freebsd-nq/sys/dev/ste/if_ste.c
John Baldwin 068d8643ad Fix various NIC drivers to properly cleanup static DMA resources.
In particular, don't check the value of the bus_dma map against NULL
to determine if either bus_dmamem_alloc() or bus_dmamap_load() succeeded.
Instead, assume that bus_dmamap_load() succeeeded (and thus that
bus_dmamap_unload() should be called) if the bus address for a resource
is non-zero, and assume that bus_dmamem_alloc() succeeded (and thus
that bus_dmamem_free() should be called) if the virtual address for a
resource is not NULL.

In many cases these bugs could result in leaks when a driver was detached.

Reviewed by:	yongari
MFC after:	2 weeks
2014-06-11 14:53:58 +00:00

2133 lines
56 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/ste/if_stereg.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
MODULE_DEPEND(ste, pci, 1, 1, 1);
MODULE_DEPEND(ste, ether, 1, 1, 1);
MODULE_DEPEND(ste, miibus, 1, 1, 1);
/* Define to show Tx error status. */
#define STE_SHOW_TXERRORS
/*
* Various supported device vendors/types and their names.
*/
static const struct ste_type ste_devs[] = {
{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
{ 0, 0, NULL }
};
static int ste_attach(device_t);
static int ste_detach(device_t);
static int ste_probe(device_t);
static int ste_resume(device_t);
static int ste_shutdown(device_t);
static int ste_suspend(device_t);
static int ste_dma_alloc(struct ste_softc *);
static void ste_dma_free(struct ste_softc *);
static void ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int ste_eeprom_wait(struct ste_softc *);
static int ste_encap(struct ste_softc *, struct mbuf **,
struct ste_chain *);
static int ste_ifmedia_upd(struct ifnet *);
static void ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void ste_init(void *);
static void ste_init_locked(struct ste_softc *);
static int ste_init_rx_list(struct ste_softc *);
static void ste_init_tx_list(struct ste_softc *);
static void ste_intr(void *);
static int ste_ioctl(struct ifnet *, u_long, caddr_t);
static uint32_t ste_mii_bitbang_read(device_t);
static void ste_mii_bitbang_write(device_t, uint32_t);
static int ste_miibus_readreg(device_t, int, int);
static void ste_miibus_statchg(device_t);
static int ste_miibus_writereg(device_t, int, int, int);
static int ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
static int ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
static void ste_reset(struct ste_softc *);
static void ste_restart_tx(struct ste_softc *);
static int ste_rxeof(struct ste_softc *, int);
static void ste_rxfilter(struct ste_softc *);
static void ste_setwol(struct ste_softc *);
static void ste_start(struct ifnet *);
static void ste_start_locked(struct ifnet *);
static void ste_stats_clear(struct ste_softc *);
static void ste_stats_update(struct ste_softc *);
static void ste_stop(struct ste_softc *);
static void ste_sysctl_node(struct ste_softc *);
static void ste_tick(void *);
static void ste_txeoc(struct ste_softc *);
static void ste_txeof(struct ste_softc *);
static void ste_wait(struct ste_softc *);
static void ste_watchdog(struct ste_softc *);
/*
* MII bit-bang glue
*/
static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
ste_mii_bitbang_read,
ste_mii_bitbang_write,
{
STE_PHYCTL_MDATA, /* MII_BIT_MDO */
STE_PHYCTL_MDATA, /* MII_BIT_MDI */
STE_PHYCTL_MCLK, /* MII_BIT_MDC */
STE_PHYCTL_MDIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static device_method_t ste_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ste_probe),
DEVMETHOD(device_attach, ste_attach),
DEVMETHOD(device_detach, ste_detach),
DEVMETHOD(device_shutdown, ste_shutdown),
DEVMETHOD(device_suspend, ste_suspend),
DEVMETHOD(device_resume, ste_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, ste_miibus_readreg),
DEVMETHOD(miibus_writereg, ste_miibus_writereg),
DEVMETHOD(miibus_statchg, ste_miibus_statchg),
DEVMETHOD_END
};
static driver_t ste_driver = {
"ste",
ste_methods,
sizeof(struct ste_softc)
};
static devclass_t ste_devclass;
DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
#define STE_SETBIT4(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
#define STE_CLRBIT4(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
#define STE_SETBIT2(sc, reg, x) \
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
#define STE_CLRBIT2(sc, reg, x) \
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
#define STE_SETBIT1(sc, reg, x) \
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
#define STE_CLRBIT1(sc, reg, x) \
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
/*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
ste_mii_bitbang_read(device_t dev)
{
struct ste_softc *sc;
uint32_t val;
sc = device_get_softc(dev);
val = CSR_READ_1(sc, STE_PHYCTL);
CSR_BARRIER(sc, STE_PHYCTL, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (val);
}
/*
* Write the MII serial port for the MII bit-bang module.
