freebsd-nq/sys/amd64/vmm/vmm_instruction_emul.c
John Baldwin 5f8754c077 Add a new variant of the GLA2GPA ioctl for use by the debug server.
Unlike the existing GLA2GPA ioctl, GLA2GPA_NOFAULT does not modify
the guest.  In particular, it does not inject any faults or modify
PTEs in the guest when performing an address space translation.

This is used by bhyve's debug server to read and write memory for
the remote debugger.

Reviewed by:	grehan
MFC after:	1 month
Differential Revision:	https://reviews.freebsd.org/D14075
2018-02-26 19:19:05 +00:00

2507 lines
59 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012 Sandvine, Inc.
* Copyright (c) 2012 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef _KERNEL
#include <sys/param.h>
#include <sys/pcpu.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/vmparam.h>
#include <machine/vmm.h>
#else /* !_KERNEL */
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/_iovec.h>
#include <machine/vmm.h>
#include <assert.h>
#include <vmmapi.h>
#define KASSERT(exp,msg) assert((exp))
#endif /* _KERNEL */
#include <machine/vmm_instruction_emul.h>
#include <x86/psl.h>
#include <x86/specialreg.h>
/* struct vie_op.op_type */
enum {
VIE_OP_TYPE_NONE = 0,
VIE_OP_TYPE_MOV,
VIE_OP_TYPE_MOVSX,
VIE_OP_TYPE_MOVZX,
VIE_OP_TYPE_AND,
VIE_OP_TYPE_OR,
VIE_OP_TYPE_SUB,
VIE_OP_TYPE_TWO_BYTE,
VIE_OP_TYPE_PUSH,
VIE_OP_TYPE_CMP,
VIE_OP_TYPE_POP,
VIE_OP_TYPE_MOVS,
VIE_OP_TYPE_GROUP1,
VIE_OP_TYPE_STOS,
VIE_OP_TYPE_BITTEST,
VIE_OP_TYPE_LAST
};
/* struct vie_op.op_flags */
#define VIE_OP_F_IMM (1 << 0) /* 16/32-bit immediate operand */
#define VIE_OP_F_IMM8 (1 << 1) /* 8-bit immediate operand */
#define VIE_OP_F_MOFFSET (1 << 2) /* 16/32/64-bit immediate moffset */
#define VIE_OP_F_NO_MODRM (1 << 3)
#define VIE_OP_F_NO_GLA_VERIFICATION (1 << 4)
static const struct vie_op two_byte_opcodes[256] = {
[0xB6] = {
.op_byte = 0xB6,
.op_type = VIE_OP_TYPE_MOVZX,
},
[0xB7] = {
.op_byte = 0xB7,
.op_type = VIE_OP_TYPE_MOVZX,
},
[0xBA] = {
.op_byte = 0xBA,
.op_type = VIE_OP_TYPE_BITTEST,
.op_flags = VIE_OP_F_IMM8,
},
[0xBE] = {
.op_byte = 0xBE,
.op_type = VIE_OP_TYPE_MOVSX,
},
};
static const struct vie_op one_byte_opcodes[256] = {
[0x0F] = {
.op_byte = 0x0F,
.op_type = VIE_OP_TYPE_TWO_BYTE
},
[0x0B] = {
.op_byte = 0x0B,
.op_type = VIE_OP_TYPE_OR,
},
[0x2B] = {
.op_byte = 0x2B,
.op_type = VIE_OP_TYPE_SUB,
},
[0x39] = {
.op_byte = 0x39,
.op_type = VIE_OP_TYPE_CMP,
},
[0x3B] = {
.op_byte = 0x3B,
.op_type = VIE_OP_TYPE_CMP,
},
[0x88] = {
.op_byte = 0x88,
.op_type = VIE_OP_TYPE_MOV,
},
[0x89] = {
.op_byte = 0x89,
.op_type = VIE_OP_TYPE_MOV,
},
[0x8A] = {
.op_byte = 0x8A,
.op_type = VIE_OP_TYPE_MOV,
},
[0x8B] = {
.op_byte = 0x8B,
.op_type = VIE_OP_TYPE_MOV,
},
[0xA1] = {
.op_byte = 0xA1,
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
},
[0xA3] = {
.op_byte = 0xA3,
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
},
[0xA4] = {
.op_byte = 0xA4,
.op_type = VIE_OP_TYPE_MOVS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xA5] = {
.op_byte = 0xA5,
.op_type = VIE_OP_TYPE_MOVS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xAA] = {
.op_byte = 0xAA,
.op_type = VIE_OP_TYPE_STOS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xAB] = {
.op_byte = 0xAB,
.op_type = VIE_OP_TYPE_STOS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xC6] = {
/* XXX Group 11 extended opcode - not just MOV */
.op_byte = 0xC6,
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_IMM8,
},
[0xC7] = {
.op_byte = 0xC7,
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_IMM,
},
[0x23] = {
.op_byte = 0x23,
.op_type = VIE_OP_TYPE_AND,
},
[0x80] = {
/* Group 1 extended opcode */
.op_byte = 0x80,
.op_type = VIE_OP_TYPE_GROUP1,
.op_flags = VIE_OP_F_IMM8,
},
[0x81] = {
/* Group 1 extended opcode */
.op_byte = 0x81,
.op_type = VIE_OP_TYPE_GROUP1,
.op_flags = VIE_OP_F_IMM,
},
[0x83] = {
/* Group 1 extended opcode */
.op_byte = 0x83,
.op_type = VIE_OP_TYPE_GROUP1,
.op_flags = VIE_OP_F_IMM8,
},
[0x8F] = {
/* XXX Group 1A extended opcode - not just POP */
.op_byte = 0x8F,
.op_type = VIE_OP_TYPE_POP,
},
[0xFF] = {
/* XXX Group 5 extended opcode - not just PUSH */
.op_byte = 0xFF,
.op_type = VIE_OP_TYPE_PUSH,
}
};
/* struct vie.mod */
#define VIE_MOD_INDIRECT 0
#define VIE_MOD_INDIRECT_DISP8 1
#define VIE_MOD_INDIRECT_DISP32 2
#define VIE_MOD_DIRECT 3
/* struct vie.rm */
#define VIE_RM_SIB 4
#define VIE_RM_DISP32 5
#define GB (1024 * 1024 * 1024)
static enum vm_reg_name gpr_map[16] = {
VM_REG_GUEST_RAX,
VM_REG_GUEST_RCX,
VM_REG_GUEST_RDX,
VM_REG_GUEST_RBX,
VM_REG_GUEST_RSP,
VM_REG_GUEST_RBP,
VM_REG_GUEST_RSI,
VM_REG_GUEST_RDI,
VM_REG_GUEST_R8,
VM_REG_GUEST_R9,
VM_REG_GUEST_R10,
VM_REG_GUEST_R11,
VM_REG_GUEST_R12,
VM_REG_GUEST_R13,
VM_REG_GUEST_R14,
VM_REG_GUEST_R15
};
static uint64_t size2mask[] = {
[1] = 0xff,
[2] = 0xffff,
[4] = 0xffffffff,
[8] = 0xffffffffffffffff,
};
static int
vie_read_register(void *vm, int vcpuid, enum vm_reg_name reg, uint64_t *rval)
{
int error;
error = vm_get_register(vm, vcpuid, reg, rval);
return (error);
}
static void
vie_calc_bytereg(struct vie *vie, enum vm_reg_name *reg, int *lhbr)
{
*lhbr = 0;
*reg = gpr_map[vie->reg];
/*
* 64-bit mode imposes limitations on accessing legacy high byte
* registers (lhbr).
*
* The legacy high-byte registers cannot be addressed if the REX
* prefix is present. In this case the values 4, 5, 6 and 7 of the
* 'ModRM:reg' field address %spl, %bpl, %sil and %dil respectively.
*
* If the REX prefix is not present then the values 4, 5, 6 and 7
* of the 'ModRM:reg' field address the legacy high-byte registers,
* %ah, %ch, %dh and %bh respectively.
