currently loaded into the map.
bus_dmamap_sync() uses the operation flags to determine whether to
validate the loaded region or to mark it as initialized in the shadow
map.

Note that in cases where the amount of data written is less than the
buffer size, the entire buffer is marked initialized even when it is
not.  For example, if a NIC writes a 128B packet into a 2KB buffer, the
entire buffer will be marked initialized, but subsequent accesses past
the first 128 bytes are likely caused by bugs.

Reviewed by:	kib
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D31338
2021-08-10 21:27:54 -04:00

1137 lines
31 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 The FreeBSD Foundation
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/domainset.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/memdesc.h>
#include <sys/msan.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/uio.h>
#include <sys/vmem.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <dev/iommu/iommu.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/md_var.h>
#include <machine/iommu.h>
#include <dev/iommu/busdma_iommu.h>
/*
* busdma_iommu.c, the implementation of the busdma(9) interface using
* IOMMU units from Intel VT-d.
*/
static bool
iommu_bus_dma_is_dev_disabled(int domain, int bus, int slot, int func)
{
char str[128], *env;
int default_bounce;
bool ret;
static const char bounce_str[] = "bounce";
static const char iommu_str[] = "iommu";
static const char dmar_str[] = "dmar"; /* compatibility */
default_bounce = 0;
env = kern_getenv("hw.busdma.default");
if (env != NULL) {
if (strcmp(env, bounce_str) == 0)
default_bounce = 1;
else if (strcmp(env, iommu_str) == 0 ||
strcmp(env, dmar_str) == 0)
default_bounce = 0;
freeenv(env);
}
snprintf(str, sizeof(str), "hw.busdma.pci%d.%d.%d.%d",
domain, bus, slot, func);
env = kern_getenv(str);
if (env == NULL)
return (default_bounce != 0);
if (strcmp(env, bounce_str) == 0)
ret = true;
else if (strcmp(env, iommu_str) == 0 ||
strcmp(env, dmar_str) == 0)
ret = false;
else
ret = default_bounce != 0;
freeenv(env);
return (ret);
}
/*
* Given original device, find the requester ID that will be seen by
* the IOMMU unit and used for page table lookup. PCI bridges may take
* ownership of transactions from downstream devices, so it may not be
* the same as the BSF of the target device. In those cases, all
* devices downstream of the bridge must share a single mapping
* domain, and must collectively be assigned to use either IOMMU or
* bounce mapping.
*/
device_t
iommu_get_requester(device_t dev, uint16_t *rid)
{
devclass_t pci_class;
device_t l, pci, pcib, pcip, pcibp, requester;
int cap_offset;
uint16_t pcie_flags;
bool bridge_is_pcie;
pci_class = devclass_find("pci");
l = requester = dev;
*rid = pci_get_rid(dev);
/*
* Walk the bridge hierarchy from the target device to the
* host port to find the translating bridge nearest the IOMMU
* unit.
*/
for (;;) {
pci = device_get_parent(l);
KASSERT(pci != NULL, ("iommu_get_requester(%s): NULL parent "
"for %s", device_get_name(dev), device_get_name(l)));
KASSERT(device_get_devclass(pci) == pci_class,
("iommu_get_requester(%s): non-pci parent %s for %s",
device_get_name(dev), device_get_name(pci),
device_get_name(l)));
pcib = device_get_parent(pci);
KASSERT(pcib != NULL, ("iommu_get_requester(%s): NULL bridge "
"for %s", device_get_name(dev), device_get_name(pci)));
/*
* The parent of our "bridge" isn't another PCI bus,
* so pcib isn't a PCI->PCI bridge but rather a host
* port, and the requester ID won't be translated
* further.
*/
pcip = device_get_parent(pcib);
if (device_get_devclass(pcip) != pci_class)
break;
pcibp = device_get_parent(pcip);
if (pci_find_cap(l, PCIY_EXPRESS, &cap_offset) == 0) {
/*
* Do not stop the loop even if the target
* device is PCIe, because it is possible (but
* unlikely) to have a PCI->PCIe bridge
* somewhere in the hierarchy.
*/
l = pcib;
} else {
/*
* Device is not PCIe, it cannot be seen as a
* requester by IOMMU unit. Check whether the
* bridge is PCIe.
*/
bridge_is_pcie = pci_find_cap(pcib, PCIY_EXPRESS,
&cap_offset) == 0;
requester = pcib;
/*
* Check for a buggy PCIe/PCI bridge that
* doesn't report the express capability. If
* the bridge above it is express but isn't a
* PCI bridge, then we know pcib is actually a
* PCIe/PCI bridge.