*/
static void
ste_mii_bitbang_write(device_t dev, uint32_t val)
{
struct ste_softc *sc;
sc = device_get_softc(dev);
CSR_WRITE_1(sc, STE_PHYCTL, val);
CSR_BARRIER(sc, STE_PHYCTL, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
static int
ste_miibus_readreg(device_t dev, int phy, int reg)
{
return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
}
static int
ste_miibus_writereg(device_t dev, int phy, int reg, int data)
{
mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
return (0);
}
static void
ste_miibus_statchg(device_t dev)
{
struct ste_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint16_t cfg;
sc = device_get_softc(dev);
mii = device_get_softc(sc->ste_miibus);
ifp = sc->ste_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->ste_flags &= ~STE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
case IFM_100_FX:
case IFM_100_T4:
sc->ste_flags |= STE_FLAG_LINK;
default:
break;
}
}
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
cfg = CSR_READ_2(sc, STE_MACCTL0);
cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
/*
* ST201 data sheet says driver should enable receiving
* MAC control frames bit of receive mode register to
* receive flow-control frames but the register has no
* such bits. In addition the controller has no ability
* to send pause frames so it should be handled in
* driver. Implementing pause timer handling in driver
* layer is not trivial, so don't enable flow-control
* here.
*/
cfg |= STE_MACCTL0_FULLDUPLEX;
}
CSR_WRITE_2(sc, STE_MACCTL0, cfg);
}
}
static int
ste_ifmedia_upd(struct ifnet *ifp)
{
struct ste_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
STE_LOCK(sc);
mii = device_get_softc(sc->ste_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
STE_UNLOCK(sc);
return (error);
}
static void
ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ste_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->ste_miibus);
STE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
STE_UNLOCK(sc);
return;
}
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
STE_UNLOCK(sc);
}
static void
ste_wait(struct ste_softc *sc)
{
int i;
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
break;
DELAY(1);
}
if (i == STE_TIMEOUT)
device_printf(sc->ste_dev, "command never completed!\n");
}
/*
* The EEPROM is slow: give it time to come ready after issuing
* it a command.
*/
static int
ste_eeprom_wait(struct ste_softc *sc)
{
int i;
DELAY(1000);
for (i = 0; i < 100; i++) {
if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
DELAY(1000);
else
break;
}
if (i == 100) {
device_printf(sc->ste_dev, "eeprom failed to come ready\n");
return (1);
}
return (0);
}
/*
* Read a sequence of words from the EEPROM. Note that ethernet address
* data is stored in the EEPROM in network byte order.
*/
static int
ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
{
int err = 0, i;
if (ste_eeprom_wait(sc))
return (1);
for (i = 0; i < cnt; i++) {
CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
err = ste_eeprom_wait(sc);
if (err)
break;
*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
dest++;
}
return (err ? 1 : 0);
}
static void
ste_rxfilter(struct ste_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t hashes[2] = { 0, 0 };
uint8_t rxcfg;
int h;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
rxcfg = CSR_READ_1(sc, STE_RX_MODE);
rxcfg |= STE_RXMODE_UNICAST;
rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
if (ifp->if_flags & IFF_BROADCAST)
rxcfg |= STE_RXMODE_BROADCAST;
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= STE_RXMODE_ALLMULTI;
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= STE_RXMODE_PROMISC;
goto chipit;
}
rxcfg |= STE_RXMODE_MULTIHASH;
/* Now program new ones. */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
if_maddr_runlock(ifp);
chipit:
CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
CSR_READ_1(sc, STE_RX_MODE);
}
#ifdef DEVICE_POLLING
static poll_handler_t ste_poll, ste_poll_locked;
static int
ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct ste_softc *sc = ifp->if_softc;
int rx_npkts = 0;
STE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rx_npkts = ste_poll_locked(ifp, cmd, count);
STE_UNLOCK(sc);
return (rx_npkts);
}
static int
ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct ste_softc *sc = ifp->if_softc;
int rx_npkts;
STE_LOCK_ASSERT(sc);
rx_npkts = ste_rxeof(sc, count);
ste_txeof(sc);
ste_txeoc(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ste_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
uint16_t status;
status = CSR_READ_2(sc, STE_ISR_ACK);
if (status & STE_ISR_STATS_OFLOW)
ste_stats_update(sc);
if (status & STE_ISR_HOSTERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
}
}
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static void
ste_intr(void *xsc)
{
struct ste_softc *sc;
struct ifnet *ifp;
uint16_t intrs, status;
sc = xsc;
STE_LOCK(sc);
ifp = sc->ste_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
STE_UNLOCK(sc);
return;
}
#endif
/* Reading STE_ISR_ACK clears STE_IMR register. */
status = CSR_READ_2(sc, STE_ISR_ACK);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
STE_UNLOCK(sc);
return;
}
intrs = STE_INTRS;
if (status == 0xFFFF || (status & intrs) == 0)
goto done;
if (sc->ste_int_rx_act > 0) {
status &= ~STE_ISR_RX_DMADONE;
intrs &= ~STE_IMR_RX_DMADONE;
}
if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
ste_rxeof(sc, -1);
/*
* The controller has no ability to Rx interrupt
* moderation feature. Receiving 64 bytes frames
* from wire generates too many interrupts which in
* turn make system useless to process other useful
* things. Fortunately ST201 supports single shot
* timer so use the timer to implement Rx interrupt
* moderation in driver. This adds more register
* access but it greatly reduces number of Rx
* interrupts under high network load.