*/
if (!vie->rex_present) {
if (vie->reg & 0x4) {
*lhbr = 1;
*reg = gpr_map[vie->reg & 0x3];
}
}
}
static int
vie_read_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t *rval)
{
uint64_t val;
int error, lhbr;
enum vm_reg_name reg;
vie_calc_bytereg(vie, &reg, &lhbr);
error = vm_get_register(vm, vcpuid, reg, &val);
/*
* To obtain the value of a legacy high byte register shift the
* base register right by 8 bits (%ah = %rax >> 8).
*/
if (lhbr)
*rval = val >> 8;
else
*rval = val;
return (error);
}
static int
vie_write_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t byte)
{
uint64_t origval, val, mask;
int error, lhbr;
enum vm_reg_name reg;
vie_calc_bytereg(vie, &reg, &lhbr);
error = vm_get_register(vm, vcpuid, reg, &origval);
if (error == 0) {
val = byte;
mask = 0xff;
if (lhbr) {
/*
* Shift left by 8 to store 'byte' in a legacy high
* byte register.
*/
val <<= 8;
mask <<= 8;
}
val |= origval & ~mask;
error = vm_set_register(vm, vcpuid, reg, val);
}
return (error);
}
int
vie_update_register(void *vm, int vcpuid, enum vm_reg_name reg,
uint64_t val, int size)
{
int error;
uint64_t origval;
switch (size) {
case 1:
case 2:
error = vie_read_register(vm, vcpuid, reg, &origval);
if (error)
return (error);
val &= size2mask[size];
val |= origval & ~size2mask[size];
break;
case 4:
val &= 0xffffffffUL;
break;
case 8:
break;
default:
return (EINVAL);
}
error = vm_set_register(vm, vcpuid, reg, val);
return (error);
}
#define RFLAGS_STATUS_BITS (PSL_C | PSL_PF | PSL_AF | PSL_Z | PSL_N | PSL_V)
/*
* Return the status flags that would result from doing (x - y).
*/
#define GETCC(sz) \
static u_long \
getcc##sz(uint##sz##_t x, uint##sz##_t y) \
{ \
u_long rflags; \
\
__asm __volatile("sub %2,%1; pushfq; popq %0" : \
"=r" (rflags), "+r" (x) : "m" (y)); \
return (rflags); \
} struct __hack
GETCC(8);
GETCC(16);
GETCC(32);
GETCC(64);
static u_long
getcc(int opsize, uint64_t x, uint64_t y)
{
KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
("getcc: invalid operand size %d", opsize));
if (opsize == 1)
return (getcc8(x, y));
else if (opsize == 2)
return (getcc16(x, y));
else if (opsize == 4)
return (getcc32(x, y));
else
return (getcc64(x, y));
}
static int
emulate_mov(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
{
int error, size;
enum vm_reg_name reg;
uint8_t byte;
uint64_t val;
size = vie->opsize;
error = EINVAL;
switch (vie->op.op_byte) {
case 0x88:
/*
* MOV byte from reg (ModRM:reg) to mem (ModRM:r/m)
* 88/r: mov r/m8, r8
* REX + 88/r: mov r/m8, r8 (%ah, %ch, %dh, %bh not available)
*/
size = 1; /* override for byte operation */
error = vie_read_bytereg(vm, vcpuid, vie, &byte);
if (error == 0)
error = memwrite(vm, vcpuid, gpa, byte, size, arg);
break;
case 0x89:
/*
* MOV from reg (ModRM:reg) to mem (ModRM:r/m)
* 89/r: mov r/m16, r16
* 89/r: mov r/m32, r32
* REX.W + 89/r mov r/m64, r64
*/
reg = gpr_map[vie->reg];
error = vie_read_register(vm, vcpuid, reg, &val);
if (error == 0) {
val &= size2mask[size];
error = memwrite(vm, vcpuid, gpa, val, size, arg);
}
break;
case 0x8A:
/*
* MOV byte from mem (ModRM:r/m) to reg (ModRM:reg)
* 8A/r: mov r8, r/m8
* REX + 8A/r: mov r8, r/m8
*/
size = 1; /* override for byte operation */
error = memread(vm, vcpuid, gpa, &val, size, arg);
if (error == 0)
error = vie_write_bytereg(vm, vcpuid, vie, val);
break;
case 0x8B:
/*
* MOV from mem (ModRM:r/m) to reg (ModRM:reg)
* 8B/r: mov r16, r/m16
* 8B/r: mov r32, r/m32
* REX.W 8B/r: mov r64, r/m64
*/
error = memread(vm, vcpuid, gpa, &val, size, arg);
if (error == 0) {
reg = gpr_map[vie->reg];
error = vie_update_register(vm, vcpuid, reg, val, size);
}
break;
case 0xA1:
/*
* MOV from seg:moffset to AX/EAX/RAX
* A1: mov AX, moffs16
* A1: mov EAX, moffs32
* REX.W + A1: mov RAX, moffs64
*/
error = memread(vm, vcpuid, gpa, &val, size, arg);
if (error == 0) {
reg = VM_REG_GUEST_RAX;
error = vie_update_register(vm, vcpuid, reg, val, size);
}
break;
case 0xA3:
/*
* MOV from AX/EAX/RAX to seg:moffset
* A3: mov moffs16, AX
* A3: mov moffs32, EAX
* REX.W + A3: mov moffs64, RAX
*/
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RAX, &val);
if (error == 0) {
val &= size2mask[size];
error = memwrite(vm, vcpuid, gpa, val, size, arg);
}
break;
case 0xC6:
/*
* MOV from imm8 to mem (ModRM:r/m)
* C6/0 mov r/m8, imm8
* REX + C6/0 mov r/m8, imm8
*/
size = 1; /* override for byte operation */
error = memwrite(vm, vcpuid, gpa, vie->immediate, size, arg);
break;
case 0xC7:
/*
* MOV from imm16/imm32 to mem (ModRM:r/m)
* C7/0 mov r/m16, imm16
* C7/0 mov r/m32, imm32
* REX.W + C7/0 mov r/m64, imm32 (sign-extended to 64-bits)
*/
val = vie->immediate & size2mask[size];
error = memwrite(vm, vcpuid, gpa, val, size, arg);
break;
default:
break;
}
return (error);
}
static int
emulate_movx(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite,
void *arg)
{
int error, size;
enum vm_reg_name reg;
uint64_t val;
size = vie->opsize;
error = EINVAL;
switch (vie->op.op_byte) {
case 0xB6:
/*
* MOV and zero extend byte from mem (ModRM:r/m) to
* reg (ModRM:reg).
*
* 0F B6/r movzx r16, r/m8
* 0F B6/r movzx r32, r/m8
* REX.W + 0F B6/r movzx r64, r/m8
*/
/* get the first operand */
error = memread(vm, vcpuid, gpa, &val, 1, arg);
if (error)
break;
/* get the second operand */
reg = gpr_map[vie->reg];
/* zero-extend byte */
val = (uint8_t)val;
/* write the result */
error = vie_update_register(vm, vcpuid, reg, val, size);
break;
case 0xB7:
/*
* MOV and zero extend word from mem (ModRM:r/m) to
* reg (ModRM:reg).
*
* 0F B7/r movzx r32, r/m16
* REX.W + 0F B7/r movzx r64, r/m16
*/
error = memread(vm, vcpuid, gpa, &val, 2, arg);
if (error)
return (error);
reg = gpr_map[vie->reg];
/* zero-extend word */
val = (uint16_t)val;
error = vie_update_register(vm, vcpuid, reg, val, size);
break;
case 0xBE:
/*
* MOV and sign extend byte from mem (ModRM:r/m) to
* reg (ModRM:reg).
*
* 0F BE/r movsx r16, r/m8
* 0F BE/r movsx r32, r/m8
* REX.W + 0F BE/r movsx r64, r/m8
*/
/* get the first operand */
error = memread(vm, vcpuid, gpa, &val, 1, arg);
if (error)
break;
/* get the second operand */
reg = gpr_map[vie->reg];
/* sign extend byte */
val = (int8_t)val;
/* write the result */
error = vie_update_register(vm, vcpuid, reg, val, size);
break;
default:
break;
}
return (error);
}
/*
* Helper function to calculate and validate a linear address.