*/
if (!bridge_is_pcie && pci_find_cap(pcibp,
PCIY_EXPRESS, &cap_offset) == 0) {
pcie_flags = pci_read_config(pcibp,
cap_offset + PCIER_FLAGS, 2);
if ((pcie_flags & PCIEM_FLAGS_TYPE) !=
PCIEM_TYPE_PCI_BRIDGE)
bridge_is_pcie = true;
}
if (bridge_is_pcie) {
/*
* The current device is not PCIe, but
* the bridge above it is. This is a
* PCIe->PCI bridge. Assume that the
* requester ID will be the secondary
* bus number with slot and function
* set to zero.
*
* XXX: Doesn't handle the case where
* the bridge is PCIe->PCI-X, and the
* bridge will only take ownership of
* requests in some cases. We should
* provide context entries with the
* same page tables for taken and
* non-taken transactions.
*/
*rid = PCI_RID(pci_get_bus(l), 0, 0);
l = pcibp;
} else {
/*
* Neither the device nor the bridge
* above it are PCIe. This is a
* conventional PCI->PCI bridge, which
* will use the bridge's BSF as the
* requester ID.
*/
*rid = pci_get_rid(pcib);
l = pcib;
}
}
}
return (requester);
}
struct iommu_ctx *
iommu_instantiate_ctx(struct iommu_unit *unit, device_t dev, bool rmrr)
{
device_t requester;
struct iommu_ctx *ctx;
bool disabled;
uint16_t rid;
requester = iommu_get_requester(dev, &rid);
/*
* If the user requested the IOMMU disabled for the device, we
* cannot disable the IOMMU unit, due to possibility of other
* devices on the same IOMMU unit still requiring translation.
* Instead provide the identity mapping for the device
* context.
*/
disabled = iommu_bus_dma_is_dev_disabled(pci_get_domain(requester),
pci_get_bus(requester), pci_get_slot(requester),
pci_get_function(requester));
ctx = iommu_get_ctx(unit, requester, rid, disabled, rmrr);
if (ctx == NULL)
return (NULL);
if (disabled) {
/*
* Keep the first reference on context, release the
* later refs.
*/
IOMMU_LOCK(unit);
if ((ctx->flags & IOMMU_CTX_DISABLED) == 0) {
ctx->flags |= IOMMU_CTX_DISABLED;
IOMMU_UNLOCK(unit);
} else {
iommu_free_ctx_locked(unit, ctx);
}
ctx = NULL;
}
return (ctx);
}
struct iommu_ctx *
iommu_get_dev_ctx(device_t dev)
{
struct iommu_unit *unit;
unit = iommu_find(dev, bootverbose);
/* Not in scope of any IOMMU ? */
if (unit == NULL)
return (NULL);
if (!unit->dma_enabled)
return (NULL);
#if defined(__amd64__) || defined(__i386__)
dmar_quirks_pre_use(unit);
dmar_instantiate_rmrr_ctxs(unit);
#endif
return (iommu_instantiate_ctx(unit, dev, false));
}
bus_dma_tag_t
iommu_get_dma_tag(device_t dev, device_t child)
{
struct iommu_ctx *ctx;
bus_dma_tag_t res;
ctx = iommu_get_dev_ctx(child);
if (ctx == NULL)
return (NULL);
res = (bus_dma_tag_t)ctx->tag;
return (res);
}
bool
bus_dma_iommu_set_buswide(device_t dev)
{
struct iommu_unit *unit;
device_t parent;
u_int busno, slot, func;
parent = device_get_parent(dev);
if (device_get_devclass(parent) != devclass_find("pci"))
return (false);
unit = iommu_find(dev, bootverbose);
if (unit == NULL)
return (false);
busno = pci_get_bus(dev);
slot = pci_get_slot(dev);
func = pci_get_function(dev);
if (slot != 0 || func != 0) {
if (bootverbose) {
device_printf(dev,
"iommu%d pci%d:%d:%d requested buswide busdma\n",
unit->unit, busno, slot, func);
}
return (false);
}
iommu_set_buswide_ctx(unit, busno);
return (true);
}
void
iommu_set_buswide_ctx(struct iommu_unit *unit, u_int busno)
{
MPASS(busno <= PCI_BUSMAX);
IOMMU_LOCK(unit);
unit->buswide_ctxs[busno / NBBY / sizeof(uint32_t)] |=
1 << (busno % (NBBY * sizeof(uint32_t)));
IOMMU_UNLOCK(unit);
}
bool
iommu_is_buswide_ctx(struct iommu_unit *unit, u_int busno)
{
MPASS(busno <= PCI_BUSMAX);
return ((unit->buswide_ctxs[busno / NBBY / sizeof(uint32_t)] &
(1U << (busno % (NBBY * sizeof(uint32_t))))) != 0);
}
static MALLOC_DEFINE(M_IOMMU_DMAMAP, "iommu_dmamap", "IOMMU DMA Map");
static void iommu_bus_schedule_dmamap(struct iommu_unit *unit,
struct bus_dmamap_iommu *map);
static int
iommu_bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
void *lockfuncarg, bus_dma_tag_t *dmat)
{
struct bus_dma_tag_iommu *newtag, *oldtag;
int error;
*dmat = NULL;
error = common_bus_dma_tag_create(parent != NULL ?
