freebsd-nq/sys/netinet/udp_usrreq.c
Bosko Milekic a57815efd2 Clean up RST ratelimiting. Previously, ratelimiting occured before tests
were performed to determine if the received packet should be reset. This
created erroneous ratelimiting and false alarms in some cases. The code
has now been reorganized so that the checks for validity come before
the call to badport_bandlim. Additionally, a few changes in the symbolic
names of the bandlim types have been made, as well as a clarification of
exactly which type each RST case falls under.

Submitted by: Mike Silbersack <silby@silby.com>
2001-02-11 07:39:51 +00:00

908 lines
22 KiB
C

/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
* $FreeBSD$
*/
#include "opt_ipsec.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <vm/vm_zone.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#endif
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#ifdef IPSEC
#include <netinet6/ipsec.h>
#endif /*IPSEC*/
#include <machine/in_cksum.h>
/*
* UDP protocol implementation.
* Per RFC 768, August, 1980.
*/
#ifndef COMPAT_42
static int udpcksum = 1;
#else
static int udpcksum = 0; /* XXX */
#endif
SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
&udpcksum, 0, "");
int log_in_vain = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
&log_in_vain, 0, "Log all incoming UDP packets");
static int blackhole = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
&blackhole, 0, "Do not send port unreachables for refused connects");
struct inpcbhead udb; /* from udp_var.h */
#define udb6 udb /* for KAME src sync over BSD*'s */
struct inpcbinfo udbinfo;
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 16
#endif
struct udpstat udpstat; /* from udp_var.h */
SYSCTL_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RD,
&udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
static struct sockaddr_in udp_in = { sizeof(udp_in), AF_INET };
#ifdef INET6
struct udp_in6 {
struct sockaddr_in6 uin6_sin;
u_char uin6_init_done : 1;
} udp_in6 = {
{ sizeof(udp_in6.uin6_sin), AF_INET6 },
0
};
struct udp_ip6 {
struct ip6_hdr uip6_ip6;
u_char uip6_init_done : 1;
} udp_ip6;
#endif /* INET6 */
static void udp_append __P((struct inpcb *last, struct ip *ip,
struct mbuf *n, int off));
#ifdef INET6
static void ip_2_ip6_hdr __P((struct ip6_hdr *ip6, struct ip *ip));
#endif
static int udp_detach __P((struct socket *so));
static int udp_output __P((struct inpcb *, struct mbuf *, struct sockaddr *,
struct mbuf *, struct proc *));
void
udp_init()
{
LIST_INIT(&udb);
udbinfo.listhead = &udb;
udbinfo.hashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.hashmask);
udbinfo.porthashbase = hashinit(UDBHASHSIZE, M_PCB,
&udbinfo.porthashmask);
udbinfo.ipi_zone = zinit("udpcb", sizeof(struct inpcb), maxsockets,
ZONE_INTERRUPT, 0);
}
void
udp_input(m, off, proto)
register struct mbuf *m;
int off, proto;
{
int iphlen = off;
register struct ip *ip;
register struct udphdr *uh;
register struct inpcb *inp;
struct mbuf *opts = 0;
int len;
struct ip save_ip;
struct sockaddr *append_sa;
udpstat.udps_ipackets++;
/*
* Strip IP options, if any; should skip this,
* make available to user, and use on returned packets,
* but we don't yet have a way to check the checksum
* with options still present.
*/
if (iphlen > sizeof (struct ip)) {
ip_stripoptions(m, (struct mbuf *)0);
iphlen = sizeof(struct ip);
}
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
if (m->m_len < iphlen + sizeof(struct udphdr)) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
udpstat.udps_hdrops++;
return;
}
ip = mtod(m, struct ip *);
}
uh = (struct udphdr *)((caddr_t)ip + iphlen);
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0)
goto bad;
/*
* Make mbuf data length reflect UDP length.
* If not enough data to reflect UDP length, drop.
*/
len = ntohs((u_short)uh->uh_ulen);
if (ip->ip_len != len) {
if (len > ip->ip_len || len < sizeof(struct udphdr)) {
udpstat.udps_badlen++;
goto bad;
}
m_adj(m, len - ip->ip_len);
/* ip->ip_len = len; */
}
/*
* Save a copy of the IP header in case we want restore it
* for sending an ICMP error message in response.
*/
if (!blackhole)
save_ip = *ip;
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum) {
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
uh->uh_sum = m->m_pkthdr.csum_data;
else
uh->uh_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htonl((u_short)len +
m->m_pkthdr.csum_data + IPPROTO_UDP));
uh->uh_sum ^= 0xffff;
} else {
bzero(((struct ipovly *)ip)->ih_x1, 9);
((struct ipovly *)ip)->ih_len = uh->uh_ulen;
uh->uh_sum = in_cksum(m, len + sizeof (struct ip));
}
if (uh->uh_sum) {
udpstat.udps_badsum++;
m_freem(m);
return;
}
}
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
struct inpcb *last;
/*
* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
/*
* Construct sockaddr format source address.