*/
static int
get_gla(void *vm, int vcpuid, struct vie *vie, struct vm_guest_paging *paging,
int opsize, int addrsize, int prot, enum vm_reg_name seg,
enum vm_reg_name gpr, uint64_t *gla, int *fault)
{
struct seg_desc desc;
uint64_t cr0, val, rflags;
int error;
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
error = vm_get_seg_desc(vm, vcpuid, seg, &desc);
KASSERT(error == 0, ("%s: error %d getting segment descriptor %d",
__func__, error, seg));
error = vie_read_register(vm, vcpuid, gpr, &val);
KASSERT(error == 0, ("%s: error %d getting register %d", __func__,
error, gpr));
if (vie_calculate_gla(paging->cpu_mode, seg, &desc, val, opsize,
addrsize, prot, gla)) {
if (seg == VM_REG_GUEST_SS)
vm_inject_ss(vm, vcpuid, 0);
else
vm_inject_gp(vm, vcpuid);
goto guest_fault;
}
if (vie_canonical_check(paging->cpu_mode, *gla)) {
if (seg == VM_REG_GUEST_SS)
vm_inject_ss(vm, vcpuid, 0);
else
vm_inject_gp(vm, vcpuid);
goto guest_fault;
}
if (vie_alignment_check(paging->cpl, opsize, cr0, rflags, *gla)) {
vm_inject_ac(vm, vcpuid, 0);
goto guest_fault;
}
*fault = 0;
return (0);
guest_fault:
*fault = 1;
return (0);
}
static int
emulate_movs(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
#ifdef _KERNEL
struct vm_copyinfo copyinfo[2];
#else
struct iovec copyinfo[2];
#endif
uint64_t dstaddr, srcaddr, dstgpa, srcgpa, val;
uint64_t rcx, rdi, rsi, rflags;
int error, fault, opsize, seg, repeat;
opsize = (vie->op.op_byte == 0xA4) ? 1 : vie->opsize;
val = 0;
error = 0;
/*
* XXX although the MOVS instruction is only supposed to be used with
* the "rep" prefix some guests like FreeBSD will use "repnz" instead.
*
* Empirically the "repnz" prefix has identical behavior to "rep"
* and the zero flag does not make a difference.
*/
repeat = vie->repz_present | vie->repnz_present;
if (repeat) {
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RCX, &rcx);
KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
/*
* The count register is %rcx, %ecx or %cx depending on the
* address size of the instruction.
*/
if ((rcx & vie_size2mask(vie->addrsize)) == 0) {
error = 0;
goto done;
}
}
/*
* Source Destination Comments
* --------------------------------------------
* (1) memory memory n/a
* (2) memory mmio emulated
* (3) mmio memory emulated
* (4) mmio mmio emulated
*
* At this point we don't have sufficient information to distinguish
* between (2), (3) and (4). We use 'vm_copy_setup()' to tease this
* out because it will succeed only when operating on regular memory.
*
* XXX the emulation doesn't properly handle the case where 'gpa'
* is straddling the boundary between the normal memory and MMIO.
*/
seg = vie->segment_override ? vie->segment_register : VM_REG_GUEST_DS;
error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
PROT_READ, seg, VM_REG_GUEST_RSI, &srcaddr, &fault);
if (error || fault)
goto done;
error = vm_copy_setup(vm, vcpuid, paging, srcaddr, opsize, PROT_READ,
copyinfo, nitems(copyinfo), &fault);
if (error == 0) {
if (fault)
goto done; /* Resume guest to handle fault */
/*
* case (2): read from system memory and write to mmio.
*/
vm_copyin(vm, vcpuid, copyinfo, &val, opsize);
vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
error = memwrite(vm, vcpuid, gpa, val, opsize, arg);
if (error)
goto done;
} else {
/*
* 'vm_copy_setup()' is expected to fail for cases (3) and (4)
* if 'srcaddr' is in the mmio space.
*/
error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
PROT_WRITE, VM_REG_GUEST_ES, VM_REG_GUEST_RDI, &dstaddr,
&fault);
if (error || fault)
goto done;
error = vm_copy_setup(vm, vcpuid, paging, dstaddr, opsize,
PROT_WRITE, copyinfo, nitems(copyinfo), &fault);
if (error == 0) {
if (fault)
goto done; /* Resume guest to handle fault */
/*
* case (3): read from MMIO and write to system memory.
*
* A MMIO read can have side-effects so we
* commit to it only after vm_copy_setup() is
* successful. If a page-fault needs to be
* injected into the guest then it will happen
* before the MMIO read is attempted.
*/
error = memread(vm, vcpuid, gpa, &val, opsize, arg);
if (error)
goto done;
vm_copyout(vm, vcpuid, &val, copyinfo, opsize);
vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
} else {
/*
* Case (4): read from and write to mmio.
*
* Commit to the MMIO read/write (with potential
* side-effects) only after we are sure that the
* instruction is not going to be restarted due
* to address translation faults.
*/
error = vm_gla2gpa(vm, vcpuid, paging, srcaddr,
PROT_READ, &srcgpa, &fault);
if (error || fault)
goto done;
error = vm_gla2gpa(vm, vcpuid, paging, dstaddr,
PROT_WRITE, &dstgpa, &fault);
if (error || fault)
goto done;
error = memread(vm, vcpuid, srcgpa, &val, opsize, arg);
if (error)
goto done;
error = memwrite(vm, vcpuid, dstgpa, val, opsize, arg);
if (error)
goto done;
}
}
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSI, &rsi);
KASSERT(error == 0, ("%s: error %d getting rsi", __func__, error));
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RDI, &rdi);
KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
if (rflags & PSL_D) {
rsi -= opsize;
rdi -= opsize;
} else {
rsi += opsize;
rdi += opsize;
}
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSI, rsi,
vie->addrsize);
KASSERT(error == 0, ("%s: error %d updating rsi", __func__, error));
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RDI, rdi,
vie->addrsize);
KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
if (repeat) {
rcx = rcx - 1;
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RCX,
rcx, vie->addrsize);
KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
/*
* Repeat the instruction if the count register is not zero.
*/
if ((rcx & vie_size2mask(vie->addrsize)) != 0)
vm_restart_instruction(vm, vcpuid);
}
done:
KASSERT(error == 0 || error == EFAULT, ("%s: unexpected error %d",
__func__, error));
return (error);
}
static int
emulate_stos(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
int error, opsize, repeat;
uint64_t val;
uint64_t rcx, rdi, rflags;
opsize = (vie->op.op_byte == 0xAA) ? 1 : vie->opsize;
repeat = vie->repz_present | vie->repnz_present;
if (repeat) {
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RCX, &rcx);
KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
/*
* The count register is %rcx, %ecx or %cx depending on the
* address size of the instruction.
*/
if ((rcx & vie_size2mask(vie->addrsize)) == 0)
return (0);
}
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RAX, &val);
KASSERT(!error, ("%s: error %d getting rax", __func__, error));
error = memwrite(vm, vcpuid, gpa, val, opsize, arg);
if (error)
return (error);
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RDI, &rdi);
KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
if (rflags & PSL_D)
rdi -= opsize;
else
rdi += opsize;
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RDI, rdi,
vie->addrsize);
KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
if (repeat) {
rcx = rcx - 1;
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RCX,
rcx, vie->addrsize);
KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
/*
* Repeat the instruction if the count register is not zero.
*/
if ((rcx & vie_size2mask(vie->addrsize)) != 0)
vm_restart_instruction(vm, vcpuid);
}
return (0);
}
static int
emulate_and(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
{
int error, size;
enum vm_reg_name reg;
uint64_t result, rflags, rflags2, val1, val2;
size = vie->opsize;
error = EINVAL;
switch (vie->op.op_byte) {
case 0x23:
/*
* AND reg (ModRM:reg) and mem (ModRM:r/m) and store the
* result in reg.