*/
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
(sc->ste_int_rx_mod != 0)) {
if ((status & STE_ISR_RX_DMADONE) != 0) {
CSR_WRITE_2(sc, STE_COUNTDOWN,
STE_TIMER_USECS(sc->ste_int_rx_mod));
intrs &= ~STE_IMR_RX_DMADONE;
sc->ste_int_rx_act = 1;
} else {
intrs |= STE_IMR_RX_DMADONE;
sc->ste_int_rx_act = 0;
}
}
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((status & STE_ISR_TX_DMADONE) != 0)
ste_txeof(sc);
if ((status & STE_ISR_TX_DONE) != 0)
ste_txeoc(sc);
if ((status & STE_ISR_STATS_OFLOW) != 0)
ste_stats_update(sc);
if ((status & STE_ISR_HOSTERR) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
STE_UNLOCK(sc);
return;
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ste_start_locked(ifp);
done:
/* Re-enable interrupts */
CSR_WRITE_2(sc, STE_IMR, intrs);
}
STE_UNLOCK(sc);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static int
ste_rxeof(struct ste_softc *sc, int count)
{
struct mbuf *m;
struct ifnet *ifp;
struct ste_chain_onefrag *cur_rx;
uint32_t rxstat;
int total_len, rx_npkts;
ifp = sc->ste_ifp;
bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cur_rx = sc->ste_cdata.ste_rx_head;
for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
cur_rx = cur_rx->ste_next) {
rxstat = le32toh(cur_rx->ste_ptr->ste_status);
if ((rxstat & STE_RXSTAT_DMADONE) == 0)
break;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (count == 0)
break;
count--;
}
#endif
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & STE_RXSTAT_FRAME_ERR) {
ifp->if_ierrors++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
/* No errors; receive the packet. */
m = cur_rx->ste_mbuf;
total_len = STE_RX_BYTES(rxstat);
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (ste_newbuf(sc, cur_rx) != 0) {
ifp->if_iqdrops++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
ifp->if_ipackets++;
STE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
STE_LOCK(sc);
}
if (rx_npkts > 0) {
sc->ste_cdata.ste_rx_head = cur_rx;
bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
return (rx_npkts);
}
static void
ste_txeoc(struct ste_softc *sc)
{
uint16_t txstat;
struct ifnet *ifp;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
/*
* STE_TX_STATUS register implements a queue of up to 31
* transmit status byte. Writing an arbitrary value to the
* register will advance the queue to the next transmit
* status byte. This means if driver does not read
* STE_TX_STATUS register after completing sending more
* than 31 frames the controller would be stalled so driver
* should re-wake the Tx MAC. This is the most severe
* limitation of ST201 based controller.
*/
for (;;) {
txstat = CSR_READ_2(sc, STE_TX_STATUS);
if ((txstat & STE_TXSTATUS_TXDONE) == 0)
break;
if ((txstat & (STE_TXSTATUS_UNDERRUN |
STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
STE_TXSTATUS_STATSOFLOW)) != 0) {
ifp->if_oerrors++;
#ifdef STE_SHOW_TXERRORS
device_printf(sc->ste_dev, "TX error : 0x%b\n",
txstat & 0xFF, STE_ERR_BITS);
#endif
if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
sc->ste_tx_thresh < STE_PACKET_SIZE) {
sc->ste_tx_thresh += STE_MIN_FRAMELEN;
if (sc->ste_tx_thresh > STE_PACKET_SIZE)
sc->ste_tx_thresh = STE_PACKET_SIZE;
device_printf(sc->ste_dev,
"TX underrun, increasing TX"
" start threshold to %d bytes\n",
sc->ste_tx_thresh);
/* Make sure to disable active DMA cycles. */
STE_SETBIT4(sc, STE_DMACTL,
STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
break;
}
/* Restart Tx. */
ste_restart_tx(sc);
}
/*
* Advance to next status and ACK TxComplete
* interrupt. ST201 data sheet was wrong here, to
* get next Tx status, we have to write both
* STE_TX_STATUS and STE_TX_FRAMEID register.
* Otherwise controller returns the same status
* as well as not acknowledge Tx completion
* interrupt.
*/
CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
}
}
static void
ste_tick(void *arg)
{
struct ste_softc *sc;
struct mii_data *mii;
sc = (struct ste_softc *)arg;
STE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->ste_miibus);
mii_tick(mii);
/*
* ukphy(4) does not seem to generate CB that reports
* resolved link state so if we know we lost a link,
* explicitly check the link state.