*/
udp_in.sin_port = uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
/*
* Locate pcb(s) for datagram.
* (Algorithm copied from raw_intr().)
*/
last = NULL;
#ifdef INET6
udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0;
#endif
LIST_FOREACH(inp, &udb, inp_list) {
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_lport != uh->uh_dport)
continue;
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (inp->inp_laddr.s_addr !=
ip->ip_dst.s_addr)
continue;
}
if (inp->inp_faddr.s_addr != INADDR_ANY) {
if (inp->inp_faddr.s_addr !=
ip->ip_src.s_addr ||
inp->inp_fport != uh->uh_sport)
continue;
}
if (last != NULL) {
struct mbuf *n;
#ifdef IPSEC
/* check AH/ESP integrity. */
if (ipsec4_in_reject_so(m, last->inp_socket))
ipsecstat.in_polvio++;
/* do not inject data to pcb */
else
#endif /*IPSEC*/
if ((n = m_copy(m, 0, M_COPYALL)) != NULL)
udp_append(last, ip, n,
iphlen +
sizeof(struct udphdr));
}
last = inp;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It * assumes that an application will never
* clear these options after setting them.
*/
if ((last->inp_socket->so_options&(SO_REUSEPORT|SO_REUSEADDR)) == 0)
break;
}
if (last == NULL) {
/*
* No matching pcb found; discard datagram.
* (No need to send an ICMP Port Unreachable
* for a broadcast or multicast datgram.)
*/
udpstat.udps_noportbcast++;
goto bad;
}
#ifdef IPSEC
/* check AH/ESP integrity. */
if (ipsec4_in_reject_so(m, last->inp_socket)) {
ipsecstat.in_polvio++;
goto bad;
}
#endif /*IPSEC*/
udp_append(last, ip, m, iphlen + sizeof(struct udphdr));
return;
}
/*
* Locate pcb for datagram.
*/
inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, 1, m->m_pkthdr.rcvif);
if (inp == NULL) {
if (log_in_vain) {
char buf[4*sizeof "123"];
strcpy(buf, inet_ntoa(ip->ip_dst));
log(LOG_INFO,
"Connection attempt to UDP %s:%d from %s:%d\n",
buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
ntohs(uh->uh_sport));
}
udpstat.udps_noport++;
if (m->m_flags & (M_BCAST | M_MCAST)) {
udpstat.udps_noportbcast++;
goto bad;
}
if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
goto bad;
if (blackhole)
goto bad;
*ip = save_ip;
ip->ip_len += iphlen;
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
return;
}
#ifdef IPSEC
if (ipsec4_in_reject_so(m, inp->inp_socket)) {
ipsecstat.in_polvio++;
goto bad;
}
#endif /*IPSEC*/
/*
* Construct sockaddr format source address.
* Stuff source address and datagram in user buffer.
*/
udp_in.sin_port = uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
if (inp->inp_flags & INP_CONTROLOPTS
|| inp->inp_socket->so_options & SO_TIMESTAMP) {
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
int savedflags;
ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip);
savedflags = inp->inp_flags;
inp->inp_flags &= ~INP_UNMAPPABLEOPTS;
ip6_savecontrol(inp, &opts, &udp_ip6.uip6_ip6, m);
inp->inp_flags = savedflags;
} else
#endif
ip_savecontrol(inp, &opts, ip, m);
}
iphlen += sizeof(struct udphdr);
m_adj(m, iphlen);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin);
append_sa = (struct sockaddr *)&udp_in6;
} else
#endif
append_sa = (struct sockaddr *)&udp_in;
if (sbappendaddr(&inp->inp_socket->so_rcv, append_sa, m, opts) == 0) {
udpstat.udps_fullsock++;
goto bad;
}
sorwakeup(inp->inp_socket);
return;
bad:
m_freem(m);
if (opts)
m_freem(opts);
return;
}
#ifdef INET6
static void
ip_2_ip6_hdr(ip6, ip)
struct ip6_hdr *ip6;
struct ip *ip;
{
bzero(ip6, sizeof(*ip6));
ip6->ip6_vfc = IPV6_VERSION;
ip6->ip6_plen = ip->ip_len;
ip6->ip6_nxt = ip->ip_p;
ip6->ip6_hlim = ip->ip_ttl;
ip6->ip6_src.s6_addr32[2] = ip6->ip6_dst.s6_addr32[2] =
IPV6_ADDR_INT32_SMP;
ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr;
ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr;
}
#endif
/*
* subroutine of udp_input(), mainly for source code readability.
