e796e00de3
Clean up (or if antipodic: down) some of the msgbuf stuff. Use an inline function rather than a macro for timecounter delta. Maintain process "on-cpu" time as 64 bits of microseconds to avoid needless second rollover overhead. Avoid calling microuptime the second time in mi_switch() if we do not pass through _idle in cpu_switch() This should reduce our context-switch overhead a bit, in particular on pre-P5 and SMP systems. WARNING: Programs which muck about with struct proc in userland will have to be fixed. Reviewed, but found imperfect by: bde
957 lines
23 KiB
C
957 lines
23 KiB
C
/*
|
|
* top - a top users display for Unix
|
|
*
|
|
* SYNOPSIS: For FreeBSD-2.x system
|
|
*
|
|
* DESCRIPTION:
|
|
* Originally written for BSD4.4 system by Christos Zoulas.
|
|
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
|
|
*
|
|
* This is the machine-dependent module for FreeBSD 2.2
|
|
* Works for:
|
|
* FreeBSD 2.2, and probably FreeBSD 2.1.x
|
|
*
|
|
* LIBS: -lkvm
|
|
*
|
|
* AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
|
|
* Steven Wallace <swallace@freebsd.org>
|
|
* Wolfram Schneider <wosch@FreeBSD.org>
|
|
*
|
|
* $Id: machine.c,v 1.9 1998/02/14 13:34:59 peter Exp $
|
|
*/
|
|
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/signal.h>
|
|
#include <sys/param.h>
|
|
|
|
#include "os.h"
|
|
#include <stdio.h>
|
|
#include <nlist.h>
|
|
#include <math.h>
|
|
#include <kvm.h>
|
|
#include <pwd.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/dkstat.h>
|
|
#include <sys/file.h>
|
|
#include <sys/time.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/rtprio.h>
|
|
|
|
/* Swap */
|
|
#include <stdlib.h>
|
|
#include <sys/rlist.h>
|
|
#include <sys/conf.h>
|
|
|
|
#include <osreldate.h> /* for changes in kernel structures */
|
|
|
|
#include "top.h"
|
|
#include "machine.h"
|
|
|
|
static int check_nlist __P((struct nlist *));
|
|
static int getkval __P((unsigned long, int *, int, char *));
|
|
extern char* printable __P((char *));
|
|
int swapmode __P((int *retavail, int *retfree));
|
|
static int smpmode;
|
|
static int namelength;
|
|
static int cmdlength;
|
|
|
|
|
|
/* get_process_info passes back a handle. This is what it looks like: */
|
|
|
|
struct handle
|
|
{
|
|
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
|
|
int remaining; /* number of pointers remaining */
|
|
};
|
|
|
|
/* declarations for load_avg */
|
|
#include "loadavg.h"
|
|
|
|
#define PP(pp, field) ((pp)->kp_proc . field)
|
|
#define EP(pp, field) ((pp)->kp_eproc . field)
|
|
#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
|
|
|
|
/* define what weighted cpu is. */
|
|
#define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
|
|
((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
|
|
|
|
/* what we consider to be process size: */
|
|
#define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize))
|
|
|
|
/* definitions for indices in the nlist array */
|
|
|
|
|
|
static struct nlist nlst[] = {
|
|
#define X_CCPU 0
|
|
{ "_ccpu" }, /* 0 */
|
|
#define X_CP_TIME 1
|
|
{ "_cp_time" }, /* 1 */
|
|
#define X_HZ 2
|
|
{ "_hz" }, /* 2 */
|
|
#define X_STATHZ 3
|
|
{ "_stathz" }, /* 3 */
|
|
#define X_AVENRUN 4
|
|
{ "_averunnable" }, /* 4 */
|
|
|
|
/* Swap */
|
|
#define VM_SWAPLIST 5
|
|
{ "_swaplist" },/* list of free swap areas */
|
|
#define VM_SWDEVT 6
|
|
