freebsd-nq/contrib/gcc/config/arm/arm.h

2889 lines
109 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Definitions of target machine for GNU compiler, for ARM.
Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002 Free Software Foundation, Inc.
Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
and Martin Simmons (@harleqn.co.uk).
More major hacks by Richard Earnshaw (rearnsha@arm.com)
Minor hacks by Nick Clifton (nickc@cygnus.com)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#ifndef GCC_ARM_H
#define GCC_ARM_H
#define TARGET_CPU_arm2 0x0000
#define TARGET_CPU_arm250 0x0000
#define TARGET_CPU_arm3 0x0000
#define TARGET_CPU_arm6 0x0001
#define TARGET_CPU_arm600 0x0001
#define TARGET_CPU_arm610 0x0002
#define TARGET_CPU_arm7 0x0001
#define TARGET_CPU_arm7m 0x0004
#define TARGET_CPU_arm7dm 0x0004
#define TARGET_CPU_arm7dmi 0x0004
#define TARGET_CPU_arm700 0x0001
#define TARGET_CPU_arm710 0x0002
#define TARGET_CPU_arm7100 0x0002
#define TARGET_CPU_arm7500 0x0002
#define TARGET_CPU_arm7500fe 0x1001
#define TARGET_CPU_arm7tdmi 0x0008
#define TARGET_CPU_arm8 0x0010
#define TARGET_CPU_arm810 0x0020
#define TARGET_CPU_strongarm 0x0040
#define TARGET_CPU_strongarm110 0x0040
#define TARGET_CPU_strongarm1100 0x0040
#define TARGET_CPU_arm9 0x0080
#define TARGET_CPU_arm9tdmi 0x0080
#define TARGET_CPU_xscale 0x0100
/* Configure didn't specify. */
#define TARGET_CPU_generic 0x8000
typedef enum arm_cond_code
{
ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
}
arm_cc;
extern arm_cc arm_current_cc;
#define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
extern int arm_target_label;
extern int arm_ccfsm_state;
extern struct rtx_def * arm_target_insn;
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* The floating point instruction architecture, can be 2 or 3 */
extern const char * target_fp_name;
/* Define the information needed to generate branch insns. This is
stored from the compare operation. Note that we can't use "rtx" here
since it hasn't been defined! */
extern struct rtx_def * arm_compare_op0;
extern struct rtx_def * arm_compare_op1;
/* The label of the current constant pool. */
extern struct rtx_def * pool_vector_label;
/* Set to 1 when a return insn is output, this means that the epilogue
is not needed. */
extern int return_used_this_function;
/* Just in case configure has failed to define anything. */
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT TARGET_CPU_generic
#endif
/* If the configuration file doesn't specify the cpu, the subtarget may
override it. If it doesn't, then default to an ARM6. */
#if TARGET_CPU_DEFAULT == TARGET_CPU_generic
#undef TARGET_CPU_DEFAULT
#ifdef SUBTARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT SUBTARGET_CPU_DEFAULT
#else
#define TARGET_CPU_DEFAULT TARGET_CPU_arm6
#endif
#endif
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm2
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_2__"
#else
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm6 || TARGET_CPU_DEFAULT == TARGET_CPU_arm610 || TARGET_CPU_DEFAULT == TARGET_CPU_arm7500fe
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_3__"
#else
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm7m
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_3M__"
#else
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm7tdmi || TARGET_CPU_DEFAULT == TARGET_CPU_arm9 || TARGET_CPU_DEFAULT == TARGET_CPU_arm9tdmi
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_4T__"
#else
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm8 || TARGET_CPU_DEFAULT == TARGET_CPU_arm810 || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm110 || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm1100
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_4__"
#else
#if TARGET_CPU_DEFAULT == TARGET_CPU_xscale
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_5TE__ -D__XSCALE__"
#else
Unrecognized value in TARGET_CPU_DEFAULT.
#endif
#endif
#endif
#endif
#endif
#endif
#undef CPP_SPEC
#define CPP_SPEC "\
%(cpp_cpu_arch) %(cpp_apcs_pc) %(cpp_float) \
%(cpp_endian) %(subtarget_cpp_spec) %(cpp_isa) %(cpp_interwork)"
#define CPP_ISA_SPEC "%{mthumb:-D__thumb__} %{!mthumb:-D__arm__}"
/* Set the architecture define -- if -march= is set, then it overrides
the -mcpu= setting. */
#define CPP_CPU_ARCH_SPEC "\
-Acpu=arm -Amachine=arm \
%{march=arm2:-D__ARM_ARCH_2__} \
%{march=arm250:-D__ARM_ARCH_2__} \
%{march=arm3:-D__ARM_ARCH_2__} \
%{march=arm6:-D__ARM_ARCH_3__} \
%{march=arm600:-D__ARM_ARCH_3__} \
%{march=arm610:-D__ARM_ARCH_3__} \
%{march=arm7:-D__ARM_ARCH_3__} \
%{march=arm700:-D__ARM_ARCH_3__} \
%{march=arm710:-D__ARM_ARCH_3__} \
%{march=arm720:-D__ARM_ARCH_3__} \
%{march=arm7100:-D__ARM_ARCH_3__} \
%{march=arm7500:-D__ARM_ARCH_3__} \
%{march=arm7500fe:-D__ARM_ARCH_3__} \
%{march=arm7m:-D__ARM_ARCH_3M__} \
%{march=arm7dm:-D__ARM_ARCH_3M__} \
%{march=arm7dmi:-D__ARM_ARCH_3M__} \
%{march=arm7tdmi:-D__ARM_ARCH_4T__} \
%{march=arm8:-D__ARM_ARCH_4__} \
%{march=arm810:-D__ARM_ARCH_4__} \
%{march=arm9:-D__ARM_ARCH_4T__} \
%{march=arm920:-D__ARM_ARCH_4__} \
%{march=arm920t:-D__ARM_ARCH_4T__} \
%{march=arm9tdmi:-D__ARM_ARCH_4T__} \
%{march=strongarm:-D__ARM_ARCH_4__} \
%{march=strongarm110:-D__ARM_ARCH_4__} \
%{march=strongarm1100:-D__ARM_ARCH_4__} \
%{march=xscale:-D__ARM_ARCH_5TE__} \
%{march=xscale:-D__XSCALE__} \
%{march=armv2:-D__ARM_ARCH_2__} \
%{march=armv2a:-D__ARM_ARCH_2__} \
%{march=armv3:-D__ARM_ARCH_3__} \
%{march=armv3m:-D__ARM_ARCH_3M__} \
%{march=armv4:-D__ARM_ARCH_4__} \
%{march=armv4t:-D__ARM_ARCH_4T__} \
%{march=armv5:-D__ARM_ARCH_5__} \
%{march=armv5t:-D__ARM_ARCH_5T__} \
%{march=armv5e:-D__ARM_ARCH_5E__} \
%{march=armv5te:-D__ARM_ARCH_5TE__} \
%{!march=*: \
%{mcpu=arm2:-D__ARM_ARCH_2__} \
%{mcpu=arm250:-D__ARM_ARCH_2__} \
%{mcpu=arm3:-D__ARM_ARCH_2__} \
%{mcpu=arm6:-D__ARM_ARCH_3__} \
%{mcpu=arm600:-D__ARM_ARCH_3__} \
%{mcpu=arm610:-D__ARM_ARCH_3__} \
%{mcpu=arm7:-D__ARM_ARCH_3__} \
%{mcpu=arm700:-D__ARM_ARCH_3__} \
%{mcpu=arm710:-D__ARM_ARCH_3__} \
%{mcpu=arm720:-D__ARM_ARCH_3__} \
%{mcpu=arm7100:-D__ARM_ARCH_3__} \
%{mcpu=arm7500:-D__ARM_ARCH_3__} \
%{mcpu=arm7500fe:-D__ARM_ARCH_3__} \
%{mcpu=arm7m:-D__ARM_ARCH_3M__} \
%{mcpu=arm7dm:-D__ARM_ARCH_3M__} \
%{mcpu=arm7dmi:-D__ARM_ARCH_3M__} \
%{mcpu=arm7tdmi:-D__ARM_ARCH_4T__} \
%{mcpu=arm8:-D__ARM_ARCH_4__} \
%{mcpu=arm810:-D__ARM_ARCH_4__} \
%{mcpu=arm9:-D__ARM_ARCH_4T__} \
%{mcpu=arm920:-D__ARM_ARCH_4__} \
%{mcpu=arm920t:-D__ARM_ARCH_4T__} \
%{mcpu=arm9tdmi:-D__ARM_ARCH_4T__} \
%{mcpu=strongarm:-D__ARM_ARCH_4__} \
%{mcpu=strongarm110:-D__ARM_ARCH_4__} \
%{mcpu=strongarm1100:-D__ARM_ARCH_4__} \
%{mcpu=xscale:-D__ARM_ARCH_5TE__} \
%{mcpu=xscale:-D__XSCALE__} \
%{!mcpu*:%(cpp_cpu_arch_default)}} \
"
/* Define __APCS_26__ if the PC also contains the PSR */
#define CPP_APCS_PC_SPEC "\
%{mapcs-32:%{mapcs-26:%e-mapcs-26 and -mapcs-32 may not be used together} \
-D__APCS_32__} \
%{mapcs-26:-D__APCS_26__} \
%{!mapcs-32: %{!mapcs-26:%(cpp_apcs_pc_default)}} \
"
#ifndef CPP_APCS_PC_DEFAULT_SPEC
#define CPP_APCS_PC_DEFAULT_SPEC "-D__APCS_26__"
#endif
#define CPP_FLOAT_SPEC "\
%{msoft-float:\
%{mhard-float:%e-msoft-float and -mhard_float may not be used together} \
-D__SOFTFP__} \
%{!mhard-float:%{!msoft-float:%(cpp_float_default)}} \
"
/* Default is hard float, which doesn't define anything */
#define CPP_FLOAT_DEFAULT_SPEC ""
#define CPP_ENDIAN_SPEC "\
%{mbig-endian: \
%{mlittle-endian: \
%e-mbig-endian and -mlittle-endian may not be used together} \
-D__ARMEB__ %{mwords-little-endian:-D__ARMWEL__} %{mthumb:-D__THUMBEB__}}\
%{mlittle-endian:-D__ARMEL__ %{mthumb:-D__THUMBEL__}} \
%{!mlittle-endian:%{!mbig-endian:%(cpp_endian_default)}} \
"
/* Default is little endian. */
#define CPP_ENDIAN_DEFAULT_SPEC "-D__ARMEL__ %{mthumb:-D__THUMBEL__}"
/* Add a define for interworking. Needed when building libgcc.a.
This must define __THUMB_INTERWORK__ to the pre-processor if
interworking is enabled by default. */
#ifndef CPP_INTERWORK_DEFAULT_SPEC
#define CPP_INTERWORK_DEFAULT_SPEC ""
#endif
#define CPP_INTERWORK_SPEC " \
%{mthumb-interwork: \
%{mno-thumb-interwork: %eincompatible interworking options} \
-D__THUMB_INTERWORK__} \
%{!mthumb-interwork:%{!mno-thumb-interwork:%(cpp_interwork_default)}} \
"
#ifndef CPP_PREDEFINES
#define CPP_PREDEFINES ""
#endif
#ifndef CC1_SPEC
#define CC1_SPEC ""
#endif
/* This macro defines names of additional specifications to put in the specs
that can be used in various specifications like CC1_SPEC. Its definition
is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GNU CC driver
program.
Do not define this macro if it does not need to do anything. */
#define EXTRA_SPECS \
{ "cpp_cpu_arch", CPP_CPU_ARCH_SPEC }, \
{ "cpp_cpu_arch_default", CPP_ARCH_DEFAULT_SPEC }, \
{ "cpp_apcs_pc", CPP_APCS_PC_SPEC }, \
{ "cpp_apcs_pc_default", CPP_APCS_PC_DEFAULT_SPEC }, \
{ "cpp_float", CPP_FLOAT_SPEC }, \
{ "cpp_float_default", CPP_FLOAT_DEFAULT_SPEC }, \
{ "cpp_endian", CPP_ENDIAN_SPEC }, \
{ "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
{ "cpp_isa", CPP_ISA_SPEC }, \
{ "cpp_interwork", CPP_INTERWORK_SPEC }, \
{ "cpp_interwork_default", CPP_INTERWORK_DEFAULT_SPEC }, \
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
SUBTARGET_EXTRA_SPECS
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
#ifndef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC ""
#endif
/* Run-time Target Specification. */
#ifndef TARGET_VERSION
#define TARGET_VERSION fputs (" (ARM/generic)", stderr);
#endif
/* Nonzero if the function prologue (and epilogue) should obey
the ARM Procedure Call Standard. */
#define ARM_FLAG_APCS_FRAME (1 << 0)
/* Nonzero if the function prologue should output the function name to enable
the post mortem debugger to print a backtrace (very useful on RISCOS,
unused on RISCiX). Specifying this flag also enables
-fno-omit-frame-pointer.