* caller must properly init udp_ip6 and udp_in6 beforehand.
*/
static void
udp_append(last, ip, n, off)
struct inpcb *last;
struct ip *ip;
struct mbuf *n;
int off;
{
struct sockaddr *append_sa;
struct mbuf *opts = 0;
if (last->inp_flags & INP_CONTROLOPTS ||
last->inp_socket->so_options & SO_TIMESTAMP) {
#ifdef INET6
if (last->inp_vflag & INP_IPV6) {
int savedflags;
if (udp_ip6.uip6_init_done == 0) {
ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip);
udp_ip6.uip6_init_done = 1;
}
savedflags = last->inp_flags;
last->inp_flags &= ~INP_UNMAPPABLEOPTS;
ip6_savecontrol(last, &opts, &udp_ip6.uip6_ip6, n);
last->inp_flags = savedflags;
} else
#endif
ip_savecontrol(last, &opts, ip, n);
}
#ifdef INET6
if (last->inp_vflag & INP_IPV6) {
if (udp_in6.uin6_init_done == 0) {
in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin);
udp_in6.uin6_init_done = 1;
}
append_sa = (struct sockaddr *)&udp_in6.uin6_sin;
} else
#endif
append_sa = (struct sockaddr *)&udp_in;
m_adj(n, off);
if (sbappendaddr(&last->inp_socket->so_rcv, append_sa, n, opts) == 0) {
m_freem(n);
if (opts)
m_freem(opts);
udpstat.udps_fullsock++;
} else
sorwakeup(last->inp_socket);
}
/*
* Notify a udp user of an asynchronous error;
* just wake up so that he can collect error status.
*/
void
udp_notify(inp, errno)
register struct inpcb *inp;
int errno;
{
inp->inp_socket->so_error = errno;
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
}
void
udp_ctlinput(cmd, sa, vip)
int cmd;
struct sockaddr *sa;
void *vip;
{
register struct ip *ip = vip;
register struct udphdr *uh;
if (!PRC_IS_REDIRECT(cmd) &&
((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0))
return;
if (ip) {
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
in_pcbnotify(&udb, sa, uh->uh_dport, ip->ip_src, uh->uh_sport,
cmd, udp_notify, 0, 0);
} else
in_pcbnotify(&udb, sa, 0, zeroin_addr, 0, cmd, udp_notify, 0, 0);
}
static int
udp_pcblist(SYSCTL_HANDLER_ARGS)
{
int error, i, n, s;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == 0) {
n = udbinfo.ipi_count;
req->oldidx = 2 * (sizeof xig)
+ (n + n/8) * sizeof(struct xinpcb);
return 0;
}
if (req->newptr != 0)
return EPERM;
/*
* OK, now we're committed to doing something.
*/
s = splnet();
gencnt = udbinfo.ipi_gencnt;
n = udbinfo.ipi_count;
splx(s);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return error;
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == 0)
return ENOMEM;
s = splnet();
for (inp = LIST_FIRST(udbinfo.listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
inp_list[i++] = inp;
}
splx(s);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
if (inp->inp_gencnt <= gencnt) {
struct xinpcb xi;
xi.xi_len = sizeof xi;
/* XXX should avoid extra copy */
bcopy(inp, &xi.xi_inp, sizeof *inp);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xi.xi_socket);
error = SYSCTL_OUT(req, &xi, sizeof xi);
}
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
s = splnet();
xig.xig_gen = udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = udbinfo.ipi_count;
splx(s);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return error;
}
SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
udp_pcblist, "S,xinpcb", "List of active UDP sockets");
static int
udp_getcred(SYSCTL_HANDLER_ARGS)
{
struct sockaddr_in addrs[2];
struct inpcb *inp;
int error, s;
error = suser(req->p);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
s = splnet();
inp = in_pcblookup_hash(&udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port, 1, NULL);
if (inp == NULL || inp->inp_socket == NULL) {
error = ENOENT;
goto out;
}
error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
out:
splx(s);
return (error);
}
SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
0, 0, udp_getcred, "S,ucred", "Get the ucred of a UDP connection");
static int
udp_output(inp, m, addr, control, p)
register struct inpcb *inp;
struct mbuf *m;
struct sockaddr *addr;
struct mbuf *control;
struct proc *p;
{
register struct udpiphdr *ui;
register int len = m->m_pkthdr.len;
struct in_addr laddr;
struct sockaddr_in *sin;
int s = 0, error = 0;
if (control)
m_freem(control); /* XXX */
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
error = EMSGSIZE;
goto release;
}
if (addr) {
sin = (struct sockaddr_in *)addr;
prison_remote_ip(p, 0, &sin->sin_addr.s_addr);
laddr = inp->inp_laddr;
if (inp->inp_faddr.s_addr != INADDR_ANY) {
error = EISCONN;
goto release;
}
/*
* Must block input while temporarily connected.