{ "_swdevt" }, /* list of swap devices and sizes */
|
|
#define VM_NSWAP 7
|
|
{ "_nswap" }, /* size of largest swap device */
|
|
#define VM_NSWDEV 8
|
|
{ "_nswdev" }, /* number of swap devices */
|
|
#define VM_DMMAX 9
|
|
{ "_dmmax" }, /* maximum size of a swap block */
|
|
#define X_BUFSPACE 10
|
|
{ "_bufspace" }, /* K in buffer cache */
|
|
#define X_CNT 11
|
|
{ "_cnt" }, /* struct vmmeter cnt */
|
|
|
|
/* Last pid */
|
|
#define X_LASTPID 12
|
|
{ "_nextpid" },
|
|
{ 0 }
|
|
};
|
|
|
|
/*
|
|
* These definitions control the format of the per-process area
|
|
*/
|
|
|
|
static char smp_header[] =
|
|
" PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND";
|
|
|
|
#define smp_Proc_format \
|
|
"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
|
|
|
|
static char up_header[] =
|
|
" PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
|
|
|
|
#define up_Proc_format \
|
|
"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
|
|
|
|
|
|
|
|
/* process state names for the "STATE" column of the display */
|
|
/* the extra nulls in the string "run" are for adding a slash and
|
|
the processor number when needed */
|
|
|
|
char *state_abbrev[] =
|
|
{
|
|
"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB",
|
|
};
|
|
|
|
|
|
static kvm_t *kd;
|
|
|
|
/* values that we stash away in _init and use in later routines */
|
|
|
|
static double logcpu;
|
|
|
|
/* these are retrieved from the kernel in _init */
|
|
|
|
static long hz;
|
|
static load_avg ccpu;
|
|
|
|
/* these are offsets obtained via nlist and used in the get_ functions */
|
|
|
|
static unsigned long cp_time_offset;
|
|
static unsigned long avenrun_offset;
|
|
static unsigned long lastpid_offset;
|
|
static long lastpid;
|
|
static unsigned long cnt_offset;
|
|
static unsigned long bufspace_offset;
|
|
static long cnt;
|
|
|
|
/* these are for calculating cpu state percentages */
|
|
|
|
static long cp_time[CPUSTATES];
|
|
static long cp_old[CPUSTATES];
|
|
static long cp_diff[CPUSTATES];
|
|
|
|
/* these are for detailing the process states */
|
|
|
|
int process_states[6];
|
|
char *procstatenames[] = {
|
|
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
|
|
" zombie, ",
|
|
NULL
|
|
};
|
|
|
|
/* these are for detailing the cpu states */
|
|
|
|
int cpu_states[CPUSTATES];
|
|
char *cpustatenames[] = {
|
|
"user", "nice", "system", "interrupt", "idle", NULL
|
|
};
|
|
|
|
/* these are for detailing the memory statistics */
|
|
|
|
int memory_stats[7];
|
|
char *memorynames[] = {
|
|
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
|
|
NULL
|
|
};
|
|
|
|
int swap_stats[7];
|
|
char *swapnames[] = {
|
|
/* 0 1 2 3 4 5 */
|
|
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
|
|
NULL
|
|
};
|
|
|
|
|
|
/* these are for keeping track of the proc array */
|
|
|
|
static int nproc;
|
|
static int onproc = -1;
|
|
static int pref_len;
|
|
static struct kinfo_proc *pbase;
|
|
static struct kinfo_proc **pref;
|
|
|
|
/* these are for getting the memory statistics */
|
|
|
|
static int pageshift; /* log base 2 of the pagesize */
|
|
|
|
/* define pagetok in terms of pageshift */
|
|
|
|
#define pagetok(size) ((size) << pageshift)
|
|
|
|
/* useful externals */
|
|
long percentages();
|
|
|
|
int
|
|
machine_init(statics)
|
|
|
|
struct statics *statics;
|
|
|
|
{
|
|
register int i = 0;
|
|
register int pagesize;
|
|