XXX Must still be implemented in the prologue. */
#define ARM_FLAG_POKE (1 << 1)
/* Nonzero if floating point instructions are emulated by the FPE, in which
case instruction scheduling becomes very uninteresting. */
#define ARM_FLAG_FPE (1 << 2)
/* Nonzero if destined for a processor in 32-bit program mode. Takes out bit
that assume restoration of the condition flags when returning from a
branch and link (ie a function). */
#define ARM_FLAG_APCS_32 (1 << 3)
/* FLAGS 0x0008 and 0x0010 are now spare (used to be arm3/6 selection). */
/* Nonzero if stack checking should be performed on entry to each function
which allocates temporary variables on the stack. */
#define ARM_FLAG_APCS_STACK (1 << 4)
/* Nonzero if floating point parameters should be passed to functions in
floating point registers. */
#define ARM_FLAG_APCS_FLOAT (1 << 5)
/* Nonzero if re-entrant, position independent code should be generated.
This is equivalent to -fpic. */
#define ARM_FLAG_APCS_REENT (1 << 6)
/* Nonzero if the MMU will trap unaligned word accesses, so shorts must
be loaded using either LDRH or LDRB instructions. */
#define ARM_FLAG_MMU_TRAPS (1 << 7)
/* Nonzero if all floating point instructions are missing (and there is no
emulator either). Generate function calls for all ops in this case. */
#define ARM_FLAG_SOFT_FLOAT (1 << 8)
/* Nonzero if we should compile with BYTES_BIG_ENDIAN set to 1. */
#define ARM_FLAG_BIG_END (1 << 9)
/* Nonzero if we should compile for Thumb interworking. */
#define ARM_FLAG_INTERWORK (1 << 10)
/* Nonzero if we should have little-endian words even when compiling for
big-endian (for backwards compatibility with older versions of GCC). */
#define ARM_FLAG_LITTLE_WORDS (1 << 11)
/* Nonzero if we need to protect the prolog from scheduling */
#define ARM_FLAG_NO_SCHED_PRO (1 << 12)
/* Nonzero if a call to abort should be generated if a noreturn
function tries to return. */
#define ARM_FLAG_ABORT_NORETURN (1 << 13)
/* Nonzero if function prologues should not load the PIC register. */
#define ARM_FLAG_SINGLE_PIC_BASE (1 << 14)
/* Nonzero if all call instructions should be indirect. */
#define ARM_FLAG_LONG_CALLS (1 << 15)
/* Nonzero means that the target ISA is the THUMB, not the ARM. */
#define ARM_FLAG_THUMB (1 << 16)
/* Set if a TPCS style stack frame should be generated, for non-leaf
functions, even if they do not need one. */
#define THUMB_FLAG_BACKTRACE (1 << 17)
/* Set if a TPCS style stack frame should be generated, for leaf
functions, even if they do not need one. */
#define THUMB_FLAG_LEAF_BACKTRACE (1 << 18)
/* Set if externally visible functions should assume that they
might be called in ARM mode, from a non-thumb aware code. */
#define THUMB_FLAG_CALLEE_SUPER_INTERWORKING (1 << 19)
/* Set if calls via function pointers should assume that their
destination is non-Thumb aware. */
#define THUMB_FLAG_CALLER_SUPER_INTERWORKING (1 << 20)
#define TARGET_APCS_FRAME (target_flags & ARM_FLAG_APCS_FRAME)
#define TARGET_POKE_FUNCTION_NAME (target_flags & ARM_FLAG_POKE)
#define TARGET_FPE (target_flags & ARM_FLAG_FPE)
#define TARGET_APCS_32 (target_flags & ARM_FLAG_APCS_32)
#define TARGET_APCS_STACK (target_flags & ARM_FLAG_APCS_STACK)
#define TARGET_APCS_FLOAT (target_flags & ARM_FLAG_APCS_FLOAT)
#define TARGET_APCS_REENT (target_flags & ARM_FLAG_APCS_REENT)
#define TARGET_MMU_TRAPS (target_flags & ARM_FLAG_MMU_TRAPS)
#define TARGET_SOFT_FLOAT (target_flags & ARM_FLAG_SOFT_FLOAT)
#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
#define TARGET_BIG_END (target_flags & ARM_FLAG_BIG_END)
#define TARGET_INTERWORK (target_flags & ARM_FLAG_INTERWORK)
#define TARGET_LITTLE_WORDS (target_flags & ARM_FLAG_LITTLE_WORDS)
#define TARGET_NO_SCHED_PRO (target_flags & ARM_FLAG_NO_SCHED_PRO)
#define TARGET_ABORT_NORETURN (target_flags & ARM_FLAG_ABORT_NORETURN)
#define TARGET_SINGLE_PIC_BASE (target_flags & ARM_FLAG_SINGLE_PIC_BASE)
#define TARGET_LONG_CALLS (target_flags & ARM_FLAG_LONG_CALLS)
#define TARGET_THUMB (target_flags & ARM_FLAG_THUMB)
#define TARGET_ARM (! TARGET_THUMB)
#define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
#define TARGET_CALLEE_INTERWORKING (target_flags & THUMB_FLAG_CALLEE_SUPER_INTERWORKING)
#define TARGET_CALLER_INTERWORKING (target_flags & THUMB_FLAG_CALLER_SUPER_INTERWORKING)
#define TARGET_BACKTRACE (leaf_function_p () \
? (target_flags & THUMB_FLAG_LEAF_BACKTRACE) \
: (target_flags & THUMB_FLAG_BACKTRACE))
/* SUBTARGET_SWITCHES is used to add flags on a per-config basis.
Bit 31 is reserved. See riscix.h. */
#ifndef SUBTARGET_SWITCHES
#define SUBTARGET_SWITCHES
#endif
#define TARGET_SWITCHES \
{ \
{"apcs", ARM_FLAG_APCS_FRAME, "" }, \
{"apcs-frame", ARM_FLAG_APCS_FRAME, \
N_("Generate APCS conformant stack frames") }, \
{"no-apcs-frame", -ARM_FLAG_APCS_FRAME, "" }, \
{"poke-function-name", ARM_FLAG_POKE, \
N_("Store function names in object code") }, \
{"no-poke-function-name", -ARM_FLAG_POKE, "" }, \
{"fpe", ARM_FLAG_FPE, "" }, \
{"apcs-32", ARM_FLAG_APCS_32, \
N_("Use the 32-bit version of the APCS") }, \
{"apcs-26", -ARM_FLAG_APCS_32, \
N_("Use the 26-bit version of the APCS") }, \
{"apcs-stack-check", ARM_FLAG_APCS_STACK, "" }, \
{"no-apcs-stack-check", -ARM_FLAG_APCS_STACK, "" }, \
{"apcs-float", ARM_FLAG_APCS_FLOAT, \
N_("Pass FP arguments in FP registers") }, \
{"no-apcs-float", -ARM_FLAG_APCS_FLOAT, "" }, \
{"apcs-reentrant", ARM_FLAG_APCS_REENT, \
N_("Generate re-entrant, PIC code") }, \
{"no-apcs-reentrant", -ARM_FLAG_APCS_REENT, "" }, \
{"alignment-traps", ARM_FLAG_MMU_TRAPS, \
N_("The MMU will trap on unaligned accesses") }, \
{"no-alignment-traps", -ARM_FLAG_MMU_TRAPS, "" }, \
{"short-load-bytes", ARM_FLAG_MMU_TRAPS, "" }, \
{"no-short-load-bytes", -ARM_FLAG_MMU_TRAPS, "" }, \
{"short-load-words", -ARM_FLAG_MMU_TRAPS, "" }, \
{"no-short-load-words", ARM_FLAG_MMU_TRAPS, "" }, \
{"soft-float", ARM_FLAG_SOFT_FLOAT, \
N_("Use library calls to perform FP operations") }, \
{"hard-float", -ARM_FLAG_SOFT_FLOAT, \
N_("Use hardware floating point instructions") }, \
{"big-endian", ARM_FLAG_BIG_END, \
N_("Assume target CPU is configured as big endian") }, \
{"little-endian", -ARM_FLAG_BIG_END, \
N_("Assume target CPU is configured as little endian") }, \
{"words-little-endian", ARM_FLAG_LITTLE_WORDS, \
N_("Assume big endian bytes, little endian words") }, \
{"thumb-interwork", ARM_FLAG_INTERWORK, \
N_("Support calls between Thumb and ARM instruction sets") }, \
{"no-thumb-interwork", -ARM_FLAG_INTERWORK, "" }, \
{"abort-on-noreturn", ARM_FLAG_ABORT_NORETURN, \
N_("Generate a call to abort if a noreturn function returns")}, \
{"no-abort-on-noreturn", -ARM_FLAG_ABORT_NORETURN, "" }, \
{"no-sched-prolog", ARM_FLAG_NO_SCHED_PRO, \
N_("Do not move instructions into a function's prologue") }, \
{"sched-prolog", -ARM_FLAG_NO_SCHED_PRO, "" }, \
{"single-pic-base", ARM_FLAG_SINGLE_PIC_BASE, \
N_("Do not load the PIC register in function prologues") }, \
{"no-single-pic-base", -ARM_FLAG_SINGLE_PIC_BASE, "" }, \
{"long-calls", ARM_FLAG_LONG_CALLS, \
N_("Generate call insns as indirect calls, if necessary") }, \
{"no-long-calls", -ARM_FLAG_LONG_CALLS, "" }, \
{"thumb", ARM_FLAG_THUMB, \
N_("Compile for the Thumb not the ARM") }, \
{"no-thumb", -ARM_FLAG_THUMB, "" }, \
{"arm", -ARM_FLAG_THUMB, "" }, \
{"tpcs-frame", THUMB_FLAG_BACKTRACE, \
N_("Thumb: Generate (non-leaf) stack frames even if not needed") }, \
{"no-tpcs-frame", -THUMB_FLAG_BACKTRACE, "" }, \
{"tpcs-leaf-frame", THUMB_FLAG_LEAF_BACKTRACE, \
N_("Thumb: Generate (leaf) stack frames even if not needed") }, \
{"no-tpcs-leaf-frame", -THUMB_FLAG_LEAF_BACKTRACE, "" }, \
{"callee-super-interworking", THUMB_FLAG_CALLEE_SUPER_INTERWORKING, \
N_("Thumb: Assume non-static functions may be called from ARM code") }, \
{"no-callee-super-interworking", -THUMB_FLAG_CALLEE_SUPER_INTERWORKING, \
"" }, \
{"caller-super-interworking", THUMB_FLAG_CALLER_SUPER_INTERWORKING, \
N_("Thumb: Assume function pointers may go to non-Thumb aware code") }, \
{"no-caller-super-interworking", -THUMB_FLAG_CALLER_SUPER_INTERWORKING, \
"" }, \
SUBTARGET_SWITCHES \
{"", TARGET_DEFAULT, "" } \
}
#define TARGET_OPTIONS \
{ \
{"cpu=", & arm_select[0].string, \
N_("Specify the name of the target CPU") }, \
{"arch=", & arm_select[1].string, \
N_("Specify the name of the target architecture") }, \
{"tune=", & arm_select[2].string, "" }, \
{"fpe=", & target_fp_name, "" }, \
{"fp=", & target_fp_name, \
N_("Specify the version of the floating point emulator") }, \
{"structure-size-boundary=", & structure_size_string, \
N_("Specify the minimum bit alignment of structures") }, \
{"pic-register=", & arm_pic_register_string, \
N_("Specify the register to be used for PIC addressing") } \
}
struct arm_cpu_select
{
const char * string;
const char * name;
const struct processors * processors;
};
/* This is a magic array. If the user specifies a command line switch
which matches one of the entries in TARGET_OPTIONS then the corresponding
string pointer will be set to the value specified by the user. */
extern struct arm_cpu_select arm_select[];
enum prog_mode_type
{
prog_mode26,
prog_mode32
};
/* Recast the program mode class to be the prog_mode attribute */
#define arm_prog_mode ((enum attr_prog_mode) arm_prgmode)
extern enum prog_mode_type arm_prgmode;
/* What sort of floating point unit do we have? Hardware or software.