&((struct bus_dma_tag_iommu *)parent)->common : NULL, alignment,
boundary, lowaddr, highaddr, filter, filterarg, maxsize,
nsegments, maxsegsz, flags, lockfunc, lockfuncarg,
sizeof(struct bus_dma_tag_iommu), (void **)&newtag);
if (error != 0)
goto out;
oldtag = (struct bus_dma_tag_iommu *)parent;
newtag->common.impl = &bus_dma_iommu_impl;
newtag->ctx = oldtag->ctx;
newtag->owner = oldtag->owner;
*dmat = (bus_dma_tag_t)newtag;
out:
CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
__func__, newtag, (newtag != NULL ? newtag->common.flags : 0),
error);
return (error);
}
static int
iommu_bus_dma_tag_set_domain(bus_dma_tag_t dmat)
{
return (0);
}
static int
iommu_bus_dma_tag_destroy(bus_dma_tag_t dmat1)
{
struct bus_dma_tag_iommu *dmat, *dmat_copy, *parent;
int error;
error = 0;
dmat_copy = dmat = (struct bus_dma_tag_iommu *)dmat1;
if (dmat != NULL) {
if (dmat->map_count != 0) {
error = EBUSY;
goto out;
}
while (dmat != NULL) {
parent = (struct bus_dma_tag_iommu *)dmat->common.parent;
if (atomic_fetchadd_int(&dmat->common.ref_count, -1) ==
1) {
if (dmat == dmat->ctx->tag)
iommu_free_ctx(dmat->ctx);
free(dmat->segments, M_IOMMU_DMAMAP);
free(dmat, M_DEVBUF);
dmat = parent;
} else
dmat = NULL;
}
}
out:
CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
return (error);
}
static bool
iommu_bus_dma_id_mapped(bus_dma_tag_t dmat, vm_paddr_t buf, bus_size_t buflen)
{
return (false);
}
static int
iommu_bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
tag = (struct bus_dma_tag_iommu *)dmat;
map = malloc_domainset(sizeof(*map), M_IOMMU_DMAMAP,
DOMAINSET_PREF(tag->common.domain), M_NOWAIT | M_ZERO);
if (map == NULL) {
*mapp = NULL;
return (ENOMEM);
}
if (tag->segments == NULL) {
tag->segments = malloc_domainset(sizeof(bus_dma_segment_t) *
tag->common.nsegments, M_IOMMU_DMAMAP,
DOMAINSET_PREF(tag->common.domain), M_NOWAIT);
if (tag->segments == NULL) {
free(map, M_IOMMU_DMAMAP);
*mapp = NULL;
return (ENOMEM);
}
}
TAILQ_INIT(&map->map_entries);
map->tag = tag;
map->locked = true;
map->cansleep = false;
tag->map_count++;
*mapp = (bus_dmamap_t)map;
return (0);
}
static int
iommu_bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map1)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
struct iommu_domain *domain;
tag = (struct bus_dma_tag_iommu *)dmat;
map = (struct bus_dmamap_iommu *)map1;
if (map != NULL) {
domain = tag->ctx->domain;
IOMMU_DOMAIN_LOCK(domain);
if (!TAILQ_EMPTY(&map->map_entries)) {
IOMMU_DOMAIN_UNLOCK(domain);
return (EBUSY);
}
IOMMU_DOMAIN_UNLOCK(domain);
free(map, M_IOMMU_DMAMAP);
}
tag->map_count--;
return (0);
}
static int
iommu_bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
bus_dmamap_t *mapp)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
int error, mflags;
vm_memattr_t attr;
error = iommu_bus_dmamap_create(dmat, flags, mapp);
if (error != 0)
return (error);
mflags = (flags & BUS_DMA_NOWAIT) != 0 ? M_NOWAIT : M_WAITOK;
mflags |= (flags & BUS_DMA_ZERO) != 0 ? M_ZERO : 0;
attr = (flags & BUS_DMA_NOCACHE) != 0 ? VM_MEMATTR_UNCACHEABLE :
VM_MEMATTR_DEFAULT;
tag = (struct bus_dma_tag_iommu *)dmat;
map = (struct bus_dmamap_iommu *)*mapp;
if (tag->common.maxsize < PAGE_SIZE &&
tag->common.alignment <= tag->common.maxsize &&
attr == VM_MEMATTR_DEFAULT) {
*vaddr = malloc_domainset(tag->common.maxsize, M_DEVBUF,
DOMAINSET_PREF(tag->common.domain), mflags);