int modelen;
|
|
struct passwd *pw;
|
|
|
|
modelen = sizeof(smpmode);
|
|
if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
|
|
sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
|
|
modelen != sizeof(smpmode))
|
|
smpmode = 0;
|
|
|
|
while ((pw = getpwent()) != NULL) {
|
|
if (strlen(pw->pw_name) > namelength)
|
|
namelength = strlen(pw->pw_name);
|
|
}
|
|
if (namelength < 8)
|
|
namelength = 8;
|
|
if (namelength > 16)
|
|
namelength = 16;
|
|
|
|
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
|
|
return -1;
|
|
|
|
|
|
/* get the list of symbols we want to access in the kernel */
|
|
(void) kvm_nlist(kd, nlst);
|
|
if (nlst[0].n_type == 0)
|
|
{
|
|
fprintf(stderr, "top: nlist failed\n");
|
|
return(-1);
|
|
}
|
|
|
|
/* make sure they were all found */
|
|
if (i > 0 && check_nlist(nlst) > 0)
|
|
{
|
|
return(-1);
|
|
}
|
|
|
|
/* get the symbol values out of kmem */
|
|
(void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!");
|
|
if (!hz) {
|
|
(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
|
|
nlst[X_HZ].n_name);
|
|
}
|
|
|
|
(void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
|
|
nlst[X_CCPU].n_name);
|
|
|
|
/* stash away certain offsets for later use */
|
|
cp_time_offset = nlst[X_CP_TIME].n_value;
|
|
avenrun_offset = nlst[X_AVENRUN].n_value;
|
|
lastpid_offset = nlst[X_LASTPID].n_value;
|
|
cnt_offset = nlst[X_CNT].n_value;
|
|
bufspace_offset = nlst[X_BUFSPACE].n_value;
|
|
|
|
/* this is used in calculating WCPU -- calculate it ahead of time */
|
|
logcpu = log(loaddouble(ccpu));
|
|
|
|
pbase = NULL;
|
|
pref = NULL;
|
|
nproc = 0;
|
|
onproc = -1;
|
|
/* get the page size with "getpagesize" and calculate pageshift from it */
|
|
pagesize = getpagesize();
|
|
pageshift = 0;
|
|
while (pagesize > 1)
|
|
{
|
|
pageshift++;
|
|
pagesize >>= 1;
|
|
}
|
|
|
|
/* we only need the amount of log(2)1024 for our conversion */
|
|
pageshift -= LOG1024;
|
|
|
|
/* fill in the statics information */
|
|
statics->procstate_names = procstatenames;
|
|
statics->cpustate_names = cpustatenames;
|
|
statics->memory_names = memorynames;
|
|
statics->swap_names = swapnames;
|
|
|
|
/* all done! */
|
|
return(0);
|
|
}
|
|
|
|
char *format_header(uname_field)
|
|
|
|
register char *uname_field;
|
|
|
|
{
|
|
register char *ptr;
|
|
static char Header[128];
|
|
|
|
snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
|
|
namelength, namelength, uname_field);
|
|
|
|
cmdlength = 80 - strlen(Header) + 6;
|
|
|
|
return Header;
|
|
}
|
|
|
|
static int swappgsin = -1;
|
|
static int swappgsout = -1;
|
|
extern struct timeval timeout;
|
|
|
|
void
|
|
get_system_info(si)
|
|
|
|
struct system_info *si;
|
|
|
|
{
|
|
long total;
|
|
load_avg avenrun[3];
|
|
|
|
/* get the cp_time array */
|
|
(void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
|
|
nlst[X_CP_TIME].n_name);
|
|
(void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
|
|
nlst[X_AVENRUN].n_name);
|
|
|
|
(void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
|
|
"!");
|
|
|
|
/* convert load averages to doubles */
|
|
{
|
|
register int i;
|
|
register double *infoloadp;
|
|
load_avg *avenrunp;
|
|
|
|
#ifdef notyet
|
|
struct loadavg sysload;
|
|
int size;
|
|
getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
|
|
#endif
|
|
|
|
infoloadp = si->load_avg;
|
|