If software, is it issue 2 or issue 3? */
enum floating_point_type
{
FP_HARD,
FP_SOFT2,
FP_SOFT3
};
/* Recast the floating point class to be the floating point attribute. */
#define arm_fpu_attr ((enum attr_fpu) arm_fpu)
/* What type of floating point to tune for */
extern enum floating_point_type arm_fpu;
/* What type of floating point instructions are available */
extern enum floating_point_type arm_fpu_arch;
/* Default floating point architecture. Override in sub-target if
necessary. */
#ifndef FP_DEFAULT
#define FP_DEFAULT FP_SOFT2
#endif
/* Nonzero if the processor has a fast multiply insn, and one that does
a 64-bit multiply of two 32-bit values. */
extern int arm_fast_multiply;
/* Nonzero if this chip supports the ARM Architecture 4 extensions */
extern int arm_arch4;
/* Nonzero if this chip supports the ARM Architecture 5 extensions */
extern int arm_arch5;
/* Nonzero if this chip supports the ARM Architecture 5E extensions */
extern int arm_arch5e;
/* Nonzero if this chip can benefit from load scheduling. */
extern int arm_ld_sched;
/* Nonzero if generating thumb code. */
extern int thumb_code;
/* Nonzero if this chip is a StrongARM. */
extern int arm_is_strong;
/* Nonzero if this chip is an XScale. */
extern int arm_is_xscale;
/* Nonzero if this chip is an ARM6 or an ARM7. */
extern int arm_is_6_or_7;
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT (ARM_FLAG_APCS_FRAME)
#endif
/* The frame pointer register used in gcc has nothing to do with debugging;
that is controlled by the APCS-FRAME option. */
#define CAN_DEBUG_WITHOUT_FP
#undef TARGET_MEM_FUNCTIONS
#define TARGET_MEM_FUNCTIONS 1
#define OVERRIDE_OPTIONS arm_override_options ()
/* Nonzero if PIC code requires explicit qualifiers to generate
PLT and GOT relocs rather than the assembler doing so implicitly.
Subtargets can override these if required. */
#ifndef NEED_GOT_RELOC
#define NEED_GOT_RELOC 0
#endif
#ifndef NEED_PLT_RELOC
#define NEED_PLT_RELOC 0
#endif
/* Nonzero if we need to refer to the GOT with a PC-relative
offset. In other words, generate
.word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
rather than
.word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
The default is true, which matches NetBSD. Subtargets can
override this if required. */
#ifndef GOT_PCREL
#define GOT_PCREL 1
#endif
/* Target machine storage Layout. */
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type. */
/* It is far faster to zero extend chars than to sign extend them */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4) \
{ \
if (MODE == QImode) \
UNSIGNEDP = 1; \
else if (MODE == HImode) \
UNSIGNEDP = TARGET_MMU_TRAPS != 0; \
(MODE) = SImode; \
}
/* Define this macro if the promotion described by `PROMOTE_MODE'
should also be done for outgoing function arguments. */
/* This is required to ensure that push insns always push a word. */
#define PROMOTE_FUNCTION_ARGS
/* Define for XFmode extended real floating point support.
This will automatically cause REAL_ARITHMETIC to be defined. */
/* For the ARM:
I think I have added all the code to make this work. Unfortunately,
early releases of the floating point emulation code on RISCiX used a
different format for extended precision numbers. On my RISCiX box there
is a bug somewhere which causes the machine to lock up when running enquire
with long doubles. There is the additional aspect that Norcroft C
treats long doubles as doubles and we ought to remain compatible.
Perhaps someone with an FPA coprocessor and not running RISCiX would like
to try this someday. */
/* #define LONG_DOUBLE_TYPE_SIZE 96 */
/* Disable XFmode patterns in md file */
#define ENABLE_XF_PATTERNS 0
/* Define if you don't want extended real, but do want to use the
software floating point emulator for REAL_ARITHMETIC and
decimal <-> binary conversion. */
/* See comment above */
#define REAL_ARITHMETIC
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered.
Most ARM processors are run in little endian mode, so that is the default.
If you want to have it run-time selectable, change the definition in a
cover file to be TARGET_BIG_ENDIAN. */
#define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
/* Define this if most significant word of a multiword number is the lowest
numbered.
This is always false, even when in big-endian mode. */
#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
/* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
on processor pre-defineds when compiling libgcc2.c. */
#if defined(__ARMEB__) && !defined(__ARMWEL__)
#define LIBGCC2_WORDS_BIG_ENDIAN 1
#else
#define LIBGCC2_WORDS_BIG_ENDIAN 0
#endif
/* Define this if most significant word of doubles is the lowest numbered.
This is always true, even when in little-endian mode. */
#define FLOAT_WORDS_BIG_ENDIAN 1
/* Number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
#define BITS_PER_WORD 32
#define UNITS_PER_WORD 4
#define POINTER_SIZE 32
#define PARM_BOUNDARY 32
#define STACK_BOUNDARY 32
#define FUNCTION_BOUNDARY 32
/* The lowest bit is used to indicate Thumb-mode functions, so the
vbit must go into the delta field of pointers to member
functions. */
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
#define EMPTY_FIELD_BOUNDARY 32
#define BIGGEST_ALIGNMENT 32
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_is_xscale ? 1 : 2)
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
/* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
value set in previous versions of this toolchain was 8, which produces more
compact structures. The command line option -mstructure_size_boundary=<n>
can be used to change this value. For compatibility with the ARM SDK
however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
0020D) page 2-20 says "Structures are aligned on word boundaries". */
#define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
extern int arm_structure_size_boundary;
/* This is the value used to initialise arm_structure_size_boundary. If a
particular arm target wants to change the default value it should change
the definition of this macro, not STRUCTRUE_SIZE_BOUNDARY. See netbsd.h
for an example of this. */
#ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
#define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
#endif
/* Used when parsing command line option -mstructure_size_boundary. */
extern const char * structure_size_string;
/* Non-zero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
/* Standard register usage. */
/* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
(S - saved over call).
r0 * argument word/integer result
r1-r3 argument word
r4-r8 S register variable
r9 S (rfp) register variable (real frame pointer)
r10 F S (sl) stack limit (used by -mapcs-stack-check)
r11 F S (fp) argument pointer
r12 (ip) temp workspace
r13 F S (sp) lower end of current stack frame
r14 (lr) link address/workspace
r15 F (pc) program counter
f0 floating point result
f1-f3 floating point scratch
f4-f7 S floating point variable
cc This is NOT a real register, but is used internally
to represent things that use or set the condition
codes.
sfp This isn't either. It is used during rtl generation
since the offset between the frame pointer and the
auto's isn't known until after register allocation.
afp Nor this, we only need this because of non-local
goto. Without it fp appears to be used and the
elimination code won't get rid of sfp. It tracks
fp exactly at all times.
*: See CONDITIONAL_REGISTER_USAGE */
/* The stack backtrace structure is as follows:
fp points to here: | save code pointer | [fp]
| return link value | [fp, #-4]
| return sp value | [fp, #-8]
| return fp value | [fp, #-12]
[| saved r10 value |]
[| saved r9 value |]
[| saved r8 value |]
[| saved r7 value |]
[| saved r6 value |]
[| saved r5 value |]
[| saved r4 value |]
[| saved r3 value |]
[| saved r2 value |]
[| saved r1 value |]
[| saved r0 value |]
[| saved f7 value |] three words
[| saved f6 value |] three words
[| saved f5 value |] three words
[| saved f4 value |] three words
r0-r3 are not normally saved in a C function. */
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{ \
0,0,0,0,0,0,0,0, \
0,0,0,0,0,1,0,1, \
0,0,0,0,0,0,0,0, \
1,1,1 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like.
The CC is not preserved over function calls on the ARM 6, so it is
easier to assume this for all. SFP is preserved, since FP is. */
#define CALL_USED_REGISTERS \
{ \
1,1,1,1,0,0,0,0, \
0,0,0,0,1,1,1,1, \
1,1,1,1,0,0,0,0, \
1,1,1 \
}
#ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
#endif
#define CONDITIONAL_REGISTER_USAGE \
{ \
int regno; \
\
if (TARGET_SOFT_FLOAT || TARGET_THUMB) \
{ \
for (regno = FIRST_ARM_FP_REGNUM; \
regno <= LAST_ARM_FP_REGNUM; ++regno) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
} \
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
{ \
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
} \
else if (TARGET_APCS_STACK) \
{ \
fixed_regs[10] = 1; \
call_used_regs[10] = 1; \
} \
if (TARGET_APCS_FRAME) \
{ \
fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
} \
SUBTARGET_CONDITIONAL_REGISTER_USAGE \
}
/* These are a couple of extensions to the formats accecpted
by asm_fprintf:
%@ prints out ASM_COMMENT_START
%r prints out REGISTER_PREFIX reg_names[arg] */
#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
case '@': \
fputs (ASM_COMMENT_START, FILE); \
break; \
\
case 'r': \
fputs (REGISTER_PREFIX, FILE); \
fputs (reg_names [va_arg (ARGS, int)], FILE); \
break;
/* Round X up to the nearest word. */
#define ROUND_UP(X) (((X) + 3) & ~3)
/* Convert fron bytes to ints. */
#define NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* The number of (integer) registers required to hold a quantity of type MODE. */
#define NUM_REGS(MODE) \
NUM_INTS (GET_MODE_SIZE (MODE))
/* The number of (integer) registers required to hold a quantity of TYPE MODE. */
#define NUM_REGS2(MODE, TYPE) \
NUM_INTS ((MODE) == BLKmode ? \
int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
/* The number of (integer) argument register available. */
#define NUM_ARG_REGS 4
/* Return the regiser number of the N'th (integer) argument. */
#define ARG_REGISTER(N) (N - 1)
#if 0 /* FIXME: The ARM backend has special code to handle structure
returns, and will reserve its own hidden first argument. So
if this macro is enabled a *second* hidden argument will be
reserved, which will break binary compatibility with old
toolchains and also thunk handling. One day this should be
fixed. */
/* RTX for structure returns. NULL means use a hidden first argument. */
#define STRUCT_VALUE 0
#else
/* Register in which address to store a structure value
is passed to a function. */
#define STRUCT_VALUE_REGNUM ARG_REGISTER (1)
#endif
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* The number of the last argument register. */
#define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
/* The number of the last "lo" register (thumb). */
#define LAST_LO_REGNUM 7
/* The register that holds the return address in exception handlers. */
#define EXCEPTION_LR_REGNUM 2
/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
as an invisible last argument (possible since varargs don't exist in
Pascal), so the following is not true. */
#define STATIC_CHAIN_REGNUM (TARGET_ARM ? 12 : 9)
/* Define this to be where the real frame pointer is if it is not possible to
work out the offset between the frame pointer and the automatic variables
until after register allocation has taken place. FRAME_POINTER_REGNUM
should point to a special register that we will make sure is eliminated.
For the Thumb we have another problem. The TPCS defines the frame pointer
as r11, and GCC belives that it is always possible to use the frame pointer
as base register for addressing purposes. (See comments in
find_reloads_address()). But - the Thumb does not allow high registers,
including r11, to be used as base address registers. Hence our problem.
The solution used here, and in the old thumb port is to use r7 instead of
r11 as the hard frame pointer and to have special code to generate
backtrace structures on the stack (if required to do so via a command line
option) using r11. This is the only 'user visable' use of r11 as a frame
pointer. */
#define ARM_HARD_FRAME_POINTER_REGNUM 11
#define THUMB_HARD_FRAME_POINTER_REGNUM 7
#define HARD_FRAME_POINTER_REGNUM \
(TARGET_ARM \
? ARM_HARD_FRAME_POINTER_REGNUM \
: THUMB_HARD_FRAME_POINTER_REGNUM)
#define FP_REGNUM HARD_FRAME_POINTER_REGNUM
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM SP_REGNUM
/* ARM floating pointer registers. */
#define FIRST_ARM_FP_REGNUM 16
#define LAST_ARM_FP_REGNUM 23
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 25
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 26
/* The number of hard registers is 16 ARM + 8 FPU + 1 CC + 1 SFP. */
#define FIRST_PSEUDO_REGISTER 27
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms may be accessed
via the stack pointer) in functions that seem suitable.
If we have to have a frame pointer we might as well make use of it.