map->flags |= BUS_DMAMAP_IOMMU_MALLOC;
} else {
*vaddr = (void *)kmem_alloc_attr_domainset(
DOMAINSET_PREF(tag->common.domain), tag->common.maxsize,
mflags, 0ul, BUS_SPACE_MAXADDR, attr);
map->flags |= BUS_DMAMAP_IOMMU_KMEM_ALLOC;
}
if (*vaddr == NULL) {
iommu_bus_dmamap_destroy(dmat, *mapp);
*mapp = NULL;
return (ENOMEM);
}
return (0);
}
static void
iommu_bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map1)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
tag = (struct bus_dma_tag_iommu *)dmat;
map = (struct bus_dmamap_iommu *)map1;
if ((map->flags & BUS_DMAMAP_IOMMU_MALLOC) != 0) {
free(vaddr, M_DEVBUF);
map->flags &= ~BUS_DMAMAP_IOMMU_MALLOC;
} else {
KASSERT((map->flags & BUS_DMAMAP_IOMMU_KMEM_ALLOC) != 0,
("iommu_bus_dmamem_free for non alloced map %p", map));
kmem_free((vm_offset_t)vaddr, tag->common.maxsize);
map->flags &= ~BUS_DMAMAP_IOMMU_KMEM_ALLOC;
}
iommu_bus_dmamap_destroy(dmat, map1);
}
static int
iommu_bus_dmamap_load_something1(struct bus_dma_tag_iommu *tag,
struct bus_dmamap_iommu *map, vm_page_t *ma, int offset, bus_size_t buflen,
int flags, bus_dma_segment_t *segs, int *segp,
struct iommu_map_entries_tailq *unroll_list)
{
struct iommu_ctx *ctx;
struct iommu_domain *domain;
struct iommu_map_entry *entry;
iommu_gaddr_t size;
bus_size_t buflen1;
int error, idx, gas_flags, seg;
KASSERT(offset < IOMMU_PAGE_SIZE, ("offset %d", offset));
if (segs == NULL)
segs = tag->segments;
ctx = tag->ctx;
domain = ctx->domain;
seg = *segp;
error = 0;
idx = 0;
while (buflen > 0) {
seg++;
if (seg >= tag->common.nsegments) {
error = EFBIG;
break;
}
buflen1 = buflen > tag->common.maxsegsz ?
tag->common.maxsegsz : buflen;
size = round_page(offset + buflen1);
/*
* (Too) optimistically allow split if there are more
* then one segments left.
*/
gas_flags = map->cansleep ? IOMMU_MF_CANWAIT : 0;
if (seg + 1 < tag->common.nsegments)
gas_flags |= IOMMU_MF_CANSPLIT;
error = iommu_map(domain, &tag->common, size, offset,
IOMMU_MAP_ENTRY_READ |
((flags & BUS_DMA_NOWRITE) == 0 ? IOMMU_MAP_ENTRY_WRITE : 0),
gas_flags, ma + idx, &entry);
if (error != 0)
break;
if ((gas_flags & IOMMU_MF_CANSPLIT) != 0) {
KASSERT(size >= entry->end - entry->start,
("split increased entry size %jx %jx %jx",
(uintmax_t)size, (uintmax_t)entry->start,
(uintmax_t)entry->end));
size = entry->end - entry->start;
if (buflen1 > size)
buflen1 = size;
} else {
KASSERT(entry->end - entry->start == size,
("no split allowed %jx %jx %jx",
(uintmax_t)size, (uintmax_t)entry->start,
(uintmax_t)entry->end));
}
if (offset + buflen1 > size)
buflen1 = size - offset;
if (buflen1 > tag->common.maxsegsz)
buflen1 = tag->common.maxsegsz;
KASSERT(((entry->start + offset) & (tag->common.alignment - 1))
== 0,
("alignment failed: ctx %p start 0x%jx offset %x "
"align 0x%jx", ctx, (uintmax_t)entry->start, offset,
(uintmax_t)tag->common.alignment));
KASSERT(entry->end <= tag->common.lowaddr ||
entry->start >= tag->common.highaddr,
("entry placement failed: ctx %p start 0x%jx end 0x%jx "
"lowaddr 0x%jx highaddr 0x%jx", ctx,
(uintmax_t)entry->start, (uintmax_t)entry->end,
(uintmax_t)tag->common.lowaddr,
(uintmax_t)tag->common.highaddr));
KASSERT(iommu_test_boundary(entry->start + offset, buflen1,
tag->common.boundary),
("boundary failed: ctx %p start 0x%jx end 0x%jx "
"boundary 0x%jx", ctx, (uintmax_t)entry->start,
(uintmax_t)entry->end, (uintmax_t)tag->common.boundary));
