freebsd-nq/sys/geom/eli/g_eli_key_cache.c
Pawel Jakub Dawidek 2f07cdf871 Implement automatic online expansion of GELI providers - if the underlying
provider grows, GELI will expand automatically and will move the metadata
to the new location of the last sector.

This functionality is turned on by default. It can be turned off with the
-R flag, but it is not recommended - if the underlying provider grows and
automatic expansion is turned off, it won't be possible to attach this
provider again, as the metadata is no longer located in the last sector.

If the automatic expansion is turned off and the underlying provider grows,
GELI will only log a message with the previous size of the provider, so
recovery can be easier.

Obtained from:	Fudo Security
2019-04-03 23:57:37 +00:00

390 lines
11 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011-2019 Pawel Jakub Dawidek <pawel@dawidek.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#endif /* _KERNEL */
#include <sys/queue.h>
#include <sys/tree.h>
#include <geom/geom.h>
#include <geom/eli/g_eli.h>
#ifdef _KERNEL
MALLOC_DECLARE(M_ELI);
SYSCTL_DECL(_kern_geom_eli);
/*
* The default limit (8192 keys) will allow to cache all keys for 4TB
* provider with 512 bytes sectors and will take around 1MB of memory.
*/
static u_int g_eli_key_cache_limit = 8192;
SYSCTL_UINT(_kern_geom_eli, OID_AUTO, key_cache_limit, CTLFLAG_RDTUN,
&g_eli_key_cache_limit, 0, "Maximum number of encryption keys to cache");
static uint64_t g_eli_key_cache_hits;
SYSCTL_UQUAD(_kern_geom_eli, OID_AUTO, key_cache_hits, CTLFLAG_RW,
&g_eli_key_cache_hits, 0, "Key cache hits");
static uint64_t g_eli_key_cache_misses;
SYSCTL_UQUAD(_kern_geom_eli, OID_AUTO, key_cache_misses, CTLFLAG_RW,
&g_eli_key_cache_misses, 0, "Key cache misses");
static int
g_eli_key_cmp(const struct g_eli_key *a, const struct g_eli_key *b)
{
if (a->gek_keyno > b->gek_keyno)
return (1);
else if (a->gek_keyno < b->gek_keyno)
return (-1);
return (0);
}
#endif /* _KERNEL */
void
g_eli_key_fill(struct g_eli_softc *sc, struct g_eli_key *key, uint64_t keyno)
{
const uint8_t *ekey;
struct {
char magic[4];
uint8_t keyno[8];
} __packed hmacdata;
if ((sc->sc_flags & G_ELI_FLAG_ENC_IVKEY) != 0)
ekey = sc->sc_mkey;
else
ekey = sc->sc_ekey;
bcopy("ekey", hmacdata.magic, 4);
le64enc(hmacdata.keyno, keyno);
g_eli_crypto_hmac(ekey, G_ELI_MAXKEYLEN, (uint8_t *)&hmacdata,
sizeof(hmacdata), key->gek_key, 0);
key->gek_keyno = keyno;
key->gek_count = 0;
key->gek_magic = G_ELI_KEY_MAGIC;
}
#ifdef _KERNEL
RB_PROTOTYPE(g_eli_key_tree, g_eli_key, gek_link, g_eli_key_cmp);
RB_GENERATE(g_eli_key_tree, g_eli_key, gek_link, g_eli_key_cmp);
static struct g_eli_key *
g_eli_key_allocate(struct g_eli_softc *sc, uint64_t keyno)
{
struct g_eli_key *key, *ekey, keysearch;
mtx_assert(&sc->sc_ekeys_lock, MA_OWNED);
mtx_unlock(&sc->sc_ekeys_lock);
key = malloc(sizeof(*key), M_ELI, M_WAITOK);
g_eli_key_fill(sc, key, keyno);
mtx_lock(&sc->sc_ekeys_lock);
/*
* Recheck if the key wasn't added while we weren't holding the lock.