APCS says that the frame pointer does not need to be pushed in leaf
functions, or simple tail call functions. */
#define FRAME_POINTER_REQUIRED \
(current_function_has_nonlocal_label \
|| (TARGET_ARM && TARGET_APCS_FRAME && ! leaf_function_p ()))
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the ARM regs are UNITS_PER_WORD bits wide; FPU regs can hold any FP
mode. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((TARGET_ARM \
&& REGNO >= FIRST_ARM_FP_REGNUM \
&& REGNO != FRAME_POINTER_REGNUM \
&& REGNO != ARG_POINTER_REGNUM) \
? 1 : NUM_REGS (MODE))
/* Return true if REGNO is suitable for holding a quantity of type MODE. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
arm_hard_regno_mode_ok ((REGNO), (MODE))
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
/* The order in which register should be allocated. It is good to use ip
since no saving is required (though calls clobber it) and it never contains
function parameters. It is quite good to use lr since other calls may
clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
least likely to contain a function parameter; in addition results are
returned in r0. */
#define REG_ALLOC_ORDER \
{ \
3, 2, 1, 0, 12, 14, 4, 5, \
6, 7, 8, 10, 9, 11, 13, 15, \
16, 17, 18, 19, 20, 21, 22, 23, \
24, 25, 26 \
}
/* Interrupt functions can only use registers that have already been
saved by the prologue, even if they would normally be
call-clobbered. */
#define HARD_REGNO_RENAME_OK(SRC, DST) \
(! IS_INTERRUPT (cfun->machine->func_type) || \
regs_ever_live[DST])
/* Register and constant classes. */
/* Register classes: used to be simple, just all ARM regs or all FPU regs
Now that the Thumb is involved it has become more complicated. */
enum reg_class
{
NO_REGS,
FPU_REGS,
LO_REGS,
STACK_REG,
BASE_REGS,
HI_REGS,
CC_REG,
GENERAL_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"FPU_REGS", \
"LO_REGS", \
"STACK_REG", \
"BASE_REGS", \
"HI_REGS", \
"CC_REG", \
"GENERAL_REGS", \
"ALL_REGS", \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x0000000 }, /* NO_REGS */ \
{ 0x0FF0000 }, /* FPU_REGS */ \
{ 0x00000FF }, /* LO_REGS */ \
{ 0x0002000 }, /* STACK_REG */ \
{ 0x00020FF }, /* BASE_REGS */ \
{ 0x000FF00 }, /* HI_REGS */ \
{ 0x1000000 }, /* CC_REG */ \
{ 0x200FFFF }, /* GENERAL_REGS */ \
{ 0x2FFFFFF } /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS (TARGET_THUMB ? LO_REGS : GENERAL_REGS)
#define BASE_REG_CLASS (TARGET_THUMB ? BASE_REGS : GENERAL_REGS)
/* For the Thumb the high registers cannot be used as base
registers when addressing quanitities in QI or HI mode. */
#define MODE_BASE_REG_CLASS(MODE) \
(TARGET_ARM ? BASE_REGS : \
(((MODE) == QImode || (MODE) == HImode || (MODE) == VOIDmode) \
? LO_REGS : BASE_REGS))
/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
registers explicitly used in the rtl to be used as spill registers
but prevents the compiler from extending the lifetime of these
registers. */
#define SMALL_REGISTER_CLASSES TARGET_THUMB
/* Get reg_class from a letter such as appears in the machine description.
We only need constraint `f' for FPU_REGS (`r' == GENERAL_REGS) for the
ARM, but several more letters for the Thumb. */
#define REG_CLASS_FROM_LETTER(C) \
( (C) == 'f' ? FPU_REGS \
: (C) == 'l' ? (TARGET_ARM ? GENERAL_REGS : LO_REGS) \
: TARGET_ARM ? NO_REGS \
: (C) == 'h' ? HI_REGS \
: (C) == 'b' ? BASE_REGS \
: (C) == 'k' ? STACK_REG \
: (C) == 'c' ? CC_REG \
: NO_REGS)
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
I: immediate arithmetic operand (i.e. 8 bits shifted as required).
J: valid indexing constants.
K: ~value ok in rhs argument of data operand.
L: -value ok in rhs argument of data operand.
M: 0..32, or a power of 2 (for shifts, or mult done by shift). */
#define CONST_OK_FOR_ARM_LETTER(VALUE, C) \
((C) == 'I' ? const_ok_for_arm (VALUE) : \
(C) == 'J' ? ((VALUE) < 4096 && (VALUE) > -4096) : \
(C) == 'K' ? (const_ok_for_arm (~(VALUE))) : \
(C) == 'L' ? (const_ok_for_arm (-(VALUE))) : \
(C) == 'M' ? (((VALUE >= 0 && VALUE <= 32)) \
|| (((VALUE) & ((VALUE) - 1)) == 0)) \
: 0)
#define CONST_OK_FOR_THUMB_LETTER(VAL, C) \
((C) == 'I' ? (unsigned HOST_WIDE_INT) (VAL) < 256 : \
(C) == 'J' ? (VAL) > -256 && (VAL) < 0 : \
(C) == 'K' ? thumb_shiftable_const (VAL) : \
(C) == 'L' ? (VAL) > -8 && (VAL) < 8 : \
(C) == 'M' ? ((unsigned HOST_WIDE_INT) (VAL) < 1024 \
&& ((VAL) & 3) == 0) : \
(C) == 'N' ? ((unsigned HOST_WIDE_INT) (VAL) < 32) : \
(C) == 'O' ? ((VAL) >= -508 && (VAL) <= 508) \
: 0)
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
(TARGET_ARM ? \
CONST_OK_FOR_ARM_LETTER (VALUE, C) : CONST_OK_FOR_THUMB_LETTER (VALUE, C))
/* Constant letter 'G' for the FPU immediate constants.
'H' means the same constant negated. */
#define CONST_DOUBLE_OK_FOR_ARM_LETTER(X, C) \
((C) == 'G' ? const_double_rtx_ok_for_fpu (X) : \
(C) == 'H' ? neg_const_double_rtx_ok_for_fpu (X) : 0)
#define CONST_DOUBLE_OK_FOR_LETTER_P(X, C) \
(TARGET_ARM ? \
CONST_DOUBLE_OK_FOR_ARM_LETTER (X, C) : 0)
/* For the ARM, `Q' means that this is a memory operand that is just
an offset from a register.
`S' means any symbol that has the SYMBOL_REF_FLAG set or a CONSTANT_POOL
address. This means that the symbol is in the text segment and can be
accessed without using a load. */
#define EXTRA_CONSTRAINT_ARM(OP, C) \
((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG : \
(C) == 'R' ? (GET_CODE (OP) == MEM \
&& GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
&& CONSTANT_POOL_ADDRESS_P (XEXP (OP, 0))) : \
(C) == 'S' ? (optimize > 0 && CONSTANT_ADDRESS_P (OP)) \
: 0)
#define EXTRA_CONSTRAINT_THUMB(X, C) \
((C) == 'Q' ? (GET_CODE (X) == MEM \
&& GET_CODE (XEXP (X, 0)) == LABEL_REF) : 0)
#define EXTRA_CONSTRAINT(X, C) \
(TARGET_ARM ? \
EXTRA_CONSTRAINT_ARM (X, C) : EXTRA_CONSTRAINT_THUMB (X, C))
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS, but for the Thumb we prefer
a LO_REGS class or a subset. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
(TARGET_ARM ? (CLASS) : \
((CLASS) == BASE_REGS ? (CLASS) : LO_REGS))
/* Must leave BASE_REGS reloads alone */
#define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
? ((true_regnum (X) == -1 ? LO_REGS \
: (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
: NO_REGS)) \
: NO_REGS)
#define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
((CLASS) != LO_REGS \
? ((true_regnum (X) == -1 ? LO_REGS \
: (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
: NO_REGS)) \
: NO_REGS)
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
(TARGET_ARM ? \
(((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
? GENERAL_REGS : NO_REGS) \
: THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
/* If we need to load shorts byte-at-a-time, then we need a scratch. */
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
(TARGET_ARM ? \
(((MODE) == HImode && ! arm_arch4 && TARGET_MMU_TRAPS \
&& (GET_CODE (X) == MEM \
|| ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
&& true_regnum (X) == -1))) \
? GENERAL_REGS : NO_REGS) \
: THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X))
/* Try a machine-dependent way of reloading an illegitimate address
operand. If we find one, push the reload and jump to WIN. This
macro is used in only one place: `find_reloads_address' in reload.c.
For the ARM, we wish to handle large displacements off a base
register by splitting the addend across a MOV and the mem insn.
This can cut the number of reloads needed. */
#define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
do \
{ \
if (GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
&& REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
HOST_WIDE_INT low, high; \
\
if (MODE == DImode || (TARGET_SOFT_FLOAT && MODE == DFmode)) \
low = ((val & 0xf) ^ 0x8) - 0x8; \
else if (MODE == SImode \
|| (MODE == SFmode && TARGET_SOFT_FLOAT) \
|| ((MODE == HImode || MODE == QImode) && ! arm_arch4)) \
/* Need to be careful, -4096 is not a valid offset. */ \
low = val >= 0 ? (val & 0xfff) : -((-val) & 0xfff); \
else if ((MODE == HImode || MODE == QImode) && arm_arch4) \
/* Need to be careful, -256 is not a valid offset. */ \
low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \
else if (GET_MODE_CLASS (MODE) == MODE_FLOAT \
&& TARGET_HARD_FLOAT) \
/* Need to be careful, -1024 is not a valid offset. */ \
low = val >= 0 ? (val & 0x3ff) : -((-val) & 0x3ff); \
else \
break; \
\
high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff) \
^ (unsigned HOST_WIDE_INT) 0x80000000) \
- (unsigned HOST_WIDE_INT) 0x80000000); \
/* Check for overflow or zero */ \
if (low == 0 || high == 0 || (high + low != val)) \
break; \
\
/* Reload the high part into a base reg; leave the low part \
in the mem. */ \
X = gen_rtx_PLUS (GET_MODE (X), \
gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
GEN_INT (high)), \
GEN_INT (low)); \
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
MODE_BASE_REG_CLASS (MODE), GET_MODE (X), \
VOIDmode, 0, 0, OPNUM, TYPE); \
goto WIN; \
} \
} \
while (0)
/* ??? If an HImode FP+large_offset address is converted to an HImode
SP+large_offset address, then reload won't know how to fix it. It sees
only that SP isn't valid for HImode, and so reloads the SP into an index
register, but the resulting address is still invalid because the offset
is too big. We fix it here instead by reloading the entire address. */
/* We could probably achieve better results by defining PROMOTE_MODE to help
cope with the variances between the Thumb's signed and unsigned byte and
halfword load instructions. */
#define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
{ \
if (GET_CODE (X) == PLUS \
&& GET_MODE_SIZE (MODE) < 4 \
&& GET_CODE (XEXP (X, 0)) == REG \
&& XEXP (X, 0) == stack_pointer_rtx \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& ! THUMB_LEGITIMATE_OFFSET (MODE, INTVAL (XEXP (X, 1)))) \
{ \
rtx orig_X = X; \
X = copy_rtx (X); \
push_reload (orig_X, NULL_RTX, &X, NULL, \
MODE_BASE_REG_CLASS (MODE), \
Pmode, VOIDmode, 0, 0, OPNUM, TYPE); \
goto WIN; \
} \
}
#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
if (TARGET_ARM) \
ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
else \
THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
ARM regs are UNITS_PER_WORD bits while FPU regs can hold any FP mode */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((CLASS) == FPU_REGS ? 1 : NUM_REGS (MODE))
/* Moves between FPU_REGS and GENERAL_REGS are two memory insns. */
#define REGISTER_MOVE_COST(MODE, FROM, TO) \
(TARGET_ARM ? \
((FROM) == FPU_REGS && (TO) != FPU_REGS ? 20 : \
(FROM) != FPU_REGS && (TO) == FPU_REGS ? 20 : 2) \
: \
((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD 1
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD 1
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by. */
/* The push insns do not do this rounding implicitly.
So don't define this. */
/* #define PUSH_ROUNDING(NPUSHED) ROUND_UP (NPUSHED) */
/* Define this if the maximum size of all the outgoing args is to be
accumulated and pushed during the prologue. The amount can be
found in the variable current_function_outgoing_args_size. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
/* Value is the number of byte of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the ARM, the caller does not pop any of its arguments that were passed
on the stack. */
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
(TARGET_ARM && TARGET_HARD_FLOAT && GET_MODE_CLASS (MODE) == MODE_FLOAT \
? gen_rtx_REG (MODE, FIRST_ARM_FP_REGNUM) \
: gen_rtx_REG (MODE, ARG_REGISTER (1)))
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
LIBCALL_VALUE (TYPE_MODE (VALTYPE))
/* 1 if N is a possible register number for a function value.