*/
if ((sc->ste_flags & STE_FLAG_LINK) == 0)
ste_miibus_statchg(sc->ste_dev);
/*
* Because we are not generating Tx completion
* interrupt for every frame, reclaim transmitted
* buffers here.
*/
ste_txeof(sc);
ste_txeoc(sc);
ste_stats_update(sc);
ste_watchdog(sc);
callout_reset(&sc->ste_callout, hz, ste_tick, sc);
}
static void
ste_txeof(struct ste_softc *sc)
{
struct ifnet *ifp;
struct ste_chain *cur_tx;
uint32_t txstat;
int idx;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
idx = sc->ste_cdata.ste_tx_cons;
if (idx == sc->ste_cdata.ste_tx_prod)
return;
bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (idx != sc->ste_cdata.ste_tx_prod) {
cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
if ((txstat & STE_TXCTL_DMADONE) == 0)
break;
bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
KASSERT(cur_tx->ste_mbuf != NULL,
("%s: freeing NULL mbuf!\n", __func__));
m_freem(cur_tx->ste_mbuf);
cur_tx->ste_mbuf = NULL;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_opackets++;
sc->ste_cdata.ste_tx_cnt--;
STE_INC(idx, STE_TX_LIST_CNT);
}
sc->ste_cdata.ste_tx_cons = idx;
if (sc->ste_cdata.ste_tx_cnt == 0)
sc->ste_timer = 0;
}
static void
ste_stats_clear(struct ste_softc *sc)
{
STE_LOCK_ASSERT(sc);
/* Rx stats. */
CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
CSR_READ_2(sc, STE_STAT_RX_FRAMES);
CSR_READ_1(sc, STE_STAT_RX_BCAST);
CSR_READ_1(sc, STE_STAT_RX_MCAST);
CSR_READ_1(sc, STE_STAT_RX_LOST);
/* Tx stats. */
CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
CSR_READ_2(sc, STE_STAT_TX_FRAMES);
CSR_READ_1(sc, STE_STAT_TX_BCAST);
CSR_READ_1(sc, STE_STAT_TX_MCAST);
CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
CSR_READ_1(sc, STE_STAT_LATE_COLLS);
CSR_READ_1(sc, STE_STAT_TX_DEFER);
CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
CSR_READ_1(sc, STE_STAT_TX_ABORT);
}
static void
ste_stats_update(struct ste_softc *sc)
{
struct ifnet *ifp;
struct ste_hw_stats *stats;
uint32_t val;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
stats = &sc->ste_stats;
/* Rx stats. */
val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
val &= 0x000FFFFF;
stats->rx_bytes += val;
stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
/* Tx stats. */
val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
val &= 0x000FFFFF;
stats->tx_bytes += val;
stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
stats->tx_single_colls += val;
ifp->if_collisions += val;
val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
stats->tx_multi_colls += val;
ifp->if_collisions += val;
val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
stats->tx_late_colls += val;
ifp->if_collisions += val;
stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
}
/*
* Probe for a Sundance ST201 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
ste_probe(device_t dev)
{
const struct ste_type *t;
t = ste_devs;
while (t->ste_name != NULL) {
if ((pci_get_vendor(dev) == t->ste_vid) &&
(pci_get_device(dev) == t->ste_did)) {
device_set_desc(dev, t->ste_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
ste_attach(device_t dev)
{
struct ste_softc *sc;
struct ifnet *ifp;
uint16_t eaddr[ETHER_ADDR_LEN / 2];
int error = 0, phy, pmc, prefer_iomap, rid;
sc = device_get_softc(dev);
sc->ste_dev = dev;
/*
* Only use one PHY since this chip reports multiple
* Note on the DFE-550 the PHY is at 1 on the DFE-580
* it is at 0 & 1. It is rev 0x12.
*/
if (pci_get_vendor(dev) == DL_VENDORID &&
pci_get_device(dev) == DL_DEVICEID_DL10050 &&
pci_get_revid(dev) == 0x12 )
sc->ste_flags |= STE_FLAG_ONE_PHY;
mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
/*
* Prefer memory space register mapping over IO space but use
* IO space for a device that is known to have issues on memory
* mapping.
*/
prefer_iomap = 0;
if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
prefer_iomap = 1;
else
resource_int_value(device_get_name(sc->ste_dev),
device_get_unit(sc->ste_dev), "prefer_iomap",
&prefer_iomap);
if (prefer_iomap == 0) {
sc->ste_res_id = PCIR_BAR(1);
sc->ste_res_type = SYS_RES_MEMORY;
sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
&sc->ste_res_id, RF_ACTIVE);
}
if (prefer_iomap || sc->ste_res == NULL) {
sc->ste_res_id = PCIR_BAR(0);
sc->ste_res_type = SYS_RES_IOPORT;
sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
&sc->ste_res_id, RF_ACTIVE);
}
if (sc->ste_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
/* Allocate interrupt */
rid = 0;
sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->ste_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
/* Reset the adapter. */
ste_reset(sc);
/*
* Get station address from the EEPROM.