*
* 23/r and r16, r/m16
* 23/r and r32, r/m32
* REX.W + 23/r and r64, r/m64
*/
/* get the first operand */
reg = gpr_map[vie->reg];
error = vie_read_register(vm, vcpuid, reg, &val1);
if (error)
break;
/* get the second operand */
error = memread(vm, vcpuid, gpa, &val2, size, arg);
if (error)
break;
/* perform the operation and write the result */
result = val1 & val2;
error = vie_update_register(vm, vcpuid, reg, result, size);
break;
case 0x81:
case 0x83:
/*
* AND mem (ModRM:r/m) with immediate and store the
* result in mem.
*
* 81 /4 and r/m16, imm16
* 81 /4 and r/m32, imm32
* REX.W + 81 /4 and r/m64, imm32 sign-extended to 64
*
* 83 /4 and r/m16, imm8 sign-extended to 16
* 83 /4 and r/m32, imm8 sign-extended to 32
* REX.W + 83/4 and r/m64, imm8 sign-extended to 64
*/
/* get the first operand */
error = memread(vm, vcpuid, gpa, &val1, size, arg);
if (error)
break;
/*
* perform the operation with the pre-fetched immediate
* operand and write the result
*/
result = val1 & vie->immediate;
error = memwrite(vm, vcpuid, gpa, result, size, arg);
break;
default:
break;
}
if (error)
return (error);
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
if (error)
return (error);
/*
* OF and CF are cleared; the SF, ZF and PF flags are set according
* to the result; AF is undefined.
*
* The updated status flags are obtained by subtracting 0 from 'result'.
*/
rflags2 = getcc(size, result, 0);
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
return (error);
}
static int
emulate_or(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
{
int error, size;
enum vm_reg_name reg;
uint64_t result, rflags, rflags2, val1, val2;
size = vie->opsize;
error = EINVAL;
switch (vie->op.op_byte) {
case 0x0B:
/*
* OR reg (ModRM:reg) and mem (ModRM:r/m) and store the
* result in reg.
*
* 0b/r or r16, r/m16
* 0b/r or r32, r/m32
* REX.W + 0b/r or r64, r/m64
*/
/* get the first operand */
reg = gpr_map[vie->reg];
error = vie_read_register(vm, vcpuid, reg, &val1);
if (error)
break;
/* get the second operand */
error = memread(vm, vcpuid, gpa, &val2, size, arg);
if (error)
break;
/* perform the operation and write the result */
result = val1 | val2;
error = vie_update_register(vm, vcpuid, reg, result, size);
break;
case 0x81:
case 0x83:
/*
* OR mem (ModRM:r/m) with immediate and store the
* result in mem.
*
* 81 /1 or r/m16, imm16
* 81 /1 or r/m32, imm32
* REX.W + 81 /1 or r/m64, imm32 sign-extended to 64
*
* 83 /1 or r/m16, imm8 sign-extended to 16
* 83 /1 or r/m32, imm8 sign-extended to 32
* REX.W + 83/1 or r/m64, imm8 sign-extended to 64
*/
/* get the first operand */
error = memread(vm, vcpuid, gpa, &val1, size, arg);
if (error)
break;
/*
* perform the operation with the pre-fetched immediate
* operand and write the result
*/
result = val1 | vie->immediate;
error = memwrite(vm, vcpuid, gpa, result, size, arg);
break;
default:
break;
}
if (error)
return (error);
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
if (error)
return (error);
/*
* OF and CF are cleared; the SF, ZF and PF flags are set according
* to the result; AF is undefined.
*
* The updated status flags are obtained by subtracting 0 from 'result'.
*/
rflags2 = getcc(size, result, 0);
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
return (error);
}
static int
emulate_cmp(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
{
int error, size;
uint64_t regop, memop, op1, op2, rflags, rflags2;
enum vm_reg_name reg;
size = vie->opsize;
switch (vie->op.op_byte) {
case 0x39:
case 0x3B:
/*
* 39/r CMP r/m16, r16
* 39/r CMP r/m32, r32
* REX.W 39/r CMP r/m64, r64
*
* 3B/r CMP r16, r/m16
* 3B/r CMP r32, r/m32
* REX.W + 3B/r CMP r64, r/m64
*
* Compare the first operand with the second operand and
* set status flags in EFLAGS register. The comparison is
* performed by subtracting the second operand from the first
* operand and then setting the status flags.
*/
/* Get the register operand */
reg = gpr_map[vie->reg];
error = vie_read_register(vm, vcpuid, reg, &regop);
if (error)
return (error);
/* Get the memory operand */
error = memread(vm, vcpuid, gpa, &memop, size, arg);
if (error)
return (error);
if (vie->op.op_byte == 0x3B) {
op1 = regop;
op2 = memop;
} else {
op1 = memop;
op2 = regop;
}
rflags2 = getcc(size, op1, op2);
break;
case 0x80:
case 0x81:
case 0x83:
/*
* 80 /7 cmp r/m8, imm8
* REX + 80 /7 cmp r/m8, imm8
*
* 81 /7 cmp r/m16, imm16
* 81 /7 cmp r/m32, imm32
* REX.W + 81 /7 cmp r/m64, imm32 sign-extended to 64
*
* 83 /7 cmp r/m16, imm8 sign-extended to 16
* 83 /7 cmp r/m32, imm8 sign-extended to 32
* REX.W + 83 /7 cmp r/m64, imm8 sign-extended to 64
*
* Compare mem (ModRM:r/m) with immediate and set
* status flags according to the results. The
* comparison is performed by subtracting the
* immediate from the first operand and then setting
* the status flags.
*
*/
if (vie->op.op_byte == 0x80)
size = 1;
/* get the first operand */
error = memread(vm, vcpuid, gpa, &op1, size, arg);
if (error)
return (error);
rflags2 = getcc(size, op1, vie->immediate);
break;
default:
return (EINVAL);
}
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
if (error)
return (error);
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & RFLAGS_STATUS_BITS;
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
return (error);
}
static int
emulate_sub(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
{
int error, size;
uint64_t nval, rflags, rflags2, val1, val2;
enum vm_reg_name reg;
size = vie->opsize;
error = EINVAL;
switch (vie->op.op_byte) {
case 0x2B:
/*
* SUB r/m from r and store the result in r
*
* 2B/r SUB r16, r/m16
* 2B/r SUB r32, r/m32
* REX.W + 2B/r SUB r64, r/m64
*/
/* get the first operand */
reg = gpr_map[vie->reg];
error = vie_read_register(vm, vcpuid, reg, &val1);
if (error)
break;
/* get the second operand */
error = memread(vm, vcpuid, gpa, &val2, size, arg);
if (error)
break;
/* perform the operation and write the result */
nval = val1 - val2;
error = vie_update_register(vm, vcpuid, reg, nval, size);
break;
default:
break;
}
if (!error) {
rflags2 = getcc(size, val1, val2);
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
&rflags);
if (error)
return (error);
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & RFLAGS_STATUS_BITS;
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
rflags, 8);
}
return (error);
}
static int
emulate_stack_op(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
#ifdef _KERNEL
struct vm_copyinfo copyinfo[2];
#else
struct iovec copyinfo[2];
#endif
struct seg_desc ss_desc;
uint64_t cr0, rflags, rsp, stack_gla, val;
int error, fault, size, stackaddrsize, pushop;
val = 0;
size = vie->opsize;
pushop = (vie->op.op_type == VIE_OP_TYPE_PUSH) ? 1 : 0;
/*
* From "Address-Size Attributes for Stack Accesses", Intel SDL, Vol 1
*/
if (paging->cpu_mode == CPU_MODE_REAL) {
stackaddrsize = 2;
} else if (paging->cpu_mode == CPU_MODE_64BIT) {
/*
* "Stack Manipulation Instructions in 64-bit Mode", SDM, Vol 3
* - Stack pointer size is always 64-bits.