KASSERT(buflen1 <= tag->common.maxsegsz,
("segment too large: ctx %p start 0x%jx end 0x%jx "
"buflen1 0x%jx maxsegsz 0x%jx", ctx,
(uintmax_t)entry->start, (uintmax_t)entry->end,
(uintmax_t)buflen1, (uintmax_t)tag->common.maxsegsz));
IOMMU_DOMAIN_LOCK(domain);
TAILQ_INSERT_TAIL(&map->map_entries, entry, dmamap_link);
entry->flags |= IOMMU_MAP_ENTRY_MAP;
IOMMU_DOMAIN_UNLOCK(domain);
TAILQ_INSERT_TAIL(unroll_list, entry, unroll_link);
segs[seg].ds_addr = entry->start + offset;
segs[seg].ds_len = buflen1;
idx += OFF_TO_IDX(trunc_page(offset + buflen1));
offset += buflen1;
offset &= IOMMU_PAGE_MASK;
buflen -= buflen1;
}
if (error == 0)
*segp = seg;
return (error);
}
static int
iommu_bus_dmamap_load_something(struct bus_dma_tag_iommu *tag,
struct bus_dmamap_iommu *map, vm_page_t *ma, int offset, bus_size_t buflen,
int flags, bus_dma_segment_t *segs, int *segp)
{
struct iommu_ctx *ctx;
struct iommu_domain *domain;
struct iommu_map_entry *entry, *entry1;
struct iommu_map_entries_tailq unroll_list;
int error;
ctx = tag->ctx;
domain = ctx->domain;
atomic_add_long(&ctx->loads, 1);
TAILQ_INIT(&unroll_list);
error = iommu_bus_dmamap_load_something1(tag, map, ma, offset,
buflen, flags, segs, segp, &unroll_list);
if (error != 0) {
/*
* The busdma interface does not allow us to report
* partial buffer load, so unfortunately we have to
* revert all work done.
*/
IOMMU_DOMAIN_LOCK(domain);
TAILQ_FOREACH_SAFE(entry, &unroll_list, unroll_link,
entry1) {
/*
* No entries other than what we have created
* during the failed run might have been
* inserted there in between, since we own ctx
* pglock.
*/
TAILQ_REMOVE(&map->map_entries, entry, dmamap_link);
TAILQ_REMOVE(&unroll_list, entry, unroll_link);
TAILQ_INSERT_TAIL(&domain->unload_entries, entry,
dmamap_link);
}
IOMMU_DOMAIN_UNLOCK(domain);
taskqueue_enqueue(domain->iommu->delayed_taskqueue,
&domain->unload_task);
}
if (error == ENOMEM && (flags & BUS_DMA_NOWAIT) == 0 &&
!map->cansleep)
error = EINPROGRESS;
if (error == EINPROGRESS)
iommu_bus_schedule_dmamap(domain->iommu, map);
return (error);
}
static int
iommu_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map1,
struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
bus_dma_segment_t *segs, int *segp)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
tag = (struct bus_dma_tag_iommu *)dmat;
map = (struct bus_dmamap_iommu *)map1;
return (iommu_bus_dmamap_load_something(tag, map, ma, ma_offs, tlen,
flags, segs, segp));
}
static int
iommu_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map1,
vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs,
int *segp)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
vm_page_t *ma, fma;
vm_paddr_t pstart, pend, paddr;
int error, i, ma_cnt, mflags, offset;
tag = (struct bus_dma_tag_iommu *)dmat;
map = (struct bus_dmamap_iommu *)map1;
pstart = trunc_page(buf);
pend = round_page(buf + buflen);
offset = buf & PAGE_MASK;
ma_cnt = OFF_TO_IDX(pend - pstart);
mflags = map->cansleep ? M_WAITOK : M_NOWAIT;
ma = malloc(sizeof(vm_page_t) * ma_cnt, M_DEVBUF, mflags);
if (ma == NULL)
return (ENOMEM);
fma = NULL;
for (i = 0; i < ma_cnt; i++) {
paddr = pstart + ptoa(i);
ma[i] = PHYS_TO_VM_PAGE(paddr);
if (ma[i] == NULL || VM_PAGE_TO_PHYS(ma[i]) != paddr) {
/*
* If PHYS_TO_VM_PAGE() returned NULL or the
* vm_page was not initialized we'll use a
* fake page.