avenrunp = avenrun;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
#ifdef notyet
|
|
*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
|
|
#endif
|
|
*infoloadp++ = loaddouble(*avenrunp++);
|
|
}
|
|
}
|
|
|
|
/* convert cp_time counts to percentages */
|
|
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
|
|
|
|
/* sum memory & swap statistics */
|
|
{
|
|
struct vmmeter sum;
|
|
static unsigned int swap_delay = 0;
|
|
static int swapavail = 0;
|
|
static int swapfree = 0;
|
|
static int bufspace = 0;
|
|
|
|
(void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
|
|
"_cnt");
|
|
(void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace),
|
|
"_bufspace");
|
|
|
|
/* convert memory stats to Kbytes */
|
|
memory_stats[0] = pagetok(sum.v_active_count);
|
|
memory_stats[1] = pagetok(sum.v_inactive_count);
|
|
memory_stats[2] = pagetok(sum.v_wire_count);
|
|
memory_stats[3] = pagetok(sum.v_cache_count);
|
|
memory_stats[4] = bufspace / 1024;
|
|
memory_stats[5] = pagetok(sum.v_free_count);
|
|
memory_stats[6] = -1;
|
|
|
|
/* first interval */
|
|
if (swappgsin < 0) {
|
|
swap_stats[4] = 0;
|
|
swap_stats[5] = 0;
|
|
}
|
|
|
|
/* compute differences between old and new swap statistic */
|
|
else {
|
|
swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin)));
|
|
swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout)));
|
|
}
|
|
|
|
swappgsin = sum.v_swappgsin;
|
|
swappgsout = sum.v_swappgsout;
|
|
|
|
/* call CPU heavy swapmode() only for changes */
|
|
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
|
|
swap_stats[3] = swapmode(&swapavail, &swapfree);
|
|
swap_stats[0] = swapavail;
|
|
swap_stats[1] = swapavail - swapfree;
|
|
swap_stats[2] = swapfree;
|
|
}
|
|
swap_delay = 1;
|
|
swap_stats[6] = -1;
|
|
}
|
|
|
|
/* set arrays and strings */
|
|
si->cpustates = cpu_states;
|
|
si->memory = memory_stats;
|
|
si->swap = swap_stats;
|
|
|
|
|
|
if(lastpid > 0) {
|
|
si->last_pid = lastpid;
|
|
} else {
|
|
si->last_pid = -1;
|
|
}
|
|
}
|
|
|
|
static struct handle handle;
|
|
|
|
caddr_t get_process_info(si, sel, compare)
|
|
|
|
struct system_info *si;
|
|
struct process_select *sel;
|
|
int (*compare)();
|
|
|
|
{
|
|
register int i;
|
|
register int total_procs;
|
|
register int active_procs;
|
|
register struct kinfo_proc **prefp;
|
|
register struct kinfo_proc *pp;
|
|
|
|
/* these are copied out of sel for speed */
|
|
int show_idle;
|
|
int show_system;
|
|
int show_uid;
|
|
int show_command;
|
|
|
|
|
|
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
|
|
if (nproc > onproc)
|
|
pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
|
|
* (onproc = nproc));
|
|
if (pref == NULL || pbase == NULL) {
|
|
(void) fprintf(stderr, "top: Out of memory.\n");
|
|
quit(23);
|
|
}
|
|
/* get a pointer to the states summary array */
|
|
si->procstates = process_states;
|
|
|
|
/* set up flags which define what we are going to select */
|
|
show_idle = sel->idle;
|
|
show_system = sel->system;
|
|
show_uid = sel->uid != -1;
|
|
show_command = sel->command != NULL;
|
|
|
|
/* count up process states and get pointers to interesting procs */
|
|
total_procs = 0;
|
|
active_procs = 0;
|
|
memset((char *)process_states, 0, sizeof(process_states));
|
|
prefp = pref;
|
|
for (pp = pbase, i = 0; i < nproc; pp++, i++)
|
|
{
|
|
/*
|
|
* Place pointers to each valid proc structure in pref[].