*/
if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
device_printf(dev, "failed to read station address\n");
error = ENXIO;
goto fail;
}
ste_sysctl_node(sc);
if ((error = ste_dma_alloc(sc)) != 0)
goto fail;
ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
/* Do MII setup. */
phy = MII_PHY_ANY;
if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
phy = 0;
error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ste_ioctl;
ifp->if_start = ste_start;
ifp->if_init = ste_init;
IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
sc->ste_tx_thresh = STE_TXSTART_THRESH;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, (uint8_t *)eaddr);
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ste_intr, sc, &sc->ste_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
ste_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
ste_detach(device_t dev)
{
struct ste_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
ifp = sc->ste_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
STE_LOCK(sc);
ste_stop(sc);
STE_UNLOCK(sc);
callout_drain(&sc->ste_callout);
}
if (sc->ste_miibus)
device_delete_child(dev, sc->ste_miibus);
bus_generic_detach(dev);
if (sc->ste_intrhand)
bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
if (sc->ste_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
if (sc->ste_res)
bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
sc->ste_res);
if (ifp)
if_free(ifp);
ste_dma_free(sc);
mtx_destroy(&sc->ste_mtx);
return (0);
}
struct ste_dmamap_arg {
bus_addr_t ste_busaddr;
};
static void
ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct ste_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct ste_dmamap_arg *)arg;
ctx->ste_busaddr = segs[0].ds_addr;
}
static int
ste_dma_alloc(struct ste_softc *sc)
{
struct ste_chain *txc;
struct ste_chain_onefrag *rxc;
struct ste_dmamap_arg ctx;
int error, i;
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->ste_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_parent_tag);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx descriptor list. */
error = bus_dma_tag_create(
sc->ste_cdata.ste_parent_tag, /* parent */
STE_DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
STE_TX_LIST_SZ, /* maxsize */
1, /* nsegments */
STE_TX_LIST_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_tx_list_tag);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create Tx list DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx descriptor list. */
error = bus_dma_tag_create(
sc->ste_cdata.ste_parent_tag, /* parent */
STE_DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
STE_RX_LIST_SZ, /* maxsize */
1, /* nsegments */
STE_RX_LIST_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_rx_list_tag);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create Rx list DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx buffers. */
error = bus_dma_tag_create(
sc->ste_cdata.ste_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * STE_MAXFRAGS, /* maxsize */
STE_MAXFRAGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_tx_tag);
if (error != 0) {
device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx buffers. */
error = bus_dma_tag_create(
sc->ste_cdata.ste_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_rx_tag);
if (error != 0) {
device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx list. */
error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
(void **)&sc->ste_ldata.ste_tx_list,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->ste_cdata.ste_tx_list_map);
if (error != 0) {
device_printf(sc->ste_dev,
"could not allocate DMA'able memory for Tx list.\n");
goto fail;
}
ctx.ste_busaddr = 0;
error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.ste_busaddr == 0) {
device_printf(sc->ste_dev,
"could not load DMA'able memory for Tx list.\n");
goto fail;
}
sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx list. */
error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
(void **)&sc->ste_ldata.ste_rx_list,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->ste_cdata.ste_rx_list_map);
if (error != 0) {
device_printf(sc->ste_dev,
"could not allocate DMA'able memory for Rx list.\n");
goto fail;
}
ctx.ste_busaddr = 0;
error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.ste_busaddr == 0) {
device_printf(sc->ste_dev,
"could not load DMA'able memory for Rx list.\n");
goto fail;
}
sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < STE_TX_LIST_CNT; i++) {
txc = &sc->ste_cdata.ste_tx_chain[i];
txc->ste_ptr = NULL;
txc->ste_mbuf = NULL;
txc->ste_next = NULL;
txc->ste_phys = 0;
txc->ste_map = NULL;
error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
&txc->ste_map);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
&sc->ste_cdata.ste_rx_sparemap)) != 0) {
device_printf(sc->ste_dev,
"could not create spare Rx dmamap.\n");
goto fail;
}
for (i = 0; i < STE_RX_LIST_CNT; i++) {
rxc = &sc->ste_cdata.ste_rx_chain[i];
rxc->ste_ptr = NULL;
rxc->ste_mbuf = NULL;
rxc->ste_next = NULL;
rxc->ste_map = NULL;
error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
&rxc->ste_map);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create Rx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
ste_dma_free(struct ste_softc *sc)
{
struct ste_chain *txc;
struct ste_chain_onefrag *rxc;
int i;
/* Tx buffers. */
if (sc->ste_cdata.ste_tx_tag != NULL) {
for (i = 0; i < STE_TX_LIST_CNT; i++) {
txc = &sc->ste_cdata.ste_tx_chain[i];
if (txc->ste_map != NULL) {
bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
