4b1783363f
create kernel threads and call rfork(2) with RFTHREAD flag set in this case, which puts parent and child into the same threading group. As a result all threads that belong to the same program end up in the same threading group. This is similar to what linuxthreads port does, though in this case we don't have a luxury of having access to the source code and there is no definite way to differentiate linux_clone() called for threading purposes from other uses, so that we have to resort to heuristics. Allow SIGTHR to be delivered between all processes in the same threading group previously it has been blocked for s[ug]id processes. This also should improve locking of the same file descriptor from different threads in programs running under linux compat layer. PR: kern/72922 Reported by: Andriy Gapon <avg@icyb.net.ua> Idea suggested by: rwatson
873 lines
20 KiB
C
873 lines
20 KiB
C
/*-
|
|
* Copyright (c) 2000 Marcel Moolenaar
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer
|
|
* in this position and unchanged.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/unistd.h>
|
|
|
|
#include <machine/frame.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/segments.h>
|
|
#include <machine/sysarch.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
#include <i386/linux/linux.h>
|
|
#include <i386/linux/linux_proto.h>
|
|
#include <compat/linux/linux_ipc.h>
|
|
#include <compat/linux/linux_signal.h>
|
|
#include <compat/linux/linux_util.h>
|
|
|
|
struct l_descriptor {
|
|
l_uint entry_number;
|
|
l_ulong base_addr;
|
|
l_uint limit;
|
|
l_uint seg_32bit:1;
|
|
l_uint contents:2;
|
|
l_uint read_exec_only:1;
|
|
l_uint limit_in_pages:1;
|
|
l_uint seg_not_present:1;
|
|
l_uint useable:1;
|
|
};
|
|
|
|
struct l_old_select_argv {
|
|
l_int nfds;
|
|
l_fd_set *readfds;
|
|
l_fd_set *writefds;
|
|
l_fd_set *exceptfds;
|
|
struct l_timeval *timeout;
|
|
};
|
|
|
|
int
|
|
linux_to_bsd_sigaltstack(int lsa)
|
|
{
|
|
int bsa = 0;
|
|
|
|
if (lsa & LINUX_SS_DISABLE)
|
|
bsa |= SS_DISABLE;
|
|
if (lsa & LINUX_SS_ONSTACK)
|
|
bsa |= SS_ONSTACK;
|
|
return (bsa);
|
|
}
|
|
|
|
int
|
|
bsd_to_linux_sigaltstack(int bsa)
|
|
{
|
|
int lsa = 0;
|
|
|
|
if (bsa & SS_DISABLE)
|
|
lsa |= LINUX_SS_DISABLE;
|
|
if (bsa & SS_ONSTACK)
|
|
lsa |= LINUX_SS_ONSTACK;
|
|
return (lsa);
|
|
}
|
|
|
|
int
|
|
linux_execve(struct thread *td, struct linux_execve_args *args)
|
|
{
|
|
int error;
|
|
char *newpath;
|
|
struct image_args eargs;
|
|
|
|
LCONVPATHEXIST(td, args->path, &newpath);
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(execve))
|
|
printf(ARGS(execve, "%s"), newpath);
|
|
#endif
|
|
|
|
error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE,
|
|
args->argp, args->envp);
|
|
free(newpath, M_TEMP);
|
|
if (error == 0)
|
|
kern_execve(td, &eargs, NULL);
|
|
exec_free_args(&eargs);
|
|
return (error);
|
|
}
|
|
|
|
struct l_ipc_kludge {