|
|
* Process slots that are actually in use have a non-zero
|
|
* status field. Processes with P_SYSTEM set are system
|
|
* processes---these get ignored unless show_sysprocs is set.
|
|
*/
|
|
if (PP(pp, p_stat) != 0 &&
|
|
(show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
|
|
{
|
|
total_procs++;
|
|
process_states[(unsigned char) PP(pp, p_stat)]++;
|
|
if ((PP(pp, p_stat) != SZOMB) &&
|
|
(show_idle || (PP(pp, p_pctcpu) != 0) ||
|
|
(PP(pp, p_stat) == SRUN)) &&
|
|
(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
|
|
{
|
|
*prefp++ = pp;
|
|
active_procs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if requested, sort the "interesting" processes */
|
|
if (compare != NULL)
|
|
{
|
|
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
|
|
}
|
|
|
|
/* remember active and total counts */
|
|
si->p_total = total_procs;
|
|
si->p_active = pref_len = active_procs;
|
|
|
|
/* pass back a handle */
|
|
handle.next_proc = pref;
|
|
handle.remaining = active_procs;
|
|
return((caddr_t)&handle);
|
|
}
|
|
|
|
char fmt[128]; /* static area where result is built */
|
|
|
|
char *format_next_process(handle, get_userid)
|
|
|
|
caddr_t handle;
|
|
char *(*get_userid)();
|
|
|
|
{
|
|
register struct kinfo_proc *pp;
|
|
register long cputime;
|
|
register double pct;
|
|
struct handle *hp;
|
|
char status[16];
|
|
|
|
/* find and remember the next proc structure */
|
|
hp = (struct handle *)handle;
|
|
pp = *(hp->next_proc++);
|
|
hp->remaining--;
|
|
|
|
|
|
/* get the process's user struct and set cputime */
|
|
if ((PP(pp, p_flag) & P_INMEM) == 0) {
|
|
/*
|
|
* Print swapped processes as <pname>
|
|
*/
|
|
char *comm = PP(pp, p_comm);
|
|
#define COMSIZ sizeof(PP(pp, p_comm))
|
|
char buf[COMSIZ];
|
|
(void) strncpy(buf, comm, COMSIZ);
|
|
comm[0] = '<';
|
|
(void) strncpy(&comm[1], buf, COMSIZ - 2);
|
|
comm[COMSIZ - 2] = '\0';
|
|
(void) strncat(comm, ">", COMSIZ - 1);
|
|
comm[COMSIZ - 1] = '\0';
|
|
}
|
|
|
|
#if 0
|
|
/* This does not produce the correct results */
|
|
cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
|
|
#endif
|
|
cputime = PP(pp, p_runtime) / 1000000; /* This does not count interrupts */
|
|
|
|
/* calculate the base for cpu percentages */
|
|
pct = pctdouble(PP(pp, p_pctcpu));
|
|
|
|
/* generate "STATE" field */
|
|
switch (PP(pp, p_stat)) {
|
|
case SRUN:
|
|
if (smpmode && PP(pp, p_oncpu) >= 0)
|
|
sprintf(status, "CPU%d", PP(pp, p_oncpu));
|
|
else
|
|
strcpy(status, "RUN");
|
|
break;
|
|
case SSLEEP:
|
|
if (PP(pp, p_wmesg) != NULL) {
|
|
sprintf(status, "%.6s", EP(pp, e_wmesg));
|
|
break;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]);
|
|
break;
|
|
}
|
|
|
|
/* format this entry */
|
|
sprintf(fmt,
|
|
smpmode ? smp_Proc_format : up_Proc_format,
|
|
PP(pp, p_pid),
|
|
namelength, namelength,
|
|
(*get_userid)(EP(pp, e_pcred.p_ruid)),
|
|
PP(pp, p_priority) - PZERO,
|
|
|
|
/*
|
|
* normal time -> nice value -20 - +20
|
|
* real time 0 - 31 -> nice value -52 - -21
|
|
* idle time 0 - 31 -> nice value +21 - +52
|
|
*/
|
|
(PP(pp, p_rtprio.type) == RTP_PRIO_NORMAL ?