txc->ste_map);
txc->ste_map = NULL;
}
}
bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
sc->ste_cdata.ste_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->ste_cdata.ste_rx_tag != NULL) {
for (i = 0; i < STE_RX_LIST_CNT; i++) {
rxc = &sc->ste_cdata.ste_rx_chain[i];
if (rxc->ste_map != NULL) {
bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
rxc->ste_map);
rxc->ste_map = NULL;
}
}
if (sc->ste_cdata.ste_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
sc->ste_cdata.ste_rx_sparemap);
sc->ste_cdata.ste_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
sc->ste_cdata.ste_rx_tag = NULL;
}
/* Tx descriptor list. */
if (sc->ste_cdata.ste_tx_list_tag != NULL) {
if (sc->ste_ldata.ste_tx_list_paddr != 0)
bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map);
if (sc->ste_ldata.ste_tx_list != NULL)
bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
sc->ste_ldata.ste_tx_list,
sc->ste_cdata.ste_tx_list_map);
sc->ste_ldata.ste_tx_list = NULL;
sc->ste_ldata.ste_tx_list_paddr = 0;
bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
sc->ste_cdata.ste_tx_list_tag = NULL;
}
/* Rx descriptor list. */
if (sc->ste_cdata.ste_rx_list_tag != NULL) {
if (sc->ste_ldata.ste_rx_list_paddr != 0)
bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map);
if (sc->ste_ldata.ste_rx_list != NULL)
bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
sc->ste_ldata.ste_rx_list,
sc->ste_cdata.ste_rx_list_map);
sc->ste_ldata.ste_rx_list = NULL;
sc->ste_ldata.ste_rx_list_paddr = 0;
bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
sc->ste_cdata.ste_rx_list_tag = NULL;
}
if (sc->ste_cdata.ste_parent_tag != NULL) {
bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
sc->ste_cdata.ste_parent_tag = NULL;
}
}
static int
ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
{
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int error, nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
m_freem(m);
return (error);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxc->ste_mbuf != NULL) {
bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
}
map = rxc->ste_map;
rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
sc->ste_cdata.ste_rx_sparemap = map;
bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
BUS_DMASYNC_PREREAD);
rxc->ste_mbuf = m;
rxc->ste_ptr->ste_status = 0;
rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
STE_FRAG_LAST);
return (0);
}
static int
ste_init_rx_list(struct ste_softc *sc)
{
struct ste_chain_data *cd;
struct ste_list_data *ld;
int error, i;
sc->ste_int_rx_act = 0;
cd = &sc->ste_cdata;
ld = &sc->ste_ldata;
bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
for (i = 0; i < STE_RX_LIST_CNT; i++) {
cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
if (error != 0)
return (error);
if (i == (STE_RX_LIST_CNT - 1)) {
cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
ld->ste_rx_list[i].ste_next =
htole32(ld->ste_rx_list_paddr +
(sizeof(struct ste_desc_onefrag) * 0));
} else {
cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
ld->ste_rx_list[i].ste_next =
htole32(ld->ste_rx_list_paddr +
(sizeof(struct ste_desc_onefrag) * (i + 1)));
}
}
cd->ste_rx_head = &cd->ste_rx_chain[0];
bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
ste_init_tx_list(struct ste_softc *sc)
{
struct ste_chain_data *cd;
struct ste_list_data *ld;
int i;
cd = &sc->ste_cdata;
ld = &sc->ste_ldata;
bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
for (i = 0; i < STE_TX_LIST_CNT; i++) {
cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
cd->ste_tx_chain[i].ste_mbuf = NULL;
if (i == (STE_TX_LIST_CNT - 1)) {
cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
ld->ste_tx_list_paddr +
(sizeof(struct ste_desc) * 0)));
} else {
cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
ld->ste_tx_list_paddr +
(sizeof(struct ste_desc) * (i + 1))));
}
}
cd->ste_last_tx = NULL;
cd->ste_tx_prod = 0;
cd->ste_tx_cons = 0;
cd->ste_tx_cnt = 0;
bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
ste_init(void *xsc)
{
struct ste_softc *sc;
sc = xsc;
STE_LOCK(sc);
ste_init_locked(sc);
STE_UNLOCK(sc);
}
static void
ste_init_locked(struct ste_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t val;
int i;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
mii = device_get_softc(sc->ste_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
ste_stop(sc);
/* Reset the chip to a known state. */
ste_reset(sc);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
CSR_WRITE_2(sc, STE_PAR0 + i,
((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
}
/* Init RX list */
if (ste_init_rx_list(sc) != 0) {
device_printf(sc->ste_dev,
"initialization failed: no memory for RX buffers\n");
ste_stop(sc);
return;
}
/* Set RX polling interval */
CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
/* Init TX descriptors */
ste_init_tx_list(sc);
/* Clear and disable WOL. */
val = CSR_READ_1(sc, STE_WAKE_EVENT);
val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
/* Set the TX freethresh value */
CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
/* Set the TX start threshold for best performance. */
CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
/* Set the TX reclaim threshold. */
CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
/* Accept VLAN length packets */
CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
/* Set up the RX filter. */
ste_rxfilter(sc);
/* Load the address of the RX list. */
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