|
|
struct l_msgbuf *msgp;
|
|
l_long msgtyp;
|
|
};
|
|
|
|
int
|
|
linux_ipc(struct thread *td, struct linux_ipc_args *args)
|
|
{
|
|
|
|
switch (args->what & 0xFFFF) {
|
|
case LINUX_SEMOP: {
|
|
struct linux_semop_args a;
|
|
|
|
a.semid = args->arg1;
|
|
a.tsops = args->ptr;
|
|
a.nsops = args->arg2;
|
|
return (linux_semop(td, &a));
|
|
}
|
|
case LINUX_SEMGET: {
|
|
struct linux_semget_args a;
|
|
|
|
a.key = args->arg1;
|
|
a.nsems = args->arg2;
|
|
a.semflg = args->arg3;
|
|
return (linux_semget(td, &a));
|
|
}
|
|
case LINUX_SEMCTL: {
|
|
struct linux_semctl_args a;
|
|
int error;
|
|
|
|
a.semid = args->arg1;
|
|
a.semnum = args->arg2;
|
|
a.cmd = args->arg3;
|
|
error = copyin(args->ptr, &a.arg, sizeof(a.arg));
|
|
if (error)
|
|
return (error);
|
|
return (linux_semctl(td, &a));
|
|
}
|
|
case LINUX_MSGSND: {
|
|
struct linux_msgsnd_args a;
|
|
|
|
a.msqid = args->arg1;
|
|
a.msgp = args->ptr;
|
|
a.msgsz = args->arg2;
|
|
a.msgflg = args->arg3;
|
|
return (linux_msgsnd(td, &a));
|
|
}
|
|
case LINUX_MSGRCV: {
|
|
struct linux_msgrcv_args a;
|
|
|
|
a.msqid = args->arg1;
|
|
a.msgsz = args->arg2;
|
|
a.msgflg = args->arg3;
|
|
if ((args->what >> 16) == 0) {
|
|
struct l_ipc_kludge tmp;
|
|
int error;
|
|
|
|
if (args->ptr == NULL)
|
|
return (EINVAL);
|
|
error = copyin(args->ptr, &tmp, sizeof(tmp));
|
|
if (error)
|
|
return (error);
|
|
a.msgp = tmp.msgp;
|
|
a.msgtyp = tmp.msgtyp;
|
|
} else {
|
|
a.msgp = args->ptr;
|
|
a.msgtyp = args->arg5;
|
|
}
|
|
return (linux_msgrcv(td, &a));
|
|
}
|
|
case LINUX_MSGGET: {
|
|
struct linux_msgget_args a;
|
|
|
|
a.key = args->arg1;
|
|
a.msgflg = args->arg2;
|
|
return (linux_msgget(td, &a));
|
|
}
|
|
case LINUX_MSGCTL: {
|
|
struct linux_msgctl_args a;
|
|
|
|
a.msqid = args->arg1;
|
|
a.cmd = args->arg2;
|
|
a.buf = args->ptr;
|
|
return (linux_msgctl(td, &a));
|
|
}
|
|
case LINUX_SHMAT: {
|
|
struct linux_shmat_args a;
|
|
|
|
a.shmid = args->arg1;
|
|
a.shmaddr = args->ptr;
|
|
a.shmflg = args->arg2;
|
|
a.raddr = (l_ulong *)args->arg3;
|
|
return (linux_shmat(td, &a));
|
|
}
|
|
case LINUX_SHMDT: {
|
|
struct linux_shmdt_args a;
|
|
|
|
a.shmaddr = args->ptr;
|
|
return (linux_shmdt(td, &a));
|
|
}
|
|
case LINUX_SHMGET: {
|
|
struct linux_shmget_args a;
|
|
|
|
a.key = args->arg1;
|
|
a.size = args->arg2;
|
|
a.shmflg = args->arg3;
|
|
return (linux_shmget(td, &a));
|
|
}
|
|
case LINUX_SHMCTL: {
|
|
struct linux_shmctl_args a;
|
|
|
|
a.shmid = args->arg1;
|
|
a.cmd = args->arg2;
|
|
a.buf = args->ptr;
|
|
return (linux_shmctl(td, &a));
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
int
|
|
linux_old_select(struct thread *td, struct linux_old_select_args *args)
|
|
{
|
|
struct l_old_select_argv linux_args;
|
|
struct linux_select_args newsel;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(old_select))
|
|
printf(ARGS(old_select, "%p"), args->ptr);
|
|
#endif
|
|
|
|