*/
s = splnet();
error = in_pcbconnect(inp, addr, p);
if (error) {
splx(s);
goto release;
}
} else {
if (inp->inp_faddr.s_addr == INADDR_ANY) {
error = ENOTCONN;
goto release;
}
}
/*
* Calculate data length and get a mbuf
* for UDP and IP headers.
*/
M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT);
if (m == 0) {
error = ENOBUFS;
if (addr)
splx(s);
goto release;
}
/*
* Fill in mbuf with extended UDP header
* and addresses and length put into network format.
*/
ui = mtod(m, struct udpiphdr *);
bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
ui->ui_pr = IPPROTO_UDP;
ui->ui_src = inp->inp_laddr;
ui->ui_dst = inp->inp_faddr;
ui->ui_sport = inp->inp_lport;
ui->ui_dport = inp->inp_fport;
ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
/*
* Set up checksum and output datagram.
*/
if (udpcksum) {
ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr,
htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
m->m_pkthdr.csum_flags = CSUM_UDP;
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
} else {
ui->ui_sum = 0;
}
((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */
udpstat.udps_opackets++;
#ifdef IPSEC
ipsec_setsocket(m, inp->inp_socket);
#endif /*IPSEC*/
error = ip_output(m, inp->inp_options, &inp->inp_route,
(inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST)),
inp->inp_moptions);
if (addr) {
in_pcbdisconnect(inp);
inp->inp_laddr = laddr; /* XXX rehash? */
splx(s);
}
return (error);
release:
m_freem(m);
return (error);
}
u_long udp_sendspace = 9216; /* really max datagram size */
/* 40 1K datagrams */
SYSCTL_INT(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
&udp_sendspace, 0, "Maximum outgoing UDP datagram size");
u_long udp_recvspace = 40 * (1024 +
#ifdef INET6
sizeof(struct sockaddr_in6)
#else
sizeof(struct sockaddr_in)
#endif
);
SYSCTL_INT(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
&udp_recvspace, 0, "Maximum incoming UDP datagram size");
static int
udp_abort(struct socket *so)
{
struct inpcb *inp;
int s;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL; /* ??? possible? panic instead? */
soisdisconnected(so);
s = splnet();
in_pcbdetach(inp);
splx(s);
return 0;
}
static int
udp_attach(struct socket *so, int proto, struct proc *p)
{
struct inpcb *inp;
int s, error;
inp = sotoinpcb(so);
if (inp != 0)
return EINVAL;
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error)
return error;
s = splnet();
error = in_pcballoc(so, &udbinfo, p);
splx(s);
if (error)
return error;
inp = (struct inpcb *)so->so_pcb;
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_ttl = ip_defttl;
#ifdef IPSEC
error = ipsec_init_policy(so, &inp->inp_sp);
if (error != 0) {
in_pcbdetach(inp);
return error;
}
#endif /*IPSEC*/
return 0;
}
static int
udp_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
{
struct inpcb *inp;
int s, error;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
s = splnet();
error = in_pcbbind(inp, nam, p);
splx(s);
return error;
}
static int
udp_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
{
struct inpcb *inp;
int s, error;
struct sockaddr_in *sin;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
if (inp->inp_faddr.s_addr != INADDR_ANY)
return EISCONN;
s = splnet();
sin = (struct sockaddr_in *)nam;
prison_remote_ip(p, 0, &sin->sin_addr.s_addr);
error = in_pcbconnect(inp, nam, p);
splx(s);
if (error == 0)
soisconnected(so);
return error;
}
static int
udp_detach(struct socket *so)
{
struct inpcb *inp;
int s;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
s = splnet();
in_pcbdetach(inp);
splx(s);
return 0;
}
static int
udp_disconnect(struct socket *so)
{
struct inpcb *inp;
int s;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
if (inp->inp_faddr.s_addr == INADDR_ANY)
return ENOTCONN;
s = splnet();
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
splx(s);
so->so_state &= ~SS_ISCONNECTED; /* XXX */
return 0;
}
static int
udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct proc *p)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == 0) {
m_freem(m);
return EINVAL;
}
return udp_output(inp, m, addr, control, p);
}
int
udp_shutdown(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
socantsendmore(so);
return 0;
}
struct pr_usrreqs udp_usrreqs = {
udp_abort, pru_accept_notsupp, udp_attach, udp_bind, udp_connect,
pru_connect2_notsupp, in_control, udp_detach, udp_disconnect,
pru_listen_notsupp, in_setpeeraddr, pru_rcvd_notsupp,
pru_rcvoob_notsupp, udp_send, pru_sense_null, udp_shutdown,
in_setsockaddr, sosend, soreceive, sopoll
};