/* Set TX polling interval(defer until we TX first packet). */
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
/* Load address of the TX list */
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
ste_wait(sc);
/* Select 3.2us timer. */
STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
STE_DMACTL_COUNTDOWN_MODE);
/* Enable receiver and transmitter */
CSR_WRITE_2(sc, STE_MACCTL0, 0);
CSR_WRITE_2(sc, STE_MACCTL1, 0);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
/* Enable stats counters. */
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
/* Clear stats counters. */
ste_stats_clear(sc);
CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_2(sc, STE_IMR, 0);
else
#endif
/* Enable interrupts. */
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
sc->ste_flags &= ~STE_FLAG_LINK;
/* Switch to the current media. */
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->ste_callout, hz, ste_tick, sc);
}
static void
ste_stop(struct ste_softc *sc)
{
struct ifnet *ifp;
struct ste_chain_onefrag *cur_rx;
struct ste_chain *cur_tx;
uint32_t val;
int i;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
callout_stop(&sc->ste_callout);
sc->ste_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
CSR_WRITE_2(sc, STE_IMR, 0);
CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
/* Stop pending DMA. */
val = CSR_READ_4(sc, STE_DMACTL);
val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
CSR_WRITE_4(sc, STE_DMACTL, val);
ste_wait(sc);
/* Disable auto-polling. */
CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
/* Nullify DMA address to stop any further DMA. */
CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
/* Stop TX/RX MAC. */
val = CSR_READ_2(sc, STE_MACCTL1);
val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
STE_MACCTL1_STATS_DISABLE;
CSR_WRITE_2(sc, STE_MACCTL1, val);
for (i = 0; i < STE_TIMEOUT; i++) {
DELAY(10);
if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
break;
}
if (i == STE_TIMEOUT)
device_printf(sc->ste_dev, "Stopping MAC timed out\n");
/* Acknowledge any pending interrupts. */
CSR_READ_2(sc, STE_ISR_ACK);
ste_stats_update(sc);
for (i = 0; i < STE_RX_LIST_CNT; i++) {
cur_rx = &sc->ste_cdata.ste_rx_chain[i];
if (cur_rx->ste_mbuf != NULL) {
bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
cur_rx->ste_map);
m_freem(cur_rx->ste_mbuf);
cur_rx->ste_mbuf = NULL;
}
}
for (i = 0; i < STE_TX_LIST_CNT; i++) {
cur_tx = &sc->ste_cdata.ste_tx_chain[i];
if (cur_tx->ste_mbuf != NULL) {
bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
cur_tx->ste_map);
m_freem(cur_tx->ste_mbuf);
cur_tx->ste_mbuf = NULL;
}
}
}
static void
ste_reset(struct ste_softc *sc)
{
uint32_t ctl;
int i;
ctl = CSR_READ_4(sc, STE_ASICCTL);
ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
STE_ASICCTL_EXTRESET_RESET;
CSR_WRITE_4(sc, STE_ASICCTL, ctl);
CSR_READ_4(sc, STE_ASICCTL);
/*
* Due to the need of accessing EEPROM controller can take
* up to 1ms to complete the global reset.
*/
DELAY(1000);
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
break;
DELAY(10);
}
if (i == STE_TIMEOUT)
device_printf(sc->ste_dev, "global reset never completed\n");
}
static void
ste_restart_tx(struct ste_softc *sc)
{
uint16_t mac;
int i;
for (i = 0; i < STE_TIMEOUT; i++) {
mac = CSR_READ_2(sc, STE_MACCTL1);
mac |= STE_MACCTL1_TX_ENABLE;
CSR_WRITE_2(sc, STE_MACCTL1, mac);
mac = CSR_READ_2(sc, STE_MACCTL1);
if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
break;
DELAY(10);
}
if (i == STE_TIMEOUT)
device_printf(sc->ste_dev, "starting Tx failed");
}
static int
ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct ste_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error = 0, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch (command) {
case SIOCSIFFLAGS:
STE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->ste_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
ste_rxfilter(sc);
else
ste_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
ste_stop(sc);
sc->ste_if_flags = ifp->if_flags;
STE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
STE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
ste_rxfilter(sc);
STE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->ste_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
STE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0 &&
(IFCAP_POLLING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_POLLING;
if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
error = ether_poll_register(ste_poll, ifp);
if (error != 0) {
STE_UNLOCK(sc);
break;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, STE_IMR, 0);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
}
}
#endif /* DEVICE_POLLING */
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
STE_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
{
struct ste_frag *frag;
struct mbuf *m;
struct ste_desc *desc;
bus_dma_segment_t txsegs[STE_MAXFRAGS];
int error, i, nsegs;
STE_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
txc->ste_map, *m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
txc->ste_map, *m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
BUS_DMASYNC_PREWRITE);
desc = txc->ste_ptr;
for (i = 0; i < nsegs; i++) {
frag = &desc->ste_frags[i];
frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
frag->ste_len = htole32(txsegs[i].ds_len);
}
desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
/*
* Because we use Tx polling we can't chain multiple
* Tx descriptors here. Otherwise we race with controller.