|
|
PP(pp, p_nice) - NZERO :
|
|
(PP(pp, p_rtprio.type) == RTP_PRIO_REALTIME ?
|
|
(PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) :
|
|
(PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))),
|
|
format_k2(pagetok(PROCSIZE(pp))),
|
|
format_k2(pagetok(VP(pp, vm_rssize))),
|
|
status,
|
|
smpmode ? PP(pp, p_lastcpu) : 0,
|
|
format_time(cputime),
|
|
10000.0 * weighted_cpu(pct, pp) / hz,
|
|
10000.0 * pct / hz,
|
|
cmdlength,
|
|
printable(PP(pp, p_comm)));
|
|
|
|
/* return the result */
|
|
return(fmt);
|
|
}
|
|
|
|
|
|
/*
|
|
* check_nlist(nlst) - checks the nlist to see if any symbols were not
|
|
* found. For every symbol that was not found, a one-line
|
|
* message is printed to stderr. The routine returns the
|
|
* number of symbols NOT found.
|
|
*/
|
|
|
|
static int check_nlist(nlst)
|
|
|
|
register struct nlist *nlst;
|
|
|
|
{
|
|
register int i;
|
|
|
|
/* check to see if we got ALL the symbols we requested */
|
|
/* this will write one line to stderr for every symbol not found */
|
|
|
|
i = 0;
|
|
while (nlst->n_name != NULL)
|
|
{
|
|
if (nlst->n_type == 0)
|
|
{
|
|
/* this one wasn't found */
|
|
(void) fprintf(stderr, "kernel: no symbol named `%s'\n",
|
|
nlst->n_name);
|
|
i = 1;
|
|
}
|
|
nlst++;
|
|
}
|
|
|
|
return(i);
|
|
}
|
|
|
|
|
|
/*
|
|
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
|
|
* "offset" is the byte offset into the kernel for the desired value,
|
|
* "ptr" points to a buffer into which the value is retrieved,
|
|
* "size" is the size of the buffer (and the object to retrieve),
|
|
* "refstr" is a reference string used when printing error meessages,
|
|
* if "refstr" starts with a '!', then a failure on read will not
|
|
* be fatal (this may seem like a silly way to do things, but I
|
|
* really didn't want the overhead of another argument).
|
|
*
|
|
*/
|
|
|
|
static int getkval(offset, ptr, size, refstr)
|
|
|
|
unsigned long offset;
|
|
int *ptr;
|
|
int size;
|
|
char *refstr;
|
|
|
|
{
|
|
if (kvm_read(kd, offset, (char *) ptr, size) != size)
|
|
{
|
|
if (*refstr == '!')
|
|
{
|
|
return(0);
|
|
}
|
|
else
|
|
{
|
|
fprintf(stderr, "top: kvm_read for %s: %s\n",
|
|
refstr, strerror(errno));
|
|
quit(23);
|
|
}
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
/* comparison routine for qsort */
|
|
|
|
/*
|
|
* proc_compare - comparison function for "qsort"
|
|
* Compares the resource consumption of two processes using five
|
|
* distinct keys. The keys (in descending order of importance) are:
|
|
* percent cpu, cpu ticks, state, resident set size, total virtual
|
|
* memory usage. The process states are ordered as follows (from least
|
|
* to most important): WAIT, zombie, sleep, stop, start, run. The
|
|
* array declaration below maps a process state index into a number
|
|
* that reflects this ordering.