* - PUSH/POP of 32-bit values is not possible in 64-bit mode.
* - 16-bit PUSH/POP is supported by using the operand size
* override prefix (66H).
*/
stackaddrsize = 8;
size = vie->opsize_override ? 2 : 8;
} else {
/*
* In protected or compatibility mode the 'B' flag in the
* stack-segment descriptor determines the size of the
* stack pointer.
*/
error = vm_get_seg_desc(vm, vcpuid, VM_REG_GUEST_SS, &ss_desc);
KASSERT(error == 0, ("%s: error %d getting SS descriptor",
__func__, error));
if (SEG_DESC_DEF32(ss_desc.access))
stackaddrsize = 4;
else
stackaddrsize = 2;
}
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSP, &rsp);
KASSERT(error == 0, ("%s: error %d getting rsp", __func__, error));
if (pushop) {
rsp -= size;
}
if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS, &ss_desc,
rsp, size, stackaddrsize, pushop ? PROT_WRITE : PROT_READ,
&stack_gla)) {
vm_inject_ss(vm, vcpuid, 0);
return (0);
}
if (vie_canonical_check(paging->cpu_mode, stack_gla)) {
vm_inject_ss(vm, vcpuid, 0);
return (0);
}
if (vie_alignment_check(paging->cpl, size, cr0, rflags, stack_gla)) {
vm_inject_ac(vm, vcpuid, 0);
return (0);
}
error = vm_copy_setup(vm, vcpuid, paging, stack_gla, size,
pushop ? PROT_WRITE : PROT_READ, copyinfo, nitems(copyinfo),
&fault);
if (error || fault)
return (error);
if (pushop) {
error = memread(vm, vcpuid, mmio_gpa, &val, size, arg);
if (error == 0)
vm_copyout(vm, vcpuid, &val, copyinfo, size);
} else {
vm_copyin(vm, vcpuid, copyinfo, &val, size);
error = memwrite(vm, vcpuid, mmio_gpa, val, size, arg);
rsp += size;
}
vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
if (error == 0) {
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSP, rsp,
stackaddrsize);
KASSERT(error == 0, ("error %d updating rsp", error));
}
return (error);
}
static int
emulate_push(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
int error;
/*
* Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
*
* PUSH is part of the group 5 extended opcodes and is identified
* by ModRM:reg = b110.
*/
if ((vie->reg & 7) != 6)
return (EINVAL);
error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
memwrite, arg);
return (error);
}
static int
emulate_pop(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
int error;
/*
* Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
*
* POP is part of the group 1A extended opcodes and is identified
* by ModRM:reg = b000.
*/
if ((vie->reg & 7) != 0)
return (EINVAL);
error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
memwrite, arg);
return (error);
}
static int
emulate_group1(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *memarg)
{
int error;
switch (vie->reg & 7) {
case 0x1: /* OR */
error = emulate_or(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
case 0x4: /* AND */
error = emulate_and(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
case 0x7: /* CMP */
error = emulate_cmp(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
default:
error = EINVAL;
break;
}
return (error);
}
static int
emulate_bittest(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite, void *memarg)
{
uint64_t val, rflags;
int error, bitmask, bitoff;
/*
* 0F BA is a Group 8 extended opcode.
*
* Currently we only emulate the 'Bit Test' instruction which is
* identified by a ModR/M:reg encoding of 100b.
*/
if ((vie->reg & 7) != 4)
return (EINVAL);
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
error = memread(vm, vcpuid, gpa, &val, vie->opsize, memarg);
if (error)
return (error);
/*
* Intel SDM, Vol 2, Table 3-2:
* "Range of Bit Positions Specified by Bit Offset Operands"
*/
bitmask = vie->opsize * 8 - 1;
bitoff = vie->immediate & bitmask;
/* Copy the bit into the Carry flag in %rflags */
if (val & (1UL << bitoff))
rflags |= PSL_C;
else
rflags &= ~PSL_C;
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
KASSERT(error == 0, ("%s: error %d updating rflags", __func__, error));
return (0);
}
int
vmm_emulate_instruction(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *memarg)
{
int error;
if (!vie->decoded)
return (EINVAL);
switch (vie->op.op_type) {
case VIE_OP_TYPE_GROUP1:
error = emulate_group1(vm, vcpuid, gpa, vie, paging, memread,
memwrite, memarg);
break;
case VIE_OP_TYPE_POP:
error = emulate_pop(vm, vcpuid, gpa, vie, paging, memread,
memwrite, memarg);
break;
case VIE_OP_TYPE_PUSH:
error = emulate_push(vm, vcpuid, gpa, vie, paging, memread,
memwrite, memarg);
break;
case VIE_OP_TYPE_CMP:
error = emulate_cmp(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_MOV:
error = emulate_mov(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_MOVSX:
case VIE_OP_TYPE_MOVZX:
error = emulate_movx(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_MOVS:
error = emulate_movs(vm, vcpuid, gpa, vie, paging, memread,
memwrite, memarg);
break;
case VIE_OP_TYPE_STOS:
error = emulate_stos(vm, vcpuid, gpa, vie, paging, memread,
memwrite, memarg);
break;
case VIE_OP_TYPE_AND:
error = emulate_and(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_OR:
error = emulate_or(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_SUB:
error = emulate_sub(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_BITTEST:
error = emulate_bittest(vm, vcpuid, gpa, vie,
memread, memwrite, memarg);
break;
default:
error = EINVAL;
break;
}
return (error);
}
int
vie_alignment_check(int cpl, int size, uint64_t cr0, uint64_t rf, uint64_t gla)
{
KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
("%s: invalid size %d", __func__, size));
KASSERT(cpl >= 0 && cpl <= 3, ("%s: invalid cpl %d", __func__, cpl));
if (cpl != 3 || (cr0 & CR0_AM) == 0 || (rf & PSL_AC) == 0)
return (0);
return ((gla & (size - 1)) ? 1 : 0);
}
int
vie_canonical_check(enum vm_cpu_mode cpu_mode, uint64_t gla)
{
uint64_t mask;
if (cpu_mode != CPU_MODE_64BIT)
return (0);
/*
* The value of the bit 47 in the 'gla' should be replicated in the
* most significant 16 bits.
*/
mask = ~((1UL << 48) - 1);
if (gla & (1UL << 47))
return ((gla & mask) != mask);
else
return ((gla & mask) != 0);
}
uint64_t
vie_size2mask(int size)
{
KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
("vie_size2mask: invalid size %d", size));
return (size2mask[size]);
}
int
vie_calculate_gla(enum vm_cpu_mode cpu_mode, enum vm_reg_name seg,
struct seg_desc *desc, uint64_t offset, int length, int addrsize,
int prot, uint64_t *gla)
{
uint64_t firstoff, low_limit, high_limit, segbase;
int glasize, type;
KASSERT(seg >= VM_REG_GUEST_ES && seg <= VM_REG_GUEST_GS,
("%s: invalid segment %d", __func__, seg));
KASSERT(length == 1 || length == 2 || length == 4 || length == 8,
("%s: invalid operand size %d", __func__, length));
KASSERT((prot & ~(PROT_READ | PROT_WRITE)) == 0,
("%s: invalid prot %#x", __func__, prot));
firstoff = offset;
if (cpu_mode == CPU_MODE_64BIT) {
KASSERT(addrsize == 4 || addrsize == 8, ("%s: invalid address "
"size %d for cpu_mode %d", __func__, addrsize, cpu_mode));
glasize = 8;
} else {
KASSERT(addrsize == 2 || addrsize == 4, ("%s: invalid address "
"size %d for cpu mode %d", __func__, addrsize, cpu_mode));
glasize = 4;
/*
* If the segment selector is loaded with a NULL selector
* then the descriptor is unusable and attempting to use
* it results in a #GP(0).
*/
if (SEG_DESC_UNUSABLE(desc->access))
return (-1);
/*
* The processor generates a #NP exception when a segment
* register is loaded with a selector that points to a
* descriptor that is not present. If this was the case then
* it would have been checked before the VM-exit.