*/
keysearch.gek_keyno = keyno;
ekey = RB_FIND(g_eli_key_tree, &sc->sc_ekeys_tree, &keysearch);
if (ekey != NULL) {
explicit_bzero(key, sizeof(*key));
free(key, M_ELI);
key = ekey;
TAILQ_REMOVE(&sc->sc_ekeys_queue, key, gek_next);
} else {
RB_INSERT(g_eli_key_tree, &sc->sc_ekeys_tree, key);
sc->sc_ekeys_allocated++;
}
TAILQ_INSERT_TAIL(&sc->sc_ekeys_queue, key, gek_next);
return (key);
}
static struct g_eli_key *
g_eli_key_find_last(struct g_eli_softc *sc)
{
struct g_eli_key *key;
mtx_assert(&sc->sc_ekeys_lock, MA_OWNED);
TAILQ_FOREACH(key, &sc->sc_ekeys_queue, gek_next) {
if (key->gek_count == 0)
break;
}
return (key);
}
static void
g_eli_key_replace(struct g_eli_softc *sc, struct g_eli_key *key, uint64_t keyno)
{
mtx_assert(&sc->sc_ekeys_lock, MA_OWNED);
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC, ("Invalid magic."));
RB_REMOVE(g_eli_key_tree, &sc->sc_ekeys_tree, key);
TAILQ_REMOVE(&sc->sc_ekeys_queue, key, gek_next);
KASSERT(key->gek_count == 0, ("gek_count=%d", key->gek_count));
g_eli_key_fill(sc, key, keyno);
RB_INSERT(g_eli_key_tree, &sc->sc_ekeys_tree, key);
TAILQ_INSERT_TAIL(&sc->sc_ekeys_queue, key, gek_next);
}
static void
g_eli_key_remove(struct g_eli_softc *sc, struct g_eli_key *key)
{
mtx_assert(&sc->sc_ekeys_lock, MA_OWNED);
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC, ("Invalid magic."));
KASSERT(key->gek_count == 0, ("gek_count=%d", key->gek_count));
RB_REMOVE(g_eli_key_tree, &sc->sc_ekeys_tree, key);
TAILQ_REMOVE(&sc->sc_ekeys_queue, key, gek_next);
sc->sc_ekeys_allocated--;
explicit_bzero(key, sizeof(*key));
free(key, M_ELI);
}
void
g_eli_key_init(struct g_eli_softc *sc)
{
uint8_t *mkey;
mtx_lock(&sc->sc_ekeys_lock);
mkey = sc->sc_mkey + sizeof(sc->sc_ivkey);
if ((sc->sc_flags & G_ELI_FLAG_AUTH) == 0)
bcopy(mkey, sc->sc_ekey, G_ELI_DATAKEYLEN);
else {
/*
* The encryption key is: ekey = HMAC_SHA512(Data-Key, 0x10)
*/
g_eli_crypto_hmac(mkey, G_ELI_MAXKEYLEN, "\x10", 1,
sc->sc_ekey, 0);
}
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0) {
sc->sc_ekeys_total = 1;
sc->sc_ekeys_allocated = 0;
} else {
off_t mediasize;
size_t blocksize;
if ((sc->sc_flags & G_ELI_FLAG_AUTH) != 0) {
struct g_provider *pp;
pp = LIST_FIRST(&sc->sc_geom->consumer)->provider;
mediasize = pp->mediasize;
blocksize = pp->sectorsize;
} else {
mediasize = sc->sc_mediasize;
blocksize = sc->sc_sectorsize;
}
sc->sc_ekeys_total =
((mediasize - 1) >> G_ELI_KEY_SHIFT) / blocksize + 1;
sc->sc_ekeys_allocated = 0;
TAILQ_INIT(&sc->sc_ekeys_queue);
RB_INIT(&sc->sc_ekeys_tree);
if (sc->sc_ekeys_total <= g_eli_key_cache_limit) {
uint64_t keyno;
for (keyno = 0; keyno < sc->sc_ekeys_total; keyno++)
(void)g_eli_key_allocate(sc, keyno);
KASSERT(sc->sc_ekeys_total == sc->sc_ekeys_allocated,
("sc_ekeys_total=%ju != sc_ekeys_allocated=%ju",
(uintmax_t)sc->sc_ekeys_total,
(uintmax_t)sc->sc_ekeys_allocated));
}
}
mtx_unlock(&sc->sc_ekeys_lock);
}
void
g_eli_key_destroy(struct g_eli_softc *sc)
{
mtx_lock(&sc->sc_ekeys_lock);
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0) {
explicit_bzero(sc->sc_ekey, sizeof(sc->sc_ekey));
} else {
struct g_eli_key *key;
while ((key = TAILQ_FIRST(&sc->sc_ekeys_queue)) != NULL)
g_eli_key_remove(sc, key);
TAILQ_INIT(&sc->sc_ekeys_queue);
RB_INIT(&sc->sc_ekeys_tree);
}
mtx_unlock(&sc->sc_ekeys_lock);
}
void
g_eli_key_resize(struct g_eli_softc *sc)
{
uint64_t new_ekeys_total;
off_t mediasize;
size_t blocksize;
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0) {