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
|
|
if (error)
|
|
return (error);
|
|
|
|
newsel.nfds = linux_args.nfds;
|
|
newsel.readfds = linux_args.readfds;
|
|
newsel.writefds = linux_args.writefds;
|
|
newsel.exceptfds = linux_args.exceptfds;
|
|
newsel.timeout = linux_args.timeout;
|
|
return (linux_select(td, &newsel));
|
|
}
|
|
|
|
int
|
|
linux_fork(struct thread *td, struct linux_fork_args *args)
|
|
{
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(fork))
|
|
printf(ARGS(fork, ""));
|
|
#endif
|
|
|
|
if ((error = fork(td, (struct fork_args *)args)) != 0)
|
|
return (error);
|
|
|
|
if (td->td_retval[1] == 1)
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_vfork(struct thread *td, struct linux_vfork_args *args)
|
|
{
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(vfork))
|
|
printf(ARGS(vfork, ""));
|
|
#endif
|
|
|
|
if ((error = vfork(td, (struct vfork_args *)args)) != 0)
|
|
return (error);
|
|
/* Are we the child? */
|
|
if (td->td_retval[1] == 1)
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
}
|
|
|
|
#define CLONE_VM 0x100
|
|
#define CLONE_FS 0x200
|
|
#define CLONE_FILES 0x400
|
|
#define CLONE_SIGHAND 0x800
|
|
#define CLONE_PID 0x1000
|
|
#define CLONE_THREAD 0x10000
|
|
|
|
#define THREADING_FLAGS (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
|
|
|
|
int
|
|
linux_clone(struct thread *td, struct linux_clone_args *args)
|
|
{
|
|
int error, ff = RFPROC | RFSTOPPED;
|
|
struct proc *p2;
|
|
struct thread *td2;
|
|
int exit_signal;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(clone)) {
|
|
printf(ARGS(clone, "flags %x, stack %x"),
|
|
(unsigned int)args->flags, (unsigned int)args->stack);
|
|
if (args->flags & CLONE_PID)
|
|
printf(LMSG("CLONE_PID not yet supported"));
|
|
}
|
|
#endif
|
|
|
|
if (!args->stack)
|
|
return (EINVAL);
|
|
|
|
exit_signal = args->flags & 0x000000ff;
|
|
if (exit_signal >= LINUX_NSIG)
|
|
return (EINVAL);
|
|
|
|
if (exit_signal <= LINUX_SIGTBLSZ)
|
|
exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)];
|
|
|
|
if (args->flags & CLONE_VM)
|
|
ff |= RFMEM;
|
|
if (args->flags & CLONE_SIGHAND)
|
|
ff |= RFSIGSHARE;
|
|
if (!(args->flags & CLONE_FILES))
|
|
ff |= RFFDG;
|
|
|
|
/*
|
|
* Attempt to detect when linux_clone(2) is used for creating
|
|
* kernel threads. Unfortunately despite the existence of the
|
|
* CLONE_THREAD flag, version of linuxthreads package used in
|
|
* most popular distros as of beginning of 2005 doesn't make
|
|
* any use of it. Therefore, this detection relay fully on
|
|
* empirical observation that linuxthreads sets certain
|
|
* combination of flags, so that we can make more or less
|
|
* precise detection and notify the FreeBSD kernel that several
|
|
* processes are in fact part of the same threading group, so
|
|
* that special treatment is necessary for signal delivery
|
|
* between those processes and fd locking.
