freebsd-nq/sys/arm/include/cpufunc.h
Michal Meloun a89156f53f ARM: Use new ARMv6 naming conventions for cache and TLB functions
in all but ARMv4 specific files.
Expand ARMv6 compatibility stubs in cpu-v4.h. Use physical address
in L2 cache functions if ARM_L2_PIPT is defined.
2016-02-05 14:57:41 +00:00

530 lines
15 KiB
C

/* $NetBSD: cpufunc.h,v 1.29 2003/09/06 09:08:35 rearnsha Exp $ */
/*-
* Copyright (c) 1997 Mark Brinicombe.
* Copyright (c) 1997 Causality Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Causality Limited.
* 4. The name of Causality Limited may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY CAUSALITY LIMITED ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL CAUSALITY LIMITED BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* cpufunc.h
*
* Prototypes for cpu, mmu and tlb related functions.
*
* $FreeBSD$
*/
#ifndef _MACHINE_CPUFUNC_H_
#define _MACHINE_CPUFUNC_H_
#ifdef _KERNEL
#include <sys/types.h>
#include <machine/armreg.h>
#include <machine/cpuconf.h>
static __inline void
breakpoint(void)
{
__asm(".word 0xe7ffffff");
}
struct cpu_functions {
/* CPU functions */
void (*cf_cpwait) (void);
/* MMU functions */
u_int (*cf_control) (u_int bic, u_int eor);
void (*cf_setttb) (u_int ttb);
/* TLB functions */
void (*cf_tlb_flushID) (void);
void (*cf_tlb_flushID_SE) (u_int va);
void (*cf_tlb_flushD) (void);
void (*cf_tlb_flushD_SE) (u_int va);
/*
* Cache operations:
*
* We define the following primitives:
*
* icache_sync_range Synchronize I-cache range
*
* dcache_wbinv_all Write-back and Invalidate D-cache
* dcache_wbinv_range Write-back and Invalidate D-cache range
* dcache_inv_range Invalidate D-cache range
* dcache_wb_range Write-back D-cache range
*
* idcache_wbinv_all Write-back and Invalidate D-cache,
* Invalidate I-cache
* idcache_wbinv_range Write-back and Invalidate D-cache,
* Invalidate I-cache range
*
* Note that the ARM term for "write-back" is "clean". We use
* the term "write-back" since it's a more common way to describe
* the operation.
*
* There are some rules that must be followed:
*
* ID-cache Invalidate All:
* Unlike other functions, this one must never write back.
* It is used to intialize the MMU when it is in an unknown
* state (such as when it may have lines tagged as valid
* that belong to a previous set of mappings).
*
* I-cache Sync range:
* The goal is to synchronize the instruction stream,
* so you may beed to write-back dirty D-cache blocks
* first. If a range is requested, and you can't
* synchronize just a range, you have to hit the whole
* thing.
*
* D-cache Write-Back and Invalidate range:
* If you can't WB-Inv a range, you must WB-Inv the
* entire D-cache.
*
* D-cache Invalidate:
* If you can't Inv the D-cache, you must Write-Back
* and Invalidate. Code that uses this operation
* MUST NOT assume that the D-cache will not be written
* back to memory.
*
* D-cache Write-Back:
* If you can't Write-back without doing an Inv,
* that's fine. Then treat this as a WB-Inv.
* Skipping the invalidate is merely an optimization.
*
* All operations:
* Valid virtual addresses must be passed to each
* cache operation.