On the ARM, only r0 and f0 can return results. */
#define FUNCTION_VALUE_REGNO_P(REGNO) \
((REGNO) == ARG_REGISTER (1) \
|| (TARGET_ARM && ((REGNO) == FIRST_ARM_FP_REGNUM) && TARGET_HARD_FLOAT))
/* How large values are returned */
/* A C expression which can inhibit the returning of certain function values
in registers, based on the type of value. */
#define RETURN_IN_MEMORY(TYPE) arm_return_in_memory (TYPE)
/* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
values must be in memory. On the ARM, they need only do so if larger
than a word, or if they contain elements offset from zero in the struct. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Flags for the call/call_value rtl operations set up by function_arg. */
#define CALL_NORMAL 0x00000000 /* No special processing. */
#define CALL_LONG 0x00000001 /* Always call indirect. */
#define CALL_SHORT 0x00000002 /* Never call indirect. */
/* These bits describe the different types of function supported
by the ARM backend. They are exclusive. ie a function cannot be both a
normal function and an interworked function, for example. Knowing the
type of a function is important for determining its prologue and
epilogue sequences.
Note value 7 is currently unassigned. Also note that the interrupt
function types all have bit 2 set, so that they can be tested for easily.
Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
machine_function structure is initialised (to zero) func_type will
default to unknown. This will force the first use of arm_current_func_type
to call arm_compute_func_type. */
#define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
#define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
#define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
#define ARM_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */
#define ARM_FT_ISR 4 /* An interrupt service routine. */
#define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
#define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
#define ARM_FT_TYPE_MASK ((1 << 3) - 1)
/* In addition functions can have several type modifiers,
outlined by these bit masks: */
#define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
#define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
#define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
#define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
/* Some macros to test these flags. */
#define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
#define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
#define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
#define IS_NAKED(t) (t & ARM_FT_NAKED)
#define IS_NESTED(t) (t & ARM_FT_NESTED)
/* A C structure for machine-specific, per-function data.
This is added to the cfun structure. */
typedef struct machine_function
{
/* Additionsl stack adjustment in __builtin_eh_throw. */
struct rtx_def *eh_epilogue_sp_ofs;
/* Records if LR has to be saved for far jumps. */
int far_jump_used;
/* Records if ARG_POINTER was ever live. */
int arg_pointer_live;
/* Records if the save of LR has been eliminated. */
int lr_save_eliminated;
/* Records the type of the current function. */
unsigned long func_type;
/* Record if the function has a variable argument list. */
int uses_anonymous_args;
}
machine_function;
/* A C type for declaring a variable that is used as the first argument of
`FUNCTION_ARG' and other related values. For some target machines, the
type `int' suffices and can hold the number of bytes of argument so far. */
typedef struct
{
/* This is the number of registers of arguments scanned so far. */
int nregs;
/* One of CALL_NORMAL, CALL_LONG or CALL_SHORT . */
int call_cookie;
} CUMULATIVE_ARGS;
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
other arguments are passed on the stack. If (NAMED == 0) (which happens
only in assign_parms, since SETUP_INCOMING_VARARGS is defined), say it is
passed in the stack (function_prologue will indeed make it pass in the
stack if necessary). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
arm_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
( NUM_ARG_REGS > (CUM).nregs \
&& (NUM_ARG_REGS < ((CUM).nregs + NUM_REGS2 (MODE, TYPE))) \
? NUM_ARG_REGS - (CUM).nregs : 0)
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On the ARM, the offset starts at 0. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (INDIRECT))
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
(CUM).nregs += NUM_REGS2 (MODE, TYPE)
/* 1 if N is a possible register number for function argument passing.
On the ARM, r0-r3 are used to pass args. */
#define FUNCTION_ARG_REGNO_P(REGNO) (IN_RANGE ((REGNO), 0, 3))
/* Tail calling. */
/* A C expression that evaluates to true if it is ok to perform a sibling
call to DECL. */
#define FUNCTION_OK_FOR_SIBCALL(DECL) arm_function_ok_for_sibcall ((DECL))
/* Perform any actions needed for a function that is receiving a variable
number of arguments. CUM is as above. MODE and TYPE are the mode and type
of the current parameter. PRETEND_SIZE is a variable that should be set to
the amount of stack that must be pushed by the prolog to pretend that our
caller pushed it.
Normally, this macro will push all remaining incoming registers on the
stack and set PRETEND_SIZE to the length of the registers pushed.
On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
named arg and all anonymous args onto the stack.
XXX I know the prologue shouldn't be pushing registers, but it is faster
that way. */
#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
{ \
cfun->machine->uses_anonymous_args = 1; \
if ((CUM).nregs < NUM_ARG_REGS) \
(PRETEND_SIZE) = (NUM_ARG_REGS - (CUM).nregs) * UNITS_PER_WORD; \
}
/* If your target environment doesn't prefix user functions with an
underscore, you may wish to re-define this to prevent any conflicts.
e.g. AOF may prefix mcount with an underscore. */
#ifndef ARM_MCOUNT_NAME
#define ARM_MCOUNT_NAME "*mcount"
#endif
/* Call the function profiler with a given profile label. The Acorn
compiler puts this BEFORE the prolog but gcc puts it afterwards.
On the ARM the full profile code will look like:
.data
LP1
.word 0
.text
mov ip, lr
bl mcount
.word LP1
profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
will output the .text section.
The ``mov ip,lr'' seems like a good idea to stick with cc convention.
``prof'' doesn't seem to mind about this! */
#ifndef ARM_FUNCTION_PROFILER
#define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
{ \
char temp[20]; \
rtx sym; \
\
asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
IP_REGNUM, LR_REGNUM); \
assemble_name (STREAM, ARM_MCOUNT_NAME); \
fputc ('\n', STREAM); \
ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
sym = gen_rtx (SYMBOL_REF, Pmode, temp); \
assemble_aligned_integer (UNITS_PER_WORD, sym); \
}
#endif
#ifndef THUMB_FUNCTION_PROFILER
#define THUMB_FUNCTION_PROFILER(STREAM, LABELNO) \
{ \
fprintf (STREAM, "\tmov\tip, lr\n"); \
fprintf (STREAM, "\tbl\tmcount\n"); \
fprintf (STREAM, "\t.word\tLP%d\n", LABELNO); \
}
#endif
#define FUNCTION_PROFILER(STREAM, LABELNO) \
if (TARGET_ARM) \
ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
else \
THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero.
On the ARM, the function epilogue recovers the stack pointer from the
frame. */
#define EXIT_IGNORE_STACK 1
#define EPILOGUE_USES(REGNO) (reload_completed && (REGNO) == LR_REGNUM)
/* Determine if the epilogue should be output as RTL.
You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
#define USE_RETURN_INSN(ISCOND) \
(TARGET_ARM ? use_return_insn (ISCOND) : 0)
/* Definitions for register eliminations.
This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference.
We have two registers that can be eliminated on the ARM. First, the
arg pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the pseudo frame pointer register can always
be eliminated; it is replaced with either the stack or the real frame
pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
{ ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
{ ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
{ FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
{ FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
/* Given FROM and TO register numbers, say whether this elimination is
allowed. Frame pointer elimination is automatically handled.
All eliminations are permissible. Note that ARG_POINTER_REGNUM and
HARD_FRAME_POINTER_REGNUM are in fact the same thing. If we need a frame
pointer, we must eliminate FRAME_POINTER_REGNUM into
HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM or
ARG_POINTER_REGNUM. */
#define CAN_ELIMINATE(FROM, TO) \
(((TO) == FRAME_POINTER_REGNUM && (FROM) == ARG_POINTER_REGNUM) ? 0 : \
((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 : \
((TO) == ARM_HARD_FRAME_POINTER_REGNUM && TARGET_THUMB) ? 0 : \
((TO) == THUMB_HARD_FRAME_POINTER_REGNUM && TARGET_ARM) ? 0 : \
1)
/* Define the offset between two registers, one to be eliminated, and the
other its replacement, at the start of a routine. */
#define ARM_INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
do \
{ \
(OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
} \
while (0)
/* Note: This macro must match the code in thumb_function_prologue(). */
#define THUMB_INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ \
(OFFSET) = 0; \
if ((FROM) == ARG_POINTER_REGNUM) \
{ \
int count_regs = 0; \
int regno; \
for (regno = 8; regno < 13; regno ++) \
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
count_regs ++; \
if (count_regs) \
(OFFSET) += 4 * count_regs; \
count_regs = 0; \
for (regno = 0; regno <= LAST_LO_REGNUM; regno ++) \
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
count_regs ++; \
if (count_regs || ! leaf_function_p () || thumb_far_jump_used_p (0))\
(OFFSET) += 4 * (count_regs + 1); \
if (TARGET_BACKTRACE) \
{ \
if ((count_regs & 0xFF) == 0 && (regs_ever_live[3] != 0)) \
(OFFSET) += 20; \
else \
(OFFSET) += 16; \
} \
} \
if ((TO) == STACK_POINTER_REGNUM) \
{ \
(OFFSET) += current_function_outgoing_args_size; \
(OFFSET) += ROUND_UP (get_frame_size ()); \
} \
}
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
if (TARGET_ARM) \
ARM_INITIAL_ELIMINATION_OFFSET (FROM, TO, OFFSET); \
else \
THUMB_INITIAL_ELIMINATION_OFFSET (FROM, TO, OFFSET)
/* Special case handling of the location of arguments passed on the stack. */
#define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
/* Initialize data used by insn expanders. This is called from insn_emit,
once for every function before code is generated. */
#define INIT_EXPANDERS arm_init_expanders ()
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts.
On the ARM, (if r8 is the static chain regnum, and remembering that
referencing pc adds an offset of 8) the trampoline looks like:
ldr r8, [pc, #0]
ldr pc, [pc]
.word static chain value
.word function's address
??? FIXME: When the trampoline returns, r8 will be clobbered. */
#define ARM_TRAMPOLINE_TEMPLATE(FILE) \
{ \
asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
STATIC_CHAIN_REGNUM, PC_REGNUM); \
asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
PC_REGNUM, PC_REGNUM); \
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
}
/* On the Thumb we always switch into ARM mode to execute the trampoline.
Why - because it is easier. This code will always be branched to via
a BX instruction and since the compiler magically generates the address
of the function the linker has no opportunity to ensure that the
bottom bit is set. Thus the processor will be in ARM mode when it
reaches this code. So we duplicate the ARM trampoline code and add
a switch into Thumb mode as well. */
#define THUMB_TRAMPOLINE_TEMPLATE(FILE) \
{ \
fprintf (FILE, "\t.code 32\n"); \
fprintf (FILE, ".Ltrampoline_start:\n"); \
asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \
STATIC_CHAIN_REGNUM, PC_REGNUM); \
asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \
IP_REGNUM, PC_REGNUM); \
asm_fprintf (FILE, "\torr\t%r, %r, #1\n", \
IP_REGNUM, IP_REGNUM); \
asm_fprintf (FILE, "\tbx\t%r\n", IP_REGNUM); \
fprintf (FILE, "\t.word\t0\n"); \
fprintf (FILE, "\t.word\t0\n"); \
fprintf (FILE, "\t.code 16\n"); \
}
#define TRAMPOLINE_TEMPLATE(FILE) \
if (TARGET_ARM) \
ARM_TRAMPOLINE_TEMPLATE (FILE) \
else \
THUMB_TRAMPOLINE_TEMPLATE (FILE)
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE (TARGET_ARM ? 16 : 24)
/* Alignment required for a trampoline in bits. */
#define TRAMPOLINE_ALIGNMENT 32
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn \
(gen_rtx_MEM (SImode, plus_constant (TRAMP, TARGET_ARM ? 8 : 16)), CXT); \
emit_move_insn \
(gen_rtx_MEM (SImode, plus_constant (TRAMP, TARGET_ARM ? 12 : 20)), FNADDR); \
}
/* Addressing modes, and classification of registers for them. */
#define HAVE_POST_INCREMENT 1
#define HAVE_PRE_INCREMENT TARGET_ARM
#define HAVE_POST_DECREMENT TARGET_ARM
#define HAVE_PRE_DECREMENT TARGET_ARM
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define TEST_REGNO(R, TEST, VALUE) \
((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
/* On the ARM, don't allow the pc to be used. */
#define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
(TEST_REGNO (REGNO, <, PC_REGNUM) \
|| TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
|| TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
#define THUMB_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
(TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
|| (GET_MODE_SIZE (MODE) >= 4 \
&& TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
(TARGET_THUMB \
? THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
: ARM_REGNO_OK_FOR_BASE_P (REGNO))
/* For ARM code, we don't care about the mode, but for Thumb, the index
must be suitable for use in a QImode load. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode)
/* Maximum number of registers that can appear in a valid memory address.