|
|
*/
|
|
if ((args->flags & 0xffffff00) == THREADING_FLAGS)
|
|
ff |= RFTHREAD;
|
|
|
|
error = fork1(td, ff, 0, &p2);
|
|
if (error)
|
|
return (error);
|
|
|
|
|
|
PROC_LOCK(p2);
|
|
p2->p_sigparent = exit_signal;
|
|
PROC_UNLOCK(p2);
|
|
td2 = FIRST_THREAD_IN_PROC(p2);
|
|
td2->td_frame->tf_esp = (unsigned int)args->stack;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(clone))
|
|
printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"),
|
|
(long)p2->p_pid, args->stack, exit_signal);
|
|
#endif
|
|
|
|
/*
|
|
* Make this runnable after we are finished with it.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
TD_SET_CAN_RUN(td2);
|
|
setrunqueue(td2, SRQ_BORING);
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
td->td_retval[0] = p2->p_pid;
|
|
td->td_retval[1] = 0;
|
|
return (0);
|
|
}
|
|
|
|
/* XXX move */
|
|
struct l_mmap_argv {
|
|
l_caddr_t addr;
|
|
l_int len;
|
|
l_int prot;
|
|
l_int flags;
|
|
l_int fd;
|
|
l_int pos;
|
|
};
|
|
|
|
#define STACK_SIZE (2 * 1024 * 1024)
|
|
#define GUARD_SIZE (4 * PAGE_SIZE)
|
|
|
|
static int linux_mmap_common(struct thread *, struct l_mmap_argv *);
|
|
|
|
int
|
|
linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
|
|
{
|
|
struct l_mmap_argv linux_args;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap2))
|
|
printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
|
|
(void *)args->addr, args->len, args->prot,
|
|
args->flags, args->fd, args->pgoff);
|
|
#endif
|
|
|
|
linux_args.addr = (l_caddr_t)args->addr;
|
|
linux_args.len = args->len;
|
|
linux_args.prot = args->prot;
|
|
linux_args.flags = args->flags;
|
|
linux_args.fd = args->fd;
|
|
linux_args.pos = args->pgoff * PAGE_SIZE;
|
|
|
|
return (linux_mmap_common(td, &linux_args));
|
|
}
|
|
|
|
int
|
|
linux_mmap(struct thread *td, struct linux_mmap_args *args)
|
|
{
|
|
int error;
|
|
struct l_mmap_argv linux_args;
|
|
|
|
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
|
|
if (error)
|
|
return (error);
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap))
|
|
printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
|
|
(void *)linux_args.addr, linux_args.len, linux_args.prot,
|
|
linux_args.flags, linux_args.fd, linux_args.pos);
|
|
#endif
|
|
|
|
return (linux_mmap_common(td, &linux_args));
|
|
}
|
|
|
|
static int
|
|
linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct mmap_args /* {
|
|
caddr_t addr;
|
|
size_t len;
|
|
int prot;
|
|
int flags;
|
|
int fd;
|
|
long pad;
|
|
off_t pos;
|
|
} */ bsd_args;
|
|
int error;
|
|
|
|
error = 0;
|
|
bsd_args.flags = 0;
|
|
if (linux_args->flags & LINUX_MAP_SHARED)
|
|
bsd_args.flags |= MAP_SHARED;
|
|
if (linux_args->flags & LINUX_MAP_PRIVATE)
|
|
bsd_args.flags |= MAP_PRIVATE;
|
|
if (linux_args->flags & LINUX_MAP_FIXED)
|
|
bsd_args.flags |= MAP_FIXED;
|
|
if (linux_args->flags & LINUX_MAP_ANON)
|
|
bsd_args.flags |= MAP_ANON;
|
|
else
|
|
bsd_args.flags |= MAP_NOSYNC;
|
|
if (linux_args->flags & LINUX_MAP_GROWSDOWN) {
|
|
bsd_args.flags |= MAP_STACK;
|
|
|
|
/* The linux MAP_GROWSDOWN option does not limit auto
|
|
* growth of the region. Linux mmap with this option
|
|
* takes as addr the inital BOS, and as len, the initial
|
|
* region size. It can then grow down from addr without
|
|
* limit. However, linux threads has an implicit internal
|
|
* limit to stack size of STACK_SIZE. Its just not
|
|
* enforced explicitly in linux. But, here we impose
|
|
* a limit of (STACK_SIZE - GUARD_SIZE) on the stack
|
|
* region, since we can do this with our mmap.