return;
}
mtx_lock(&sc->sc_ekeys_lock);
if ((sc->sc_flags & G_ELI_FLAG_AUTH) != 0) {
struct g_provider *pp;
pp = LIST_FIRST(&sc->sc_geom->consumer)->provider;
mediasize = pp->mediasize;
blocksize = pp->sectorsize;
} else {
mediasize = sc->sc_mediasize;
blocksize = sc->sc_sectorsize;
}
new_ekeys_total = ((mediasize - 1) >> G_ELI_KEY_SHIFT) / blocksize + 1;
/* We only allow to grow. */
KASSERT(new_ekeys_total >= sc->sc_ekeys_total,
("new_ekeys_total=%ju < sc_ekeys_total=%ju",
(uintmax_t)new_ekeys_total, (uintmax_t)sc->sc_ekeys_total));
if (new_ekeys_total <= g_eli_key_cache_limit) {
uint64_t keyno;
for (keyno = sc->sc_ekeys_total; keyno < new_ekeys_total;
keyno++) {
(void)g_eli_key_allocate(sc, keyno);
}
KASSERT(new_ekeys_total == sc->sc_ekeys_allocated,
("new_ekeys_total=%ju != sc_ekeys_allocated=%ju",
(uintmax_t)new_ekeys_total,
(uintmax_t)sc->sc_ekeys_allocated));
}
sc->sc_ekeys_total = new_ekeys_total;
mtx_unlock(&sc->sc_ekeys_lock);
}
/*
* Select encryption key. If G_ELI_FLAG_SINGLE_KEY is present we only have one
* key available for all the data. If the flag is not present select the key
* based on data offset.
*/
uint8_t *
g_eli_key_hold(struct g_eli_softc *sc, off_t offset, size_t blocksize)
{
struct g_eli_key *key, keysearch;
uint64_t keyno;
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0)
return (sc->sc_ekey);
/* We switch key every 2^G_ELI_KEY_SHIFT blocks. */
keyno = (offset >> G_ELI_KEY_SHIFT) / blocksize;
KASSERT(keyno < sc->sc_ekeys_total,
("%s: keyno=%ju >= sc_ekeys_total=%ju",
__func__, (uintmax_t)keyno, (uintmax_t)sc->sc_ekeys_total));
keysearch.gek_keyno = keyno;
if (sc->sc_ekeys_total == sc->sc_ekeys_allocated) {
/* We have all the keys, so avoid some overhead. */
key = RB_FIND(g_eli_key_tree, &sc->sc_ekeys_tree, &keysearch);
KASSERT(key != NULL, ("No key %ju found.", (uintmax_t)keyno));
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC,
("Invalid key magic."));
return (key->gek_key);
}
mtx_lock(&sc->sc_ekeys_lock);
key = RB_FIND(g_eli_key_tree, &sc->sc_ekeys_tree, &keysearch);
if (key != NULL) {
g_eli_key_cache_hits++;
TAILQ_REMOVE(&sc->sc_ekeys_queue, key, gek_next);
TAILQ_INSERT_TAIL(&sc->sc_ekeys_queue, key, gek_next);
} else {
/*
* No key in cache, find the least recently unreferenced key
* or allocate one if we haven't reached our limit yet.
*/
if (sc->sc_ekeys_allocated < g_eli_key_cache_limit) {
key = g_eli_key_allocate(sc, keyno);
} else {
g_eli_key_cache_misses++;
key = g_eli_key_find_last(sc);
if (key != NULL) {
g_eli_key_replace(sc, key, keyno);
} else {
/* All keys are referenced? Allocate one. */
key = g_eli_key_allocate(sc, keyno);
}
}
}
key->gek_count++;
mtx_unlock(&sc->sc_ekeys_lock);
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC, ("Invalid key magic."));
return (key->gek_key);
}
void
g_eli_key_drop(struct g_eli_softc *sc, uint8_t *rawkey)
{
struct g_eli_key *key = (struct g_eli_key *)rawkey;
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0)
return;
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC, ("Invalid key magic."));
if (sc->sc_ekeys_total == sc->sc_ekeys_allocated)
return;
mtx_lock(&sc->sc_ekeys_lock);
KASSERT(key->gek_count > 0, ("key->gek_count=%d", key->gek_count));
key->gek_count--;
while (sc->sc_ekeys_allocated > g_eli_key_cache_limit) {
key = g_eli_key_find_last(sc);
if (key == NULL)
break;
g_eli_key_remove(sc, key);
}
mtx_unlock(&sc->sc_ekeys_lock);
}
#endif /* _KERNEL */