|
|
*/
|
|
|
|
static unsigned char sorted_state[] =
|
|
{
|
|
0, /* not used */
|
|
3, /* sleep */
|
|
1, /* ABANDONED (WAIT) */
|
|
6, /* run */
|
|
5, /* start */
|
|
2, /* zombie */
|
|
4 /* stop */
|
|
};
|
|
|
|
int
|
|
proc_compare(pp1, pp2)
|
|
|
|
struct proc **pp1;
|
|
struct proc **pp2;
|
|
|
|
{
|
|
register struct kinfo_proc *p1;
|
|
register struct kinfo_proc *p2;
|
|
register int result;
|
|
register pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
/* compare percent cpu (pctcpu) */
|
|
if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0)
|
|
{
|
|
/* use lifetime CPU usage to break the tie */
|
|
if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0)
|
|
{
|
|
/* use process state to break the tie */
|
|
if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] -
|
|
sorted_state[(unsigned char) PP(p1, p_stat)]) == 0)
|
|
{
|
|
/* use priority to break the tie */
|
|
if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
|
|
{
|
|
/* use resident set size (rssize) to break the tie */
|
|
if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
|
|
{
|
|
/* use total memory to break the tie */
|
|
result = PROCSIZE(p2) - PROCSIZE(p1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
result = lresult < 0 ? -1 : 1;
|
|
}
|
|
|
|
return(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
|
|
* the process does not exist.
|
|
* It is EXTREMLY IMPORTANT that this function work correctly.
|
|
* If top runs setuid root (as in SVR4), then this function
|
|
* is the only thing that stands in the way of a serious
|
|
* security problem. It validates requests for the "kill"
|
|
* and "renice" commands.
|
|
*/
|
|
|
|
int proc_owner(pid)
|
|
|
|
int pid;
|
|
|
|
{
|
|
register int cnt;
|
|
register struct kinfo_proc **prefp;
|
|
register struct kinfo_proc *pp;
|
|
|
|
prefp = pref;
|
|
cnt = pref_len;
|
|
while (--cnt >= 0)
|
|
{
|
|
pp = *prefp++;
|
|
if (PP(pp, p_pid) == (pid_t)pid)
|
|
{
|
|
return((int)EP(pp, e_pcred.p_ruid));
|
|
}
|
|
}
|
|
return(-1);
|
|
}
|
|
|
|
|
|
/*
|
|
* swapmode is based on a program called swapinfo written
|
|
* by Kevin Lahey <kml@rokkaku.atl.ga.us>.
|
|
*/
|
|
|
|
#define SVAR(var) __STRING(var) /* to force expansion */
|
|
#define KGET(idx, var) \
|
|
KGET1(idx, &var, sizeof(var), SVAR(var))
|
|
#define KGET1(idx, p, s, msg) \
|
|
KGET2(nlst[idx].n_value, p, s, msg)
|
|
#define KGET2(addr, p, s, msg) \
|
|
if (kvm_read(kd, (u_long)(addr), p, s) != s) { \
|
|
warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \
|
|
return (0); \
|
|
}
|
|
#define KGETRET(addr, p, s, msg) \
|
|
if (kvm_read(kd, (u_long)(addr), p, s) != s) { \
|
|
warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \
|
|
return (0); \
|
|
}
|
|
|
|
|
|
int
|
|
swapmode(retavail, retfree)
|
|
int *retavail;
|
|
int *retfree;
|
|
{
|
|
char *header;
|
|
int hlen, nswap, nswdev, dmmax;
|
|
int i, div, avail, nfree, npfree, used;
|
|
struct swdevt *sw;
|
|
long blocksize, *perdev;
|
|
u_long ptr;
|
|
struct rlist head;
|
|
#if __FreeBSD_version >= 220000
|
|
struct rlisthdr swaplist;
|
|
#else
|
|
struct rlist *swaplist;
|
|
#endif
|
|
struct rlist *swapptr;
|
|
|
|
/*
|
|
* Counter for error messages. If we reach the limit,
|
|
* stop reading information from swap devices and
|
|
* return zero. This prevent endless 'bad address'
|
|
* messages.