|
|
*
|
|
* Our mmap with MAP_STACK takes addr as the maximum
|
|
* downsize limit on BOS, and as len the max size of
|
|
* the region. It them maps the top SGROWSIZ bytes,
|
|
* and autgrows the region down, up to the limit
|
|
* in addr.
|
|
*
|
|
* If we don't use the MAP_STACK option, the effect
|
|
* of this code is to allocate a stack region of a
|
|
* fixed size of (STACK_SIZE - GUARD_SIZE).
|
|
*/
|
|
|
|
/* This gives us TOS */
|
|
bsd_args.addr = linux_args->addr + linux_args->len;
|
|
|
|
if (bsd_args.addr > p->p_vmspace->vm_maxsaddr) {
|
|
/* Some linux apps will attempt to mmap
|
|
* thread stacks near the top of their
|
|
* address space. If their TOS is greater
|
|
* than vm_maxsaddr, vm_map_growstack()
|
|
* will confuse the thread stack with the
|
|
* process stack and deliver a SEGV if they
|
|
* attempt to grow the thread stack past their
|
|
* current stacksize rlimit. To avoid this,
|
|
* adjust vm_maxsaddr upwards to reflect
|
|
* the current stacksize rlimit rather
|
|
* than the maximum possible stacksize.
|
|
* It would be better to adjust the
|
|
* mmap'ed region, but some apps do not check
|
|
* mmap's return value.
|
|
*/
|
|
PROC_LOCK(p);
|
|
p->p_vmspace->vm_maxsaddr = (char *)USRSTACK -
|
|
lim_cur(p, RLIMIT_STACK);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
|
|
/* This gives us our maximum stack size */
|
|
if (linux_args->len > STACK_SIZE - GUARD_SIZE)
|
|
bsd_args.len = linux_args->len;
|
|
else
|
|
bsd_args.len = STACK_SIZE - GUARD_SIZE;
|
|
|
|
/* This gives us a new BOS. If we're using VM_STACK, then
|
|
* mmap will just map the top SGROWSIZ bytes, and let
|
|
* the stack grow down to the limit at BOS. If we're
|
|
* not using VM_STACK we map the full stack, since we
|
|
* don't have a way to autogrow it.
|
|
*/
|
|
bsd_args.addr -= bsd_args.len;
|
|
} else {
|
|
bsd_args.addr = linux_args->addr;
|
|
bsd_args.len = linux_args->len;
|
|
}
|
|
|
|
bsd_args.prot = linux_args->prot | PROT_READ; /* always required */
|
|
if (linux_args->flags & LINUX_MAP_ANON)
|
|
bsd_args.fd = -1;
|
|
else
|
|
bsd_args.fd = linux_args->fd;
|
|
bsd_args.pos = linux_args->pos;
|
|
bsd_args.pad = 0;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap))
|
|
printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
|
|
__func__,
|
|
(void *)bsd_args.addr, bsd_args.len, bsd_args.prot,
|
|
bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
|
|
#endif
|
|
error = mmap(td, &bsd_args);
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap))
|
|
printf("-> %s() return: 0x%x (0x%08x)\n",
|
|
__func__, error, (u_int)td->td_retval[0]);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_pipe(struct thread *td, struct linux_pipe_args *args)
|
|
{
|
|
int error;
|
|
int reg_edx;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(pipe))
|
|
printf(ARGS(pipe, "*"));
|
|
#endif
|
|
|
|
reg_edx = td->td_retval[1];
|
|
error = pipe(td, 0);
|
|
if (error) {
|
|
td->td_retval[1] = reg_edx;
|
|
return (error);
|
|
}
|
|
|
|
error = copyout(td->td_retval, args->pipefds, 2*sizeof(int));
|
|
if (error) {
|
|
td->td_retval[1] = reg_edx;
|
|
return (error);
|
|
}
|
|
|
|
td->td_retval[1] = reg_edx;
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_ioperm(struct thread *td, struct linux_ioperm_args *args)
|
|
{
|
|
int error;
|
|
struct i386_ioperm_args iia;
|
|
|