*/
KASSERT(SEG_DESC_PRESENT(desc->access),
("segment %d not present: %#x", seg, desc->access));
/*
* The descriptor type must indicate a code/data segment.
*/
type = SEG_DESC_TYPE(desc->access);
KASSERT(type >= 16 && type <= 31, ("segment %d has invalid "
"descriptor type %#x", seg, type));
if (prot & PROT_READ) {
/* #GP on a read access to a exec-only code segment */
if ((type & 0xA) == 0x8)
return (-1);
}
if (prot & PROT_WRITE) {
/*
* #GP on a write access to a code segment or a
* read-only data segment.
*/
if (type & 0x8) /* code segment */
return (-1);
if ((type & 0xA) == 0) /* read-only data seg */
return (-1);
}
/*
* 'desc->limit' is fully expanded taking granularity into
* account.
*/
if ((type & 0xC) == 0x4) {
/* expand-down data segment */
low_limit = desc->limit + 1;
high_limit = SEG_DESC_DEF32(desc->access) ?
0xffffffff : 0xffff;
} else {
/* code segment or expand-up data segment */
low_limit = 0;
high_limit = desc->limit;
}
while (length > 0) {
offset &= vie_size2mask(addrsize);
if (offset < low_limit || offset > high_limit)
return (-1);
offset++;
length--;
}
}
/*
* In 64-bit mode all segments except %fs and %gs have a segment
* base address of 0.
*/
if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
seg != VM_REG_GUEST_GS) {
segbase = 0;
} else {
segbase = desc->base;
}
/*
* Truncate 'firstoff' to the effective address size before adding
* it to the segment base.
*/
firstoff &= vie_size2mask(addrsize);
*gla = (segbase + firstoff) & vie_size2mask(glasize);
return (0);
}
#ifdef _KERNEL
void
vie_init(struct vie *vie, const char *inst_bytes, int inst_length)
{
KASSERT(inst_length >= 0 && inst_length <= VIE_INST_SIZE,
("%s: invalid instruction length (%d)", __func__, inst_length));
bzero(vie, sizeof(struct vie));
vie->base_register = VM_REG_LAST;
vie->index_register = VM_REG_LAST;
vie->segment_register = VM_REG_LAST;
if (inst_length) {
bcopy(inst_bytes, vie->inst, inst_length);
vie->num_valid = inst_length;
}
}
static int
pf_error_code(int usermode, int prot, int rsvd, uint64_t pte)
{
int error_code = 0;
if (pte & PG_V)
error_code |= PGEX_P;
if (prot & VM_PROT_WRITE)
error_code |= PGEX_W;
if (usermode)
error_code |= PGEX_U;
if (rsvd)
error_code |= PGEX_RSV;
if (prot & VM_PROT_EXECUTE)
error_code |= PGEX_I;
return (error_code);
}
static void
ptp_release(void **cookie)
{
if (*cookie != NULL) {
vm_gpa_release(*cookie);
*cookie = NULL;
}
}
static void *
ptp_hold(struct vm *vm, int vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
{
void *ptr;
ptp_release(cookie);
ptr = vm_gpa_hold(vm, vcpu, ptpphys, len, VM_PROT_RW, cookie);
return (ptr);
}
static int
_vm_gla2gpa(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
uint64_t gla, int prot, uint64_t *gpa, int *guest_fault, bool check_only)
{
int nlevels, pfcode, ptpshift, ptpindex, retval, usermode, writable;
u_int retries;
uint64_t *ptpbase, ptpphys, pte, pgsize;
uint32_t *ptpbase32, pte32;
void *cookie;
*guest_fault = 0;
usermode = (paging->cpl == 3 ? 1 : 0);
writable = prot & VM_PROT_WRITE;
cookie = NULL;
retval = 0;
retries = 0;
restart:
ptpphys = paging->cr3; /* root of the page tables */
ptp_release(&cookie);
if (retries++ > 0)
maybe_yield();
if (vie_canonical_check(paging->cpu_mode, gla)) {
/*
* XXX assuming a non-stack reference otherwise a stack fault
* should be generated.
*/
if (!check_only)
vm_inject_gp(vm, vcpuid);
goto fault;
}
if (paging->paging_mode == PAGING_MODE_FLAT) {
*gpa = gla;
goto done;
}
if (paging->paging_mode == PAGING_MODE_32) {
nlevels = 2;
while (--nlevels >= 0) {
/* Zero out the lower 12 bits. */
ptpphys &= ~0xfff;
ptpbase32 = ptp_hold(vm, vcpuid, ptpphys, PAGE_SIZE,
&cookie);
if (ptpbase32 == NULL)
goto error;
ptpshift = PAGE_SHIFT + nlevels * 10;
ptpindex = (gla >> ptpshift) & 0x3FF;
pgsize = 1UL << ptpshift;
pte32 = ptpbase32[ptpindex];
if ((pte32 & PG_V) == 0 ||
(usermode && (pte32 & PG_U) == 0) ||
(writable && (pte32 & PG_RW) == 0)) {
if (!check_only) {
pfcode = pf_error_code(usermode, prot, 0,
pte32);
vm_inject_pf(vm, vcpuid, pfcode, gla);
}
goto fault;
}
/*
* Emulate the x86 MMU's management of the accessed
* and dirty flags. While the accessed flag is set
* at every level of the page table, the dirty flag
* is only set at the last level providing the guest
* physical address.
*/
if (!check_only && (pte32 & PG_A) == 0) {
if (atomic_cmpset_32(&ptpbase32[ptpindex],
pte32, pte32 | PG_A) == 0) {
goto restart;
}
}
/* XXX must be ignored if CR4.PSE=0 */
if (nlevels > 0 && (pte32 & PG_PS) != 0)
break;
ptpphys = pte32;
}
/* Set the dirty bit in the page table entry if necessary */
if (!check_only && writable && (pte32 & PG_M) == 0) {
if (atomic_cmpset_32(&ptpbase32[ptpindex],
pte32, pte32 | PG_M) == 0) {
goto restart;
}
}
/* Zero out the lower 'ptpshift' bits */
pte32 >>= ptpshift; pte32 <<= ptpshift;
*gpa = pte32 | (gla & (pgsize - 1));
goto done;
}
if (paging->paging_mode == PAGING_MODE_PAE) {
/* Zero out the lower 5 bits and the upper 32 bits */
ptpphys &= 0xffffffe0UL;
ptpbase = ptp_hold(vm, vcpuid, ptpphys, sizeof(*ptpbase) * 4,
&cookie);
if (ptpbase == NULL)
goto error;
ptpindex = (gla >> 30) & 0x3;
pte = ptpbase[ptpindex];
if ((pte & PG_V) == 0) {
if (!check_only) {
pfcode = pf_error_code(usermode, prot, 0, pte);
vm_inject_pf(vm, vcpuid, pfcode, gla);
}
goto fault;
}
ptpphys = pte;
nlevels = 2;
} else
nlevels = 4;
while (--nlevels >= 0) {
/* Zero out the lower 12 bits and the upper 12 bits */
ptpphys >>= 12; ptpphys <<= 24; ptpphys >>= 12;
ptpbase = ptp_hold(vm, vcpuid, ptpphys, PAGE_SIZE, &cookie);
if (ptpbase == NULL)
goto error;
ptpshift = PAGE_SHIFT + nlevels * 9;
ptpindex = (gla >> ptpshift) & 0x1FF;
pgsize = 1UL << ptpshift;
pte = ptpbase[ptpindex];
if ((pte & PG_V) == 0 ||
(usermode && (pte & PG_U) == 0) ||
(writable && (pte & PG_RW) == 0)) {
if (!check_only) {
pfcode = pf_error_code(usermode, prot, 0, pte);
vm_inject_pf(vm, vcpuid, pfcode, gla);
}
goto fault;
}
/* Set the accessed bit in the page table entry */
if (!check_only && (pte & PG_A) == 0) {