*/
void (*cf_icache_sync_range) (vm_offset_t, vm_size_t);
void (*cf_dcache_wbinv_all) (void);
void (*cf_dcache_wbinv_range) (vm_offset_t, vm_size_t);
void (*cf_dcache_inv_range) (vm_offset_t, vm_size_t);
void (*cf_dcache_wb_range) (vm_offset_t, vm_size_t);
void (*cf_idcache_inv_all) (void);
void (*cf_idcache_wbinv_all) (void);
void (*cf_idcache_wbinv_range) (vm_offset_t, vm_size_t);
void (*cf_l2cache_wbinv_all) (void);
void (*cf_l2cache_wbinv_range) (vm_offset_t, vm_size_t);
void (*cf_l2cache_inv_range) (vm_offset_t, vm_size_t);
void (*cf_l2cache_wb_range) (vm_offset_t, vm_size_t);
void (*cf_l2cache_drain_writebuf) (void);
/* Other functions */
void (*cf_drain_writebuf) (void);
void (*cf_sleep) (int mode);
/* Soft functions */
void (*cf_context_switch) (void);
void (*cf_setup) (void);
};
extern struct cpu_functions cpufuncs;
extern u_int cputype;
#if __ARM_ARCH < 6
#define cpu_cpwait() cpufuncs.cf_cpwait()
#endif
#define cpu_control(c, e) cpufuncs.cf_control(c, e)
#if __ARM_ARCH < 6
#define cpu_setttb(t) cpufuncs.cf_setttb(t)
#define cpu_tlb_flushID() cpufuncs.cf_tlb_flushID()
#define cpu_tlb_flushID_SE(e) cpufuncs.cf_tlb_flushID_SE(e)
#define cpu_tlb_flushD() cpufuncs.cf_tlb_flushD()
#define cpu_tlb_flushD_SE(e) cpufuncs.cf_tlb_flushD_SE(e)
#define cpu_icache_sync_range(a, s) cpufuncs.cf_icache_sync_range((a), (s))
#define cpu_dcache_wbinv_all() cpufuncs.cf_dcache_wbinv_all()
#define cpu_dcache_wbinv_range(a, s) cpufuncs.cf_dcache_wbinv_range((a), (s))
#define cpu_dcache_inv_range(a, s) cpufuncs.cf_dcache_inv_range((a), (s))
#define cpu_dcache_wb_range(a, s) cpufuncs.cf_dcache_wb_range((a), (s))
#define cpu_idcache_inv_all() cpufuncs.cf_idcache_inv_all()
#define cpu_idcache_wbinv_all() cpufuncs.cf_idcache_wbinv_all()
#define cpu_idcache_wbinv_range(a, s) cpufuncs.cf_idcache_wbinv_range((a), (s))
#endif
#define cpu_l2cache_wbinv_all() cpufuncs.cf_l2cache_wbinv_all()
#define cpu_l2cache_wb_range(a, s) cpufuncs.cf_l2cache_wb_range((a), (s))
#define cpu_l2cache_inv_range(a, s) cpufuncs.cf_l2cache_inv_range((a), (s))
#define cpu_l2cache_wbinv_range(a, s) cpufuncs.cf_l2cache_wbinv_range((a), (s))
#define cpu_l2cache_drain_writebuf() cpufuncs.cf_l2cache_drain_writebuf()
#if __ARM_ARCH < 6
#define cpu_drain_writebuf() cpufuncs.cf_drain_writebuf()
#endif
#define cpu_sleep(m) cpufuncs.cf_sleep(m)
#define cpu_setup() cpufuncs.cf_setup()
int set_cpufuncs (void);
#define ARCHITECTURE_NOT_PRESENT 1 /* known but not configured */
#define ARCHITECTURE_NOT_SUPPORTED 2 /* not known */
void cpufunc_nullop (void);
u_int cpu_ident (void);
u_int cpufunc_control (u_int clear, u_int bic);
void cpu_domains (u_int domains);
u_int cpu_faultstatus (void);
u_int cpu_faultaddress (void);
u_int cpu_get_control (void);
u_int cpu_pfr (int);
#if defined(CPU_FA526)
void fa526_setup (void);
void fa526_setttb (u_int ttb);
void fa526_context_switch (void);
void fa526_cpu_sleep (int);
void fa526_tlb_flushID_SE (u_int);
void fa526_icache_sync_range(vm_offset_t start, vm_size_t end);
void fa526_dcache_wbinv_all (void);
void fa526_dcache_wbinv_range(vm_offset_t start, vm_size_t end);
void fa526_dcache_inv_range (vm_offset_t start, vm_size_t end);
void fa526_dcache_wb_range (vm_offset_t start, vm_size_t end);
void fa526_idcache_wbinv_all(void);
void fa526_idcache_wbinv_range(vm_offset_t start, vm_size_t end);
#endif
#if defined(CPU_ARM9) || defined(CPU_ARM9E)
void arm9_setttb (u_int);
void arm9_tlb_flushID_SE (u_int va);
void arm9_context_switch (void);
#endif
#if defined(CPU_ARM9)
void arm9_icache_sync_range (vm_offset_t, vm_size_t);
void arm9_dcache_wbinv_all (void);
void arm9_dcache_wbinv_range (vm_offset_t, vm_size_t);
void arm9_dcache_inv_range (vm_offset_t, vm_size_t);