|
iia.start = args->start;
|
|
iia.length = args->length;
|
|
iia.enable = args->enable;
|
|
mtx_lock(&Giant);
|
|
error = i386_set_ioperm(td, &iia);
|
|
mtx_unlock(&Giant);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_iopl(struct thread *td, struct linux_iopl_args *args)
|
|
{
|
|
int error;
|
|
|
|
if (args->level < 0 || args->level > 3)
|
|
return (EINVAL);
|
|
if ((error = suser(td)) != 0)
|
|
return (error);
|
|
if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
|
|
return (error);
|
|
td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) |
|
|
(args->level * (PSL_IOPL / 3));
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap)
|
|
{
|
|
int error;
|
|
struct i386_ldt_args ldt;
|
|
struct l_descriptor ld;
|
|
union descriptor desc;
|
|
|
|
if (uap->ptr == NULL)
|
|
return (EINVAL);
|
|
|
|
switch (uap->func) {
|
|
case 0x00: /* read_ldt */
|
|
ldt.start = 0;
|
|
ldt.descs = uap->ptr;
|
|
ldt.num = uap->bytecount / sizeof(union descriptor);
|
|
mtx_lock(&Giant);
|
|
error = i386_get_ldt(td, &ldt);
|
|
td->td_retval[0] *= sizeof(union descriptor);
|
|
mtx_unlock(&Giant);
|
|
break;
|
|
case 0x01: /* write_ldt */
|
|
case 0x11: /* write_ldt */
|
|
if (uap->bytecount != sizeof(ld))
|
|
return (EINVAL);
|
|
|
|
error = copyin(uap->ptr, &ld, sizeof(ld));
|
|
if (error)
|
|
return (error);
|
|
|
|
ldt.start = ld.entry_number;
|
|
ldt.descs = &desc;
|
|
ldt.num = 1;
|
|
desc.sd.sd_lolimit = (ld.limit & 0x0000ffff);
|
|
desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16;
|
|
desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff);
|
|
desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24;
|
|
desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) |
|
|
(ld.contents << 2);
|
|
desc.sd.sd_dpl = 3;
|
|
desc.sd.sd_p = (ld.seg_not_present ^ 1);
|
|
desc.sd.sd_xx = 0;
|
|
desc.sd.sd_def32 = ld.seg_32bit;
|
|
desc.sd.sd_gran = ld.limit_in_pages;
|
|
mtx_lock(&Giant);
|
|
error = i386_set_ldt(td, &ldt, &desc);
|
|
mtx_unlock(&Giant);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (error == EOPNOTSUPP) {
|
|
printf("linux: modify_ldt needs kernel option USER_LDT\n");
|
|
error = ENOSYS;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
|
|
{
|
|
l_osigaction_t osa;
|
|
l_sigaction_t act, oact;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(sigaction))
|
|
printf(ARGS(sigaction, "%d, %p, %p"),
|
|
args->sig, (void *)args->nsa, (void *)args->osa);
|
|
#endif
|
|
|
|
if (args->nsa != NULL) {
|
|
error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
|
|
if (error)
|
|
return (error);
|
|
act.lsa_handler = osa.lsa_handler;
|
|
act.lsa_flags = osa.lsa_flags;
|
|
act.lsa_restorer = osa.lsa_restorer;
|
|
LINUX_SIGEMPTYSET(act.lsa_mask);
|
|
act.lsa_mask.__bits[0] = osa.lsa_mask;
|
|
}
|
|
|
|
error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
|
|
args->osa ? &oact : NULL);
|
|
|
|
if (args->osa != NULL && !error) {
|
|
osa.lsa_handler = oact.lsa_handler;
|
|
osa.lsa_flags = oact.lsa_flags;
|
|
osa.lsa_restorer = oact.lsa_restorer;
|
|
osa.lsa_mask = oact.lsa_mask.__bits[0];
|
|
error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Linux has two extra args, restart and oldmask. We dont use these,
|
|
* but it seems that "restart" is actually a context pointer that
|
|
* enables the signal to happen with a different register set.