*/
if (fma == NULL) {
fma = malloc(sizeof(struct vm_page) * ma_cnt,
M_DEVBUF, M_ZERO | mflags);
if (fma == NULL) {
free(ma, M_DEVBUF);
return (ENOMEM);
}
}
vm_page_initfake(&fma[i], pstart + ptoa(i),
VM_MEMATTR_DEFAULT);
ma[i] = &fma[i];
}
}
error = iommu_bus_dmamap_load_something(tag, map, ma, offset, buflen,
flags, segs, segp);
free(fma, M_DEVBUF);
free(ma, M_DEVBUF);
return (error);
}
static int
iommu_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map1, void *buf,
bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs,
int *segp)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
vm_page_t *ma, fma;
vm_paddr_t pstart, pend, paddr;
int error, i, ma_cnt, mflags, offset;
tag = (struct bus_dma_tag_iommu *)dmat;
map = (struct bus_dmamap_iommu *)map1;
pstart = trunc_page((vm_offset_t)buf);
pend = round_page((vm_offset_t)buf + buflen);
offset = (vm_offset_t)buf & PAGE_MASK;
ma_cnt = OFF_TO_IDX(pend - pstart);
mflags = map->cansleep ? M_WAITOK : M_NOWAIT;
ma = malloc(sizeof(vm_page_t) * ma_cnt, M_DEVBUF, mflags);
if (ma == NULL)
return (ENOMEM);
fma = NULL;
for (i = 0; i < ma_cnt; i++, pstart += PAGE_SIZE) {
if (pmap == kernel_pmap)
paddr = pmap_kextract(pstart);
else
paddr = pmap_extract(pmap, pstart);
ma[i] = PHYS_TO_VM_PAGE(paddr);
if (ma[i] == NULL || VM_PAGE_TO_PHYS(ma[i]) != paddr) {
/*
* If PHYS_TO_VM_PAGE() returned NULL or the
* vm_page was not initialized we'll use a
* fake page.
*/
if (fma == NULL) {
fma = malloc(sizeof(struct vm_page) * ma_cnt,
M_DEVBUF, M_ZERO | mflags);
if (fma == NULL) {
free(ma, M_DEVBUF);
return (ENOMEM);
}
}
vm_page_initfake(&fma[i], paddr, VM_MEMATTR_DEFAULT);
ma[i] = &fma[i];
}
}
error = iommu_bus_dmamap_load_something(tag, map, ma, offset, buflen,
flags, segs, segp);
free(ma, M_DEVBUF);
free(fma, M_DEVBUF);
return (error);
}
static void
iommu_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map1,
struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg)
{
struct bus_dmamap_iommu *map;
if (map1 == NULL)
return;
map = (struct bus_dmamap_iommu *)map1;
map->mem = *mem;
map->tag = (struct bus_dma_tag_iommu *)dmat;
map->callback = callback;
map->callback_arg = callback_arg;
}
static bus_dma_segment_t *
iommu_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map1,
bus_dma_segment_t *segs, int nsegs, int error)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
tag = (struct bus_dma_tag_iommu *)dmat;
map = (struct bus_dmamap_iommu *)map1;
if (!map->locked) {
KASSERT(map->cansleep,
("map not locked and not sleepable context %p", map));
/*
* We are called from the delayed context. Relock the
* driver.
*/
(tag->common.lockfunc)(tag->common.lockfuncarg, BUS_DMA_LOCK);
map->locked = true;
}
if (segs == NULL)
segs = tag->segments;
return (segs);
}
/*
* The limitations of busdma KPI forces the iommu to perform the actual
* unload, consisting of the unmapping of the map entries page tables,
* from the delayed context on i386, since page table page mapping
* might require a sleep to be successfull. The unfortunate
* consequence is that the DMA requests can be served some time after
* the bus_dmamap_unload() call returned.
*
* On amd64, we assume that sf allocation cannot fail.