Shifts in addresses can't be by a register. */
#define MAX_REGS_PER_ADDRESS 2
/* Recognize any constant value that is a valid address. */
/* XXX We can address any constant, eventually... */
#ifdef AOF_ASSEMBLER
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X))
#else
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == SYMBOL_REF \
&& (CONSTANT_POOL_ADDRESS_P (X) \
|| (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
#endif /* AOF_ASSEMBLER */
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
On the ARM, allow any integer (invalid ones are removed later by insn
patterns), nice doubles and symbol_refs which refer to the function's
constant pool XXX.
When generating pic allow anything. */
#define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
#define THUMB_LEGITIMATE_CONSTANT_P(X) \
( GET_CODE (X) == CONST_INT \
|| GET_CODE (X) == CONST_DOUBLE \
|| CONSTANT_ADDRESS_P (X) \
|| flag_pic)
#define LEGITIMATE_CONSTANT_P(X) \
(TARGET_ARM ? ARM_LEGITIMATE_CONSTANT_P (X) : THUMB_LEGITIMATE_CONSTANT_P (X))
/* Special characters prefixed to function names
in order to encode attribute like information.
Note, '@' and '*' have already been taken. */
#define SHORT_CALL_FLAG_CHAR '^'
#define LONG_CALL_FLAG_CHAR '#'
#define ENCODED_SHORT_CALL_ATTR_P(SYMBOL_NAME) \
(*(SYMBOL_NAME) == SHORT_CALL_FLAG_CHAR)
#define ENCODED_LONG_CALL_ATTR_P(SYMBOL_NAME) \
(*(SYMBOL_NAME) == LONG_CALL_FLAG_CHAR)
#ifndef SUBTARGET_NAME_ENCODING_LENGTHS
#define SUBTARGET_NAME_ENCODING_LENGTHS
#endif
/* This is a C fragement for the inside of a switch statement.
Each case label should return the number of characters to
be stripped from the start of a function's name, if that
name starts with the indicated character. */
#define ARM_NAME_ENCODING_LENGTHS \
case SHORT_CALL_FLAG_CHAR: return 1; \
case LONG_CALL_FLAG_CHAR: return 1; \
case '*': return 1; \
SUBTARGET_NAME_ENCODING_LENGTHS
/* This has to be handled by a function because more than part of the
ARM backend uses function name prefixes to encode attributes. */
#undef STRIP_NAME_ENCODING
#define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
(VAR) = arm_strip_name_encoding (SYMBOL_NAME)
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#undef ASM_OUTPUT_LABELREF
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
asm_fprintf (FILE, "%U%s", arm_strip_name_encoding (NAME))
/* If we are referencing a function that is weak then encode a long call
flag in the function name, otherwise if the function is static or
or known to be defined in this file then encode a short call flag.
This macro is used inside the ENCODE_SECTION macro. */
#define ARM_ENCODE_CALL_TYPE(decl) \
if (TREE_CODE_CLASS (TREE_CODE (decl)) == 'd') \
{ \
if (TREE_CODE (decl) == FUNCTION_DECL && DECL_WEAK (decl)) \
arm_encode_call_attribute (decl, LONG_CALL_FLAG_CHAR); \
else if (! TREE_PUBLIC (decl)) \
arm_encode_call_attribute (decl, SHORT_CALL_FLAG_CHAR); \
}
/* Symbols in the text segment can be accessed without indirecting via the
constant pool; it may take an extra binary operation, but this is still
faster than indirecting via memory. Don't do this when not optimizing,
since we won't be calculating al of the offsets necessary to do this
simplification. */
/* This doesn't work with AOF syntax, since the string table may be in
a different AREA. */
#ifndef AOF_ASSEMBLER
#define ENCODE_SECTION_INFO(decl) \
{ \
if (optimize > 0 && TREE_CONSTANT (decl) \
&& (!flag_writable_strings || TREE_CODE (decl) != STRING_CST)) \
{ \
rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd' \
? TREE_CST_RTL (decl) : DECL_RTL (decl)); \
SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1; \
} \
ARM_ENCODE_CALL_TYPE (decl) \
}
#else
#define ENCODE_SECTION_INFO(decl) \
{ \
ARM_ENCODE_CALL_TYPE (decl) \
}
#endif
#define ARM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \
arm_encode_call_attribute (DECL, SHORT_CALL_FLAG_CHAR)
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used. */
#ifndef REG_OK_STRICT
#define ARM_REG_OK_FOR_BASE_P(X) \
(REGNO (X) <= LAST_ARM_REGNUM \
|| REGNO (X) >= FIRST_PSEUDO_REGISTER \
|| REGNO (X) == FRAME_POINTER_REGNUM \
|| REGNO (X) == ARG_POINTER_REGNUM)
#define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \
(REGNO (X) <= LAST_LO_REGNUM \
|| REGNO (X) >= FIRST_PSEUDO_REGISTER \
|| (GET_MODE_SIZE (MODE) >= 4 \
&& (REGNO (X) == STACK_POINTER_REGNUM \
|| (X) == hard_frame_pointer_rtx \
|| (X) == arg_pointer_rtx)))
#else /* REG_OK_STRICT */
#define ARM_REG_OK_FOR_BASE_P(X) \
ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
#define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \
THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
#endif /* REG_OK_STRICT */
/* Now define some helpers in terms of the above. */
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
(TARGET_THUMB \
? THUMB_REG_MODE_OK_FOR_BASE_P (X, MODE) \
: ARM_REG_OK_FOR_BASE_P (X))
#define ARM_REG_OK_FOR_INDEX_P(X) ARM_REG_OK_FOR_BASE_P (X)
/* For Thumb, a valid index register is anything that can be used in
a byte load instruction. */
#define THUMB_REG_OK_FOR_INDEX_P(X) THUMB_REG_MODE_OK_FOR_BASE_P (X, QImode)
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. On the Thumb, the stack pointer
is not suitable. */
#define REG_OK_FOR_INDEX_P(X) \
(TARGET_THUMB \
? THUMB_REG_OK_FOR_INDEX_P (X) \
: ARM_REG_OK_FOR_INDEX_P (X))
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
/* --------------------------------arm version----------------------------- */
#define ARM_BASE_REGISTER_RTX_P(X) \
(GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
#define ARM_INDEX_REGISTER_RTX_P(X) \
(GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
/* A C statement (sans semicolon) to jump to LABEL for legitimate index RTXs
used by the macro GO_IF_LEGITIMATE_ADDRESS. Floating point indices can
only be small constants. */
#define ARM_GO_IF_LEGITIMATE_INDEX(MODE, BASE_REGNO, INDEX, LABEL) \
do \
{ \
HOST_WIDE_INT range; \
enum rtx_code code = GET_CODE (INDEX); \
\
if (TARGET_HARD_FLOAT && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
{ \
if (code == CONST_INT && INTVAL (INDEX) < 1024 \
&& INTVAL (INDEX) > -1024 \
&& (INTVAL (INDEX) & 3) == 0) \
goto LABEL; \
} \
else \
{ \
if (ARM_INDEX_REGISTER_RTX_P (INDEX) \
&& GET_MODE_SIZE (MODE) <= 4) \
goto LABEL; \
if (GET_MODE_SIZE (MODE) <= 4 && code == MULT \
&& (! arm_arch4 || (MODE) != HImode)) \
{ \
rtx xiop0 = XEXP (INDEX, 0); \
rtx xiop1 = XEXP (INDEX, 1); \
if (ARM_INDEX_REGISTER_RTX_P (xiop0) \
&& power_of_two_operand (xiop1, SImode)) \
goto LABEL; \
if (ARM_INDEX_REGISTER_RTX_P (xiop1) \
&& power_of_two_operand (xiop0, SImode)) \
goto LABEL; \
} \
if (GET_MODE_SIZE (MODE) <= 4 \
&& (code == LSHIFTRT || code == ASHIFTRT \
|| code == ASHIFT || code == ROTATERT) \
&& (! arm_arch4 || (MODE) != HImode)) \
{ \
rtx op = XEXP (INDEX, 1); \
if (ARM_INDEX_REGISTER_RTX_P (XEXP (INDEX, 0)) \
&& GET_CODE (op) == CONST_INT && INTVAL (op) > 0 \
&& INTVAL (op) <= 31) \
goto LABEL; \
} \
/* NASTY: Since this limits the addressing of unsigned \
byte loads. */ \
range = ((MODE) == HImode || (MODE) == QImode) \
? (arm_arch4 ? 256 : 4095) : 4096; \
if (code == CONST_INT && INTVAL (INDEX) < range \
&& INTVAL (INDEX) > -range) \
goto LABEL; \
} \
} \
while (0)
/* Jump to LABEL if X is a valid address RTX. This must take
REG_OK_STRICT into account when deciding about valid registers.