|
|
*/
|
|
int
|
|
linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
|
|
{
|
|
sigset_t sigmask;
|
|
l_sigset_t mask;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(sigsuspend))
|
|
printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
|
|
#endif
|
|
|
|
LINUX_SIGEMPTYSET(mask);
|
|
mask.__bits[0] = args->mask;
|
|
linux_to_bsd_sigset(&mask, &sigmask);
|
|
return (kern_sigsuspend(td, sigmask));
|
|
}
|
|
|
|
int
|
|
linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
|
|
{
|
|
l_sigset_t lmask;
|
|
sigset_t sigmask;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(rt_sigsuspend))
|
|
printf(ARGS(rt_sigsuspend, "%p, %d"),
|
|
(void *)uap->newset, uap->sigsetsize);
|
|
#endif
|
|
|
|
if (uap->sigsetsize != sizeof(l_sigset_t))
|
|
return (EINVAL);
|
|
|
|
error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
|
|
if (error)
|
|
return (error);
|
|
|
|
linux_to_bsd_sigset(&lmask, &sigmask);
|
|
return (kern_sigsuspend(td, sigmask));
|
|
}
|
|
|
|
int
|
|
linux_pause(struct thread *td, struct linux_pause_args *args)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
sigset_t sigmask;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(pause))
|
|
printf(ARGS(pause, ""));
|
|
#endif
|
|
|
|
PROC_LOCK(p);
|
|
sigmask = td->td_sigmask;
|
|
PROC_UNLOCK(p);
|
|
return (kern_sigsuspend(td, sigmask));
|
|
}
|
|
|
|
int
|
|
linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
|
|
{
|
|
stack_t ss, oss;
|
|
l_stack_t lss;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(sigaltstack))
|
|
printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
|
|
#endif
|
|
|
|
if (uap->uss != NULL) {
|
|
error = copyin(uap->uss, &lss, sizeof(l_stack_t));
|
|
if (error)
|
|
return (error);
|
|
|
|
ss.ss_sp = lss.ss_sp;
|
|
ss.ss_size = lss.ss_size;
|
|
ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
|
|
}
|
|
error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
|
|
(uap->uoss != NULL) ? &oss : NULL);
|
|
if (!error && uap->uoss != NULL) {
|
|
lss.ss_sp = oss.ss_sp;
|
|
lss.ss_size = oss.ss_size;
|
|
lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
|
|
error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
|
|
{
|
|
struct ftruncate_args sa;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(ftruncate64))
|
|
printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
|
|
(intmax_t)args->length);
|
|
#endif
|
|
|
|
sa.fd = args->fd;
|
|
sa.pad = 0;
|
|
sa.length = args->length;
|
|
return ftruncate(td, &sa);
|
|
}
|
|
|
|
int
|
|
linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args)
|
|
{
|
|
/*
|
|
* Return an error code instead of raising a SIGSYS so that
|
|
* the caller will fall back to simpler LDT methods.
|
|
*/
|
|
return (ENOSYS);
|
|
}
|
|
|
|
int
|
|
linux_gettid(struct thread *td, struct linux_gettid_args *args)
|
|
{
|
|
|
|
td->td_retval[0] = td->td_proc->p_pid;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_tkill(struct thread *td, struct linux_tkill_args *args)
|
|
{
|
|
|
|
return (linux_kill(td, (struct linux_kill_args *) args));
|
|
}
|
|
|