*/
static void
iommu_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map1)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
struct iommu_ctx *ctx;
struct iommu_domain *domain;
#ifndef IOMMU_DOMAIN_UNLOAD_SLEEP
struct iommu_map_entries_tailq entries;
#endif
tag = (struct bus_dma_tag_iommu *)dmat;
map = (struct bus_dmamap_iommu *)map1;
ctx = tag->ctx;
domain = ctx->domain;
atomic_add_long(&ctx->unloads, 1);
#if defined(IOMMU_DOMAIN_UNLOAD_SLEEP)
IOMMU_DOMAIN_LOCK(domain);
TAILQ_CONCAT(&domain->unload_entries, &map->map_entries, dmamap_link);
IOMMU_DOMAIN_UNLOCK(domain);
taskqueue_enqueue(domain->iommu->delayed_taskqueue,
&domain->unload_task);
#else
TAILQ_INIT(&entries);
IOMMU_DOMAIN_LOCK(domain);
TAILQ_CONCAT(&entries, &map->map_entries, dmamap_link);
IOMMU_DOMAIN_UNLOCK(domain);
THREAD_NO_SLEEPING();
iommu_domain_unload(domain, &entries, false);
THREAD_SLEEPING_OK();
KASSERT(TAILQ_EMPTY(&entries), ("lazy iommu_ctx_unload %p", ctx));
#endif
}
static void
iommu_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map1,
bus_dmasync_op_t op)
{
struct bus_dmamap_iommu *map;
map = (struct bus_dmamap_iommu *)map1;
kmsan_bus_dmamap_sync(&map->kmsan_mem, op);
}
#ifdef KMSAN
static void
iommu_bus_dmamap_load_kmsan(bus_dmamap_t map1, struct memdesc *mem)
{
struct bus_dmamap_iommu *map;
map = (struct bus_dmamap_iommu *)map1;
if (map == NULL)
return;
memcpy(&map->kmsan_mem, mem, sizeof(struct memdesc));
}
#endif
struct bus_dma_impl bus_dma_iommu_impl = {
.tag_create = iommu_bus_dma_tag_create,
.tag_destroy = iommu_bus_dma_tag_destroy,
.tag_set_domain = iommu_bus_dma_tag_set_domain,
.id_mapped = iommu_bus_dma_id_mapped,
.map_create = iommu_bus_dmamap_create,
.map_destroy = iommu_bus_dmamap_destroy,
.mem_alloc = iommu_bus_dmamem_alloc,
.mem_free = iommu_bus_dmamem_free,
.load_phys = iommu_bus_dmamap_load_phys,
.load_buffer = iommu_bus_dmamap_load_buffer,
.load_ma = iommu_bus_dmamap_load_ma,
.map_waitok = iommu_bus_dmamap_waitok,
.map_complete = iommu_bus_dmamap_complete,
.map_unload = iommu_bus_dmamap_unload,
.map_sync = iommu_bus_dmamap_sync,
#ifdef KMSAN
.load_kmsan = iommu_bus_dmamap_load_kmsan,
#endif
};
static void
iommu_bus_task_dmamap(void *arg, int pending)
{
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
struct iommu_unit *unit;
unit = arg;
IOMMU_LOCK(unit);
while ((map = TAILQ_FIRST(&unit->delayed_maps)) != NULL) {
TAILQ_REMOVE(&unit->delayed_maps, map, delay_link);
IOMMU_UNLOCK(unit);
tag = map->tag;
map->cansleep = true;
map->locked = false;
bus_dmamap_load_mem((bus_dma_tag_t)tag, (bus_dmamap_t)map,
&map->mem, map->callback, map->callback_arg,
BUS_DMA_WAITOK);
map->cansleep = false;
if (map->locked) {
(tag->common.lockfunc)(tag->common.lockfuncarg,
BUS_DMA_UNLOCK);
} else
map->locked = true;
map->cansleep = false;
IOMMU_LOCK(unit);
}
IOMMU_UNLOCK(unit);
}
static void
iommu_bus_schedule_dmamap(struct iommu_unit *unit, struct bus_dmamap_iommu *map)
{
map->locked = false;
IOMMU_LOCK(unit);
TAILQ_INSERT_TAIL(&unit->delayed_maps, map, delay_link);
IOMMU_UNLOCK(unit);
taskqueue_enqueue(unit->delayed_taskqueue, &unit->dmamap_load_task);
}
int
iommu_init_busdma(struct iommu_unit *unit)
{
int error;
unit->dma_enabled = 1;