void arm9_dcache_wb_range (vm_offset_t, vm_size_t);
void arm9_idcache_wbinv_all (void);
void arm9_idcache_wbinv_range (vm_offset_t, vm_size_t);
void arm9_setup (void);
extern unsigned arm9_dcache_sets_max;
extern unsigned arm9_dcache_sets_inc;
extern unsigned arm9_dcache_index_max;
extern unsigned arm9_dcache_index_inc;
#endif
#if defined(CPU_ARM9E)
void arm10_setup (void);
u_int sheeva_control_ext (u_int, u_int);
void sheeva_cpu_sleep (int);
void sheeva_setttb (u_int);
void sheeva_dcache_wbinv_range (vm_offset_t, vm_size_t);
void sheeva_dcache_inv_range (vm_offset_t, vm_size_t);
void sheeva_dcache_wb_range (vm_offset_t, vm_size_t);
void sheeva_idcache_wbinv_range (vm_offset_t, vm_size_t);
void sheeva_l2cache_wbinv_range (vm_offset_t, vm_size_t);
void sheeva_l2cache_inv_range (vm_offset_t, vm_size_t);
void sheeva_l2cache_wb_range (vm_offset_t, vm_size_t);
void sheeva_l2cache_wbinv_all (void);
#endif
#if defined(CPU_MV_PJ4B)
void armv6_idcache_wbinv_all (void);
#endif
#if defined(CPU_MV_PJ4B) || defined(CPU_CORTEXA) || defined(CPU_KRAIT)
void armv7_setttb (u_int);
void armv7_tlb_flushID (void);
void armv7_tlb_flushID_SE (u_int);
void armv7_icache_sync_range (vm_offset_t, vm_size_t);
void armv7_idcache_wbinv_range (vm_offset_t, vm_size_t);
void armv7_idcache_inv_all (void);
void armv7_dcache_wbinv_all (void);
void armv7_idcache_wbinv_all (void);
void armv7_dcache_wbinv_range (vm_offset_t, vm_size_t);
void armv7_dcache_inv_range (vm_offset_t, vm_size_t);
void armv7_dcache_wb_range (vm_offset_t, vm_size_t);
void armv7_cpu_sleep (int);
void armv7_setup (void);
void armv7_context_switch (void);
void armv7_drain_writebuf (void);
void armv7_sev (void);
u_int armv7_auxctrl (u_int, u_int);
void armadaxp_idcache_wbinv_all (void);
void cortexa_setup (void);
#endif
#if defined(CPU_MV_PJ4B)
void pj4b_config (void);
void pj4bv7_setup (void);
#endif
#if defined(CPU_ARM1176)
void arm11_tlb_flushID (void);
void arm11_tlb_flushID_SE (u_int);
void arm11_tlb_flushD (void);
void arm11_tlb_flushD_SE (u_int va);
void arm11_context_switch (void);
void arm11_drain_writebuf (void);
void armv6_dcache_wbinv_range (vm_offset_t, vm_size_t);
void armv6_dcache_inv_range (vm_offset_t, vm_size_t);
void armv6_dcache_wb_range (vm_offset_t, vm_size_t);
void armv6_idcache_inv_all (void);
void arm11x6_setttb (u_int);
void arm11x6_idcache_wbinv_all (void);
void arm11x6_dcache_wbinv_all (void);
void arm11x6_icache_sync_range (vm_offset_t, vm_size_t);
void arm11x6_idcache_wbinv_range (vm_offset_t, vm_size_t);
void arm11x6_setup (void);
void arm11x6_sleep (int); /* no ref. for errata */
#endif
#if defined(CPU_ARM9E)
void armv5_ec_setttb(u_int);
void armv5_ec_icache_sync_range(vm_offset_t, vm_size_t);
void armv5_ec_dcache_wbinv_all(void);
void armv5_ec_dcache_wbinv_range(vm_offset_t, vm_size_t);
void armv5_ec_dcache_inv_range(vm_offset_t, vm_size_t);
void armv5_ec_dcache_wb_range(vm_offset_t, vm_size_t);
void armv5_ec_idcache_wbinv_all(void);
void armv5_ec_idcache_wbinv_range(vm_offset_t, vm_size_t);
#endif
#if defined(CPU_ARM9) || defined(CPU_ARM9E) || \
defined(CPU_FA526) || \
defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) || \
defined(CPU_XSCALE_81342)
void armv4_tlb_flushID (void);
void armv4_tlb_flushD (void);
void armv4_tlb_flushD_SE (u_int va);
void armv4_drain_writebuf (void);
void armv4_idcache_inv_all (void);
#endif
#if defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) || \
defined(CPU_XSCALE_81342)
void xscale_cpwait (void);
void xscale_cpu_sleep (int mode);
u_int xscale_control (u_int clear, u_int bic);
void xscale_setttb (u_int ttb);
void xscale_tlb_flushID_SE (u_int va);
void xscale_cache_flushID (void);
void xscale_cache_flushI (void);
