freebsd-nq/sys/dev/aac/aacvar.h
Mike Smith 358637397e A new driver for PCI:SCSI RAID controllers based on the Adaptec FSA
design.  This includes integrated Dell RAID controllers, the Dell
PERC 2/QC and the HP NetRAID-4M.
2000-09-13 03:20:35 +00:00

452 lines
14 KiB
C

/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/********************************************************************************
********************************************************************************
Driver Parameter Definitions
********************************************************************************
********************************************************************************/
/*
* The firmware interface allows for a 16-bit s/g list length. We limit
* ourselves to a reasonable maximum and ensure alignment.
*/
#define AAC_MAXSGENTRIES 64 /* max S/G entries, limit 65535 */
/*
* We allocate a small set of FIBs for the adapter to use to send us messages.
*/
#define AAC_ADAPTER_FIBS 8
/*
* FIBs are allocated in clusters as we need them; each cluster must be physically
* contiguous. Set the number of FIBs to try to allocate in a cluster.
* Setting this value too high may result in FIBs not being available in conditions
* of high load with fragmented physical memory. The value must be a multiple of
* (PAGE_SIZE / 512).
*/
#define AAC_CLUSTER_COUNT 64
/*
* The controller reports status events in AIFs. We hang on to a number of these
* in order to pass them out to user-space management tools.
*/
#define AAC_AIFQ_LENGTH 64
/*
* Firmware messages are passed in the printf buffer.
*/
#define AAC_PRINTF_BUFSIZE 256
/*
* We wait this many seconds for the adapter to come ready if it is still booting
*/
#define AAC_BOOT_TIMEOUT (3 * 60)
/*
* Timeout for immediate commands.
*/
#define AAC_IMMEDIATE_TIMEOUT 30
/*
* Character device major numbers.
*/
#define AAC_DISK_MAJOR 200
/********************************************************************************
********************************************************************************
Driver Variable Definitions
********************************************************************************
********************************************************************************/
#if __FreeBSD_version >= 500005
# include <sys/taskqueue.h>
#endif
/*
* Per-container data structure
*/
struct aac_container
{
struct aac_mntobj co_mntobj;
device_t co_disk;
};
/*
* Per-disk structure
*/
struct aac_disk
{
device_t ad_dev;
dev_t ad_dev_t;
struct aac_softc *ad_controller;
struct aac_container *ad_container;
struct disk ad_disk;
struct devstat ad_stats;
struct disklabel ad_label;
int ad_flags;
#define AAC_DISK_OPEN (1<<0)
int ad_cylinders;
int ad_heads;
int ad_sectors;
u_int32_t ad_size;
};
/*
* Per-command control structure.
*/
struct aac_command
{
TAILQ_ENTRY(aac_command) cm_link; /* list linkage */
struct aac_softc *cm_sc; /* controller that owns us */
struct aac_fib *cm_fib; /* FIB associated with this command */
u_int32_t cm_fibphys; /* bus address of the FIB */
struct bio *cm_data; /* pointer to data in kernel space */
u_int32_t cm_datalen; /* data length */
bus_dmamap_t cm_datamap; /* DMA map for bio data */
struct aac_sg_table *cm_sgtable; /* pointer to s/g table in command */
int cm_flags;
#define AAC_CMD_MAPPED (1<<0) /* command has had its data mapped */
#define AAC_CMD_DATAIN (1<<1) /* command involves data moving from controller to host */
#define AAC_CMD_DATAOUT (1<<2) /* command involves data moving from host to controller */
#define AAC_CMD_COMPLETED (1<<3) /* command has been completed */
void (* cm_complete)(struct aac_command *cm);
void *cm_private;
};
/*
* Command/command packet cluster.
*
* Due to the difficulty of using the zone allocator to create a new
* zone from within a module, we use our own clustering to reduce
* memory wastage due to allocating lots of these small structures.
*/
struct aac_command_cluster
{
TAILQ_ENTRY(aac_command_cluster) cmc_link;
struct aac_fib *cmc_fibs;
bus_dmamap_t cmc_fibmap;
u_int32_t cmc_fibphys;
struct aac_command cmc_command[AAC_CLUSTER_COUNT];
};
/*
* We gather a number of adapter-visible items into a single structure.