|
|
*/
|
|
static warning = 10;
|
|
|
|
if (warning <= 0) {
|
|
/* a single warning */
|
|
if (!warning) {
|
|
warning--;
|
|
fprintf(stderr,
|
|
"Too much errors, stop reading swap devices ...\n");
|
|
(void)sleep(3);
|
|
}
|
|
return(0);
|
|
}
|
|
warning--; /* decrease counter, see end of function */
|
|
|
|
KGET(VM_NSWAP, nswap);
|
|
if (!nswap) {
|
|
fprintf(stderr, "No swap space available\n");
|
|
return(0);
|
|
}
|
|
|
|
KGET(VM_NSWDEV, nswdev);
|
|
KGET(VM_DMMAX, dmmax);
|
|
KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist");
|
|
if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL ||
|
|
(perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL)
|
|
err(1, "malloc");
|
|
KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt");
|
|
KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt");
|
|
|
|
/* Count up swap space. */
|
|
nfree = 0;
|
|
memset(perdev, 0, nswdev * sizeof(*perdev));
|
|
#if __FreeBSD_version >= 220000
|
|
swapptr = swaplist.rlh_list;
|
|
while (swapptr) {
|
|
#else
|
|
while (swaplist) {
|
|
#endif
|
|
int top, bottom, next_block;
|
|
#if __FreeBSD_version >= 220000
|
|
KGET2(swapptr, &head, sizeof(struct rlist), "swapptr");
|
|
#else
|
|
KGET2(swaplist, &head, sizeof(struct rlist), "swaplist");
|
|
#endif
|
|
|
|
top = head.rl_end;
|
|
bottom = head.rl_start;
|
|
|
|
nfree += top - bottom + 1;
|
|
|
|
/*
|
|
* Swap space is split up among the configured disks.
|
|
*
|
|
* For interleaved swap devices, the first dmmax blocks
|
|
* of swap space some from the first disk, the next dmmax
|
|
* blocks from the next, and so on up to nswap blocks.
|
|
*
|
|
* The list of free space joins adjacent free blocks,
|
|
* ignoring device boundries. If we want to keep track
|
|
* of this information per device, we'll just have to
|
|
* extract it ourselves.
|
|
*/
|
|
while (top / dmmax != bottom / dmmax) {
|
|
next_block = ((bottom + dmmax) / dmmax);
|
|
perdev[(bottom / dmmax) % nswdev] +=
|
|
next_block * dmmax - bottom;
|
|
bottom = next_block * dmmax;
|
|
}
|
|
perdev[(bottom / dmmax) % nswdev] +=
|
|
top - bottom + 1;
|
|
|
|
#if __FreeBSD_version >= 220000
|
|
swapptr = head.rl_next;
|
|
#else
|
|
swaplist = head.rl_next;
|
|
#endif
|
|
}
|
|
|
|
header = getbsize(&hlen, &blocksize);
|
|
div = blocksize / 512;
|
|
avail = npfree = 0;
|
|
for (i = 0; i < nswdev; i++) {
|
|
int xsize, xfree;
|
|
|
|
/*
|
|
* Don't report statistics for partitions which have not
|
|
* yet been activated via swapon(8).
|
|
*/
|
|
|
|
xsize = sw[i].sw_nblks;
|
|
xfree = perdev[i];
|
|
used = xsize - xfree;
|
|
npfree++;
|
|
avail += xsize;
|
|
}
|
|
|
|
/*
|
|
* If only one partition has been set up via swapon(8), we don't
|
|
* need to bother with totals.
|
|
*/
|
|
*retavail = avail / 2;
|
|
*retfree = nfree / 2;
|
|
used = avail - nfree;
|
|
free(sw); free(perdev);
|
|
|
|
/* increase counter, no errors occurs */
|
|
warning++;
|
|
|
|
return (int)(((double)used / (double)avail * 100.0) + 0.5);
|
|
}
|