*/
desc->ste_next = 0;
if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
STE_TXCTL_DMAINTR);
else
desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
txc->ste_mbuf = *m_head;
STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
sc->ste_cdata.ste_tx_cnt++;
return (0);
}
static void
ste_start(struct ifnet *ifp)
{
struct ste_softc *sc;
sc = ifp->if_softc;
STE_LOCK(sc);
ste_start_locked(ifp);
STE_UNLOCK(sc);
}
static void
ste_start_locked(struct ifnet *ifp)
{
struct ste_softc *sc;
struct ste_chain *cur_tx;
struct mbuf *m_head = NULL;
int enq;
sc = ifp->if_softc;
STE_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
/*
* Controller may have cached copy of the last used
* next ptr so we have to reserve one TFD to avoid
* TFD overruns.
*/
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
if (ste_encap(sc, &m_head, cur_tx) != 0) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
break;
}
if (sc->ste_cdata.ste_last_tx == NULL) {
bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
ste_wait(sc);
} else {
sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
sc->ste_cdata.ste_last_tx->ste_phys;
bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
sc->ste_cdata.ste_last_tx = cur_tx;
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (enq > 0)
sc->ste_timer = STE_TX_TIMEOUT;
}
static void
ste_watchdog(struct ste_softc *sc)
{
struct ifnet *ifp;
ifp = sc->ste_ifp;
STE_LOCK_ASSERT(sc);
if (sc->ste_timer == 0 || --sc->ste_timer)
return;
ifp->if_oerrors++;
if_printf(ifp, "watchdog timeout\n");
ste_txeof(sc);
ste_txeoc(sc);
ste_rxeof(sc, -1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ste_start_locked(ifp);
}
static int
ste_shutdown(device_t dev)
{
return (ste_suspend(dev));
}
static int
ste_suspend(device_t dev)
{
struct ste_softc *sc;
sc = device_get_softc(dev);
STE_LOCK(sc);
ste_stop(sc);
ste_setwol(sc);
STE_UNLOCK(sc);
return (0);
}
static int
ste_resume(device_t dev)
{
struct ste_softc *sc;
struct ifnet *ifp;
int pmc;
uint16_t pmstat;
sc = device_get_softc(dev);
STE_LOCK(sc);
if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
/* Disable PME and clear PME status. */
pmstat = pci_read_config(sc->ste_dev,
pmc + PCIR_POWER_STATUS, 2);
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->ste_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
}
ifp = sc->ste_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
}
STE_UNLOCK(sc);
return (0);
}
#define STE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
#define STE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
static void
ste_sysctl_node(struct ste_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct ste_hw_stats *stats;
stats = &sc->ste_stats;
ctx = device_get_sysctl_ctx(sc->ste_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
/* Pull in device tunables. */
sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
resource_int_value(device_get_name(sc->ste_dev),
device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "STE statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->rx_bytes, "Good octets");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->rx_frames, "Good frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->rx_bcast_frames, "Good broadcast frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->rx_mcast_frames, "Good multicast frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
&stats->rx_lost_frames, "Lost frames");
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->tx_bytes, "Good octets");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->tx_frames, "Good frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->tx_bcast_frames, "Good broadcast frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->tx_mcast_frames, "Good multicast frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
&stats->tx_carrsense_errs, "Carrier sense errors");
STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
&stats->tx_single_colls, "Single collisions");
STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
&stats->tx_multi_colls, "Multiple collisions");
STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
&stats->tx_late_colls, "Late collisions");
STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
&stats->tx_frames_defered, "Frames with deferrals");
STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
&stats->tx_excess_defers, "Frames with excessive derferrals");
STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
&stats->tx_abort, "Aborted frames due to Excessive collisions");
}
#undef STE_SYSCTL_STAT_ADD32
#undef STE_SYSCTL_STAT_ADD64
static void
ste_setwol(struct ste_softc *sc)
{
struct ifnet *ifp;
uint16_t pmstat;
uint8_t val;
int pmc;
STE_LOCK_ASSERT(sc);
if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
/* Disable WOL. */
CSR_READ_1(sc, STE_WAKE_EVENT);
CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
return;
}
ifp = sc->ste_ifp;
val = CSR_READ_1(sc, STE_WAKE_EVENT);
val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
/* Request PME. */
pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}