*
* The ordering of this strucure may be important; we copy the Linux driver:
*
* Adapter FIBs
* Init struct
* Queue headers (Comm Area)
* Printf buffer
*
* In addition, we add:
* Sync Fib
*/
struct aac_common {
/* fibs for the controller to send us messages */
struct aac_fib ac_fibs[AAC_ADAPTER_FIBS];
/* the init structure */
struct aac_adapter_init ac_init;
/* arena within which the queue structures are kept */
u_int8_t ac_qbuf[sizeof(struct aac_queue_table) + AAC_QUEUE_ALIGN];
/* buffer for text messages from the controller */
char ac_printf[AAC_PRINTF_BUFSIZE];
/* fib for synchronous commands */
struct aac_fib ac_sync_fib;
};
/*
* Interface operations
*/
struct aac_interface
{
int (* aif_get_fwstatus)(struct aac_softc *sc);
void (* aif_qnotify)(struct aac_softc *sc, int qbit);
int (* aif_get_istatus)(struct aac_softc *sc);
void (* aif_set_istatus)(struct aac_softc *sc, int mask);
void (* aif_set_mailbox)(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3);
int (* aif_get_mailboxstatus)(struct aac_softc *sc);
void (* aif_set_interrupts)(struct aac_softc *sc, int enable);
};
extern struct aac_interface aac_rx_interface;
extern struct aac_interface aac_sa_interface;
#define AAC_GET_FWSTATUS(sc) ((sc)->aac_if.aif_get_fwstatus((sc)))
#define AAC_QNOTIFY(sc, qbit) ((sc)->aac_if.aif_qnotify((sc), (qbit)))
#define AAC_GET_ISTATUS(sc) ((sc)->aac_if.aif_get_istatus((sc)))
#define AAC_CLEAR_ISTATUS(sc, mask) ((sc)->aac_if.aif_set_istatus((sc), (mask)))
#define AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3) \
((sc)->aac_if.aif_set_mailbox((sc), (command), (arg0), (arg1), (arg2), (arg3)))
#define AAC_GET_MAILBOXSTATUS(sc) ((sc)->aac_if.aif_get_mailboxstatus((sc)))
#define AAC_MASK_INTERRUPTS(sc) ((sc)->aac_if.aif_set_interrupts((sc), 0))
#define AAC_UNMASK_INTERRUPTS(sc) ((sc)->aac_if.aif_set_interrupts((sc), 1))
#define AAC_SETREG4(sc, reg, val) bus_space_write_4(sc->aac_btag, sc->aac_bhandle, reg, val)
#define AAC_GETREG4(sc, reg) bus_space_read_4 (sc->aac_btag, sc->aac_bhandle, reg)
#define AAC_SETREG2(sc, reg, val) bus_space_write_2(sc->aac_btag, sc->aac_bhandle, reg, val)
#define AAC_GETREG2(sc, reg) bus_space_read_2 (sc->aac_btag, sc->aac_bhandle, reg)
#define AAC_SETREG1(sc, reg, val) bus_space_write_1(sc->aac_btag, sc->aac_bhandle, reg, val)
#define AAC_GETREG1(sc, reg) bus_space_read_1 (sc->aac_btag, sc->aac_bhandle, reg)
/*
* Per-controller structure.
*/
struct aac_softc
{
/* bus connections */
device_t aac_dev;
struct resource *aac_regs_resource; /* register interface window */
int aac_regs_rid; /* resource ID */
bus_space_handle_t aac_bhandle; /* bus space handle */
bus_space_tag_t aac_btag; /* bus space tag */
bus_dma_tag_t aac_parent_dmat; /* parent DMA tag */
bus_dma_tag_t aac_buffer_dmat; /* data buffer/command DMA tag */
struct resource *aac_irq; /* interrupt */
int aac_irq_rid;
void *aac_intr; /* interrupt handle */
/* controller features, limits and status */
int aac_state;
#define AAC_STATE_SUSPEND (1<<0)
#define AAC_STATE_OPEN (1<<1)
#define AAC_STATE_INTERRUPTS_ON (1<<2)
#define AAC_STATE_AIF_SLEEPER (1<<3)
struct FsaRevision aac_revision;
/* controller hardware interface */
int aac_hwif;
#define AAC_HWIF_I960RX 0
#define AAC_HWIF_STRONGARM 1
bus_dma_tag_t aac_common_dmat; /* common structure DMA tag */
bus_dmamap_t aac_common_dmamap; /* common structure DMA map */
struct aac_common *aac_common;
u_int32_t aac_common_busaddr;
struct aac_interface aac_if;
/* command/fib resources */
TAILQ_HEAD(,aac_command_cluster) aac_clusters; /* command memory blocks */
bus_dma_tag_t aac_fib_dmat; /* DMA tag for allocating FIBs */
/* command management */
TAILQ_HEAD(,aac_command) aac_freecmds; /* command structures available for reuse */
TAILQ_HEAD(,aac_command) aac_ready; /* commands on hold for controller resources */
TAILQ_HEAD(,aac_command) aac_completed; /* commands which have been returned by the controller */
struct bio_queue_head aac_bioq;
struct aac_queue_table *aac_queues;
struct aac_queue_entry *aac_qentries[AAC_QUEUE_COUNT];
/* connected containters */
struct aac_container aac_container[AAC_MAX_CONTAINERS];
/* delayed activity infrastructure */
#if __FreeBSD_version >= 500005
struct task aac_task_complete; /* deferred-completion task */
#endif
struct intr_config_hook aac_ich;
/* management interface */
dev_t aac_dev_t;
struct aac_aif_command aac_aifq[AAC_AIFQ_LENGTH];
int aac_aifq_head;
int aac_aifq_tail;
};
/*
* Public functions
*/
extern void aac_free(struct aac_softc *sc);
extern int aac_attach(struct aac_softc *sc);
extern int aac_detach(device_t dev);
extern int aac_shutdown(device_t dev);
extern int aac_suspend(device_t dev);
extern int aac_resume(device_t dev);
extern void aac_intr(void *arg);
extern devclass_t aac_devclass;
extern void aac_submit_bio(struct bio *bp);
extern void aac_complete_bio(struct bio *bp);
/*
* Debugging levels:
* 0 - quiet, only emit warnings
* 1 - noisy, emit major function points and things done
* 2 - extremely noisy, emit trace items in loops, etc.