if (atomic_cmpset_64(&ptpbase[ptpindex],
pte, pte | PG_A) == 0) {
goto restart;
}
}
if (nlevels > 0 && (pte & PG_PS) != 0) {
if (pgsize > 1 * GB) {
if (!check_only) {
pfcode = pf_error_code(usermode, prot, 1,
pte);
vm_inject_pf(vm, vcpuid, pfcode, gla);
}
goto fault;
}
break;
}
ptpphys = pte;
}
/* Set the dirty bit in the page table entry if necessary */
if (!check_only && writable && (pte & PG_M) == 0) {
if (atomic_cmpset_64(&ptpbase[ptpindex], pte, pte | PG_M) == 0)
goto restart;
}
/* Zero out the lower 'ptpshift' bits and the upper 12 bits */
pte >>= ptpshift; pte <<= (ptpshift + 12); pte >>= 12;
*gpa = pte | (gla & (pgsize - 1));
done:
ptp_release(&cookie);
KASSERT(retval == 0 || retval == EFAULT, ("%s: unexpected retval %d",
__func__, retval));
return (retval);
error:
retval = EFAULT;
goto done;
fault:
*guest_fault = 1;
goto done;
}
int
vm_gla2gpa(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
{
return (_vm_gla2gpa(vm, vcpuid, paging, gla, prot, gpa, guest_fault,
false));
}
int
vm_gla2gpa_nofault(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
{
return (_vm_gla2gpa(vm, vcpuid, paging, gla, prot, gpa, guest_fault,
true));
}
int
vmm_fetch_instruction(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
uint64_t rip, int inst_length, struct vie *vie, int *faultptr)
{
struct vm_copyinfo copyinfo[2];
int error, prot;
if (inst_length > VIE_INST_SIZE)
panic("vmm_fetch_instruction: invalid length %d", inst_length);
prot = PROT_READ | PROT_EXEC;
error = vm_copy_setup(vm, vcpuid, paging, rip, inst_length, prot,
copyinfo, nitems(copyinfo), faultptr);
if (error || *faultptr)
return (error);
vm_copyin(vm, vcpuid, copyinfo, vie->inst, inst_length);
vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
vie->num_valid = inst_length;
return (0);
}
static int
vie_peek(struct vie *vie, uint8_t *x)
{
if (vie->num_processed < vie->num_valid) {
*x = vie->inst[vie->num_processed];
return (0);
} else
return (-1);
}
static void
vie_advance(struct vie *vie)
{
vie->num_processed++;
}
static bool
segment_override(uint8_t x, int *seg)
{
switch (x) {
case 0x2E:
*seg = VM_REG_GUEST_CS;
break;
case 0x36:
*seg = VM_REG_GUEST_SS;
break;
case 0x3E:
*seg = VM_REG_GUEST_DS;
break;
case 0x26:
*seg = VM_REG_GUEST_ES;
break;
case 0x64:
*seg = VM_REG_GUEST_FS;
break;
case 0x65:
*seg = VM_REG_GUEST_GS;
break;
default:
return (false);
}
return (true);
}
static int
decode_prefixes(struct vie *vie, enum vm_cpu_mode cpu_mode, int cs_d)
{
uint8_t x;
while (1) {
if (vie_peek(vie, &x))
return (-1);
if (x == 0x66)
vie->opsize_override = 1;
else if (x == 0x67)
vie->addrsize_override = 1;
else if (x == 0xF3)
vie->repz_present = 1;
else if (x == 0xF2)
vie->repnz_present = 1;
else if (segment_override(x, &vie->segment_register))
vie->segment_override = 1;
else
break;
vie_advance(vie);
}
/*
* From section 2.2.1, "REX Prefixes", Intel SDM Vol 2:
* - Only one REX prefix is allowed per instruction.
* - The REX prefix must immediately precede the opcode byte or the
* escape opcode byte.
* - If an instruction has a mandatory prefix (0x66, 0xF2 or 0xF3)
* the mandatory prefix must come before the REX prefix.
*/
if (cpu_mode == CPU_MODE_64BIT && x >= 0x40 && x <= 0x4F) {
vie->rex_present = 1;
vie->rex_w = x & 0x8 ? 1 : 0;
vie->rex_r = x & 0x4 ? 1 : 0;
vie->rex_x = x & 0x2 ? 1 : 0;
vie->rex_b = x & 0x1 ? 1 : 0;
vie_advance(vie);
}
/*
* Section "Operand-Size And Address-Size Attributes", Intel SDM, Vol 1
*/
if (cpu_mode == CPU_MODE_64BIT) {
/*
* Default address size is 64-bits and default operand size
* is 32-bits.
*/
vie->addrsize = vie->addrsize_override ? 4 : 8;
if (vie->rex_w)
vie->opsize = 8;
else if (vie->opsize_override)
vie->opsize = 2;
else
vie->opsize = 4;
} else if (cs_d) {
/* Default address and operand sizes are 32-bits */
vie->addrsize = vie->addrsize_override ? 2 : 4;
vie->opsize = vie->opsize_override ? 2 : 4;
} else {
/* Default address and operand sizes are 16-bits */
vie->addrsize = vie->addrsize_override ? 4 : 2;
vie->opsize = vie->opsize_override ? 4 : 2;
}
return (0);
}
static int
decode_two_byte_opcode(struct vie *vie)
{
uint8_t x;
if (vie_peek(vie, &x))
return (-1);
vie->op = two_byte_opcodes[x];
if (vie->op.op_type == VIE_OP_TYPE_NONE)
return (-1);
vie_advance(vie);
return (0);
}
static int
decode_opcode(struct vie *vie)
{
uint8_t x;
if (vie_peek(vie, &x))
return (-1);
vie->op = one_byte_opcodes[x];
if (vie->op.op_type == VIE_OP_TYPE_NONE)
return (-1);
vie_advance(vie);
if (vie->op.op_type == VIE_OP_TYPE_TWO_BYTE)
return (decode_two_byte_opcode(vie));
return (0);
}
static int
decode_modrm(struct vie *vie, enum vm_cpu_mode cpu_mode)
{
uint8_t x;
if (vie->op.op_flags & VIE_OP_F_NO_MODRM)
return (0);
if (cpu_mode == CPU_MODE_REAL)
return (-1);
if (vie_peek(vie, &x))
return (-1);
vie->mod = (x >> 6) & 0x3;
vie->rm = (x >> 0) & 0x7;
vie->reg = (x >> 3) & 0x7;
/*
* A direct addressing mode makes no sense in the context of an EPT
* fault. There has to be a memory access involved to cause the
* EPT fault.
*/
if (vie->mod == VIE_MOD_DIRECT)
return (-1);
if ((vie->mod == VIE_MOD_INDIRECT && vie->rm == VIE_RM_DISP32) ||
(vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)) {
/*
* Table 2-5: Special Cases of REX Encodings
*
* mod=0, r/m=5 is used in the compatibility mode to
* indicate a disp32 without a base register.
*
* mod!=3, r/m=4 is used in the compatibility mode to
* indicate that the SIB byte is present.
*
* The 'b' bit in the REX prefix is don't care in
* this case.
*/
} else {
vie->rm |= (vie->rex_b << 3);
}
vie->reg |= (vie->rex_r << 3);
/* SIB */
if (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)
goto done;
vie->base_register = gpr_map[vie->rm];
switch (vie->mod) {
case VIE_MOD_INDIRECT_DISP8:
vie->disp_bytes = 1;
break;
case VIE_MOD_INDIRECT_DISP32:
vie->disp_bytes = 4;
break;
case VIE_MOD_INDIRECT:
if (vie->rm == VIE_RM_DISP32) {
vie->disp_bytes = 4;
/*
* Table 2-7. RIP-Relative Addressing
*
* In 64-bit mode mod=00 r/m=101 implies [rip] + disp32
* whereas in compatibility mode it just implies disp32.