error = TUNABLE_INT_FETCH("hw.iommu.dma", &unit->dma_enabled);
if (error == 0) /* compatibility */
TUNABLE_INT_FETCH("hw.dmar.dma", &unit->dma_enabled);
TAILQ_INIT(&unit->delayed_maps);
TASK_INIT(&unit->dmamap_load_task, 0, iommu_bus_task_dmamap, unit);
unit->delayed_taskqueue = taskqueue_create("iommu", M_WAITOK,
taskqueue_thread_enqueue, &unit->delayed_taskqueue);
taskqueue_start_threads(&unit->delayed_taskqueue, 1, PI_DISK,
"iommu%d busdma taskq", unit->unit);
return (0);
}
void
iommu_fini_busdma(struct iommu_unit *unit)
{
if (unit->delayed_taskqueue == NULL)
return;
taskqueue_drain(unit->delayed_taskqueue, &unit->dmamap_load_task);
taskqueue_free(unit->delayed_taskqueue);
unit->delayed_taskqueue = NULL;
}
int
bus_dma_iommu_load_ident(bus_dma_tag_t dmat, bus_dmamap_t map1,
vm_paddr_t start, vm_size_t length, int flags)
{
struct bus_dma_tag_common *tc;
struct bus_dma_tag_iommu *tag;
struct bus_dmamap_iommu *map;
struct iommu_ctx *ctx;
struct iommu_domain *domain;
struct iommu_map_entry *entry;
vm_page_t *ma;
vm_size_t i;
int error;
bool waitok;
MPASS((start & PAGE_MASK) == 0);
MPASS((length & PAGE_MASK) == 0);
MPASS(length > 0);
MPASS(start + length >= start);
MPASS((flags & ~(BUS_DMA_NOWAIT | BUS_DMA_NOWRITE)) == 0);
tc = (struct bus_dma_tag_common *)dmat;
if (tc->impl != &bus_dma_iommu_impl)
return (0);
tag = (struct bus_dma_tag_iommu *)dmat;
ctx = tag->ctx;
domain = ctx->domain;
map = (struct bus_dmamap_iommu *)map1;
waitok = (flags & BUS_DMA_NOWAIT) != 0;
entry = iommu_map_alloc_entry(domain, waitok ? 0 : IOMMU_PGF_WAITOK);
if (entry == NULL)
return (ENOMEM);
entry->start = start;
entry->end = start + length;
ma = malloc(sizeof(vm_page_t) * atop(length), M_TEMP, waitok ?
M_WAITOK : M_NOWAIT);
if (ma == NULL) {
iommu_map_free_entry(domain, entry);
return (ENOMEM);
}
for (i = 0; i < atop(length); i++) {
ma[i] = vm_page_getfake(entry->start + PAGE_SIZE * i,
VM_MEMATTR_DEFAULT);
}
error = iommu_map_region(domain, entry, IOMMU_MAP_ENTRY_READ |
((flags & BUS_DMA_NOWRITE) ? 0 : IOMMU_MAP_ENTRY_WRITE),
waitok ? IOMMU_MF_CANWAIT : 0, ma);
if (error == 0) {
IOMMU_DOMAIN_LOCK(domain);
TAILQ_INSERT_TAIL(&map->map_entries, entry, dmamap_link);
entry->flags |= IOMMU_MAP_ENTRY_MAP;
IOMMU_DOMAIN_UNLOCK(domain);
} else {
iommu_domain_unload_entry(entry, true);
}
for (i = 0; i < atop(length); i++)
vm_page_putfake(ma[i]);
free(ma, M_TEMP);
return (error);
}
static void
iommu_domain_unload_task(void *arg, int pending)
{
struct iommu_domain *domain;
struct iommu_map_entries_tailq entries;
domain = arg;
TAILQ_INIT(&entries);
for (;;) {
IOMMU_DOMAIN_LOCK(domain);
TAILQ_SWAP(&domain->unload_entries, &entries,
iommu_map_entry, dmamap_link);
IOMMU_DOMAIN_UNLOCK(domain);
if (TAILQ_EMPTY(&entries))
break;
iommu_domain_unload(domain, &entries, true);
}
}
void
iommu_domain_init(struct iommu_unit *unit, struct iommu_domain *domain,
const struct iommu_domain_map_ops *ops)
{
domain->ops = ops;
domain->iommu = unit;
TASK_INIT(&domain->unload_task, 0, iommu_domain_unload_task, domain);
RB_INIT(&domain->rb_root);
TAILQ_INIT(&domain->unload_entries);
mtx_init(&domain->lock, "iodom", NULL, MTX_DEF);
}
void
iommu_domain_fini(struct iommu_domain *domain)
{
mtx_destroy(&domain->lock);
}