Allow REG, REG+REG, REG+INDEX, INDEX+REG, REG-INDEX, and non
floating SYMBOL_REF to the constant pool. Allow REG-only and
AUTINC-REG if handling TImode or HImode. Other symbol refs must be
forced though a static cell to ensure addressability. */
#define ARM_GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
{ \
if (ARM_BASE_REGISTER_RTX_P (X)) \
goto LABEL; \
else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
&& GET_CODE (XEXP (X, 0)) == REG \
&& ARM_REG_OK_FOR_BASE_P (XEXP (X, 0))) \
goto LABEL; \
else if (GET_MODE_SIZE (MODE) >= 4 && reload_completed \
&& (GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST \
&& GET_CODE (XEXP ((X), 0)) == PLUS \
&& GET_CODE (XEXP (XEXP ((X), 0), 0)) == LABEL_REF \
&& GET_CODE (XEXP (XEXP ((X), 0), 1)) == CONST_INT)))\
goto LABEL; \
else if ((MODE) == TImode) \
; \
else if ((MODE) == DImode || (TARGET_SOFT_FLOAT && (MODE) == DFmode)) \
{ \
if (GET_CODE (X) == PLUS && ARM_BASE_REGISTER_RTX_P (XEXP (X, 0)) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
if (val == 4 || val == -4 || val == -8) \
goto LABEL; \
} \
} \
else if (GET_CODE (X) == PLUS) \
{ \
rtx xop0 = XEXP (X, 0); \
rtx xop1 = XEXP (X, 1); \
\
if (ARM_BASE_REGISTER_RTX_P (xop0)) \
ARM_GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
else if (ARM_BASE_REGISTER_RTX_P (xop1)) \
ARM_GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
} \
/* Reload currently can't handle MINUS, so disable this for now */ \
/* else if (GET_CODE (X) == MINUS) \
{ \
rtx xop0 = XEXP (X,0); \
rtx xop1 = XEXP (X,1); \
\
if (ARM_BASE_REGISTER_RTX_P (xop0)) \
ARM_GO_IF_LEGITIMATE_INDEX (MODE, -1, xop1, LABEL); \
} */ \
else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
&& GET_CODE (X) == SYMBOL_REF \
&& CONSTANT_POOL_ADDRESS_P (X) \
&& ! (flag_pic \
&& symbol_mentioned_p (get_pool_constant (X)))) \
goto LABEL; \
else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
&& (GET_MODE_SIZE (MODE) <= 4) \
&& GET_CODE (XEXP (X, 0)) == REG \
&& ARM_REG_OK_FOR_BASE_P (XEXP (X, 0))) \
goto LABEL; \
}
/* ---------------------thumb version----------------------------------*/
#define THUMB_LEGITIMATE_OFFSET(MODE, VAL) \
(GET_MODE_SIZE (MODE) == 1 ? ((unsigned HOST_WIDE_INT) (VAL) < 32) \
: GET_MODE_SIZE (MODE) == 2 ? ((unsigned HOST_WIDE_INT) (VAL) < 64 \
&& ((VAL) & 1) == 0) \
: ((VAL) >= 0 && ((VAL) + GET_MODE_SIZE (MODE)) <= 128 \
&& ((VAL) & 3) == 0))
/* The AP may be eliminated to either the SP or the FP, so we use the
least common denominator, e.g. SImode, and offsets from 0 to 64. */
/* ??? Verify whether the above is the right approach. */
/* ??? Also, the FP may be eliminated to the SP, so perhaps that
needs special handling also. */
/* ??? Look at how the mips16 port solves this problem. It probably uses
better ways to solve some of these problems. */
/* Although it is not incorrect, we don't accept QImode and HImode
addresses based on the frame pointer or arg pointer until the
reload pass starts. This is so that eliminating such addresses
into stack based ones won't produce impossible code. */
#define THUMB_GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
{ \
/* ??? Not clear if this is right. Experiment. */ \
if (GET_MODE_SIZE (MODE) < 4 \
&& ! (reload_in_progress || reload_completed) \
&& ( reg_mentioned_p (frame_pointer_rtx, X) \
|| reg_mentioned_p (arg_pointer_rtx, X) \
|| reg_mentioned_p (virtual_incoming_args_rtx, X) \
|| reg_mentioned_p (virtual_outgoing_args_rtx, X) \
|| reg_mentioned_p (virtual_stack_dynamic_rtx, X) \
|| reg_mentioned_p (virtual_stack_vars_rtx, X))) \
; \
/* Accept any base register. SP only in SImode or larger. */ \
else if (GET_CODE (X) == REG \
&& THUMB_REG_MODE_OK_FOR_BASE_P (X, MODE)) \
goto WIN; \
/* This is PC relative data before MACHINE_DEPENDENT_REORG runs. */ \
else if (GET_MODE_SIZE (MODE) >= 4 && CONSTANT_P (X) \
&& CONSTANT_POOL_ADDRESS_P (X) && ! flag_pic) \
goto WIN; \
/* This is PC relative data after MACHINE_DEPENDENT_REORG runs. */ \
else if (GET_MODE_SIZE (MODE) >= 4 && reload_completed \
&& (GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST \
&& GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))) \
goto WIN; \
/* Post-inc indexing only supported for SImode and larger. */ \
else if (GET_CODE (X) == POST_INC && GET_MODE_SIZE (MODE) >= 4 \
&& GET_CODE (XEXP (X, 0)) == REG \
&& THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
goto WIN; \
else if (GET_CODE (X) == PLUS) \
{ \
/* REG+REG address can be any two index registers. */ \
/* We disallow FRAME+REG addressing since we know that FRAME \
will be replaced with STACK, and SP relative addressing only \
permits SP+OFFSET. */ \
if (GET_MODE_SIZE (MODE) <= 4 \
&& GET_CODE (XEXP (X, 0)) == REG \
&& GET_CODE (XEXP (X, 1)) == REG \
&& XEXP (X, 0) != frame_pointer_rtx \
&& XEXP (X, 1) != frame_pointer_rtx \
&& XEXP (X, 0) != virtual_stack_vars_rtx \
&& XEXP (X, 1) != virtual_stack_vars_rtx \
&& THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 0)) \
&& THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
goto WIN; \
/* REG+const has 5-7 bit offset for non-SP registers. */ \
else if (GET_CODE (XEXP (X, 0)) == REG \
&& (THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 0)) \
|| XEXP (X, 0) == arg_pointer_rtx) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& THUMB_LEGITIMATE_OFFSET (MODE, INTVAL (XEXP (X, 1)))) \
goto WIN; \
/* REG+const has 10 bit offset for SP, but only SImode and \
larger is supported. */ \
/* ??? Should probably check for DI/DFmode overflow here \
just like GO_IF_LEGITIMATE_OFFSET does. */ \
else if (GET_CODE (XEXP (X, 0)) == REG \
&& REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM \
&& GET_MODE_SIZE (MODE) >= 4 \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& ((unsigned HOST_WIDE_INT) INTVAL (XEXP (X, 1)) \
+ GET_MODE_SIZE (MODE)) <= 1024 \
&& (INTVAL (XEXP (X, 1)) & 3) == 0) \
goto WIN; \
else if (GET_CODE (XEXP (X, 0)) == REG \
&& REGNO (XEXP (X, 0)) == FRAME_POINTER_REGNUM \
&& GET_MODE_SIZE (MODE) >= 4 \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (INTVAL (XEXP (X, 1)) & 3) == 0) \
goto WIN; \
} \
else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
&& GET_CODE (X) == SYMBOL_REF \
&& CONSTANT_POOL_ADDRESS_P (X) \
&& ! (flag_pic \
&& symbol_mentioned_p (get_pool_constant (X)))) \
goto WIN; \
}
/* ------------------------------------------------------------------- */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
if (TARGET_ARM) \
ARM_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN) \
else /* if (TARGET_THUMB) */ \
THUMB_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN)
/* ------------------------------------------------------------------- */
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
On the ARM, try to convert [REG, #BIGCONST]
into ADD BASE, REG, #UPPERCONST and [BASE, #VALIDCONST],
where VALIDCONST == 0 in case of TImode. */
#define ARM_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
{ \
if (GET_CODE (X) == PLUS) \
{ \
rtx xop0 = XEXP (X, 0); \
rtx xop1 = XEXP (X, 1); \
\
if (CONSTANT_P (xop0) && ! symbol_mentioned_p (xop0)) \
xop0 = force_reg (SImode, xop0); \
if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
xop1 = force_reg (SImode, xop1); \
if (ARM_BASE_REGISTER_RTX_P (xop0) \
&& GET_CODE (xop1) == CONST_INT) \
{ \
HOST_WIDE_INT n, low_n; \
rtx base_reg, val; \
n = INTVAL (xop1); \
\
if (MODE == DImode || (TARGET_SOFT_FLOAT && MODE == DFmode)) \
{ \
low_n = n & 0x0f; \
n &= ~0x0f; \
if (low_n > 4) \
{ \
n += 16; \
low_n -= 16; \
} \
} \
else \
{ \
low_n = ((MODE) == TImode ? 0 \
: n >= 0 ? (n & 0xfff) : -((-n) & 0xfff)); \
n -= low_n; \
} \
base_reg = gen_reg_rtx (SImode); \
val = force_operand (gen_rtx_PLUS (SImode, xop0, \
GEN_INT (n)), NULL_RTX); \
emit_move_insn (base_reg, val); \
(X) = (low_n == 0 ? base_reg \
: gen_rtx_PLUS (SImode, base_reg, GEN_INT (low_n))); \
} \
else if (xop0 != XEXP (X, 0) || xop1 != XEXP (x, 1)) \
(X) = gen_rtx_PLUS (SImode, xop0, xop1); \
} \
else if (GET_CODE (X) == MINUS) \
{ \
rtx xop0 = XEXP (X, 0); \
rtx xop1 = XEXP (X, 1); \
\
if (CONSTANT_P (xop0)) \
xop0 = force_reg (SImode, xop0); \
if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
xop1 = force_reg (SImode, xop1); \
if (xop0 != XEXP (X, 0) || xop1 != XEXP (X, 1)) \
(X) = gen_rtx_MINUS (SImode, xop0, xop1); \
} \
if (flag_pic) \
(X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
if (memory_address_p (MODE, X)) \
goto WIN; \
}
#define THUMB_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
if (flag_pic) \
(X) = legitimize_pic_address (OLDX, MODE, NULL_RTX);
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
if (TARGET_ARM) \
ARM_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN) \
else \
THUMB_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN)
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define ARM_GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
{ \
if ( GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC \
|| GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC) \
goto LABEL; \
}
/* Nothing helpful to do for the Thumb */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
if (TARGET_ARM) \
ARM_GO_IF_MODE_DEPENDENT_ADDRESS (ADDR, LABEL)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE 1 */
/* signed 'char' is most compatible, but RISC OS wants it unsigned.
unsigned is probably best, but may break some code. */
#ifndef DEFAULT_SIGNED_CHAR
#define DEFAULT_SIGNED_CHAR 0
#endif
/* Don't cse the address of the function being compiled. */
#define NO_RECURSIVE_FUNCTION_CSE 1
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
#undef MOVE_RATIO
#define MOVE_RATIO (arm_is_xscale ? 4 : 2)
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, NIL if none. */
#define LOAD_EXTEND_OP(MODE) \
(TARGET_THUMB ? ZERO_EXTEND : \
((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
: ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : NIL)))
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 0
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
/* Immediate shift counts are truncated by the output routines (or was it
the assembler?). Shift counts in a register are truncated by ARM. Note
that the native compiler puts too large (> 32) immediate shift counts
into a register and shifts by the register, letting the ARM decide what
to do instead of doing that itself. */
/* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
On the arm, Y in a register is used modulo 256 for the shift. Only for
rotates is modulo 32 used. */
/* #define SHIFT_COUNT_TRUNCATED 1 */
/* All integers have the same format so truncation is easy. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Calling from registers is a massive pain. */
#define NO_FUNCTION_CSE 1
/* Chars and shorts should be passed as ints. */
#define PROMOTE_PROTOTYPES 1
/* The machine modes of pointers and functions */
#define Pmode SImode
#define FUNCTION_MODE Pmode
#define ARM_FRAME_RTX(X) \
( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
|| (X) == arg_pointer_rtx)
#define DEFAULT_RTX_COSTS(X, CODE, OUTER_CODE) \
return arm_rtx_costs (X, CODE, OUTER_CODE);
/* Moves to and from memory are quite expensive */
#define MEMORY_MOVE_COST(M, CLASS, IN) \
(TARGET_ARM ? 10 : \
((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
* (CLASS == LO_REGS ? 1 : 2)))
/* All address computations that can be done are free, but rtx cost returns
the same for practically all of them. So we weight the different types
of address here in the order (most pref first):
PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
#define ARM_ADDRESS_COST(X) \
(10 - ((GET_CODE (X) == MEM || GET_CODE (X) == LABEL_REF \
|| GET_CODE (X) == SYMBOL_REF) \
? 0 \
: ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC \
|| GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
? 10 \
: (((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS) \
? 6 + (GET_CODE (XEXP (X, 1)) == CONST_INT ? 2 \
: ((GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == '2' \
|| GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == 'c' \
|| GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == '2' \
|| GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == 'c') \
? 1 : 0)) \
: 4)))))
#define THUMB_ADDRESS_COST(X) \
((GET_CODE (X) == REG \
|| (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
&& GET_CODE (XEXP (X, 1)) == CONST_INT)) \
? 1 : 2)
#define ADDRESS_COST(X) \
(TARGET_ARM ? ARM_ADDRESS_COST (X) : THUMB_ADDRESS_COST (X))
/* Try to generate sequences that don't involve branches, we can then use
conditional instructions */
#define BRANCH_COST \
(TARGET_ARM ? 4 : (optimize > 1 ? 1 : 0))
/* Position Independent Code. */
/* We decide which register to use based on the compilation options and
the assembler in use; this is more general than the APCS restriction of
using sb (r9) all the time. */
extern int arm_pic_register;
/* Used when parsing command line option -mpic-register=. */
extern const char * arm_pic_register_string;
/* The register number of the register used to address a table of static
data addresses in memory. */
#define PIC_OFFSET_TABLE_REGNUM arm_pic_register
#define FINALIZE_PIC arm_finalize_pic (1)
/* We can't directly access anything that contains a symbol,
nor can we indirect via the constant pool. */
#define LEGITIMATE_PIC_OPERAND_P(X) \
( ! symbol_mentioned_p (X) \
&& ! label_mentioned_p (X) \
&& (! CONSTANT_POOL_ADDRESS_P (X) \
|| ( ! symbol_mentioned_p (get_pool_constant (X)) \
&& ! label_mentioned_p (get_pool_constant (X)))))
/* We need to know when we are making a constant pool; this determines
whether data needs to be in the GOT or can be referenced via a GOT
offset. */
extern int making_const_table;
/* Handle pragmas for compatibility with Intel's compilers. */
#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
cpp_register_pragma (PFILE, 0, "long_calls", arm_pr_long_calls); \
cpp_register_pragma (PFILE, 0, "no_long_calls", arm_pr_no_long_calls); \
cpp_register_pragma (PFILE, 0, "long_calls_off", arm_pr_long_calls_off); \
} while (0)
/* Condition code information. */
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison.
CCFPEmode should be used with floating inequalities,
CCFPmode should be used with floating equalities.
CC_NOOVmode should be used with SImode integer equalities.