*/
if (cpu_mode == CPU_MODE_64BIT)
vie->base_register = VM_REG_GUEST_RIP;
else
vie->base_register = VM_REG_LAST;
}
break;
}
done:
vie_advance(vie);
return (0);
}
static int
decode_sib(struct vie *vie)
{
uint8_t x;
/* Proceed only if SIB byte is present */
if (vie->mod == VIE_MOD_DIRECT || vie->rm != VIE_RM_SIB)
return (0);
if (vie_peek(vie, &x))
return (-1);
/* De-construct the SIB byte */
vie->ss = (x >> 6) & 0x3;
vie->index = (x >> 3) & 0x7;
vie->base = (x >> 0) & 0x7;
/* Apply the REX prefix modifiers */
vie->index |= vie->rex_x << 3;
vie->base |= vie->rex_b << 3;
switch (vie->mod) {
case VIE_MOD_INDIRECT_DISP8:
vie->disp_bytes = 1;
break;
case VIE_MOD_INDIRECT_DISP32:
vie->disp_bytes = 4;
break;
}
if (vie->mod == VIE_MOD_INDIRECT &&
(vie->base == 5 || vie->base == 13)) {
/*
* Special case when base register is unused if mod = 0
* and base = %rbp or %r13.
*
* Documented in:
* Table 2-3: 32-bit Addressing Forms with the SIB Byte
* Table 2-5: Special Cases of REX Encodings
*/
vie->disp_bytes = 4;
} else {
vie->base_register = gpr_map[vie->base];
}
/*
* All encodings of 'index' are valid except for %rsp (4).
*
* Documented in:
* Table 2-3: 32-bit Addressing Forms with the SIB Byte
* Table 2-5: Special Cases of REX Encodings
*/
if (vie->index != 4)
vie->index_register = gpr_map[vie->index];
/* 'scale' makes sense only in the context of an index register */
if (vie->index_register < VM_REG_LAST)
vie->scale = 1 << vie->ss;
vie_advance(vie);
return (0);
}
static int
decode_displacement(struct vie *vie)
{
int n, i;
uint8_t x;
union {
char buf[4];
int8_t signed8;
int32_t signed32;
} u;
if ((n = vie->disp_bytes) == 0)
return (0);
if (n != 1 && n != 4)
panic("decode_displacement: invalid disp_bytes %d", n);
for (i = 0; i < n; i++) {
if (vie_peek(vie, &x))
return (-1);
u.buf[i] = x;
vie_advance(vie);
}
if (n == 1)
vie->displacement = u.signed8; /* sign-extended */
else
vie->displacement = u.signed32; /* sign-extended */
return (0);
}
static int
decode_immediate(struct vie *vie)
{
int i, n;
uint8_t x;
union {
char buf[4];
int8_t signed8;
int16_t signed16;
int32_t signed32;
} u;
/* Figure out immediate operand size (if any) */
if (vie->op.op_flags & VIE_OP_F_IMM) {
/*
* Section 2.2.1.5 "Immediates", Intel SDM:
* In 64-bit mode the typical size of immediate operands
* remains 32-bits. When the operand size if 64-bits, the
* processor sign-extends all immediates to 64-bits prior
* to their use.
*/
if (vie->opsize == 4 || vie->opsize == 8)
vie->imm_bytes = 4;
else
vie->imm_bytes = 2;
} else if (vie->op.op_flags & VIE_OP_F_IMM8) {
vie->imm_bytes = 1;
}
if ((n = vie->imm_bytes) == 0)
return (0);
KASSERT(n == 1 || n == 2 || n == 4,
("%s: invalid number of immediate bytes: %d", __func__, n));
for (i = 0; i < n; i++) {
if (vie_peek(vie, &x))
return (-1);
u.buf[i] = x;
vie_advance(vie);
}
/* sign-extend the immediate value before use */
if (n == 1)
vie->immediate = u.signed8;
else if (n == 2)
vie->immediate = u.signed16;
else
vie->immediate = u.signed32;
return (0);
}
static int
decode_moffset(struct vie *vie)
{
int i, n;
uint8_t x;
union {
char buf[8];
uint64_t u64;
} u;
if ((vie->op.op_flags & VIE_OP_F_MOFFSET) == 0)
return (0);
/*
* Section 2.2.1.4, "Direct Memory-Offset MOVs", Intel SDM:
* The memory offset size follows the address-size of the instruction.
*/
n = vie->addrsize;
KASSERT(n == 2 || n == 4 || n == 8, ("invalid moffset bytes: %d", n));
u.u64 = 0;
for (i = 0; i < n; i++) {
if (vie_peek(vie, &x))
return (-1);
u.buf[i] = x;
vie_advance(vie);
}
vie->displacement = u.u64;
return (0);
}
/*
* Verify that the 'guest linear address' provided as collateral of the nested
* page table fault matches with our instruction decoding.
*/
static int
verify_gla(struct vm *vm, int cpuid, uint64_t gla, struct vie *vie,
enum vm_cpu_mode cpu_mode)
{
int error;
uint64_t base, segbase, idx, gla2;
enum vm_reg_name seg;
struct seg_desc desc;
/* Skip 'gla' verification */
if (gla == VIE_INVALID_GLA)
return (0);
base = 0;
if (vie->base_register != VM_REG_LAST) {
error = vm_get_register(vm, cpuid, vie->base_register, &base);
if (error) {
printf("verify_gla: error %d getting base reg %d\n",
error, vie->base_register);
return (-1);
}
/*
* RIP-relative addressing starts from the following
* instruction
*/
if (vie->base_register == VM_REG_GUEST_RIP)
base += vie->num_processed;
}
idx = 0;
if (vie->index_register != VM_REG_LAST) {
error = vm_get_register(vm, cpuid, vie->index_register, &idx);
if (error) {
printf("verify_gla: error %d getting index reg %d\n",
error, vie->index_register);
return (-1);
}
}
/*
* From "Specifying a Segment Selector", Intel SDM, Vol 1
*
* In 64-bit mode, segmentation is generally (but not
* completely) disabled. The exceptions are the FS and GS
* segments.
*
* In legacy IA-32 mode, when the ESP or EBP register is used
* as the base, the SS segment is the default segment. For
* other data references, except when relative to stack or
* string destination the DS segment is the default. These
* can be overridden to allow other segments to be accessed.
*/
if (vie->segment_override)
seg = vie->segment_register;
else if (vie->base_register == VM_REG_GUEST_RSP ||
vie->base_register == VM_REG_GUEST_RBP)
seg = VM_REG_GUEST_SS;
else
seg = VM_REG_GUEST_DS;
if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
seg != VM_REG_GUEST_GS) {
segbase = 0;
} else {
error = vm_get_seg_desc(vm, cpuid, seg, &desc);
if (error) {
printf("verify_gla: error %d getting segment"
" descriptor %d", error,
vie->segment_register);
return (-1);
}
segbase = desc.base;
}
gla2 = segbase + base + vie->scale * idx + vie->displacement;
gla2 &= size2mask[vie->addrsize];
if (gla != gla2) {
printf("verify_gla mismatch: segbase(0x%0lx)"
"base(0x%0lx), scale(%d), index(0x%0lx), "
"disp(0x%0lx), gla(0x%0lx), gla2(0x%0lx)\n",
segbase, base, vie->scale, idx, vie->displacement,
gla, gla2);
return (-1);
}
return (0);
}
int
vmm_decode_instruction(struct vm *vm, int cpuid, uint64_t gla,
enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
{
if (decode_prefixes(vie, cpu_mode, cs_d))
return (-1);
if (decode_opcode(vie))
return (-1);
if (decode_modrm(vie, cpu_mode))
return (-1);
if (decode_sib(vie))
return (-1);
if (decode_displacement(vie))
return (-1);
if (decode_immediate(vie))
return (-1);
if (decode_moffset(vie))
return (-1);
if ((vie->op.op_flags & VIE_OP_F_NO_GLA_VERIFICATION) == 0) {
if (verify_gla(vm, cpuid, gla, vie, cpu_mode))
return (-1);
}
vie->decoded = 1; /* success */
return (0);
}
#endif /* _KERNEL */