*/
#ifdef AAC_DEBUG
#define debug(level, fmt, args...) do { if (level <= AAC_DEBUG) printf("%s: " fmt "\n", __FUNCTION__ , ##args); } while(0)
#define debug_called(level) do { if (level <= AAC_DEBUG) printf(__FUNCTION__ ": called\n"); } while(0)
extern void aac_print_queues(struct aac_softc *sc);
extern void aac_panic(struct aac_softc *sc, char *reason);
extern void aac_print_fib(struct aac_softc *sc, struct aac_fib *fib, char *caller);
extern void aac_print_aif(struct aac_softc *sc, struct aac_aif_command *aif);
#define AAC_PRINT_FIB(sc, fib) aac_print_fib(sc, fib, __FUNCTION__)
#else
#define debug(level, fmt, args...)
#define debug_called(level)
#define aac_print_queues(sc)
#define aac_panic(sc, reason)
#define aac_print_aif(sc, aif)
#define AAC_PRINT_FIB(sc, fib)
#endif
struct aac_code_lookup {
char *string;
u_int32_t code;
};
/*
* Borrowed from <struct.h>
*/
/* Offset of the field in the structure. */
#define fldoff(name, field) \
((int)&(((struct name *)0)->field))
/********************************************************************************
* Queue primitives
*
* These are broken out individually to make statistics gathering easier.
*/
static __inline void
aac_enqueue_ready(struct aac_command *cm)
{
int s;
s = splbio();
TAILQ_INSERT_TAIL(&cm->cm_sc->aac_ready, cm, cm_link);
splx(s);
}
static __inline void
aac_requeue_ready(struct aac_command *cm)
{
int s;
s = splbio();
TAILQ_INSERT_HEAD(&cm->cm_sc->aac_ready, cm, cm_link);
splx(s);
}
static __inline struct aac_command *
aac_dequeue_ready(struct aac_softc *sc)
{
struct aac_command *cm;
int s;
s = splbio();
if ((cm = TAILQ_FIRST(&sc->aac_ready)) != NULL)
TAILQ_REMOVE(&sc->aac_ready, cm, cm_link);
splx(s);
return(cm);
}
static __inline void
aac_enqueue_completed(struct aac_command *cm)
{
int s;
s = splbio();
TAILQ_INSERT_TAIL(&cm->cm_sc->aac_completed, cm, cm_link);
splx(s);
}
static __inline struct aac_command *
aac_dequeue_completed(struct aac_softc *sc)
{
struct aac_command *cm;
int s;
s = splbio();
if ((cm = TAILQ_FIRST(&sc->aac_completed)) != NULL)
TAILQ_REMOVE(&sc->aac_completed, cm, cm_link);
splx(s);
return(cm);
}
static __inline void
aac_enqueue_free(struct aac_command *cm)
{
int s;
s = splbio();
TAILQ_INSERT_HEAD(&cm->cm_sc->aac_freecmds, cm, cm_link);
splx(s);
}
static __inline struct aac_command *
aac_dequeue_free(struct aac_softc *sc)
{
struct aac_command *cm;
int s;
s = splbio();
if ((cm = TAILQ_FIRST(&sc->aac_freecmds)) != NULL)
TAILQ_REMOVE(&sc->aac_freecmds, cm, cm_link);
splx(s);
return(cm);
}
static __inline void
aac_enqueue_cluster(struct aac_softc *sc, struct aac_command_cluster *cmc)
{
int s;
s = splbio();
TAILQ_INSERT_HEAD(&sc->aac_clusters, cmc, cmc_link);
splx(s);
}
static __inline struct aac_command_cluster *
aac_dequeue_cluster(struct aac_softc *sc)
{
struct aac_command_cluster *cmc;
int s;
s = splbio();
if ((cmc = TAILQ_FIRST(&sc->aac_clusters)) != NULL)
TAILQ_REMOVE(&sc->aac_clusters, cmc, cmc_link);
splx(s);
return(cmc);
}