void xscale_cache_flushD (void);
void xscale_cache_flushD_SE (u_int entry);
void xscale_cache_cleanID (void);
void xscale_cache_cleanD (void);
void xscale_cache_cleanD_E (u_int entry);
void xscale_cache_clean_minidata (void);
void xscale_cache_purgeID (void);
void xscale_cache_purgeID_E (u_int entry);
void xscale_cache_purgeD (void);
void xscale_cache_purgeD_E (u_int entry);
void xscale_cache_syncI (void);
void xscale_cache_cleanID_rng (vm_offset_t start, vm_size_t end);
void xscale_cache_cleanD_rng (vm_offset_t start, vm_size_t end);
void xscale_cache_purgeID_rng (vm_offset_t start, vm_size_t end);
void xscale_cache_purgeD_rng (vm_offset_t start, vm_size_t end);
void xscale_cache_syncI_rng (vm_offset_t start, vm_size_t end);
void xscale_cache_flushD_rng (vm_offset_t start, vm_size_t end);
void xscale_context_switch (void);
void xscale_setup (void);
#endif /* CPU_XSCALE_PXA2X0 || CPU_XSCALE_IXP425 */
#ifdef CPU_XSCALE_81342
void xscalec3_l2cache_purge (void);
void xscalec3_cache_purgeID (void);
void xscalec3_cache_purgeD (void);
void xscalec3_cache_cleanID (void);
void xscalec3_cache_cleanD (void);
void xscalec3_cache_syncI (void);
void xscalec3_cache_purgeID_rng (vm_offset_t start, vm_size_t end);
void xscalec3_cache_purgeD_rng (vm_offset_t start, vm_size_t end);
void xscalec3_cache_cleanID_rng (vm_offset_t start, vm_size_t end);
void xscalec3_cache_cleanD_rng (vm_offset_t start, vm_size_t end);
void xscalec3_cache_syncI_rng (vm_offset_t start, vm_size_t end);
void xscalec3_l2cache_flush_rng (vm_offset_t, vm_size_t);
void xscalec3_l2cache_clean_rng (vm_offset_t start, vm_size_t end);
void xscalec3_l2cache_purge_rng (vm_offset_t start, vm_size_t end);
void xscalec3_setttb (u_int ttb);
void xscalec3_context_switch (void);
#endif /* CPU_XSCALE_81342 */
/*
* Macros for manipulating CPU interrupts
*/
#if __ARM_ARCH < 6
#define __ARM_INTR_BITS (PSR_I | PSR_F)
#else
#define __ARM_INTR_BITS (PSR_I | PSR_F | PSR_A)
#endif
static __inline uint32_t
__set_cpsr(uint32_t bic, uint32_t eor)
{
uint32_t tmp, ret;
__asm __volatile(
"mrs %0, cpsr\n" /* Get the CPSR */
"bic %1, %0, %2\n" /* Clear bits */
"eor %1, %1, %3\n" /* XOR bits */
"msr cpsr_xc, %1\n" /* Set the CPSR */
: "=&r" (ret), "=&r" (tmp)
: "r" (bic), "r" (eor) : "memory");
return ret;
}
static __inline uint32_t
disable_interrupts(uint32_t mask)
{
return (__set_cpsr(mask & __ARM_INTR_BITS, mask & __ARM_INTR_BITS));
}
static __inline uint32_t
enable_interrupts(uint32_t mask)
{
return (__set_cpsr(mask & __ARM_INTR_BITS, 0));
}
static __inline uint32_t
restore_interrupts(uint32_t old_cpsr)
{
return (__set_cpsr(__ARM_INTR_BITS, old_cpsr & __ARM_INTR_BITS));
}
static __inline register_t
intr_disable(void)
{
return (disable_interrupts(PSR_I | PSR_F));
}
static __inline void
intr_restore(register_t s)
{
restore_interrupts(s);
}
#undef __ARM_INTR_BITS
/*
* Functions to manipulate cpu r13
* (in arm/arm32/setstack.S)
*/
void set_stackptr (u_int mode, u_int address);
u_int get_stackptr (u_int mode);
/*
* Miscellany
*/
int get_pc_str_offset (void);
/*
* CPU functions from locore.S
*/
void cpu_reset (void) __attribute__((__noreturn__));
/*
* Cache info variables.
*/
/* PRIMARY CACHE VARIABLES */
extern int arm_picache_size;
extern int arm_picache_line_size;
extern int arm_picache_ways;
extern int arm_pdcache_size; /* and unified */
extern int arm_pdcache_line_size;
extern int arm_pdcache_ways;
extern int arm_pcache_type;
extern int arm_pcache_unified;
extern int arm_dcache_align;
extern int arm_dcache_align_mask;
extern u_int arm_cache_level;
extern u_int arm_cache_loc;
extern u_int arm_cache_type[14];
#endif /* _KERNEL */
#endif /* _MACHINE_CPUFUNC_H_ */
/* End of cpufunc.h */