CC_Zmode should be used if only the Z flag is set correctly
CCmode should be used otherwise. */
#define EXTRA_CC_MODES \
CC(CC_NOOVmode, "CC_NOOV") \
CC(CC_Zmode, "CC_Z") \
CC(CC_SWPmode, "CC_SWP") \
CC(CCFPmode, "CCFP") \
CC(CCFPEmode, "CCFPE") \
CC(CC_DNEmode, "CC_DNE") \
CC(CC_DEQmode, "CC_DEQ") \
CC(CC_DLEmode, "CC_DLE") \
CC(CC_DLTmode, "CC_DLT") \
CC(CC_DGEmode, "CC_DGE") \
CC(CC_DGTmode, "CC_DGT") \
CC(CC_DLEUmode, "CC_DLEU") \
CC(CC_DLTUmode, "CC_DLTU") \
CC(CC_DGEUmode, "CC_DGEU") \
CC(CC_DGTUmode, "CC_DGTU") \
CC(CC_Cmode, "CC_C")
#define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
do \
{ \
if (GET_CODE (OP1) == CONST_INT \
&& ! (const_ok_for_arm (INTVAL (OP1)) \
|| (const_ok_for_arm (- INTVAL (OP1))))) \
{ \
rtx const_op = OP1; \
CODE = arm_canonicalize_comparison ((CODE), &const_op); \
OP1 = const_op; \
} \
} \
while (0)
#define STORE_FLAG_VALUE 1
/* Gcc puts the pool in the wrong place for ARM, since we can only
load addresses a limited distance around the pc. We do some
special munging to move the constant pool values to the correct
point in the code. */
#define MACHINE_DEPENDENT_REORG(INSN) \
arm_reorg (INSN); \
#undef ASM_APP_OFF
#define ASM_APP_OFF (TARGET_THUMB ? "\t.code\t16\n" : "")
/* Output an internal label definition. */
#ifndef ASM_OUTPUT_INTERNAL_LABEL
#define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX, NUM) \
do \
{ \
char * s = (char *) alloca (40 + strlen (PREFIX)); \
\
if (arm_ccfsm_state == 3 && arm_target_label == (NUM) \
&& !strcmp (PREFIX, "L")) \
{ \
arm_ccfsm_state = 0; \
arm_target_insn = NULL; \
} \
ASM_GENERATE_INTERNAL_LABEL (s, (PREFIX), (NUM)); \
ASM_OUTPUT_LABEL (STREAM, s); \
} \
while (0)
#endif
/* Output a push or a pop instruction (only used when profiling). */
#define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
if (TARGET_ARM) \
asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
STACK_POINTER_REGNUM, REGNO); \
else \
asm_fprintf (STREAM, "\tpush {%r}\n", REGNO)
#define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
if (TARGET_ARM) \
asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
STACK_POINTER_REGNUM, REGNO); \
else \
asm_fprintf (STREAM, "\tpop {%r}\n", REGNO)
/* This is how to output a label which precedes a jumptable. Since
Thumb instructions are 2 bytes, we may need explicit alignment here. */
#undef ASM_OUTPUT_CASE_LABEL
#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
do \
{ \
if (TARGET_THUMB) \
ASM_OUTPUT_ALIGN (FILE, 2); \
ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
} \
while (0)
#define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
do \
{ \
if (TARGET_THUMB) \
{ \
if (is_called_in_ARM_mode (DECL)) \
fprintf (STREAM, "\t.code 32\n") ; \
else \
fprintf (STREAM, "\t.thumb_func\n") ; \
} \
if (TARGET_POKE_FUNCTION_NAME) \
arm_poke_function_name (STREAM, (char *) NAME); \
} \
while (0)
/* For aliases of functions we use .thumb_set instead. */
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
do \
{ \
const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
\
if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
{ \
fprintf (FILE, "\t.thumb_set "); \
assemble_name (FILE, LABEL1); \
fprintf (FILE, ","); \
assemble_name (FILE, LABEL2); \
fprintf (FILE, "\n"); \
} \
else \
ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
} \
while (0)
#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
/* To support -falign-* switches we need to use .p2align so
that alignment directives in code sections will be padded
with no-op instructions, rather than zeroes. */
#define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE,LOG,MAX_SKIP) \
if ((LOG) != 0) \
{ \
if ((MAX_SKIP) == 0) \
fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
else \
fprintf ((FILE), "\t.p2align %d,,%d\n", \
(LOG), (MAX_SKIP)); \
}
#endif
/* Only perform branch elimination (by making instructions conditional) if
we're optimising. Otherwise it's of no use anyway. */
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
if (TARGET_ARM && optimize) \
arm_final_prescan_insn (INSN); \
else if (TARGET_THUMB) \
thumb_final_prescan_insn (INSN)
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
(CODE == '@' || CODE == '|' \
|| (TARGET_ARM && (CODE == '?')) \
|| (TARGET_THUMB && (CODE == '_')))
/* Output an operand of an instruction. */
#define PRINT_OPERAND(STREAM, X, CODE) \
arm_print_operand (STREAM, X, CODE)
#define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
(HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
: ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
? ((~ (unsigned HOST_WIDE_INT) 0) \
& ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
: 0))))
/* Output the address of an operand. */
#define ARM_PRINT_OPERAND_ADDRESS(STREAM, X) \
{ \
int is_minus = GET_CODE (X) == MINUS; \
\
if (GET_CODE (X) == REG) \
asm_fprintf (STREAM, "[%r, #0]", REGNO (X)); \
else if (GET_CODE (X) == PLUS || is_minus) \
{ \
rtx base = XEXP (X, 0); \
rtx index = XEXP (X, 1); \
HOST_WIDE_INT offset = 0; \
if (GET_CODE (base) != REG) \
{ \
/* Ensure that BASE is a register */ \
/* (one of them must be). */ \
rtx temp = base; \
base = index; \
index = temp; \
} \
switch (GET_CODE (index)) \
{ \
case CONST_INT: \
offset = INTVAL (index); \
if (is_minus) \
offset = -offset; \
asm_fprintf (STREAM, "[%r, #%d]", \
REGNO (base), offset); \
break; \
\
case REG: \
asm_fprintf (STREAM, "[%r, %s%r]", \
REGNO (base), is_minus ? "-" : "", \
REGNO (index)); \
break; \
\
case MULT: \
case ASHIFTRT: \
case LSHIFTRT: \
case ASHIFT: \
case ROTATERT: \
{ \
asm_fprintf (STREAM, "[%r, %s%r", \
REGNO (base), is_minus ? "-" : "", \
REGNO (XEXP (index, 0))); \
arm_print_operand (STREAM, index, 'S'); \
fputs ("]", STREAM); \
break; \
} \
\
default: \
abort(); \
} \
} \
else if ( GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC\
|| GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC)\
{ \
extern int output_memory_reference_mode; \
\
if (GET_CODE (XEXP (X, 0)) != REG) \
abort (); \
\
if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
asm_fprintf (STREAM, "[%r, #%s%d]!", \
REGNO (XEXP (X, 0)), \
GET_CODE (X) == PRE_DEC ? "-" : "", \
GET_MODE_SIZE (output_memory_reference_mode));\
else \
asm_fprintf (STREAM, "[%r], #%s%d", \
REGNO (XEXP (X, 0)), \
GET_CODE (X) == POST_DEC ? "-" : "", \
GET_MODE_SIZE (output_memory_reference_mode));\
} \
else output_addr_const (STREAM, X); \
}
#define THUMB_PRINT_OPERAND_ADDRESS(STREAM, X) \
{ \
if (GET_CODE (X) == REG) \
asm_fprintf (STREAM, "[%r]", REGNO (X)); \
else if (GET_CODE (X) == POST_INC) \
asm_fprintf (STREAM, "%r!", REGNO (XEXP (X, 0))); \
else if (GET_CODE (X) == PLUS) \
{ \
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
asm_fprintf (STREAM, "[%r, #%d]", \
REGNO (XEXP (X, 0)), \
(int) INTVAL (XEXP (X, 1))); \
else \
asm_fprintf (STREAM, "[%r, %r]", \
REGNO (XEXP (X, 0)), \
REGNO (XEXP (X, 1))); \
} \
else \
output_addr_const (STREAM, X); \
}
#define PRINT_OPERAND_ADDRESS(STREAM, X) \
if (TARGET_ARM) \
ARM_PRINT_OPERAND_ADDRESS (STREAM, X) \
else \
THUMB_PRINT_OPERAND_ADDRESS (STREAM, X)
/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
Used for C++ multiple inheritance. */
#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
do \
{ \
int mi_delta = (DELTA); \
const char *const mi_op = mi_delta < 0 ? "sub" : "add"; \
int shift = 0; \
int this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) \
? 1 : 0); \
if (mi_delta < 0) \
mi_delta = - mi_delta; \
while (mi_delta != 0) \
{ \
if ((mi_delta & (3 << shift)) == 0) \
shift += 2; \
else \
{ \
asm_fprintf (FILE, "\t%s\t%r, %r, #%d\n", \
mi_op, this_regno, this_regno, \
mi_delta & (0xff << shift)); \
mi_delta &= ~(0xff << shift); \
shift += 8; \
} \
} \
fputs ("\tb\t", FILE); \
assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
if (NEED_PLT_RELOC) \
fputs ("(PLT)", FILE); \
fputc ('\n', FILE); \
} \
while (0)
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
arm_return_addr (COUNT, FRAME)
/* Mask of the bits in the PC that contain the real return address
when running in 26-bit mode. */
#define RETURN_ADDR_MASK26 (0x03fffffc)
/* Pick up the return address upon entry to a procedure. Used for
dwarf2 unwind information. This also enables the table driven
mechanism. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
/* Used to mask out junk bits from the return address, such as
processor state, interrupt status, condition codes and the like. */
#define MASK_RETURN_ADDR \
/* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
in 26 bit mode, the condition codes must be masked out of the \
return address. This does not apply to ARM6 and later processors \
when running in 32 bit mode. */ \
((!TARGET_APCS_32) ? (GEN_INT (RETURN_ADDR_MASK26)) \
: (GEN_INT ((unsigned long)0xffffffff)))
/* Define the codes that are matched by predicates in arm.c */
#define PREDICATE_CODES \
{"s_register_operand", {SUBREG, REG}}, \
{"arm_hard_register_operand", {REG}}, \
{"f_register_operand", {SUBREG, REG}}, \
{"arm_add_operand", {SUBREG, REG, CONST_INT}}, \
{"fpu_add_operand", {SUBREG, REG, CONST_DOUBLE}}, \
{"fpu_rhs_operand", {SUBREG, REG, CONST_DOUBLE}}, \
{"arm_rhs_operand", {SUBREG, REG, CONST_INT}}, \
{"arm_not_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_int_operand", {SUBREG, REG, CONST_INT}}, \
{"index_operand", {SUBREG, REG, CONST_INT}}, \
{"thumb_cmp_operand", {SUBREG, REG, CONST_INT}}, \
{"offsettable_memory_operand", {MEM}}, \
{"bad_signed_byte_operand", {MEM}}, \
{"alignable_memory_operand", {MEM}}, \
{"shiftable_operator", {PLUS, MINUS, AND, IOR, XOR}}, \
{"minmax_operator", {SMIN, SMAX, UMIN, UMAX}}, \
{"shift_operator", {ASHIFT, ASHIFTRT, LSHIFTRT, ROTATERT, MULT}}, \
{"di_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
{"nonimmediate_di_operand", {SUBREG, REG, MEM}}, \
{"soft_df_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
{"nonimmediate_soft_df_operand", {SUBREG, REG, MEM}}, \
{"load_multiple_operation", {PARALLEL}}, \
{"store_multiple_operation", {PARALLEL}}, \
{"equality_operator", {EQ, NE}}, \
{"arm_comparison_operator", {EQ, NE, LE, LT, GE, GT, GEU, GTU, LEU, \
LTU, UNORDERED, ORDERED, UNLT, UNLE, \
UNGE, UNGT}}, \
{"arm_rhsm_operand", {SUBREG, REG, CONST_INT, MEM}}, \
{"const_shift_operand", {CONST_INT}}, \
{"multi_register_push", {PARALLEL}}, \
{"cc_register", {REG}}, \
{"logical_binary_operator", {AND, IOR, XOR}}, \
{"dominant_cc_register", {REG}},
/* Define this if you have special predicates that know special things
about modes. Genrecog will warn about certain forms of
match_operand without a mode; if the operand predicate is listed in
SPECIAL_MODE_PREDICATES, the warning will be suppressed. */
#define SPECIAL_MODE_PREDICATES \
"cc_register", "dominant_cc_register",
enum arm_builtins
{
ARM_BUILTIN_CLZ,
ARM_BUILTIN_MAX
};
#endif /* ! GCC_ARM_H */